Basic Vision Example

This is an example of a basic vision setup that posts the target’s location in the aiming coordinate system described here to NetworkTables, and uses CameraServer to display a bounding rectangle of the contour detected. This example will display the framerate of the processing code on the images sent to CameraServer.

from cscore import CameraServer
import ntcore
import cv2
import json
import numpy as np
import time
def main():
   with open('/boot/frc.json') as f:
      config = json.load(f)
   camera = config['cameras'][0]
      width = camera['width']
   height = camera['height']
   nt = ntcore.NetworkTableInstance.getDefault()
   CameraServer.startAutomaticCapture()
   input_stream = CameraServer.getVideo()
   output_stream = CameraServer.putVideo('Processed', width, height)
   # Table for vision output information
   vision_nt = nt.getTable('Vision')
   # Allocating new images is very expensive, always try to preallocate
   img = np.zeros(shape=(240, 320, 3), dtype=np.uint8)
   # Wait for NetworkTables to start
   time.sleep(0.5)
   while True:
      start_time = time.time()
      frame_time, input_img = input_stream.grabFrame(img)
      output_img = np.copy(input_img)
      # Notify output of error and skip iteration
      if frame_time == 0:
         output_stream.notifyError(input_stream.getError())
         continue
      # Convert to HSV and threshold image
      hsv_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2HSV)
      binary_img = cv2.inRange(hsv_img, (0, 0, 100), (85, 255, 255))
      _, contour_list = cv2.findContours(binary_img, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
      x_list = []
      y_list = []
         for contour in contour_list:
            # Ignore small contours that could be because of noise/bad thresholding
            if cv2.contourArea(contour) < 15:
               continue
            cv2.drawContours(output_img, contour, -1, color=(255, 255, 255), thickness=-1)
            rect = cv2.minAreaRect(contour)
            center, size, angle = rect
            center = tuple([int(dim) for dim in center])  # Convert to int so we can draw
            # Draw rectangle and circle
            cv2.drawContours(output_img, [cv2.boxPoints(rect).astype(int)], -1, color=(0, 0, 255), thickness=2)
            cv2.circle(output_img, center=center, radius=3, color=(0, 0, 255), thickness=-1)
            x_list.append((center[0] - width / 2) / (width / 2))
            x_list.append((center[1] - width / 2) / (width / 2))
      vision_nt.putNumberArray('target_x', x_list)
      vision_nt.putNumberArray('target_y', y_list)
      processing_time = time.time() - start_time
      fps = 1 / processing_time
      cv2.putText(output_img, str(round(fps, 1)), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255))
      output_stream.putFrame(output_img)
main()