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Abstract— AprilTags and other passive fiducial markers re-
quire specialized algorithms to detect markers among other
features in a natural scene. The vision processing steps generally
dominate the computation time of a tag detection pipeline, so
even small improvements in marker detection can translate to
a faster tag detection system. We incorporated lessons learned
from implementing and supporting the AprilTag system into
this improved system.

This work describes AprilTag 2, a completely redesigned
tag detector that improves robustness and efficiency compared
to the original AprilTag system. The tag coding scheme is
unchanged, retaining the same robustness to false positives
inherent to the coding system. The new detector improves
performance with higher detection rates, fewer false positives,
and lower computational time. Improved performance on small
images allows the use of decimated input images, resulting in
dramatic gains in detection speed.

I. INTRODUCTION

Fiducials are artificial visual features designed for au-
tomatic detection, and often carry a unique payload to
make them distinguishable from each other. Although these
types of fiducials were first developed and popularized by
augmented reality applications [1], [2], they have since been
widely adopted by the robotics community. Their uses range
from ground truthing to object detection and tracking, where
they can be used as a simplifying assumption in lieu of more
sophisticated perception.

A few key properties of fiducials make them useful for
pose estimation or object tracking in robotics applications
(Figure 1). Their uniqueness and high detection rate are ideal
for testing SLAM systems. Fixed fiducial markers can be
used for visual localization or as a ground truth estimate of
robot motion. Fiducials mounted on objects can be used to
identify and localize objects of interest.

This work is based on the earlier AprilTag system [3]. The
design of AprilTags as a black-and-white square tag with an
encoded binary payload is based on the earlier ARTag [2]
and ARToolkit [1]. AprilTag introduced an improved method
of generating binary payloads, guaranteeing a minimum
Hamming distance between tags under all possible rotations,
making them more robust than earlier designs. The tag
generation process, a lexicode-based process with minimum
complexity heuristics, was empirically shown to reduce the
false positive rate compared to ARTag designs of similar bit
length.

Based on feedback from AprilTag users in the robotics
community, we determined that most users do not accept
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Fig. 1: Applications and users of AprilTags. From top left,
clockwise: robot-to-robot localization and identification on
MAGIC robots, object localization for Boston Dynamics’
Atlas robot, testing of virtual reality headsets at Valve, and
tracking individual ants to study their social organization [4].

tags with decode errors. In these cases, features such as
support for recovering partially-occluded tag borders are
seldom useful. This functionality must be weighed against
the costs of additional computation time and an increased
false positive rate.

This work describes a method for improving AprilTag
detection speed and sensitivity while trading off the ability to
detect partially-occluded tags. We show that this method is
faster than the previous detection method, reducing the rate
of false positives without sacrificing localization accuracy.
The contributions of this paper are:

« an AprilTag detection algorithm that improves detection
rate for small tags, exhibits fewer false positives, and
reduces computation time compared to the previous
algorithm

« anew tag boundary segmentation method that is respon-
sible for many of the performance improvements, and
could be applied to other fiducial detectors

« an evaluation of the effect of fewer tag candidates on
false positive rates

« an experimental characterization of the localization per-
formance of our detector on real and synthetic images

II. PRIOR WORK

One of the earliest visual fiducial systems was introduced
by ARToolkit [1], a library for augmented reality applica-
tions. ARToolkit introduced the black square tag as a tracking
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Fig. 2: A comparison of visual fiducial tags. ARToolkit tags
allow arbitrary pixel patterns inside the black border, while
ARTags and AprilTags use 2D binary codes. RUNE-tags and
reacTIVision markers are two different existing approaches
to fiducial markers.

marker, which has the advantage of providing a full 6-
DOF pose estimate from a single marker of known scale.
ARToolkit distinguished tags by embedding arbitrary image
patterns inside the square, which were matched against a
database of known patterns for identification. As the database
of recognized patterns grew, so did the computational cost
of matching and the likelihood of confusing distinct patterns.
ARTag [2] attempted to rectify the problem of inter-tag
confusion by introducing a 2D binary barcode pattern. The
binary barcode allowed bit errors in detection to be corrected.
An improved detector algorithm used image gradients to
detect tag edges, an improvement over the primitive thresh-
olding method of ARToolkit. Surviving forks of the project
include ARToolkitPlus [5] and Studierstube Tracker [6].

AprilTag [3] built upon the advances of ARTag, introduc-
ing a lexicode-based system for generating tags. AprilTags
guarantee a minimum Hamming distance between tags under
all possible rotations, while enforcing a minimum complexity
constraint to reduce the rate of false positives from arising
in natural images. Localization accuracy was improved over
ARTag’s previous state of the art. Moreover, AprilTag pro-
vided a popular open source detector implementation which
encouraged its adoption by the academic community.

The original AprilTag detector used image gradients to
detect high-contrast edges. This has the advantage of being
robust to shadows and variations in lighting over previ-
ous methods which used naive thresholding. Detection of
partially occluded tags was made possible by first fitting
segments to the gradients, then searching over combinations
of segments that formed four-sided shapes, or quads. A
disadvantage of the segment-first approach is the large num-
ber of candidate quads that are generated. Much processing
time is spent attempting to decode invalid candidate quads.
Empirically, the AprilTag detector spends most of its time
fitting lines to gradient edges, many of which will not be
part of valid tag detections.

Besides square-shaped binary tags, other tag encoding
schemes have been proposed. In particular, reacTIVision [7]
uses a unique topological tag recognition system introduced
by d-touch [8]. FourierTags [9] are radially symmetric tags
designed to increase detection range by degrading smoothly.
RUNE-Tags [10] are named after the circular dot patterns
(rings of unconnected ellipses) which make up the fiducial
marker. The dots are chosen to provide localization accuracy
at the expense of computation time, while being robust to
blurring, noise, and partial occlusion. Pi-Tag [11] uses cross-
ratio to recognize markers, noting that the cross-ratio of four
points in a line is invariant under camera projective geometry.
ChromaTags [12] are an extension of AprilTags, where two
bicolor tags are blended in order to maximize the gradient
magnitude in the CIELAB color space. The colorspace
conversion reduces the number of edges compared to the
grayscale image, thus speeding detection.

III. TAG DETECTOR

Our system features an improved quad detector which
finds candidate tags in a grayscale image. Each candidate
is then decoded to determine if they are valid AprilTag
detections. The method leads to fewer false positives than
the previous state of the art detector while reliably detecting
valid unoccluded quads, contributing to an overall lower false
positive rate.

A. Lessons learned

The improvements to the tag detector were inspired by
user feedback about common use cases. We learned that in
most deployments, detection of partially occluded tags is of
limited utility. Occluded tags often have one or more bit
errors, and most users disable decoding of tags with bit errors
due to the impact on false positive rates. No known users
accept tags with more than two bit errors, which enables
a faster decode algorithm. In our experience, the increased
detection speed is a favorable tradeoff against the ability to
recover partially occluded tag borders.

B. Adaptive thresholding

The first step is to threshold the grayscale input image
into a black-and-white image. Some thresholding methods
attempt to find a global threshold value for the entire image
[13], while others find local or adaptive thresholds [14]. We
adopt an adaptive thresholding approach, where the idea is to
find the minimum and maximum values in a region around
each pixel.

Instead of computing the exact extrema (max and min
values) around every pixel, we divide the image into tiles
of 4x4 pixels and compute the extrema within each tile. To
prevent artifacts from arising between tile boundaries with
large differences in extreme values, we find the extrema in a
neighborhood of 3x3 surrounding tiles, ensuring a minimum
of one tile overlap when computing extrema for adjacent
pixels. Each pixel is then assigned a value of white or
black, using the mean value (max+min)/2 as the threshold
(Figure 3b). For our application, we only need to consistently



—_1

(a) Original image

(d) Detected quads

-1

(e) Tag detections

Fig. 3: Intermediate steps of the AprilTag detector. The input image (a) is binarized using adaptive thresholding (b). The
connected black and white regions are segmented into connected components (c). Component boundaries are segmented
using a novel algorithm, which efficiently clusters pixels which border the same black and white region. Finally, quads are
fit to each cluster of border pixels (d), poor quad fits and undecodable tags are discarded, and valid tag detections are output

(e).

differentiate the light and dark pixels which form the tag.
Regions of the image with insufficient contrast, colored in
gray in Figure 3b, are excluded from future processing to
save computation time.

C. Continuous boundary segmentation

Given the binarized image, the next step is to find edges
which might form the boundary of a tag. A straightforward
approach is to identify edge pixels which have an opposite-
colored neighbor, then form connected groups of edge pixels.
However, this approach breaks down when the white space
between tag boundaries approaches only a single pixel wide,
which may happen for physically small or faraway tags. If
two tag boundaries are incorrectly merged, the tags will not
be detected. Our proposed solution is to segment the edges
based on the identities of the black and white components
from which they arise.

Connected components of light and dark pixels are seg-
mented using the union-find algorithm [15] (Figure 3c),
which gives each component a unique ID. For every pair of
adjacent black and white components, we identify the pixels
on the boundaries of those two regions as a distinct cluster.
This clustering can be done efficiently by using a hash table,
indexing each cluster by the black and white components’
IDs, as described in Figure 4. In the aforementioned case of
a single pixel-wide white component separating two distinct
black components, we have solved the problem by allowing
the same white pixels to appear in both resulting clusters.

D. Fitting quads

The next step is to fit a quad to each cluster of unordered
boundary points, partitioning the points into four groups

function FINDBOUNDARIES(im, w, h)
> Find connected components using union-find
uf < UnionFind(w - h)
for each pixel (z,y) do
for each neighbor (z’,y’) do
if im[z,y] = im[2’, '] then
wf.union(y - w + z,y" - w+ x)
end if
end for
end for
> Group pixels which form a continuous boundary
h + HashTable()
for each pixel (z,y) do
for each neighbor (2/,y’) do
if im[z,y] # im[2’,y’] then
ro  uf.find(y - w + x)
r1 < uf find(y - w+ ')
id + ConcatenateBits(Sort(rg, r1))
if id ¢ h then
hlid] < List()
end if )
p e (THE, L)
h[id].append(p)
end if
end for
end for
end function

Fig. 4: Algorithm for continuous boundary segmentation.
The neighbors of (x,y) using 8-connectivity are {(z +
1,y),(l'— 17y+ 1)a(£7y+ 1),<$+ 1ay+ 1)}



corresponding to line segments. However, computing the
optimal partition which minimizes total line fit error is
computationally expensive. Even for an ordered list of n
points, there are O(n*) possible ways to partition the points.
Our method computes an approximate partition by finding
a small number of corner points, then iterating through all
possible combinations of corner points.

First the points are sorted by angle in a consistent winding
order around their centroid. This ordering allows us to define
“neighboring points” as ranges of sorted points. Cumulative
first and second moment statistics are computed in a single
pass through these points, enabling the first and second
moments to be computed for any range of points in constant
time.

Corner points are identified by attempting to fit a line to
windows of neighboring points, and finding the peaks in the
mean squared error function as the window is swept across
the points. Line fits are computed using principal component
analysis (PCA) [16], in which an ellipse is fit to the sample
mean and covariance. The best fit line is the eigenvector
corresponding to the first principal component. Using the
precomputed statistics, all the candidate line fits may be
computed in O(n) time, where n is the number of points.
The strongest peaks in the mean squared error are identified
as candidate corners.

Finally, we iterate through all permutations of four can-
didate corners, fitting lines to each side of the candidate
quad. At this step we select the four corners which result
in the smallest mean squared line fit errors. Prefiltering is
performed to reject poor quad fits, such as those without at
least four corners, whose mean squared errors are too large,
or whose corner angles deviate too far from 90°.

The quad fitting step outputs a set of candidate quads for
decoding (Figure 3d). Note that the quad detector correctly
finds many quad-shaped structures in the environment, in-
cluding specularities, switches, and individual tag pixels. The
decoding step, which compares the contents of the quad to
known codewords, filters out the false quad candidates.

E. Quick decoding

A straightforward approach to decoding tags is to XOR the
detected code (in each of its four possible rotations) with
each the codes in a tag family. A tag is identified as the
code with the smallest Hamming distance from the detected
code. However, if we limit the number of bit errors corrected
to two bits or fewer, it is possible to enumerate all O(n?)
possible codes within two bit errors of valid codes in a tag
family. These codes can be precomputed and stored in a
hash table, speeding up decoding from O(n) comparisons to
O(1), where n is the size of the tag family.

F. Edge refinement

The threshold image, while useful for segmentation and
quad border detection, may introduce noise into the threshold
image. For example, shadows and glare can impinge upon
an edge after thresholding, leading to poor localization
accuracy with the resulting tag. We provide an optional,

|| Candidate quads | False detections | False positive rate
Old 51,075,971 145 0.000284%
New 13,623,725 6 0.000044%

TABLE I: False positive rate on the LabelMe dataset
(421,049 images). Both detectors used AprilTag-36h11 with
up to 2 bit errors corrected, which has a theoretical false
positive rate of 0.000570%. Noisy image regions were most
likely to be decoded as false positives. The new detector’s
continuous boundary segmentation is less likely to fit a quad
to noise, further reducing an already low false positive rate.

computationally inexpensive method to refine the edge using
the original image.

The idea is to use the image gradient along the edges
of the candidate quads to fit new edges, approximating
the behavior of the original AprilTag detector. Along each
edge, at evenly-spaced sample points, we sample the image
gradient along the normal to the edge to find the location
with the largest gradient. Knowing tags are dark on the inside
and the winding order of the points in the quad, we reject
points whose gradient is not the expected sign (i.e. from
noisy individual pixels). We compute a weighted average
of the points along the normal, weighted by the gradient
magnitude. The line fit along these weighted average points
are then used as the edges of the quad. The quad corners are
computed as the intersections of these lines.

Edge refinement is not crucial if one is only interested
in detecting tags, although it can help with the decoding of
very small tags. However, the edge refinement step improves
localization accuracy when tags are used for pose estimation.

IV. EXPERIMENTAL RESULTS
A. False positive rate

A key advantage of AprilTags is its resiliency against false
positive detections in natural scenes. The previous detector
was shown to have a lower rate of false positives than
theoretically expected, largely due to the complexity heuristic
in the tag generation process. We note that the number of
false positives is not only a feature of the tag codewords
themselves, but also a function of the number of candidate
quads generated by the detector. A detector which generates
fewer candidate quads should be expected to generate fewer
false positives.

We ran an experiment to compare the performance of
the new detection algorithm against the previous one, using
the same LabelMe [17] dataset as the previous paper. This
dataset consists of images of natural scenes, none of which
contain AprilTags. Note that the likelihood of false positives
is intentionally increased by allowing up to 2 bit errors to be
corrected. The number of false positives is reduced by more
than we would expect from the lower quad detection rate
alone (Table I). The detector is also more selective, resulting
in a lower false positive rate. An analysis of the images which
generated false positives shows that noisy image regions
were more likely to accidentally decode to a valid codeword.
The continuous boundary segmentation in the new detector
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Fig. 6: Orientation error vs. off-axis angle. Both variants of

the tag detector perform similarly at small angles, but the

new detector performance does not degrade as quickly as

the old one when using decimated images.

algorithm is likely responsible for this increased robustness,
as it is less likely to fit a candidate quad to noise.

B. Localization accuracy

To characterize the localization accuracy of our detector,
we generated raytraced images with an ideal pinhole camera
model, where the tags’ true position and orientation were
known. A single tag with known side length was placed in
the scene while varying the distance and orientation.

In the first experiment, tag positions were generated ran-
domly, constrained to be a fixed distance from the camera
center, while the orientation of the tag was fixed parallel to
the image plane. The error in estimated distance is plotted
with respect to the distance of the tag from the camera
(Figure 5).

In the second experiment, the tag position was fixed so
that the camera’s optical axis passed through its center. The
tag orientation was generated randomly, constrained so that
its normal vector makes the same angle with the camera axis.
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Fig. 7: Percentage of tags detected vs. distance. The new

detector is better able to detect tags which are small and/or

far away.

(a) 0.6m (closest) (b) 7.0m (farthest)

Fig. 8: AprilTag mosaic for distance test on real images. Im-
ages were taken with a Point Grey Chameleon at 1296 x 964
pixels, and each tag is 0.167m wide. This experiment shows
that the tag detection and localization performance observed
in simulated images translates to real imagery. (Rectification
was performed before tag detection and localization.)

The error in estimated orientation is plotted with respect to
the off-axis angle (Figure 6).

Both localization error experiments were repeated with the
same images decimated to half their original size. The new
detector vastly outperforms the old detector when decimated
images are used, without noticeably affecting localization
accuracy vs. non-decimated images. This observation is
borne out by the detection rate as the tags are moved farther
away in the simulated images; the new detector is far more
capable at detecting small tags (Figure 7). The ability to
decimate input images is one of the keys to the computational
efficiency of the new detector.

Another question we seek to address is whether the
simulated results will translate to real world performance.
To answer this question, we collected real images of a
large AprilTag mosaic at increasing distances. The camera
was aligned with the center tag of the mosaic, and moved
perpendicularly away from the mosaic plane. The ground
truth was measured using a laser tape measure. The estimated
distance to the center tag is plotted in Figure 9. In addition to
improved localization accuracy, the new detector also detects
tags at the full range of distances, while the old detector
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Fig. 9: Estimated distance to the tag mosaic center, showing
the extended range and accuracy on real data.
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Fig. 10: Percentage of tags detected using real data, showing
the improvement in detection range.

experiences a rapid fall-off in detection rate (Figure 10).

C. Computation time

In the LabelMe experiment, we logged the dimensions and
wall time needed to process each image. Both tag detectors
were run in single-threaded mode on an Intel Xeon E5-2640
2.5GHz core. The time per pixel, averaged across all images
in the dataset, was about 0.254 microseconds per pixel for
the new detector, compared to 0.374 microseconds per pixel
for the old. This translates into about 78 ms and 115 ms,
respectively, for a 640 x 480 image. (The absolute times are
not meant to be representative, and are meaningful only in
relation to each other. Computation time varies by processing
speed and the number of quads in an input image.)

As we showed above, using decimated images with the
new detector does not significantly affect localization error.
With decimation by a factor of 2, the new detector only
takes 0.072 microseconds per pixel, or about 22 ms for
a 640 x 480 image. The detector performance is good
enough to run on the relatively lower-powered iPhone and
similar smartphone processors, opening up new possibilities
in embedding AprilTags into small-scale applications.

V. CONCLUSION

This paper describes a new AprilTag detection algorithm
which improves upon the previous detector, reducing the
rate of false positives, increasing the detection rate, and
reducing the amount of computing time needed for detection.
These improvements make robust tag detection viable on
computation-limited systems such as smartphones, and ex-
tends the usefulness of tag tracking in real-time applications.
A free AprilTag detector app is available in the iPhone App
Store!. The detector implementation, which was released last
year, is open-source and freely available on our website?.
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