Manejando el Robot con Modo Tanque y Controles
Un caso de uso común es tener un joystick que debería controlar algunos actuadores que forman parte de un subsistema. El problema es que el joystick se crea en la clase RobotContainer y los motores a controlar están en el subsistema. La idea es crear un comando que, cuando esté programado, lea la entrada del joystick y llame a un método que se crea en el subsistema que impulsa los motores.
En este ejemplo se muestra un subsistema de base de conducción que funciona en la conducción de un tanque usando un par de controles.
Crear un Subsistema del Chasis
Cree un subsistema llamado Drive Train. Su responsabilidad será manejar la conducción de la base del robot.
Dentro del tren de transmisión/Drive Train, cree un objeto de transmisión diferencial para una transmisión de dos motores. Hay un motor izquierdo y un motor derecho como parte de la clase Differential Drive de transmisión diferencial.
Since we want to use more then two motors to drive the robot, inside the Differential Drive, create two Motor Controller Groups. These will group multiple motor controllers so they can be used with Differential Drive.
Finally, create two Motor Controllers in each Motor Controller Group.
Agregar los controles a la Interfaz Operadora
Agregar dos controles a la Interfaz Operadora, uno es la palanca izquierda y el otro es la palanca derecha. El eje Y de los dos controles se usa para manejar los robots a la izquierda y a la derecha.
Nota
Asegúrese de exportar su programa a C++ o Java antes de continuar con el siguiente paso.
Crear un método para escribir los motores en el subsistema
:linenos:
:lineno-start: 11
:emphasize-lines: 119-121
// ROBOTBUILDER TYPE: Subsystem.
package frc.robot.subsystems;
import frc.robot.commands.*;
import edu.wpi.first.wpilibj.livewindow.LiveWindow;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
import edu.wpi.first.wpilibj.AnalogGyro;
import edu.wpi.first.wpilibj.AnalogInput;
import edu.wpi.first.wpilibj.CounterBase.EncodingType;
import edu.wpi.first.wpilibj.Encoder;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;
import edu.wpi.first.wpilibj.motorcontrol.MotorController;
import edu.wpi.first.wpilibj.motorcontrol.MotorControllerGroup;
import edu.wpi.first.wpilibj.motorcontrol.PWMVictorSPX;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
/**
*
*/
public class Drivetrain extends SubsystemBase {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
public static final double PlaceDistance = 0.1;
public static final double BackAwayDistance = 0.6;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
private PWMVictorSPX left1;
private PWMVictorSPX left2;
private MotorControllerGroup leftMotor;
private PWMVictorSPX right1;
private PWMVictorSPX right2;
private MotorControllerGroup rightMotor;
private DifferentialDrive drive;
private Encoder leftencoder;
private Encoder rightencoder;
private AnalogGyro gyro;
private AnalogInput rangefinder;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
/**
*
*/
public Drivetrain() {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
left1 = new PWMVictorSPX(0);
addChild("left1",left1);
left1.setInverted(false);
left2 = new PWMVictorSPX(1);
addChild("left2",left2);
left2.setInverted(false);
leftMotor = new MotorControllerGroup(left1, left2 );
addChild("Left Motor",leftMotor);
right1 = new PWMVictorSPX(5);
addChild("right1",right1);
right1.setInverted(false);
right2 = new PWMVictorSPX(6);
addChild("right2",right2);
right2.setInverted(false);
rightMotor = new MotorControllerGroup(right1, right2 );
addChild("Right Motor",rightMotor);
drive = new DifferentialDrive(leftMotor, rightMotor);
addChild("Drive",drive);
drive.setSafetyEnabled(true);
drive.setExpiration(0.1);
drive.setMaxOutput(1.0);
leftencoder = new Encoder(0, 1, false, EncodingType.k4X);
addChild("left encoder",leftencoder);
leftencoder.setDistancePerPulse(1.0);
rightencoder = new Encoder(2, 3, false, EncodingType.k4X);
addChild("right encoder",rightencoder);
rightencoder.setDistancePerPulse(1.0);
gyro = new AnalogGyro(0);
addChild("gyro",gyro);
gyro.setSensitivity(0.007);
rangefinder = new AnalogInput(1);
addChild("range finder", rangefinder);
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
}
@Override
public void periodic() {
// This method will be called once per scheduler run
}
@Override
public void simulationPeriodic() {
// This method will be called once per scheduler run when in simulation
}
// Put methods for controlling this subsystem
// here. Call these from Commands.
public void drive(double left, double right) {
drive.tankDrive(left, right);
}
}
:linenos:
:lineno-start: 11
:emphasize-lines: 43
// ROBOTBUILDER TYPE: Subsystem.
#pragma once
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
#include <frc2/command/SubsystemBase.h>
#include <frc/AnalogGyro.h>
#include <frc/AnalogInput.h>
#include <frc/Encoder.h>
#include <frc/drive/DifferentialDrive.h>
#include <frc/motorcontrol/MotorControllerGroup.h>
#include <frc/motorcontrol/PWMVictorSPX.h>
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
/**
*
*
* @author ExampleAuthor
*/
class Drivetrain: public frc2::SubsystemBase {
private:
// It's desirable that everything possible is private except
// for methods that implement subsystem capabilities
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
frc::AnalogInput m_rangefinder{1};
frc::AnalogGyro m_gyro{0};
frc::Encoder m_rightencoder{2, 3, false, frc::Encoder::k4X};
frc::Encoder m_leftencoder{0, 1, false, frc::Encoder::k4X};
frc::DifferentialDrive m_drive{m_leftMotor, m_rightMotor};
frc::MotorControllerGroup m_rightMotor{m_right1, m_right2 };
frc::PWMVictorSPX m_right2{6};
frc::PWMVictorSPX m_right1{5};
frc::MotorControllerGroup m_leftMotor{m_left1, m_left2 };
frc::PWMVictorSPX m_left2{1};
frc::PWMVictorSPX m_left1{0};
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
public:
Drivetrain();
void Periodic() override;
void SimulationPeriodic() override;
void Drive(double left, double right);
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
static constexpr const double PlaceDistance = 0.1;
static constexpr const double BackAwayDistance = 0.6;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
};
:linenos:
:lineno-start: 11
:emphasize-lines: 71-73
// ROBOTBUILDER TYPE: Subsystem.
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
#include "subsystems/Drivetrain.h"
#include <frc/smartdashboard/SmartDashboard.h>
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
Drivetrain::Drivetrain(){
SetName("Drivetrain");
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
SetSubsystem("Drivetrain");
AddChild("range finder", &m_rangefinder);
AddChild("gyro", &m_gyro);
m_gyro.SetSensitivity(0.007);
AddChild("right encoder", &m_rightencoder);
m_rightencoder.SetDistancePerPulse(1.0);
AddChild("left encoder", &m_leftencoder);
m_leftencoder.SetDistancePerPulse(1.0);
AddChild("Drive", &m_drive);
m_drive.SetSafetyEnabled(true);
m_drive.SetExpiration(0.1_s);
m_drive.SetMaxOutput(1.0);
AddChild("Right Motor", &m_rightMotor);
AddChild("right2", &m_right2);
m_right2.SetInverted(false);
AddChild("right1", &m_right1);
m_right1.SetInverted(false);
AddChild("Left Motor", &m_leftMotor);
AddChild("left2", &m_left2);
m_left2.SetInverted(false);
AddChild("left1", &m_left1);
m_left1.SetInverted(false);
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
}
void Drivetrain::Periodic() {
// Put code here to be run every loop
}
void Drivetrain::SimulationPeriodic() {
// This method will be called once per scheduler run when in simulation
}
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
// Put methods for controlling this subsystem
// here. Call these from Commands.
void Drivetrain::Drive(double left, double right) {
m_drive.TankDrive(left, right);
}
Create a method that takes the joystick inputs, in this case the left and right driver joystick. The values are passed to the DifferentialDrive object that in turn does tank steering using the joystick values. Also create a method called stop() that stops the robot from driving, this might come in handy later.
Nota
Se ha eliminado parte de la salida de RobotBuilder para este ejemplo para mayor claridad
Leer los valores de las palancas y llamar los métodos del subsistema
Cree un comando, en este caso llamado Tank Drive. Su propósito será leer los valores del joystick y enviarlos al subsistema Drive Base. Tenga en cuenta que este comando requiere el subsistema Drive Train. Esto hará que deje de funcionar cada vez que cualquier otra cosa intente utilizar el tren de transmisión.
Create two parameters (DoubleSupplier
for Java or std::function<double()>
for C++) for the left and right speeds.
Create a parameter preset to retrieve joystick values. Java: For the left parameter enter () -> getJoystick1().getY()
and for right enter () -> getJoystick2().getY()
. C++: For the left parameter enter [this] {return getJoystick1()->GetY();}
and for the right enter [this] {return getJoystick2()->GetY();}
Nota
Asegúrese de exportar su programa a C++ o Java antes de continuar con el siguiente paso.
Añada el Código para hacer la conducción
:linenos:
:lineno-start: 11
:emphasize-lines: 48, 54
// ROBOTBUILDER TYPE: Command.
package frc.robot.commands;
import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj2.command.CommandBase;
import frc.robot.RobotContainer;
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
import frc.robot.subsystems.Drivetrain;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
/**
*
*/
public class TankDrive extends CommandBase {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
private final Drivetrain m_drivetrain;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
public TankDrive(Drivetrain subsystem) {
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
m_drivetrain = subsystem;
addRequirements(m_drivetrain);
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
}
// Called when the command is initially scheduled.
@Override
public void initialize() {
}
// Called every time the scheduler runs while the command is scheduled.
@Override
public void execute() {
m_drivetrain.drive(m_left.getAsDouble(), m_right.getAsDouble());
}
// Called once the command ends or is interrupted.
@Override
public void end(boolean interrupted) {
m_drivetrain.drive(0.0, 0.0);
}
// Returns true when the command should end.
@Override
public boolean isFinished() {
return false;
}
@Override
public boolean runsWhenDisabled() {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
return false;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
}
}
:linenos:
:lineno-start: 11
:emphasize-lines: 40-41
// ROBOTBUILDER TYPE: Command.
#pragma once
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
#include <frc2/command/CommandHelper.h>
#include <frc2/command/CommandBase.h>
#include "subsystems/Drivetrain.h"
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
#include "RobotContainer.h"
#include <frc/Joystick.h>
/**
*
*
* @author ExampleAuthor
*/
class TankDrive: public frc2::CommandHelper<frc2::CommandBase, TankDrive> {
public:
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
explicit TankDrive(Drivetrain* m_drivetrain);
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
void Initialize() override;
void Execute() override;
bool IsFinished() override;
void End(bool interrupted) override;
bool RunsWhenDisabled() const override;
private:
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
Drivetrain* m_drivetrain;
frc::Joystick* m_leftJoystick;
frc::Joystick* m_rightJoystick;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
};
:linenos:
:lineno-start: 11
:emphasize-lines: 25, 35
// ROBOTBUILDER TYPE: Command.
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
#include "commands/TankDrive.h"
TankDrive::TankDrive(Drivetrain* m_drivetrain)
:m_drivetrain(m_drivetrain){
// Use AddRequirements() here to declare subsystem dependencies
// eg. AddRequirements(m_Subsystem);
SetName("TankDrive");
AddRequirements({m_drivetrain});
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
}
// Called just before this Command runs the first time
void TankDrive::Initialize() {
}
// Called repeatedly when this Command is scheduled to run
void TankDrive::Execute() {
m_drivetrain->Drive(m_left(),m_right());
}
// Make this return true when this Command no longer needs to run execute()
bool TankDrive::IsFinished() {
return false;
}
// Called once after isFinished returns true
void TankDrive::End(bool interrupted) {
m_drivetrain->Drive(0,0);
}
bool TankDrive::RunsWhenDisabled() const {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
return false;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
}
Add code to the execute method to do the actual driving. All that is needed is pass the for the left and right parameters to the Drive Train subsystem. The subsystem just uses them for the tank steering method on its DifferentialDrive object. And we get tank steering.
También completamos el método end()
para que cuando este comando se interrumpa o se detenga, los motores se detendrán como medida de seguridad.
Hacer el Comando por defecto
El último paso es hacer que el comando Tank Drive sea el «Comando predeterminado» para el subsistema Drive Train. Esto significa que siempre que ningún otro comando esté usando Drive Train, los Joysticks tendrán el control. Este es probablemente el comportamiento deseable. Cuando el código autónomo se está ejecutando, también requerirá el tren de transmisión e interrumpirá el comando Tank Drive. Cuando finalice el código autónomo, el comando DriveWithJoysticks se reiniciará automáticamente (porque es el comando predeterminado) y los operadores volverán a tener el control. Si escribe cualquier código que haga teleoperación automática, esos comandos también deberían «requerir» el DriveTrain para que también interrumpan el comando Tank Drive y tengan control total.
The final step is to choose the joystick parameter preset previously set up.
Nota
Asegúrese de exportar su programa a C++ o Java antes de continuar.