Una discusión técnica sobre los comandos de C ++
Nota
This article assumes that you have a fair understanding of advanced C++ concepts, including templates, smart pointers, inheritance, rvalue references, copy semantics, move semantics, and CRTP. You do not need to understand the information within this article to use the command-based framework in your robot code.
This article will help you understand the reasoning behind some of the decisions made in the 2020 command-based framework (such as the use of std::unique_ptr
, CRTP in the form of CommandHelper<Base, Derived>
, etc.). You do not need to understand the information within this article to use the command-based framework in your robot code.
Nota
The model was further changed in 2023, as described below.
Modelo de propiedad
El antiguo marco basado en comandos empleaba el uso de punteros sin procesar, lo que significa que los usuarios tenían que usar nuevo
(lo que resultaba en asignaciones de montón manuales) en su código de robot. Dado que no había una indicación clara sobre quién era el propietario de los comandos (el programador, los grupos de comandos o el usuario mismo), no era evidente quién se suponía que debía encargarse de liberar la memoria.
Varios ejemplos en el antiguo marco basado en comandos involucraban código como este:
#include "PlaceSoda.h"
#include "Elevator.h"
#include "Wrist.h"
PlaceSoda::PlaceSoda() {
AddSequential(new SetElevatorSetpoint(Elevator::TABLE_HEIGHT));
AddSequential(new SetWristSetpoint(Wrist::PICKUP));
AddSequential(new OpenClaw());
}
In the command-group above, the component commands of the command group were being heap allocated and passed into AddSequential
all in the same line. This meant that user had no reference to that object in memory and therefore had no means of freeing the allocated memory once the command group ended. The command group itself never freed the memory and neither did the command scheduler. This led to memory leaks in robot programs (i.e. memory was allocated on the heap but never freed).
Este problema evidente fue una de las razones de la reescritura del marco. Se introdujo un modelo de propiedad integral con esta reescritura, junto con el uso de punteros inteligentes que liberarán memoria automáticamente cuando se salgan del alcance.
Default commands are owned by the command scheduler whereas component commands of command compositions are owned by the command composition. Other commands are owned by whatever the user decides they should be owned by (e.g. a subsystem instance or a RobotContainer
instance). This means that the ownership of the memory allocated by any commands or command compositions is clearly defined.
Uso de CRTP
You may have noticed that in order to create a new command, you must extend CommandHelper
, providing the base class (usually frc2::Command
) and the class that you just created. Let’s take a look at the reasoning behind this:
Decoradores de comando
El nuevo marco basado en comandos incluye una función conocida como «decoradores de comandos», que permite al usuario hacer algo como esto:
auto task = MyCommand().AndThen([] { std::cout << "This printed after my command ended."; },
requirements);
Cuando se programa la tarea
, primero ejecutará MyCommand()
y una vez que ese comando haya terminado de ejecutarse, imprimirá el mensaje en la consola. La forma en que esto se logra internamente es mediante el uso de un grupo de comando secuencial.
Recuerde de la sección anterior que para construir un grupo de comando secuencial, necesitamos un vector de punteros únicos para cada comando. Crear el puntero único para la función de impresión es bastante trivial:
temp.emplace_back(
std::make_unique<InstantCommand>(std::move(toRun), requirements));
Aquí, temp
almacena el vector de comandos que necesitamos pasar al constructor SequentialCommandGroup
. Pero antes de agregar ese InstantCommand
,necesitamos agregar MyCommand()
al``SequentialCommandGroup`` . ¿Como hacemos eso?
temp.emplace_back(std::make_unique<MyCommand>(std::move(*this));
You might think it would be this straightforward, but that is not the case. Because this decorator code is in the Command
class, *this
refers to the Command
in the subclass that you are calling the decorator from and has the type of Command
. Effectively, you will be trying to move a Command
instead of MyCommand
. We could cast the this
pointer to a MyCommand*
and then dereference it but we have no information about the subclass to cast to at compile-time.
Soluciones al problema
Nuestra solución inicial a esto fue crear un método virtual en Command
llamado TransferOwnership()
que cada subclase de Command
tenía que anular. Tal anulación se habría visto así:
std::unique_ptr<Command> TransferOwnership() && override {
return std::make_unique<MyCommand>(std::move(*this));
}
Debido a que el código estaría en la subclase derivada, *this
realmente apuntaría a la instancia de subclase deseada y el usuario tiene la información de tipo de la clase derivada para hacer el puntero único.
Después de unos días de deliberación, se propuso un método CRTP. Aquí, una clase derivada intermedia de Command
llamada CommandHelper
esxistiría. CommandHelper
tendría dos argumentos de plantilla, la clase base original y la subclase derivada deseada. Echemos un vistazo a una implementación básica de CommandHelper
para entender esto:
// In the real implementation, we use SFINAE to check that Base is actually a
// Command or a subclass of Command.
template<typename Base, typename Derived>
class CommandHelper : public Base {
// Here, we are just inheriting all of the superclass (base class) constructors.
using Base::Base;
// Here, we will override the TransferOwnership() method mentioned above.
std::unique_ptr<Command> TransferOwnership() && override {
// Previously, we mentioned that we had no information about the derived class
// to cast to at compile-time, but because of CRTP we do! It's one of our template
// arguments!
return std::make_unique<Derived>(std::move(*static_cast<Derived*>(this)));
}
};
Así, haciendo que tus comandos personalizados extiendan CommandHelper
en lugar de Command
implementará automáticamente esta plantilla para ti y este es el razonamiento detrás de pedir a los equipos que usen lo que puede parecer una forma bastante oscura de hacer las cosas.
Volviendo a nuestro AndThen()
ejemplo, ahora podemos hacer lo siguiente:
// Because of how inheritance works, we will call the TransferOwnership()
// of the subclass. We are moving *this because TransferOwnership() can only
// be called on rvalue references.
temp.emplace_back(std::move(*this).TransferOwnership());
Falta de decoradores avanzados
La mayoría de los decoradores de C++ toman std::function<void()>
en lugar de comandos reales ellos mismos. La idea de tomar comandos reales en decoradores como AndThen()
, BeforeStarting()
, etc. fue considerada pero luego abandonada debido a una variedad de razones.
Decoradores de plantillas
Debido a que necesitamos saber los tipos de los comandos que estamos añadiendo a un grupo de comandos en tiempo de compilación, necesitaremos usar plantillas (variadic para múltiples comandos). Sin embargo, esto podría no parecer un gran problema. Los constructores de grupos de comandos lo hacen de todas formas:
template <class... Types,
typename = std::enable_if_t<std::conjunction_v<
std::is_base_of<Command, std::remove_reference_t<Types>>...>>>
explicit SequentialCommandGroup(Types&&... commands) {
AddCommands(std::forward<Types>(commands)...);
}
template <class... Types,
typename = std::enable_if_t<std::conjunction_v<
std::is_base_of<Command, std::remove_reference_t<Types>>...>>>
void AddCommands(Types&&... commands) {
std::vector<std::unique_ptr<Command>> foo;
((void)foo.emplace_back(std::make_unique<std::remove_reference_t<Types>>(
std::forward<Types>(commands))),
...);
AddCommands(std::move(foo));
}
Nota
Este es un constructor secundario para el SequentialCommandGroup
, además del constructor de vectores que describimos anteriormente.
Sin embargo, cuando realizamos una función de plantilla, su definición debe ser declarada en línea. Esto significa que tendremos que instanciar el SequentialCommandGroup
en el encabezado «Command.h», lo que plantea un problema. SequentialCommandGroup
incluye «Command.h». Si incluimos SequentialCommandGroup
dentro de «Command.h», tenemos una dependencia circular. ¿Cómo lo hacemos ahora entonces?
Usamos una declaración hacia adelante en la parte superior de Command.h
:
class SequentialCommandGroup;
class Command { ... };
Y luego incluimos SequentialCommandGroup.h
en «Command.cpp». Sin embargo, si estas funciones de decorador se templaron, no podemos escribir definiciones en los archivos .cpp
, resultando en una dependencia circular.
Sintaxis de Java vs Sintaxis de C++
Estos decoradores suelen ahorrar más verbosidad en Java (porque Java requiere llamadas nuevas
sin procesar) que en C++, así que en general, no hay mucha diferencia sintáctica en C++ si se crea el grupo de comandos manualmente en código de usuario.
2023 Updates
After a few years in the new command-based framework, the recommended way to create commands increasingly shifted towards inline commands, decorators, and factory methods. With this paradigm shift, it became evident that the C++ commands model introduced in 2020 and described above has some pain points when used according to the new recommendations.
A significant root cause of most pain points was commands being passed by value in a non-polymorphic way. This made object slicing mistakes rather easy, and changes in composition structure could propagate type changes throughout the codebase: for example, if a ParallelRaceGroup
were changed to a ParallelDeadlineGroup
, those type changes would propagate through the codebase. Passing around the object as a Command
(as done in Java) would result in object slicing.
Additionally, various decorators weren’t supported in C++ due to reasons described above. As long as decorators were rarely used and were mainly to reduce verbosity (where Java was more verbose than C++), this was less of a problem. Once heavy usage of decorators was recommended, this became more of an issue.
CommandPtr
Let’s recall the mention of std::unique_ptr
far above: a value type with only move semantics. This is the ownership model we want!
However, plainly using std::unique_ptr<Command>
had some drawbacks. Primarily, implementing decorators would be impossible: unique_ptr
is defined in the standard library so we can’t define methods on it, and any methods defined on Command
wouldn’t have access to the owning unique_ptr
.
The solution is CommandPtr
: a move-only value class wrapping unique_ptr
, that we can define methods on.
Commands should be passed around as CommandPtr
, using std::move
. All decorators, including those not supported in C++ before, are defined on CommandPtr
with rvalue-this. The use of rvalues, move-only semantics, and clear ownership makes it very easy to avoid mistakes such as adding the same command instance to more than one command composition.
In addition to decorators, CommandPtr
instances also define utility methods such as Schedule()
, IsScheduled()
. CommandPtr
instances can be used in nearly almost every way command objects can be used in Java: they can be moved into trigger bindings, default commands, and so on. For the few things that require a Command*
(such as non-owning trigger bindings), a raw pointer to the owned command can be retrieved using get()
.
There are multiple ways to get a CommandPtr
instance:
CommandPtr
-returning factories are present in thefrc2::cmd
namespace in theCommands.h
header for almost all command types. For multi-command compositions, there is a vector-taking overload as well as a variadic-templated overload for multipleCommandPtr
instances.All decorators, including those defined on
Command
, returnCommandPtr
. This has allowed defining almost all decorators onCommand
, so a decorator chain can start from aCommand
.A
ToPtr()
method has been added to the CRTP, akin toTransferOwnership
. This is useful especially for user-defined command classes, as well as other command classes that don’t have factories.
For instance, consider the following from the HatchbotInlined example project:
33frc2::CommandPtr autos::ComplexAuto(DriveSubsystem* drive,
34 HatchSubsystem* hatch) {
35 return frc2::cmd::Sequence(
36 // Drive forward the specified distance
37 frc2::FunctionalCommand(
38 // Reset encoders on command start
39 [drive] { drive->ResetEncoders(); },
40 // Drive forward while the command is executing
41 [drive] { drive->ArcadeDrive(kAutoDriveSpeed, 0); },
42 // Stop driving at the end of the command
43 [drive](bool interrupted) { drive->ArcadeDrive(0, 0); },
44 // End the command when the robot's driven distance exceeds the
45 // desired value
46 [drive] {
47 return drive->GetAverageEncoderDistance() >=
48 kAutoDriveDistanceInches;
49 },
50 // Requires the drive subsystem
51 {drive})
52 .ToPtr(),
53 // Release the hatch
54 hatch->ReleaseHatchCommand(),
55 // Drive backward the specified distance
56 // Drive forward the specified distance
57 frc2::FunctionalCommand(
58 // Reset encoders on command start
59 [drive] { drive->ResetEncoders(); },
60 // Drive backward while the command is executing
61 [drive] { drive->ArcadeDrive(-kAutoDriveSpeed, 0); },
62 // Stop driving at the end of the command
63 [drive](bool interrupted) { drive->ArcadeDrive(0, 0); },
64 // End the command when the robot's driven distance exceeds the
65 // desired value
66 [drive] {
67 return drive->GetAverageEncoderDistance() <=
68 kAutoBackupDistanceInches;
69 },
70 // Requires the drive subsystem
71 {drive})
72 .ToPtr());
73}
To avoid breakage, command compositions still use unique_ptr<Command>
, so CommandPtr
instances can be destructured into a unique_ptr<Command>
using the Unwrap()
rvalue-this method. For vectors, the static CommandPtr::UnwrapVector(vector<CommandPtr>)
function exists.