Conduire le robot avec le mode Tank Drive et Joysticks

Un cas d’utilisation courant est d’avoir un joystick qui devrait entraîner certains dispositifs actionneurs qui font partie d’un sous-système. Le problème est que le joystick est créé dans la classe OI et que les moteurs à contrôler sont dans le sous-système. L’idée est de créer une commande qui, lorsqu’elle est planifiée, lit les entrées du joystick et appelle une méthode créée sur le sous-système qui entraîne les moteurs.

Dans cet exemple, un sous-système de base d’entraînement est montré qui fonctionne en entraînement de réservoir à l’aide d’une paire de joysticks.

Créer un sous-système d’entraînement

Dragging subsystem from palette to tree

Créez un sous-système appelé Drive Train. Sa responsabilité sera de gérer la conduite de la base de robots.

Dragging differential drive from palette to tree

Inside the Drive Train, create a Differential Drive object. The Differential Drive object can contain a left motor controller and a right motor controller.

Dragging motor controller from pallete to tree

Create two Motor Controllers in the Differential Drive, and two more outside the Differential Drive, inside the Drive Train subsystem.

Setting motors in Differential Drive

In the Differential Drive, set the left and right motors to the appropriate motor controllers.

Setting motors to follow

Finally, for the two motor controllers that aren’t in the differential drive, set them to follow the motor controllers in the differential drive.

Ajouter les joysticks à l’interface opérateur

dragging joystick from palette to tree

Ajoutez deux joysticks à l’interface opérateur, l’un est le joystick gauche et l’autre est le joystick droit. L’axe des y sur les deux joysticks est utilisé pour contrôler les moteurs gauche et droit du robot, respectivement.

Note

Assurez-vous d’exporter votre programme en C++ ou Java avant de passer à l’étape suivante.

Créer une méthode pour écrire aux moteurs dans le sous-système

 11// ROBOTBUILDER TYPE: Subsystem.
 12
 13package frc.robot.subsystems;
 14
 15
 16import frc.robot.commands.*;
 17import edu.wpi.first.wpilibj.livewindow.LiveWindow;
 18import edu.wpi.first.wpilibj2.command.SubsystemBase;
 19
 20// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
 21import edu.wpi.first.wpilibj.AnalogGyro;
 22import edu.wpi.first.wpilibj.AnalogInput;
 23import edu.wpi.first.wpilibj.CounterBase.EncodingType;
 24import edu.wpi.first.wpilibj.Encoder;
 25import edu.wpi.first.wpilibj.drive.DifferentialDrive;
 26import edu.wpi.first.wpilibj.motorcontrol.PWMVictorSPX;
 27
 28    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
 29
 30
 31/**
 32 *
 33 */
 34public class DriveTrain extends SubsystemBase {
 35    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
 36public static final double PlaceDistance = 0.1;
 37public static final double BackAwayDistance = 0.6;
 38
 39    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
 40
 41    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
 42private PWMVictorSPX left1;
 43private PWMVictorSPX right1;
 44private DifferentialDrive drive;
 45private PWMVictorSPX left2;
 46private PWMVictorSPX right2;
 47private Encoder leftencoder;
 48private Encoder rightencoder;
 49private AnalogGyro gyro;
 50private AnalogInput rangefinder;
 51
 52    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
 53    
 54    /**
 55    *
 56    */
 57    public DriveTrain() {
 58        // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
 59left1 = new PWMVictorSPX(0);
 60 addChild("left1",left1);
 61 left1.setInverted(false);
 62
 63right1 = new PWMVictorSPX(1);
 64 addChild("right1",right1);
 65 right1.setInverted(true);
 66
 67drive = new DifferentialDrive(left1, right1);
 68 addChild("Drive",drive);
 69 drive.setSafetyEnabled(true);
 70drive.setExpiration(0.1);
 71drive.setMaxOutput(1.0);
 72
 73
 74left2 = new PWMVictorSPX(2);
 75 addChild("left2",left2);
 76 left1.addFollower(left2);
 77left2.setInverted(false);
 78
 79right2 = new PWMVictorSPX(3);
 80 addChild("right2",right2);
 81 right1.addFollower(right2);
 82right2.setInverted(false);
 83
 84leftencoder = new Encoder(0, 1, false, EncodingType.k4X);
 85 addChild("left encoder",leftencoder);
 86 leftencoder.setDistancePerPulse(1.0);
 87
 88rightencoder = new Encoder(2, 3, false, EncodingType.k4X);
 89 addChild("right encoder",rightencoder);
 90 rightencoder.setDistancePerPulse(1.0);
 91
 92gyro = new AnalogGyro(0);
 93 addChild("gyro",gyro);
 94 gyro.setSensitivity(0.007);
 95
 96rangefinder = new AnalogInput(1);
 97 addChild("range finder", rangefinder);
 98 
 99
100
101    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
102    }
103
104    @Override
105    public void periodic() {
106        // This method will be called once per scheduler run
107
108    }
109
110    @Override
111    public void simulationPeriodic() {
112        // This method will be called once per scheduler run when in simulation
113
114    }
115
116    // Put methods for controlling this subsystem
117    // here. Call these from Commands.
118
119    public void drive(double left, double right) {
120        drive.tankDrive(left, right);
121    }
122
123    public void stop() {
124        drive.tankDrive(0.0, 0.0);
125    }
126
127}
11// ROBOTBUILDER TYPE: Subsystem.
12#pragma once
13
14// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
15#include <frc2/command/SubsystemBase.h>
16#include <frc/AnalogGyro.h>
17#include <frc/AnalogInput.h>
18#include <frc/Encoder.h>
19#include <frc/drive/DifferentialDrive.h>
20#include <frc/motorcontrol/PWMVictorSPX.h>
21
22    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
23
24/**
25 *
26 *
27 * @author ExampleAuthor
28 */
29class DriveTrain: public frc2::SubsystemBase {
30private:
31    // It's desirable that everything possible is private except
32    // for methods that implement subsystem capabilities
33    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
34frc::AnalogInput m_rangefinder{1};
35frc::AnalogGyro m_gyro{0};
36frc::Encoder m_rightencoder{2, 3, false, frc::Encoder::k4X};
37frc::Encoder m_leftencoder{0, 1, false, frc::Encoder::k4X};
38frc::PWMVictorSPX m_right2{3};
39frc::PWMVictorSPX m_left2{2};
40frc::DifferentialDrive m_drive{m_left1, m_right1};
41frc::PWMVictorSPX m_right1{1};
42frc::PWMVictorSPX m_left1{0};
43
44    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
45public:
46DriveTrain();
47
48    void Periodic() override;
49    void SimulationPeriodic() override;
50    void Drive(double left, double right);
51    void Stop();
52    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
53
54    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
55    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
56static constexpr const double PlaceDistance = 0.1;
57static constexpr const double BackAwayDistance = 0.6;
58
59    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
60
61
62};
11// ROBOTBUILDER TYPE: Subsystem.
12
13// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
14#include "subsystems/DriveTrain.h"
15#include <frc/smartdashboard/SmartDashboard.h>
16
17    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
18
19DriveTrain::DriveTrain(){
20    SetName("Drive Train");
21    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
22    SetSubsystem("Drive Train");
23
24 AddChild("range finder", &m_rangefinder);
25 
26
27 AddChild("gyro", &m_gyro);
28 m_gyro.SetSensitivity(0.007);
29
30 AddChild("right encoder", &m_rightencoder);
31 m_rightencoder.SetDistancePerPulse(1.0);
32
33 AddChild("left encoder", &m_leftencoder);
34 m_leftencoder.SetDistancePerPulse(1.0);
35
36 AddChild("right2", &m_right2);
37 m_right2.SetInverted(false);
38m_right1.AddFollower(m_right2);
39
40 AddChild("left2", &m_left2);
41 m_left2.SetInverted(false);
42m_left1.AddFollower(m_left2);
43
44 AddChild("Drive", &m_drive);
45 m_drive.SetSafetyEnabled(true);
46m_drive.SetExpiration(0.1_s);
47m_drive.SetMaxOutput(1.0);
48
49
50 AddChild("right1", &m_right1);
51 m_right1.SetInverted(true);
52
53
54 AddChild("left1", &m_left1);
55 m_left1.SetInverted(false);
56
57
58    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
59}
60
61void DriveTrain::Periodic() {
62    // Put code here to be run every loop
63
64}
65
66void DriveTrain::SimulationPeriodic() {
67    // This method will be called once per scheduler run when in simulation
68
69}
70
71// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
72
73    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
74
75
76// Put methods for controlling this subsystem
77// here. Call these from Commands.
78
79void DriveTrain::Drive(double left, double right) {
80    m_drive.TankDrive(left, right);
81}
82
83void DriveTrain::Stop() {
84    m_drive.TankDrive(0.0, 0.0);
85}

Create a method that takes the joystick inputs, in this case the left and right driver joystick. The values are passed to the DifferentialDrive object that in turn does tank steering using the joystick values. Also create a method called stop() that stops the robot from driving, this might come in handy later.

Lire les valeurs des joysticks et appeler les méthodes du sous-système

dragging a command from palette to the tree

Créez une commande, dans ce cas appelée Tank Drive. Son but sera de lire une valeur de joystick et de la renvoyer au sous-système « Drive Base ». Notez que cette commande nécessite le sous-système « Drive Train ». Ce qui fera en sorte que cette commande cessera de fonctionner chaque fois que quelque chose d’autre tentera d’utiliser le « Drive Train »

parameter dialog box with DoubleSupplier parameters added

Create two parameters (DoubleSupplier for Java or std::function<double()> for C++) for the left and right speeds.

paramet preset dialog box with parameters entered

Create a parameter preset to retrieve joystick values. Java: For the left parameter enter () -> getJoystick1().getY() and for right enter () -> getJoystick2().getY(). C++: For the left parameter enter [this] {return getJoystick1()->GetY();} and for the right enter [this] {return getJoystick2()->GetY();}

Note

Assurez-vous d’exporter votre programme en C++ ou Java avant de passer à l’étape suivante.

Ajoutez le code pour conduite le robot

11// ROBOTBUILDER TYPE: Command.
12
13package frc.robot.commands;
14import edu.wpi.first.wpilibj2.command.Command;
15import java.util.function.DoubleSupplier;
16
17// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
18import frc.robot.subsystems.DriveTrain;
19
20    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
21
22/**
23 *
24 */
25public class TankDrive extends Command {
26
27    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
28        private final DriveTrain m_driveTrain;
29    private DoubleSupplier m_left;
30    private DoubleSupplier m_right;
31 
32    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
33
34    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
35
36
37    public TankDrive(DoubleSupplier left, DoubleSupplier right, DriveTrain subsystem) {
38
39    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
40        // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
41        m_left = left;
42        m_right = right;
43
44    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
45        // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
46
47        m_driveTrain = subsystem;
48        addRequirements(m_driveTrain);
49
50    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
51    }
52
53    // Called when the command is initially scheduled.
54    @Override
55    public void initialize() {
56    }
57
58    // Called every time the scheduler runs while the command is scheduled.
59    @Override
60    public void execute() {
61        m_driveTrain.drive(m_left.getAsDouble(), m_right.getAsDouble());
62    }
63
64    // Called once the command ends or is interrupted.
65    @Override
66    public void end(boolean interrupted) {
67        m_driveTrain.stop();
68    }
69
70    // Returns true when the command should end.
71    @Override
72    public boolean isFinished() {
73        return false;
74    }
75
76    @Override
77    public boolean runsWhenDisabled() {
78        // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
79        return false;
80
81    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
82    }
83}
11// ROBOTBUILDER TYPE: Command.
12
13#pragma once
14
15    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
16
17#include <frc2/command/CommandHelper.h>
18#include <frc2/command/Command.h>
19
20#include "subsystems/DriveTrain.h"
21
22    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
23
24/**
25 *
26 *
27 * @author ExampleAuthor
28 */
29class TankDrive: public frc2::CommandHelper<frc2::Command, TankDrive> {
30public:
31    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
32    explicit TankDrive(std::function<double()> left, std::function<double()> right, DriveTrain* m_drivetrain);
33
34    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
35
36void Initialize() override;
37void Execute() override;
38bool IsFinished() override;
39void End(bool interrupted) override;
40bool RunsWhenDisabled() const override;
41
42
43private:
44    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
45
46std::function<double()> m_left;
47std::function<double()> m_right;
48
49DriveTrain* m_drivetrain;
50
51
52    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
53};
11// ROBOTBUILDER TYPE: Command.
12
13// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
14
15#include "commands/TankDrive.h"
16
17TankDrive::TankDrive(std::function<double()> left, std::function<double()> right, DriveTrain* m_drivetrain) :
18    m_left(left),
19    m_right(right),
20m_drivetrain(m_drivetrain)
21{
22
23    // Use AddRequirements() here to declare subsystem dependencies
24    // eg. AddRequirements(m_Subsystem);
25    SetName("TankDrive");
26    AddRequirements({m_drivetrain});
27
28    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
29
30}
31
32// Called just before this Command runs the first time
33void TankDrive::Initialize() {
34
35}
36
37// Called repeatedly when this Command is scheduled to run
38void TankDrive::Execute() {
39    m_drivetrain->Drive(m_left(),m_right());
40}
41
42// Make this return true when this Command no longer needs to run execute()
43bool TankDrive::IsFinished() {
44    return false;
45}
46
47// Called once after isFinished returns true
48void TankDrive::End(bool interrupted) {
49    m_drivetrain->Drive(0,0);
50}
51
52bool TankDrive::RunsWhenDisabled() const {
53    // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
54    return false;
55
56    // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
57}

Add code to the execute method to do the actual driving. All that is needed is pass the for the left and right parameters to the Drive Train subsystem. The subsystem just uses them for the tank steering method on its DifferentialDrive object. And we get tank steering.

Nous avons également rempli la méthodes end() afin que lorsque cette commande est interrompue ou arrêtée, les moteurs soient arrêtés par mesure de sécurité.

Créer une commande par défaut

setting default command for subsystem

La dernière étape consiste à faire de la commande Tank Drive la « commande par défaut » du sous-système « Drive Train ». Cela signifie que les joysticks seront en contrôle tout le temps de la conduite, sauf lorsqu’une autre commande va utiliser « Drive Train ». C’est probablement le comportement souhaitable. Lorsque le code du mode autonome est en cours d’exécution, il nécessitera également « Drive Train » et interrompra la commande Tank Drive. Une fois le code autonome terminé, la commande Tank Drive redémarrera automatiquement (car il s’agit de la commande par défaut) et les opérateurs reprendront le contrôle. Si vous écrivez un code qui effectue une conduite automatisée (en se servant de capteurs, par exemple), ces commandes nécessitent également le DriveTrain et elles aussi vont interrompre la commande Tank Drive pour et prendre le contrôle du déplacement.

applying parameter preset to command

The final step is to choose the joystick parameter preset previously set up.

Note

Assurez-vous d’exporter votre programme en C++ ou Java avant de continuer.