Step 4: Creating and Following a Trajectory
With our drive subsystem written, it is now time to generate a trajectory and write an autonomous command to follow it.
As per the standard command-based project structure, we will do this in the getAutonomousCommand
method of the RobotContainer
class. The full method from the RamseteCommand Example Project (Java, C++) can be seen below. The rest of the article will break down the different parts of the method in more detail.
74 /**
75 * Use this to pass the autonomous command to the main {@link Robot} class.
76 *
77 * @return the command to run in autonomous
78 */
79 public Command getAutonomousCommand() {
80 // Create a voltage constraint to ensure we don't accelerate too fast
81 var autoVoltageConstraint =
82 new DifferentialDriveVoltageConstraint(
83 new SimpleMotorFeedforward(
84 DriveConstants.ksVolts,
85 DriveConstants.kvVoltSecondsPerMeter,
86 DriveConstants.kaVoltSecondsSquaredPerMeter),
87 DriveConstants.kDriveKinematics,
88 10);
89
90 // Create config for trajectory
91 TrajectoryConfig config =
92 new TrajectoryConfig(
93 AutoConstants.kMaxSpeedMetersPerSecond,
94 AutoConstants.kMaxAccelerationMetersPerSecondSquared)
95 // Add kinematics to ensure max speed is actually obeyed
96 .setKinematics(DriveConstants.kDriveKinematics)
97 // Apply the voltage constraint
98 .addConstraint(autoVoltageConstraint);
99
100 // An example trajectory to follow. All units in meters.
101 Trajectory exampleTrajectory =
102 TrajectoryGenerator.generateTrajectory(
103 // Start at the origin facing the +X direction
104 new Pose2d(0, 0, new Rotation2d(0)),
105 // Pass through these two interior waypoints, making an 's' curve path
106 List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
107 // End 3 meters straight ahead of where we started, facing forward
108 new Pose2d(3, 0, new Rotation2d(0)),
109 // Pass config
110 config);
111
112 RamseteCommand ramseteCommand =
113 new RamseteCommand(
114 exampleTrajectory,
115 m_robotDrive::getPose,
116 new RamseteController(AutoConstants.kRamseteB, AutoConstants.kRamseteZeta),
117 new SimpleMotorFeedforward(
118 DriveConstants.ksVolts,
119 DriveConstants.kvVoltSecondsPerMeter,
120 DriveConstants.kaVoltSecondsSquaredPerMeter),
121 DriveConstants.kDriveKinematics,
122 m_robotDrive::getWheelSpeeds,
123 new PIDController(DriveConstants.kPDriveVel, 0, 0),
124 new PIDController(DriveConstants.kPDriveVel, 0, 0),
125 // RamseteCommand passes volts to the callback
126 m_robotDrive::tankDriveVolts,
127 m_robotDrive);
128
129 // Reset odometry to the initial pose of the trajectory, run path following
130 // command, then stop at the end.
131 return Commands.runOnce(() -> m_robotDrive.resetOdometry(exampleTrajectory.getInitialPose()))
132 .andThen(ramseteCommand)
133 .andThen(Commands.runOnce(() -> m_robotDrive.tankDriveVolts(0, 0)));
134 }
135}
45frc2::CommandPtr RobotContainer::GetAutonomousCommand() {
46 // Create a voltage constraint to ensure we don't accelerate too fast
47 frc::DifferentialDriveVoltageConstraint autoVoltageConstraint{
48 frc::SimpleMotorFeedforward<units::meters>{
49 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
50 DriveConstants::kDriveKinematics, 10_V};
51
52 // Set up config for trajectory
53 frc::TrajectoryConfig config{AutoConstants::kMaxSpeed,
54 AutoConstants::kMaxAcceleration};
55 // Add kinematics to ensure max speed is actually obeyed
56 config.SetKinematics(DriveConstants::kDriveKinematics);
57 // Apply the voltage constraint
58 config.AddConstraint(autoVoltageConstraint);
59
60 // An example trajectory to follow. All units in meters.
61 auto exampleTrajectory = frc::TrajectoryGenerator::GenerateTrajectory(
62 // Start at the origin facing the +X direction
63 frc::Pose2d{0_m, 0_m, 0_deg},
64 // Pass through these two interior waypoints, making an 's' curve path
65 {frc::Translation2d{1_m, 1_m}, frc::Translation2d{2_m, -1_m}},
66 // End 3 meters straight ahead of where we started, facing forward
67 frc::Pose2d{3_m, 0_m, 0_deg},
68 // Pass the config
69 config);
70
71 frc2::CommandPtr ramseteCommand{frc2::RamseteCommand(
72 exampleTrajectory, [this] { return m_drive.GetPose(); },
73 frc::RamseteController{AutoConstants::kRamseteB,
74 AutoConstants::kRamseteZeta},
75 frc::SimpleMotorFeedforward<units::meters>{
76 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
77 DriveConstants::kDriveKinematics,
78 [this] { return m_drive.GetWheelSpeeds(); },
79 frc::PIDController{DriveConstants::kPDriveVel, 0, 0},
80 frc::PIDController{DriveConstants::kPDriveVel, 0, 0},
81 [this](auto left, auto right) { m_drive.TankDriveVolts(left, right); },
82 {&m_drive})};
83
84 // Reset odometry to the initial pose of the trajectory, run path following
85 // command, then stop at the end.
86 return frc2::cmd::RunOnce(
87 [this, initialPose = exampleTrajectory.InitialPose()] {
88 m_drive.ResetOdometry(initialPose);
89 },
90 {})
91 .AndThen(std::move(ramseteCommand))
92 .AndThen(
93 frc2::cmd::RunOnce([this] { m_drive.TankDriveVolts(0_V, 0_V); }, {}));
94}
Configuring the Trajectory Constraints
First, we must set some configuration parameters for the trajectory which will ensure that the generated trajectory is followable.
Creating a Voltage Constraint
The first piece of configuration we will need is a voltage constraint. This will ensure that the generated trajectory never commands the robot to go faster than it is capable of achieving with the given voltage supply:
80 // Create a voltage constraint to ensure we don't accelerate too fast
81 var autoVoltageConstraint =
82 new DifferentialDriveVoltageConstraint(
83 new SimpleMotorFeedforward(
84 DriveConstants.ksVolts,
85 DriveConstants.kvVoltSecondsPerMeter,
86 DriveConstants.kaVoltSecondsSquaredPerMeter),
87 DriveConstants.kDriveKinematics,
88 10);
46 // Create a voltage constraint to ensure we don't accelerate too fast
47 frc::DifferentialDriveVoltageConstraint autoVoltageConstraint{
48 frc::SimpleMotorFeedforward<units::meters>{
49 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
50 DriveConstants::kDriveKinematics, 10_V};
Notice that we set the maximum voltage to 10V, rather than the nominal battery voltage of 12V. This gives us some “headroom” to deal with “voltage sag” during operation.
Creating the Configuration
Now that we have our voltage constraint, we can create our TrajectoryConfig
instance, which wraps together all of our path constraints:
90 // Create config for trajectory
91 TrajectoryConfig config =
92 new TrajectoryConfig(
93 AutoConstants.kMaxSpeedMetersPerSecond,
94 AutoConstants.kMaxAccelerationMetersPerSecondSquared)
95 // Add kinematics to ensure max speed is actually obeyed
96 .setKinematics(DriveConstants.kDriveKinematics)
97 // Apply the voltage constraint
98 .addConstraint(autoVoltageConstraint);
52 // Set up config for trajectory
53 frc::TrajectoryConfig config{AutoConstants::kMaxSpeed,
54 AutoConstants::kMaxAcceleration};
55 // Add kinematics to ensure max speed is actually obeyed
56 config.SetKinematics(DriveConstants::kDriveKinematics);
57 // Apply the voltage constraint
58 config.AddConstraint(autoVoltageConstraint);
Generating the Trajectory
With our trajectory configuration in hand, we are now ready to generate our trajectory. For this example, we will be generating a “clamped cubic” trajectory - this means we will specify full robot poses at the endpoints, and positions only for interior waypoints (also known as “knot points”). As elsewhere, all distances are in meters.
100 // An example trajectory to follow. All units in meters.
101 Trajectory exampleTrajectory =
102 TrajectoryGenerator.generateTrajectory(
103 // Start at the origin facing the +X direction
104 new Pose2d(0, 0, new Rotation2d(0)),
105 // Pass through these two interior waypoints, making an 's' curve path
106 List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
107 // End 3 meters straight ahead of where we started, facing forward
108 new Pose2d(3, 0, new Rotation2d(0)),
109 // Pass config
110 config);
60 // An example trajectory to follow. All units in meters.
61 auto exampleTrajectory = frc::TrajectoryGenerator::GenerateTrajectory(
62 // Start at the origin facing the +X direction
63 frc::Pose2d{0_m, 0_m, 0_deg},
64 // Pass through these two interior waypoints, making an 's' curve path
65 {frc::Translation2d{1_m, 1_m}, frc::Translation2d{2_m, -1_m}},
66 // End 3 meters straight ahead of where we started, facing forward
67 frc::Pose2d{3_m, 0_m, 0_deg},
68 // Pass the config
69 config);
Note
Instead of generating the trajectory on the roboRIO as outlined above, one can also import a PathWeaver JSON.
Creating the RamseteCommand
We will first reset our robot’s pose to the starting pose of the trajectory. This ensures that the robot’s location on the coordinate system and the trajectory’s starting position are the same.
129 // Reset odometry to the initial pose of the trajectory, run path following
130 // command, then stop at the end.
131 return Commands.runOnce(() -> m_robotDrive.resetOdometry(exampleTrajectory.getInitialPose()))
84 // Reset odometry to the initial pose of the trajectory, run path following
85 // command, then stop at the end.
86 return frc2::cmd::RunOnce(
It is very important that the initial robot pose match the first pose in the trajectory. For the purposes of our example, the robot will be reliably starting at a position of (0,0)
with a heading of 0
. In actual use, however, it is probably not desirable to base your coordinate system on the robot position, and so the starting position for both the robot and the trajectory should be set to some other value. If you wish to use a trajectory that has been defined in robot-centric coordinates in such a situation, you can transform it to be relative to the robot’s current pose using the transformBy
method (Java, C++). For more information about transforming trajectories, see Transforming Trajectories.
Now that we have a trajectory, we can create a command that, when executed, will follow that trajectory. To do this, we use the RamseteCommand
class (Java, C++)
112 RamseteCommand ramseteCommand =
113 new RamseteCommand(
114 exampleTrajectory,
115 m_robotDrive::getPose,
116 new RamseteController(AutoConstants.kRamseteB, AutoConstants.kRamseteZeta),
117 new SimpleMotorFeedforward(
118 DriveConstants.ksVolts,
119 DriveConstants.kvVoltSecondsPerMeter,
120 DriveConstants.kaVoltSecondsSquaredPerMeter),
121 DriveConstants.kDriveKinematics,
122 m_robotDrive::getWheelSpeeds,
123 new PIDController(DriveConstants.kPDriveVel, 0, 0),
124 new PIDController(DriveConstants.kPDriveVel, 0, 0),
125 // RamseteCommand passes volts to the callback
126 m_robotDrive::tankDriveVolts,
127 m_robotDrive);
71 frc2::CommandPtr ramseteCommand{frc2::RamseteCommand(
72 exampleTrajectory, [this] { return m_drive.GetPose(); },
73 frc::RamseteController{AutoConstants::kRamseteB,
74 AutoConstants::kRamseteZeta},
75 frc::SimpleMotorFeedforward<units::meters>{
76 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
77 DriveConstants::kDriveKinematics,
78 [this] { return m_drive.GetWheelSpeeds(); },
79 frc::PIDController{DriveConstants::kPDriveVel, 0, 0},
80 frc::PIDController{DriveConstants::kPDriveVel, 0, 0},
81 [this](auto left, auto right) { m_drive.TankDriveVolts(left, right); },
82 {&m_drive})};
This declaration is fairly substantial, so we’ll go through it argument-by-argument:
The trajectory: This is the trajectory to be followed; accordingly, we pass the command the trajectory we just constructed in our earlier steps.
The pose supplier: This is a method reference (or lambda) to the drive subsystem method that returns the pose. The RAMSETE controller needs the current pose measurement to determine the required wheel outputs.
The RAMSETE controller: This is the
RamseteController
object (Java, C++) that will perform the path-following computation that translates the current measured pose and trajectory state into a chassis speed setpoint.The drive feedforward: This is a
SimpleMotorFeedforward
object (Java, C++) that will automatically perform the correct feedforward calculation with the feedforward gains (kS
,kV
, andkA
) that we obtained from the drive identification tool.The drive kinematics: This is the
DifferentialDriveKinematics
object (Java, C++) that we constructed earlier in our constants file, and will be used to convert chassis speeds to wheel speeds.The wheel speed supplier: This is a method reference (or lambda) to the drive subsystem method that returns the wheel speeds
The left-side PIDController: This is the
PIDController
object (Java, C++) that will track the left-side wheel speed setpoint, using the P gain that we obtained from the drive identification tool.The right-side PIDController: This is the
PIDController
object (Java, C++) that will track the right-side wheel speed setpoint, using the P gain that we obtained from the drive identification tool.The output consumer: This is a method reference (or lambda) to the drive subsystem method that passes the voltage outputs to the drive motors.
The robot drive: This is the drive subsystem itself, included to ensure the command does not operate on the drive at the same time as any other command that uses the drive.
Finally, note that we append a final “stop” command in sequence after the path-following command, to ensure that the robot stops moving at the end of the trajectory.
Video
If all has gone well, your robot’s autonomous routine should look something like this: