
AprilTag: A robust and flexible visual fiducial system

Edwin Olson

University of Michigan

ebolson@umich.edu

http://april.eecs.umich.edu

Abstract— While the use of naturally-occurring features is a
central focus of machine perception, artificial features (fiducials)
play an important role in creating controllable experiments,
ground truthing, and in simplifying the development of systems
where perception is not the central objective.

We describe a new visual fiducial system that uses a 2D bar
code style “tag”, allowing full 6 DOF localization of features
from a single image. Our system improves upon previous
systems, incorporating a fast and robust line detection system,
a stronger digital coding system, and greater robustness to
occlusion, warping, and lens distortion. While similar in concept
to the ARTag system, our method is fully open and the
algorithms are documented in detail.

I. INTRODUCTION

Visual fiducials are artificial landmarks designed to be

easy to recognize and distinguish from one another. Although

related to other 2D barcode systems such as QR codes [1],

they have significantly goals and applications. With a QR

code, a human is typically involved in aligning the camera

with the tag and photographs it at fairly high resolution

obtaining hundreds of bytes, such as a web address. In

contrast, a visual fiducial has a small information payload

(perhaps 12 bits), but is designed to be automatically detected

and localized even when it is at very low resolution, unevenly

lit, oddly rotated, or tucked away in the corner of an

otherwise cluttered image. Aiding their detection at long

ranges, visual fiducials are comprised of many fewer data

cells: the alignment markers of a QR tag comprise about

268 pixels (not including required headers or the payload),

whereas the visual fiducials described in this paper range

from about 49 to 100 pixels, including the payload.

Unlike 2D barcode systems in which the position of the

barcode in the image is unimportant, visual fiducial systems

provide camera-relative position and orientation of a tag.

Fiducial systems also are designed to detect multiple markers

in a single image.

Visual fiducial systems are perhaps best known for their

application to augmented reality, which spurred the devel-

opment of several popular systems including ARToolkit [2]

and ARTag [3]. Real-world objects can be augmented with

visual fiducials, allowing virtually-generated imagery to be

super-imposed. Similarly, visual fiducials can be used for

basic motion capture [4].

Visual fiducial systems have been used to improve hu-

man/robot interaction, allowing humans to signal commands

(such as “follow me” or “wait here”) by flashing an appro-

priate card to a robot [5]. Planar tags have also been used to

Fig. 1. Example detections. This paper describes a visual fiducial system
based on 2D planar targets. The detector is robust to lighting variation and
occlusions and produces accurate localizations of the tags.

generate user interfaces that overlay robots’ plans and task

assignments onto a head-mounted display [6].

Performance evaluation and benchmarking of robot sys-

tems have become central issues for the research community;

visual fiducials are particularly helpful in this domain. For

example, fiducials can be used to generate ground-truth

robot trajectories and close control loops [7]. Similarly,

artificial features can make it possible to evaluate Simulta-

neous Localization and Mapping (SLAM) algorithms under

controlled algorithms [8]. Robotics applications have led to

the development of additional tag detection systems [9], [10].

Designing robust fiducials while minimizing the size

required is a challenging both from a marker detection

standpoint (which pixels in the image correspond to a tag?)

and from a error-tolerant data coding standpoint (which tag

is it?)

In this paper, we describe a new visual fiducial system that

significantly improves performance over previous systems.

The central contributions of this paper are:

• We describe a method for robustly detecting visual fidu-

cials. We propose a graph-based image segmentation

algorithm based on local gradients that allows lines to be

precisely estimated. We also describe a quad extraction

method that can handle significant occlusions.

• We demonstrate that our detection system provides

significantly better localization accuracy than previous

systems.

• We describe a new coding system that address problems

unique to 2D barcoding systems: robustness to rotation,

and robustness to false positives arising from natural

imagery. As demonstrated by our experimental results,

our coding system provides significant theoretical and

real-world benefits over previous work.

• We specify and provide results on a set of benchmarks

which will allow better comparisons of fiducial systems

in the future.

In contrast to previous methods (including ARTag and

Studierstube Tracker), our implementation is released under

an Open Source license, and its algorithms and implementa-

tion are well documented. The closed nature of these other

systems was a challenge for our experimental evaluation.

For the comparisons in this paper, we have used the limited

publicly-available information to enable as many objective

comparisons as possible. On the other hand, ARToolkitPlus

is open source and so we were able to make a more detailed

comparison. In addition to code, we are also making our

evaluation code available in order to make it easier for future

authors to perform comparisons.

In the next section, we review related work. We describe

our method in the following two sections: the tag detector

in Section 3, and the coding system in Section 4. In Section

5, we provide an experimental evaluation of our methods,

comparing them to previous algorithms.

II. PREVIOUS WORK

ARToolkit [11] was among the first tag tracking systems,

and was targeted at artificial reality applications. Like the

systems that would follow, its tags contained a square-shaped

payload surrounded by a black border. It differed, however, in

that its payload was not directly encoded in binary: instead, it

used symbols such as the latin character ’A’. When decoding

a tag, the payload of the tag (sampled at high resolution) was

correlated against a database of known tags, with the best-

correlating tag reported to the user. A major disadvantage

of this approach is the computational cost associated with

decoding tags, since each template required a separate,

slow correlation operation. A second disadvantage is that

it is difficult to generate templates that are approximately

orthogonal to each other.

The tag detection scheme used by ARToolkit is based on

a simple binarization of the input image based on a user-

specified threshold. This scheme is very fast, but not robust

to changes in illumination. In general, ARToolkit’s detections

can not handle even modest occlusions of the tag’s border.

ARTag [3] provided improved detection and coding

schemes. Like our own approach, the detection mechanism

was based on the image gradient, making it robust to changes

in lighting. While the details of the detector algorithm are not

public, ARTag’s detection mechanism is able to detect tags

whose border is partially occluded. ARTag also provided the

first coding system based on forward error correction, which

made tags easier to generate, faster to correlate, and provided

greater orthogonality between tags.

The performance of ARTag inspired several improvements

to ARToolkit, which evolved into ARToolkitPlus [2], and

finally Studierstube Tracker [12]. These versions introduced

digitally-encoded payloads like those used in ARTag. Despite

being later work, our experiments show that these encoding

systems do not perform as well as that used by ARTag, which

in turn is outperformed by our coding system.

In addition to monochrome tags, other coding systems

have been developed. For example, color information has

been used to increase the amount of information that can be

encoded [13], [14]. Tags using retro-reflectors [15] have also

been used. A particularly interesting approach is that used

by Bokode [16], which exploits the bokeh effect to detect

extremely small tags by intentionally defocusing the camera.

Fig. 2. Input image. This paper describe the processing of this sample
image which contains two tags. This example is purposefully simple for
explanatory reasons, though note that the tags are not rigidly planar. See
Fig. 1 for a more challenging result.

Besides two-dimensional barcodes, a number of other

artificial landmarks have been developed. Overhead cameras

have been used to track robots equipped with blinking

LEDs [17]. In contrast, the NorthStar system puts the vi-

sual fiducials on the ceiling [18]. Two-dimensional planar

systems, like the one described in this paper, have two

main advantages over LED-based systems: the targets can be

cheaply printed on a standard printer, and they provide 6DOF

position estimation without the need for multiple LEDs.

III. DETECTOR

Our system is composed of two major components: the tag

detector and the coding system. In this section, we describe

the detector whose job is to estimate the position of possible

tags in an image. Loosely speaking, the detector attempts to

find four-sided regions (“quads”) that have a darker interior

than their exterior. The tags themselves have black and white

borders in order to facilitate this (see Fig. 2).

The detection process is comprised of several distinct

phases, which are described in the following subsections and

illustrated using the example shown in Fig. 2.

Note that the quad detector is designed to have a very

low false negative rate, and consequently has a high false

positive rate. We rely on the coding system (described in

the next section) to reduce this false positive rate to useful

levels.

Fig. 3. Early processing steps. The tag detection algorithm begins by computing the gradient at every pixel, computing their magnitudes (first) and direction
(second). Using a graph-based method, pixels with similar gradient directions and magnitude are clustered into components (third). Using weighted least
squares, a line segment is then fit to the pixels in each component (fourth). The direction of the line segment is determined by the gradient direction, so
that segments are dark on the left, light on the right. The direction of the lines are visualized by short perpendicular “notches” at their midpoint; note that
these “notches” always point towards the lighter region.

A. Detecting line segments

Our approach begins by detecting lines in the image. Our

approach, similar in basic approach to the ARTag detector,

computes the gradient direction and magnitude at every pixel

(see Fig. 3) and agglomeratively clusters the pixels into

components with similar gradient directions and magnitudes.

The clustering algorithm is similar to the graph-based

method of Felzenszwalb [19]: a graph is created in which

each node represents a pixel. Edges are added between

adjacent pixels with an edge weight equal to the pixels’ dif-

ference in gradient direction. These edges are then sorted and

processed in terms of increasing edge weight: for each edge,

we test whether the connected components that the pixels

belong to should be joined together. Given a component n,

we denote the range of gradient directions as D(n) and the

range of magnitudes as M(n). Put another way, D(n) and

M(n) are scalar values representing the difference between

the maximum and minimum values of the gradient direction

and magnitude respectively. In the case of D(), some care

must be taken to handle 2π wrap-around. However, since

useful edges will have a span of much less than π degrees,

this is straightforward. Given two components n and m,

we join them together if both of the conditions below are

satisfied:

D(n ∪m) ≤ min(D(n), D(m)) +KD/|n ∪m| (1)

M(n ∪m) ≤ min(M(n),M(m)) +KM/|n ∪m|

The conditions are adapted from [19] and can be intu-

itively understood: small values of D() and M() indicate

components with little intra-component variation. Two clus-

ters are joined together if their union is about as uniform

as the clusters taken individually. A modest increase in

intra-component variation is permitted via the KD and KM

parameters, however this rapidly shrinks as the components

become larger. During early iterations, the K parameters

essentially allow each component to “learn” its intra-cluster

variation. In our experiments, we used KD = 100 and

KM = 1200, though the algorithm works well over a broad

range of values.

For performance reasons, the edge weights are quantized

and stored as fixed-point numbers. This allows the edges to

Fig. 4. Quad detection and sampling. Four quads are detected in the image
(which contains two tags). The third detected quad corresponds to three of
the edges of the foreground tag plus the edge of the paper (See Fig. 2).
A fourth quad is detected around one of the payload bits of the larger
tag. These two extraneous detections are eventually discarded because their
payload is invalid. The white dots correspond to samples around the tags
border which are used to fit a linear model of intensity of “white” pixels;
a model is similarly fit for the black pixels. These two models are used to
threshold the data payload bits, shown as yellow dots.

be sorted using a linear-time counting sort [20]. The actual

merging operation can be efficiently carried out by the union-

find algorithm [20] with the upper and lower bounds of

gradient direction and magnitude stored in a simple array

indexed by each component’s representative member.

This gradient-based clustering method is sensitive to noise

in the image: even modest amounts of noise will cause local

gradient directions to vary, inhibiting the growth of the com-

ponents. The solution to this problem is to low-pass filter the

image [19], [21]. Unlike other problem domains where this

filtering can blur useful information in the image, the edges

of a tag are intrinsically large-scale features (particularly in

comparison to the data field), and so this filtering does not

cause information loss. We recommend a value of σ = 0.8.

Once the clustering operation is complete, line segments

are fit to each connected component using a traditional

least-squares procedure, weighting each point by its gradient

magnitude (see Fig. 3). We adjust each line segment so that

the dark side of the line is on its left, and the light side is

on its right. In the next phase of processing, this allows us

to enforce a winding rule around each quad.

The segmentation algorithm is the slowest phase in our

detection scheme. As an option, this segmentation can be

performed at half the image resolution with a 4x improve-

ment in speed. The sub-sampling operation can be efficiently

combined with the recommended low-pass filter. The conse-

quence of this optimization is a modestly reduced detection

range, since very small quads may no longer be detected.

B. Quad detection

At this point, a set of directed line segments have been

computed for an image. The next task is to find sequences

of line segments that form a 4-sided shape, i.e., a quad. The

challenge is to do this while being as robust as possible to

occlusions and noise in the line segmentations.

Our approach is based on a recursive depth-first search

with a depth of four: each level of the search tree adds an

edge to the quad. At depth one, we consider all line segments.

At depths two through four, we consider all of the line

segments that begin “close enough” to where the previous

line segment ended and which obey a counter-clockwise

winding order. Robustness to occlusions and segmentation

errors is handled by adjusting the “close enough” threshold:

by making the threshold large, significant gaps around the

edges can be handled. Our threshold for “close enough” is

twice the length of the line plus five additional pixels. This

is a large threshold which leads to a low false negative rate,

but also results in a high false positive rate.

We populate a two-dimensional lookup table to accelerate

queries for line segments that begin near a point in space.

With this optimization, along with early rejection of can-

didate quads that do not obey the winding rule, or which

use a segment more than once, the quad detection algorithm

represents a small fraction of the total computational require-

ments.

Once four lines have been found, a candidate quad detec-

tion is created. The corners of this quad are the intersections

of the lines that comprise it. Because the lines are fit using

data from many pixels, these corner estimates are accurate

to a small fraction of a pixel.

C. Homography and extrinsics estimation

We compute the 3×3 homography matrix that projects 2D

points in homogeneous coordinates from the tag’s coordinate

system (in which [0 0 1]T is at the center of the tag and the

tag extends one unit in the x̂ and ŷ directions) to the 2D

image coordinate system. The homography is computed us-

ing the Direct Linear Transform (DLT) algorithm [22]. Note

that since the homography projects points in homogeneous

coordinates, it is defined only up to scale.

Computation of the tag’s position and orientation requires

additional information: the camera’s focal length and the

physical size of the tag. The 3 × 3 homography matrix

(computed by the DLT) can be written as the product of

the 3× 4 camera projection matrix P (which we assume is

known) and the 4×3 truncated extrinsics matrix E. Extrinsics

matrix are typically 4 × 4, but every position on the tag

is at z = 0 in the tag’s coordinate system. Thus, we can

rewrite every tag coordinate as a 2D homogeneous point

with z implicitly zero, and remove the third column of the

extrinsics matrix, forming the truncated extrinsics matrix.

We represent the rotation components of P as Rij and the

translation components as Tk. We also represent the unknown

scale factor as s:




h00 h01 h02

h10 h11 h12

h20 h21 h22



 = sPE

= s





fx 0 0 0
0 fy 0 0
0 0 1 0













R00 R01 Tx

R10 R11 Ty

R20 R21 Tz

0 0 1









(2)

Note that we cannot directly solve for E because P is rank

deficient. We can expand the right hand side of Eqn. 2, and

write the expression for each hij as a set of simultaneous

equations:

h00 = sR00fx (3)

h01 = sR01fx

h02 = sTxfx

...

These are all easily solved for the elements of Rij and Tk

except for the unknown scale factor s. However, since the

columns of a rotation matrix must all be of unit magnitude,

we can constrain the magnitude of s. We have two columns

of the rotation matrix, so we compute s as the geometric the

geometric average of their magnitudes. The sign of s can

be recovered by requiring that the tag appear in front of the

camera, i.e., that Tz < 0. The third column of the rotation

matrix can be recovered by computing the cross product of

the two known columns, since the columns of a rotation

matrix must be orthonormal.

The DLT procedure and the normalization procedure

above do not guarantee that the rotation matrix is strictly

orthonormal. To correct this, we compute the polar decom-

position of R, which yields a proper rotation matrix while

minimizing the Frobenius matrix norm of the error [23].

IV. PAYLOAD DECODING

The final task is to read the bits from the payload field.

We do this by computing the tag-relative coordinates of each

bit field, transforming them into image coordinates using the

homography, and then thresholding the resulting pixels. In

order to be robust to lighting (which can vary not only from

tag to tag, but also within a tag), we use a spatially-varying

threshold.

Specifically, we build spatially-varying model of the inten-

sity of “black” pixels, and a second model for the intensity of

“white” models. We use the border of the tag, which contains

known examples of both white and black pixels, to learn this

model (see Fig. 4). We use the following intensity model:

I(x, y) = Ax+Bxy + Cy +D (4)

This model has four parameters which are easily computed

using least squares regression. We build two such models,

one for black, the other for white. The threshold used when

decoding data bits is then just the average of the predicted

intensity values of the black and white models.

V. CODING SYSTEM

Once the data payload is decoded from a quad, it is the

job of the coding system to determine it is valid or not. The

goals of a coding system are to:

• Maximize the number of distinguishable codes

• Maximize the number of bit errors that can be detected

or corrected

• Minimize the false positive/inter-tag confusion rate

• Minimize the total number of bits per tag (and thus the

size of the tag)

These goals are often in conflict, and so a given code

represents a trade-off. In this section, we describe a new

coding system based on lexicodes that provides significant

advantages over previous methods. Our procedure can gen-

erate lexicodes with a variety of properties, allowing the user

to use a code that best fits their needs.

A. Methodology

We propose the use of a modified lexicode [24]. Classical

lexicodes are parameterized by two quantities: the number

of bits n in each codeword and the minimum Hamming

distance between any two codewords d. Lexicodes can

correct ⌊(d− 1)/2⌋ bit errors and detect d/2 bit errors.

For convenience, we will denote a 36 bit encoding with a

minimum Hamming distance of 10 (for example) as a 36h10

code.

Lexicodes derive their name from the heuristic used to

generate valid codewords: candidate codewords are consid-

ered in lexicographic order (from smallest to largest), adding

new codewords to the codebook when they are at least a

distance d from every codeword previously added to the

codebook. While very simple, this scheme is often very close

to optimal [25].

In the case of visual fiducials, the coding scheme must be

robust to rotation. In other words, it is critical that when

a tag is rotated by 90, 180, or 270 degrees, that it still

have a Hamming distance of d from every other code. The

standard lexicode generation algorithm does not guarantee

this property. However, the standard generation algorithm

can be trivially extended to support this: when testing a

new candidate codeword, we can simply ensure that all four

rotations have the required minimum Hamming distance.

The fact that the lexicode algorithm can be easily extended

to incorporate additional constraints is an advantage of our

approach.

Some codewords, despite satisfying the Hamming distance

constraint, are poor choices. For example, a code word

consisting of all zeros would result in a tag that looks like

a single black square. Such simple geometric patterns com-

monly occur in natural scenes, resulting in false positives.

The ARTag encoding system, for example, explicitly forbids

two codes because they are too likely to occur by chance.

Rather than identify problematic tags manually, we fur-

ther modify the lexicode generation algorithm by rejecting

candidate codewords that result in simple geometric patterns.

Our metric is based on the number of rectangles required to

generate the tag’s 2D pattern. For example, a solid pattern

requires just one rectangle, while a black-white-black stripe

would require two rectangles (one large black rectangle with

a smaller white rectangle drawn second). Our hypothesis,

supported by experimental results later in this paper, is

that tag patterns with high complexity (which require many

rectangles to be reconstructed) occur less frequently in nature

and thus lead to lower false positive rates.

Using this idea, we again modify the lexicode generation

algorithm to reject candidate codewords that are too simple.

We approximate the number of rectangles required to gen-

erate the tag’s pattern with a simple greedy approach that

repeatedly considers all possible rectangles and adds the one

that reduces the error the most. Since the tags are generally

very small, this computation is not a bottleneck. Tags with

a minimum complexity less than a threshold (typically 10

in our experiments) are rejected. The appropriateness and

effectiveness of this heuristic are demonstrated in the results

section.

Lastly, we have empirically observed lower false positive

scores by making one more modification to the lexicode

generation algorithm. Rather than test codewords in order

(0, 1, 2, 3, ...), we consider (b, b+1p, b+2p, b+3p, ...) where

b is an arbitrary number, p is a large prime, and the lowest

n bits are kept at each step. Intuitively, the tags generated

by this method have greater entropy at every bit position;

the lexicographic order, on the other hand, favors small-

valued codes. The disadvantage of this method is that fewer

distinguishable codes are created: the lexicographic ordering

tends to pack codewords quite densely, whereas the more

random order results in a less efficient packing of codewords.

To summarize, we use a lexicode system that can generate

codes for any arbitrary tag size (e.g., 3x3, 4x4, 5x5, 6x6)

and minimum Hamming distance. Our approach explicitly

guarantees the minimum Hamming distance for all four

rotations of each tag and eliminates tags which are of

low geometric complexity. Computing the tags can be an

expensive operation, but is done offline. Small tags (5x5)

can be easily computed in seconds or minutes, but larger

tags (6x6) can take several days of CPU time. Many useful

code families are already computed and distributed with our

software; most users will not need to generate their own code

families.

B. Error correction analysis

Theoretical false positive rates can be easily estimated.

Assume that a false quad is identified and that the bit pattern

is random. The probability of a false positive is the fraction of

codewords which are accepted as valid tags versus the total

number of possible codewords, 2n. More aggressive error

correction increases this rate, since it increases the number

of codewords that are accepted. This unavoidable increase in

error rate is illustrated for the 36h10 and 36h15 codes below:

Bits corrected 36h10 FP (%) 36h15 FP (%)

0 0.000001 0.000000
1 0.000041 0.000002
2 0.000744 0.000029
3 0.008714 0.000341
4 0.074459 0.002912
5 0.495232 0.019370
6 N/A 0.104403
7 N/A 0.468827

Of course, the better performance of the 36h15 encoding

comes at a price: there are only 27 distinguishable code-

words, as opposed to 36h10’s 2221 distinguishable code-

words.

Our coding scheme is significantly stronger than previous

schemes, including that used by ARTag and both systems

used by ARToolkitPlus: our coding system achieves a greater

minimum Hamming distance between all pairs of codewords

while encoding a larger number of distinguishable ids. This

improvement in minimum Hamming distance is illustrated

in Fig. 5 and in the table below:

Encoding Scheme Length Unique codes Min. Hamming

ARToolkit+ (simple) 36 512 4
ARToolkit+ (BCH) 36 4096 2

ARTag 36 2046 4
Proposed (36h9) 36 4164 9
Proposed (36h10) 36 2221 10

In order to decode a possibly-corrupted code word, the

Hamming distance between the code word and each valid

code word in the code book is computed. If the best match

has a Hamming distance less than the user-specified thresh-

old, a detection is reported. By specifying this threshold, the

user is able to control the tradeoff between false positives

and false negatives.

A disadvantage of our method is that this decoding process

takes linear time in the size of the codebook, since every

valid codeword must be considered. However, the coefficient

is so small that the computational complexity is negligible

in comparison to the other image processing steps.

For a given coding scheme, larger tags (i.e., those with

36 bits versus 25 bits) have dramatically better coding

performance than smaller tags, although this comes at a price.

All other things being equal, the range at which a given

camera can read a 36 bit tag will be shorter than the range at

which the same camera can read a 16 or 25 bit tag. However,

the benefit in range for smaller tags is quite modest due to the

4 pixel overhead of the borders; only a 25% improvement in

detection range can be expected by using 16 bit tags instead

of 36 bit tags. Thus, it is only in the most range-sensitive

applications where smaller tags are advantageous.

VI. EXPERIMENTAL RESULTS

A. Empirical Experiments

A key question we wish to answer is whether our analyt-

ical predictions regarding false positive rates holds in real-

world imagery. To answer this question, we used a standard

Fig. 5. Hamming distances. Good codes have large Hamming distances
between valid codewords. Shown above are the Hamming distances for
several contemporary systems. Note that our coding scheme guarantees a
minimum Hamming distance by construction, whereas other systems have
some very similar codewords which leads to higher inter-tag confusion rates.

image corpus from the LabelMe dataset [26], which contains

180,829 images from a wide variety of indoor and outdoor

environments. Since none of these images contain one of our

tags, we can measure the false positive rate of our coding

systems by using these images.

Fig. 6. Empirical false positives versus tag complexity. Our theoretical error
rates assume that all codewords are equally likely to occur by chance in a
real-world environment. Our hypothesis is that real-world environments are
biased towards codes which have a low rectangle covering complexity and
that by selecting codewords that have high rectangle covering complexity,
we can decrease false positive rates. This hypothesis is validated by the
graph above, which shows empirical false positive rates from the LabelMe
dataset (solid lines) for rectangle covering complexities from c=2 to c=10.
At complexities of c=9 and c=10, the false positive rate drops below the rate
predicted by the pessimistic model that real-world payloads are randomly
distributed.

Evaluation of complexity heuristic: We first wish to evalu-

ate our hypothesis that the false positive rate can be reduced

by imposing our geometric complexity heuristic to reject

candidate codewords. To do this, we generated ten variants

of the 25h9 family with minimum complexities ranging from

1 to 10. In Fig. 6, the false positive rate is given for each

of these complexities as a function of the maximum number

of bit errors corrected. Also displayed is the theoretical false

positive rate which was based on the assumption that data

payloads are randomly distributed.

Fig. 6 clearly demonstrates that our heuristic is effective

in reducing the false positive rate. Interestingly, once the

complexity exceeds 8, the performance is actually better than

predicted by theory.

Comparison to other coding schemes: We next compare

the false positive of our rate of our coding systems to those

used by ARToolkitPlus and ARTag.

Using the same real-world imagery dataset, we plot the

empirical false positive rates for five codes in Fig. 7.

Fig. 7. Empirical false positives. The best performing methods, in terms
of the rate of false positives on the LabelMe dataset, are 36h15 and
ARToolkitPlus-Simple. These two coding families also have the fewest
number of distinguishable codes, which gives them an advantage. The other
three systems have approximately comparable numbers of distinguishable
codes; ARToolkitPlus-BCH performs very poorly; ARTag does much better,
and our proposed 36h10 encoding does even better.

ARToolkitPlus’s BCH coding scheme has the highest false

positive rate, followed by ARTag. Our 36h10 encoding,

generated with a minimum complexity of 10, performs better

than both of these systems. This is a central result of this

paper.

Fig. 8. Example synthetic image. We generated ray-traced images in order
to create ground-truthed datasets for our evaluation. In this example, the tag
is 10m from the camera, and its normal vector points 30.3 degrees away
from the camera.

The plot shows data for two additional schemes: ARTP-

Simple performs about the same as our 36h10 encoding, but

because its tag family has one quarter as many distinguish-

able tags, its false positive rate is correspondingly lower. For

comparison purposes, we also include the false positive rate

for 36h15 family with only 27 distinguishable codewords.

As expected, it has an exceptionally low false positive rate.

B. Localization Accuracy

To evaluate the localization accuracy of the detector, we

used a ray tracer to generate images with known ground truth

(see Fig. 8 for an example). The true location and orientation

of the tags was varied randomly and compared to the detected

position. Images were generated at a resolution of 400×400
with a pinhole lens and focal length of 400 pixels.

The main factor in localization accuracy is the size of the

target, which is affected by both the distance and orientation

of the tag. To decouple these factors, we conducted two

experiments. The first experiment measured the orientation

accuracy of targets while fixing the distance. The critical

parameter is the angle φ between the target’s normal vector

Fig. 9. Orientation accuracy. Using our ray-tracing simulator (which
provides ground truth), we evaluated the accuracy of two tag detector’s
localization accuracy. We fixed the range to the tag and varied the angle
between the tag’s normal and the camera direction. For both systems,
the performance in localization accuracy and in success rate worsens as
the tag rotates away from the camera. However, the proposed system has
dramatically lower localization error and is able to detect targets more
reliably.

and the vector to the camera. When φ is 0, the target is

facing directly towards the target; as φ approaches π/2,

the target rotates out of view and we expect performance

to decrease. We measure performance in terms of both the

localization accuracy and detection rate. In Fig. 9, we see

that our detector significantly outperforms the ARToolkitPlus

detector: not only are the orientation and distance estimates

more accurate, but it can detect tags over a larger range of

φ.

The complementary experiment is to hold φ = 0 and

to vary the distance. We expect that as distance increases,

accuracy will decrease. In Fig. 10, we see that our detector

works reliably to 50 m, while the ARToolkitPlus detector’s

detection rate drops to under 50% at around 25 m. In

addition, our detector provides significantly more accurate

localization results.

Naturally, real-world performance of the system will be

lower than these synthetic experiments due to noise, lighting

variation, and other non-idealities (such as lens distortion or

tag non-planarity). Still, the real-world performance of our

system has been very good.

While our methods are generally more computationally

expensive than those used by ARToolkitPlus, our Java im-

plementation runs at interactive rates (30 fps) on VGA

resolution images (Intel Core2 CPU at 2.6GHz). Higher

resolutions signficantly impact runtime due to the graph-

based clustering. We expect significant speedups by making

use of SIMD optimizations and accelerated image procesing

libraries in our ongoing C port.

VII. CONCLUSION

We have described a visual fiducial system that signifi-

cantly improves upon previous methods. We described a new

approach for detecting edges using a graph-based clustering

method along with a coding system that is demonstrably

Fig. 10. Distance accuracy. In order to evaluate the accuracy of distance
estimation to the target, we again used ground-truthed simulation data. For
this experiment, we fixed the target so that it faced the camera but varied the
distance between the tag and the camera. Our proposed method significantly
outperforms ARToolkitPlus, providing more accurate range estimates, and
over twice the working detection range.

stronger than previous methods. We have also described a set

of benchmarks that we hope will make it easier to evaluate

other methods in the future. In contrast to other systems (with

the notable exception of ARToolkit), our implementation is

fully open. Our source code and benchmarking software are

freely available:

http://april.eecs.umich.edu/

REFERENCES

[1] C.-H. Chu, D.-N. Yang, and M.-S. Chen, “Image stablization for 2d
barcode in handheld devices,” in MULTIMEDIA ’07: Proceedings of

the 15th international conference on Multimedia. New York, NY,
USA: ACM, 2007, pp. 697–706.

[2] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg, “Pose tracking from natural features on mobile phones,” in IS-

MAR ’08: Proceedings of the 7th IEEE/ACM International Symposium

on Mixed and Augmented Reality. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 125–134.

[3] M. Fiala, “ARTag, a fiducial marker system using digital techniques,”
in CVPR ’05: Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05)

- Volume 2. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 590–596.

[4] A. C. Sementille, L. E. Lourenço, J. R. F. Brega, and I. Rodello,
“A motion capture system using passive markers,” in VRCAI ’04:

Proceedings of the 2004 ACM SIGGRAPH international conference

on Virtual Reality continuum and its applications in industry. New
York, NY, USA: ACM, 2004, pp. 440–447.

[5] J. Sattar, P. Giguère, and G. Dudek, “Sensor-based behavior control for
an autonomous underwater vehicle,” Int. J. Rob. Res., vol. 28, no. 6,
pp. 701–713, 2009.

[6] M. Fiala, “A robot control and augmented reality interface for multiple
robots,” in CRV ’09: Proceedings of the 2009 Canadian Conference on

Computer and Robot Vision. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 31–36.

[7] ——, “Vision guided control of multiple robots,” Computer and Robot

Vision, Canadian Conference, vol. 0, pp. 241–246, 2004.

[8] U. Frese, “Deutsches zentrum für luft- und raumfahrt (DLR) dataset,”
2003.

[9] J. Sattar, E. Bourque, P. Giguere, and G. Dudek, “Fourier tags:
Smoothly degradable fiducial markers for use in human-robot interac-
tion,” Computer and Robot Vision, Canadian Conference, vol. 0, pp.
165–174, 2007.

[10] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and
A. Martinoli, “SwisTrack - A Flexible Open Source Tracking
Software for Multi-Agent Systems,” in Proceedings of the IEEE/RSJ

2008 International Conference on Intelligent Robots and Systems

(IROS 2008). IEEE, 2008, pp. 4004–4010. [Online]. Available:
http://iros2008.inria.fr/

[11] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in IWAR ’99:

Proceedings of the 2nd IEEE and ACM International Workshop on

Augmented Reality. Washington, DC, USA: IEEE Computer Society,
1999, p. 85.

[12] D. Wagner and D. Schmalstieg, “Making augmented reality practical
on mobile phones, part 1,” IEEE Computer Graphics and Applications,
vol. 29, pp. 12–15, 2009.

[13] S.-w. Lee, D.-c. Kim, D.-y. Kim, and T.-d. Han, “Tag detection algo-
rithm for improving the instability problem of an augmented reality,”
in ISMAR ’06: Proceedings of the 5th IEEE and ACM International

Symposium on Mixed and Augmented Reality. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 257–258.

[14] D. Parikh and G. Jancke, “Localization and segmentation of a 2d high
capacity color barcode,” in WACV ’08: Proceedings of the 2008 IEEE

Workshop on Applications of Computer Vision. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 1–6.

[15] P. C. Santos, A. Stork, A. Buaes, C. E. Pereira, and J. Jorge, “A
real-time low-cost marker-based multiple camera tracking solution for
virtual reality applications,” January 2009.

[16] A. Mohan, G. Woo, S. Hiura, Q. Smithwick, and
R. Raskar, “Bokode: imperceptible visual tags for camera
based interaction from a distance,” ACM Trans. Graph.,
vol. 28, pp. 98:1–98:8, July 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1531326.1531404

[17] J. McLurkin, “Analysis and implementation of distributed algorithms
for Multi-Robot systems,” Ph.D. thesis, Massachusetts Institute of
Technology, 2008.

[18] Y. Yamamoto, P. Pirjanian, M. Munich, E. Dibernardo, L. Goncalves,
J. Ostrowski, and N. Karlsson, “Optical sensing for robot perception
and localization,” in 2005 IEEE Workshop on Advanced Robotics and

its Social Impacts, 2005, pp. 14–17.
[19] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-

age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, 2004.

[20] R. L. Rivest and C. E. Leiserson, Introduction to Algorithms. New
York, NY, USA: McGraw-Hill, Inc., 1990.

[21] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, November 2004.

[22] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, 2004.
[23] K. Shoemake and T. Duff, “Matrix animation and polar decomposi-

tion,” in In Proceedings of the conference on Graphics interface 92.
Morgan Kaufmann Publishers Inc, 1992, pp. 258–264.

[24] A. Trachtenberg, A. T. M. S, E. Vardy, and C. L. Liu, “Computational
methods in coding theory,” Tech. Rep., 1996.

[25] R. A. Brualdi and V. S. Pless, “Greedy codes,” J. Comb. Theory Ser.

A, vol. 64, no. 1, pp. 10–30, 1993.
[26] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,

“Labelme: A database and web-based tool for image annotation,” Tech.
Rep. MIT-CSAIL-TR-2005-056, Massachusetts Institute of Technol-
ogy, Tech. Rep., 2005.

