
Flexible Layouts for Fiducial Tags

Maximilian Krogius Acshi Haggenmiller Edwin Olson

Abstract— Fiducials are artificial features with a variety of
uses in computer vision such as object tracking and localization.
We propose the idea of flexible tag layouts for visual fiducial
systems. In contrast to traditional square tags, flexible tag
layouts allow circular, annular, or other shapes as desired.
One use of layout flexibility is to increase the data density of
standard square shaped tags. In addition, we describe a detector
that is faster and has higher recall than both the AprilTag 2
and ArUco detectors while maintaining precision.

I. INTRODUCTION

Fiducials are artificial visual features that are designed
to be easy to detect. They have applications in computer
vision, augmented reality, and robotics since they greatly
simplify the perception problem. Popular fiducial systems
have converged onto a standard layout with an easy-to-detect
square border surrounding a unique pattern of data bits as in
Figure 2a. However, this shape is not a perfect solution for
all applications.

We have identified three problems with the traditional
square layout. First, a large portion of the area of a standard
layout fiducial tag consists of the detection border of the tag.
This leaves less area for the data bits of the tag. Second,
a square tag does not make efficient use of space on a
circular object. For instance, the AprilTag fiducials have have
been used to track everything from bees [1] to tiny circular
robots [2], where these square tags fit like a square peg in a
round hole. Third, applications such as marking UAV landing
sites would benefit from tags which are detectable over a
wider range of distances than is possible with traditional
layouts.

Our proposed system addresses these issues by allowing
the tag’s layout to be customized for each application. We
can generate layouts with a higher data density and smaller
border (Figure 2b, c), circular tags (Figure 2e, f), or a custom
tag layout (Figure 2f) with empty space in the middle in
which a smaller tag could be placed, allowing this sort of
recursive tag to be detected over a large range of distances.
This sort of recursive tag can be used for marking quadrotor
landing sites as in Figure 1.

One challenge in making flexible tag layouts is maintain-
ing the low false positive rate that gives fiducials their utility.
Previous fiducial systems achieve these low rates through the
use of a complexity metric[3] which predicts the likelihood
of the tag being similar to a naturally-occurring pattern.
Finding a complexity metric which is effective across many

The authors are with the Computer Science and Engineering De-
partment, University of Michigan, Ann Arbor, MI 48104, USA.
{mkrogius,acshikh,ebolson}@umich.edu

Fig. 1. A quadrotor using a doubly nested AprilTag for localization above
its landing pad. This tag consists of a large recursive tag with a smaller
recursive tag pasted inside of it and an even smaller recursive tag pasted
inside of that one.

tag layouts is necessary for maintaining robustness in new
tag families.

Our proposed tag designs could be adapted to many dif-
ferent visual fiducial systems. To enable direct comparisons
to traditional tags we have incorporated our work into the
popular AprilTag [4] fiducial system. Some examples of
AprilTag use in recent years include providing ground truth
for robotic arms [5], calibrating camera-lidar systems [6],
allowing UAVs to track cars [7], and tracking construction
materials [8].

We propose an evaluation scheme for fiducial systems
which allows fair comparisons between detectors which are
tuned for different use cases. Two key metrics for a fiducial
system are the speed of the detector and the distance at which
tags can be detected. There is a natural tradeoff between these
two properties since spending more time in the detector’s
algorithm to increase the detection distance will lead to a
reduction in detection speed. We show that our detector
is faster and has a longer detection distance than previous
fiducial systems.

The contributions of this work include:
• We introduce a flexible layout system whereby users

can generate sets of tags with the data bits arranged in
a specified shape (with a few restrictions).

• We introduce a complexity metric applicable to diverse
tag layouts which we use to generate tags with low false
positive rates.

• We introduce an evaluation scheme to fairly compare
the speed and recall of fiducial detectors. We compare
our detector against the AprilTag 2 and ArUco detectors.



Fig. 2. Examples of tag families possible with AprilTag 3, with dotted lines
showing the tag borders. a) The old-style tag family from AprilTag 2. b)
and c) Tags with one layer of bits outside of the border with 41 and 52 data
bits respectively. d) and e) Circular tags with 21 and 49 bits respectively.
f) Tag with empty space in the middle for recursive tag applications.

II. RELATED WORK

We can categorize fiducial systems into two categories
based on the shape of the tags: square tags with a black
and white border on the outside; and tags with other shapes.

For square tags, one of the earliest examples was AR-
Toolkit [9] which used a black border and an image on the
inside of the tag. ARTag [10] introduced the 2D barcode
to make tag decoding easier. AprilTag [3], [4] introduced
a lexicode-based tag generation method to reduce false
positive detections and a more-efficient detection algorithm.
ArUco [11], [12] used mixed integer linear programming to
generate tags and a detector also compatible with ARTag
and AprilTag. ChromaTag used red-green color gradients to
speed up the detection process[13]. While we have imple-
mented our layouts with monochrome tags, the same idea
could be applied to color tags like ChromaTag.

There were also many systems that used non-square tags.
CALTag [14] used a grid of square tags to increase localiza-
tion precision and occlusion robustness. RUNE-tag [15] used
a tag composed of circular dots arranged in circular patterns.
Fourier tags [16] proposed circular tags with bits encoded
in the frequency of the radial intensity function of the tag.
ReacTIVision [17] used tags of varying shape identified by
their topology.

In contrast to the wide variety of non-square tag layouts,
square fiducial tag systems appear to have converged onto
a relatively standard 10x10 layout. Both AprilTag 2 and
ArUco support this layout. In particular, no current fiducial
system uses a non-square overall layout while maintaining
the proven square detection border from these tag systems.

III. METHODS

We propose a method for generating and detecting tags
with a flexible (i.e. user-specified) layout. This includes a
complexity metric for reducing the false positive rate as well
as a fast detector with high recall.

A. Flexible Layout

Previous square fiducial systems have allowed only one
layout parameter to vary: the size of the tag. The shape of the

x x x d d d x x x

x b b b b b b b x

x b w w w w w b x

d b w d d d w b d

d b w d d d w b d

d b w d d d w b d

x b w w w w w b x

x b b b b b b b x

x x x d d d x x x

Fig. 3. The layout string for the 21h7 circular tag family overlaid onto an
example tag from this family.

tag and location of the data bits within the tag were always
the same. Our system allows the locations of the data bits
to be arbitrary. Our tags are no longer necessarily square,
except in that each individual bit is still represented by a
square black or white pixel.

The layout of a tag is now specified as a string where each
character corresponds to one pixel of the resulting tag family.
There are four options: white (‘w’), black (‘b’), data (‘d’),
and ignore (‘x’). Given this string, our system generates a
family of tags with that layout. For example, our circular
layout uses the ignore (‘x’) character in the layout string to
create a raster approximation of a circle (see Figure 3).

The layout must have fourfold symmetry and contain a
black and white border for detection of the tag. However,
the data bits do not need to remain inside of the border, and
the border may have either black or white on the outside.

We present a new standard layout which moves the border
inwards and has one layer of data bits around the outside of
the border (see Figure 2b), giving each tag an additional 16
data bits, regardless of overall tag size. While the smaller bor-
der potentially reduces pose accuracy and detection distance,
the increase in data density and the corresponding decrease
in false positive rate is desirable in many applications. We
propose the name uramaki for these new style tags and the
name maki for the old style tags since the placement of the
data bits and border is analogous to the placement of the rice
and seaweed in a sushi roll.

We can also specify a custom layout string in order to
customize the tag shape, false positive rate, and number
of tags. As an example we generate a recursive tag for
use in marking quadrotor landing sites (see Figure 3f). The
recursive tag uses a set of ”ignore” bits in the center of the
tag. Within that space we insert a smaller tag and within that
smaller tag we insert an even smaller tag. The larger/middle
tag will be detected from longer ranges but will exceed the
field of view of the camera at shorter ranges, which is when
the middle/smaller tag will be detected. (Of course, at some
distances more than one tag may be detected, in which case
the larger tag can provide additional localization precision).

B. Complexity Metric

Some data bit patterns are more likely to appear in natural
images by chance. For instance, a tag consisting of all zeros
(which appears solid black) could be incorrectly detected on
any dark rectangular object. Previous work showed that the



Fig. 4. The steps of the detection algorithm, illustrated by running the
algorithm on a real image of a 36h11 tag. 1) The input. 2) Decimated, by
a factor of two in this example. 3) Thresholded. 4) Connected components
from a union-find algorithm. 5) Contours between white and black com-
ponents. 6) Quadrilaterals fit to the contours. 7) Perspective correction and
data bits are read out. 8) The data bits are sharpened and finally decoded.

false positive rate can be lowered if we only generate par-
ticularly unlikely tag patterns using a complexity metric [3].
For our flexible layouts it was not obvious that this particular
choice of complexity metric would be the best. We tested the
following three metrics and chose the Ising model based on
our experimental evaluation.

Our first complexity metric is an extension of the rectangle
complexity metric [3]. Our method renders the whole tag, in-
cluding the border, and computes the number of (potentially
overlapping) rectangles required to render that image. For
tag layouts with the ‘x’ pixel we render the image twice,
once each with all the ‘x’ bits set to either white or black,
taking the minimum complexity of the two.

Our second metric is the Ising model energy of the
rendered image, ignoring the ‘x’ bits.

E= Σi,j(1[image(i, j) 6= image(i, j + 1)]

+1[image(i, j) 6= image(i + 1, j)]) (1)

This is equivalent to the sum total length of edges between
white and black pixels in the tag. This metric comes from the
intuition that objects in the real world tend to have correlation
in intensity between neighboring regions.

Our third metric is the number of connected components
in the tag. A connected component here is defined to be a
white or black 4-connected set of pixels.

C. Detector Speed-up

While not essentially linked to the flexible tag layouts,
we made several improvements to the AprilTag detector
that improve its performance. We use the same high-level
detection algorithm as AprilTag 2 [4], but have changed
key parts of the algorithm to increase the overall speed. For
reference, the main steps of the detection process can be seen
in Figure 4.

1) Decimation: The decimation step of the algorithm
reduces the size of the image, increasing the speed of the
later steps. Choosing the decimation factor allows a trade
off between recall and speed.

AprilTag 2 used a box filter for decimation. The value of
each output pixel was computed by averaging the values of
multiple input pixels in a “box” around the output pixel. We

1: function UNIONFIND IMAGE LINE(image, y)
2: for x = 1 to width(image) do
3: if image(x, y) = image(x− 1, y) then
4: union((x, y), (x− 1, y))
5: end if
6: if x = 1 or image(x−1, y) 6= image(x−1, y−1)

or image(x− 1, y − 1) 6= image(x, y − 1) then
7: if image(x, y) = image(x, y − 1) then
8: union((x, y), (x, y - 1))
9: end if

10: end if
11: end for
12: end function

Fig. 5. The union-find algorithm which is run for each line of the image
to find connected components. This is a standard union-find algorithm with
the addition of the if statement on line 6. This additional if statement serves
to reduce the number of calls to “union”.

instead use point sampling. The value of the output pixel is
set to the value of a single pixel from the input image.

A box filter more closely approximates the low-pass filter
typically used before decimation in other image processing
applications while point sampling is better at preserving
edges but is prone to creating aliasing artifacts. We experi-
mentally determined that point sampling performs better for
tag detection. This makes sense since the first stage of the
tag detection pipeline relies on detecting edges in the input
image.

2) Union-Find: The speed of finding connected compo-
nents has been improved by reducing the number of calls to
the union-find data structure. By tracking the values of the
input image we can avoid redundant calls between inputs
that have already been unioned, see Figure 5.

In addition we do early rejection of connected components
that are so small that we know they could not produce a
decodable tag.

3) Fitting Quadrilaterals: The algorithm fits quadrilater-
als to the detected contours in the image. First points in a
contour are sorted by their angle relative to the center of the
contour’s bounding box. Then four lines are fit to the set
of points in the contour. A few changes have been made to
speed up this process.

Computing the angle of all the points in each contour
with respect to the bounding box center was time-consuming
because of an expensive call to atan2. Instead of computing
the sort key by computing the angle, the new detector
computes the sort key as a combination of the quadrant the
point falls into and the slope of the point within that quadrant.

key =


217 − x/y for x < 0 & y > 0
216 + y/x for x > 0 & y > 0
−x/y for x > 0 & y < 0
−216 + y/x for x < 0 & y < 0

(2)

The value of 216 is used since this is larger than any
possible value of y/x given the size of typical images. This
gives a sort key that results in the same sorting order as the
actual angle.



The next part of the algorithm fits lines to the contour.
This requires computing the error of many different candidate
least-squares line fits. The previous detector computed the
normal to the line in order to compute the standard deviation
of the fit error. We instead calculate the line fit error as the
least eigenvalue of the covariance matrix of the points we are
fitting a line to. This removes a call to sin/cos and adds
only a call to sqrt while computing the same quantity.

4) Tag Decoding: The first step is to do perspective
correction. This requires finding a transformation between
the desired pose and the actual pose of the tag. In other
words we want to solve for the 3x3 matrix H such that:wix

1
i

wiy
1
i

wi

 = H

x0
i

y0i
1

 (3)

where the subscript i runs from 1 to 4 for the points at each
corner of the tag. Previously the algorithm used SVD to solve
this 9x9 Ax = 0 equation. If we fix the scale of the matrix
H by adding the restriction that H33 = 1 then we can write
this problem in the form of an 8x8 Ax = b equation and
solve using Gaussian elimination.

The restriction H33 = 1 fixes the scale of the matrix, but
it also restricts us to fitting homographies where H33 6= 0.
We can justify this restriction by considering how the ho-
mography transforms the center of the tag in the case where
H33 = 0. In this case we have:wix

wiy
wi

 =

H13

H23

0

 = H

0
0
1

 (4)

In other words, a homography with H33 = 0 will map the
center of the tag to a point at infinity on the image plane,
which is a case that does not concern us since such a tag
would not be detected in the first place.

D. Detecting Small Tags

Instead of sampling the pixel value at the center of each
tag using the nearest neighbor pixel, AprilTag 3 uses bilinear
interpolation to extract the pixel value at the center of each
tag cell.

The the pixel values are read out into a 2D array and
sharpened. This has the effect of making it more likely for a
lighter pixel with darker neighbors to be read out as a white
pixel. The sharpening should help to counteract the blurring
that occurs in very small images of tags. For example, if
the tag is from the 36h11 family, the value at the center of
each cell is read out into a 6x6 array. This 2D array is then
sharpened with a 3x3 Laplacian kernel, and then decoding
is attempted on these modified values. In other words, the
original array is convolved with the following kernel before
decoding:

K = I + 0.25

 0 −1 0
−1 4 −1
0 −1 0

 (5)

E. Experiment Setup

We evaluate the choice of complexity metric by measuring
the false positive rate using the LabelMe [18] dataset. This
dataset consists of natural images containing no Apriltags so
any detection on this dataset is a false positive. LabelMe has
207920 images from which 6090028 candidate quads were
extracted by the detector for the 41h12 family and 6128551
for the 21h7 family.

The different complexity metrics result in slightly different
numbers of tags so we used the first 1500 tags for each
of the 41h12 families and the first 35 tags for each of the
21h7 families to make these experimental results directly
comparable within each group of tag families.

We evaluate the speed of the detectors on a dataset we
have produced, consisting of 160 images of tags from the
maki 36h11 family and 160 images of tags from the uramaki
family. The images have a resolution of 1296x964 and were
taken with a Point Grey Chameleon camera. Ten different
tags from each family were photographed at distances from
20cm to 160cm from the camera in increments of 20cm. At
each distance there is one image of the tag face-on to the
camera and another image with the tag rotated 45 degrees
away from the camera. Each tag was printed at a size of 4
cm measured across the outer limits of the tag.

We compare the performance of the ArUco detector using
the DM FAST mode, the old AprilTag 2 detector, and
the new AprilTag 3 detector on the maki 36h11 images
and the new AprilTag 3 detector on the uramaki 41h12
images. We vary the decimation parameter of the AprilTag 2
detector between 1 and 17, the decimation parameter of the
AprilTag 3 detector between 1 and 24, and minMarkerSize
parameter of the ArUco detector between 0 and 0.11 in steps
of 0.01. These parameter choices were chosen to go from
the minimum value up to the value where each detector fails
to detect any tags at all. The speed of each detector was
measured on an Intel R© CoreTM i7-7600U CPU running at
2.80GHz.

IV. RESULTS AND DISCUSSION

A. Flexible Layout

We used the new flexible layout system (along with the
new complexity metric, see subsection IV-B) to generate
several new tag families. The first is the new uramaki
AprilTag (see Figure 2b) with a hamming distance of 12.
This tag family is 9x9 cells in size and has 2115 tags in
total which compares favorably to the old maki 36h11 family
(see Figure 2a) which is 10x10 cells in size and has only
587 tags. Putting data bits outside of the border of the tag
allowed us to increase the proportion of the tag that consists
of data instead of border. To emphasize, the new 9x9 uramaki
tag layout has a greater hamming distance and encodes a
larger number of tags than the conventional 10x10 maki tag,
even though it has fewer overall cells. If printed at the same
physical size, the 9x9 tag would have a larger bit pitch, which
improves its detection range. In short, this improvement in
tag performance is the main contribution of this paper.



Bit Errors Corrected
Complexity Metric 0 1 2 3

Rectangle Complexity 0 1 8 99
Connected Components 0 0 11 105

Ising Energy 0 0 4 44
Expected (Random bits) 0.0 0.2 3.4 44.3

TABLE I
False positives as a function of bit errors corrected on the LabelMe [18]
dataset for the 9x9 uramaki 41h12 tag layout using different complexity

metrics to generate tag families. The last row of the table shows the
number of false positives that would be expected if bits were randomly

distributed.

Bit Errors Corrected
Complexity Metric 0 1 2 3

Rectangle Complexity 152 3273 40462 303028
Connected Components 131 3600 45052 320174

Ising Energy 85 1867 22266 165862
Expected (Random bits) 102.3 2147.9 21479.1 136034.0

TABLE II
False positives as a function of bit errors corrected on the LabelMe [18]

dataset for the circular 21h7 tag layout using different complexity metrics
to generate tag families. The last row of the table shows the number of
false positives that would be expected if bits were randomly distributed.

We generated a 10x10 tag family with the uramaki layout
which has 52 data bits, a hamming distance of 13, and
48714 unique tags. These new tag families with many more
possible tags could enable new applications such as tracking
deformable objects or larger-scale deployments of robots.

We also made two circular tag families (see Figure 2d and
Figure 2e). The smaller circular tag family has 38 unique tags
and the larger one has 65698 unique tags. For applications
in which tags were mounted on circle-shaped objects [1],
[2], being able to make better use of the available space can
result in a significant improvement in minimum hamming
distance or number of distinct tags.

Finally, we generated a recursive tag family which has one
layer of data bits on the outside, and has a 2x2 hole in the
middle where there are no data bits. We printed out three tags
from this family at different sizes such that each tag could be
placed in the middle of another tag. We used this 90.2x90.2
cm doubly nested tag to localize a quadrotor flying above its
landing area as seen in Figure 1. This tag allows detection
over a long range of distances, from 0.08− 16.15± 0.03m,
even using a low resolution 640x480 image from the onboard
Raspberry Pi Camera Module V2.

B. Complexity Metric

The false positive rates of the tag families generated using
the three different complexity metrics were compared on the
LabelMe [18] dataset (see subsection III-E). We can see from
Table I and Table II that the best performing complexity
metric for both the 41h12 and 21h7 families is the Ising
energy. For the 21h7 family the Ising energy metric reduces
the false positive rate even below the rate expected for a
uniform random distribution of bits. Thus in AprilTag3 we
use the Ising model exclusively.

Fig. 6. Example images from the dataset. a) Tag at 20cm, face-on. b) Tag
at 20cm, rotated 45 degrees. c) Tag at 160cm, face-on.

C. Detector Speed

Both the AprilTag and ArUco detectors have parameters
which allow a trade-off between speed and recall. For the
AprilTag detector this is the decimation factor and for
the ArUco detector it is minMarkerSize. Because of these
parameters, it is easy to draw incorrect conclusions about the
relative performance of two fiducial systems since they may
be tuned differently. We do a parameter sweep of the relevant
parameter for both detectors on a dataset containing a variety
of different size tags. The results of this comparison are
shown in Figure 7. We can see that the AprilTag 3 detector
is faster and has higher recall than both the AprilTag 2 and
ArUco detectors.

We believe that it is important to compare the speed and
recall of different detectors by showing a parameter sweep
for each detector, on a dataset that includes tags of all differ-
ent sizes. The main tradeoff in a fiducial detector is between
recall, particularly of small tags, and speed. Comparing the
detectors in this manner allows a fair comparison between
systems which may have different default parameter settings.

We can also compare the performance of the new detector
when using the uramaki 41h12 tag family against the new
detector using the maki 36h11 tag family. When tuned for
maximum recall, the new detector has roughly equivalent
performance using either family. However, when tuned for
greater speed (high decimation factor), the recall of the
41h12 tag family is less than that of the 36h11 tag family.
This may be an artifact of the fact that all the tags in our
dataset are photographed on a white background, which gives
the 36h11 tag an effectively larger outer border.



0 200 400 600 800 1000 1200

Frames Per Second

0

0.2

0.4

0.6

0.8

1
R

e
c
a

ll
AprilTag 3 - 36h11

AprilTag 3 - 41h12

AprilTag 2 - 36h11

ArUco 3 - 36h11

Fig. 7. Speed vs recall for the three different detectors on the 36h11
tag family as well as the combination of the new detector with the
new 41h12 tag family. We do a parameter sweep for each detector to
allow a sensible comparison between detectors which have different default
parameter settings.

0 50 100 150

Distance (cm)

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

AprilTag 3 - 36h11

AprilTag 3 - 41h12

AprilTag 2 - 36h11

ArUco 3 - 36h11

Fig. 8. Recall vs tag distance for the same cases as in Figure 7. Here
we have chosen the parameter value for each detector that allows maximum
recall in order to see each detector’s maximum detection rate as a function of
tag distance. We can see that the AprilTag 3 detector is capable of detecting
tags at a greater distance than the other detectors.

D. Detecting small tags

Using the same dataset as above we can look more
closely at what causes the detectors to fail to detect tags. In
Figure 8 we can see each detector’s recall (with parameters
set for maximum recall) plotted against the tag distance. The
difference in recall between the detectors is mostly due to
differences in the distance at which the detector begins failing
to detect tags. It can be seen that the AprilTag 3 detector
performs better than both the AprilTag 2 and ArUco detectors
at detecting small tags.

V. CONCLUSION

This paper proposes a fiducial system capable of generat-
ing and detecting fiducial tags in a wide variety of layouts.
We introduce useful layouts including a higher data density
square tag, circular tags, and recursive tags. We show an
example of a recursive tag used for quadrotor localization
above a landing site.

Our improvements to AprilTag, including both the new
tag families and the performance improvements described

in subsection III-C, have been incorporated into the open-
source AprilTag distribution, maintained by the APRIL lab
at the University of Michigan (https://april.eecs.umich.edu).

REFERENCES

[1] C. Blut, A. Crespi, D. Mersch, L. Keller, L. Zhao, M. Kollmann,
B. Schellscheidt, C. Fülber, and M. Beye, “Automated computer-based
detection of encounter behaviours in groups of honeybees,” Scientific
Reports, December 2017.

[2] M. P. Nemitz, M. E. Sayed, J. Mamish, G. Ferrer, L. Teng,
R. M. McKenzie, A. O. Hero, E. Olson, and A. A. Stokes,
“Hoverbots: Precise locomotion using robots that are designed for
manufacturability,” Frontiers in Robotics and AI, vol. 4, p. 55, 2017.
[Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.
2017.00055

[3] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
2011 IEEE International Conference on Robotics and Automation,
May 2011, pp. 3400–3407.

[4] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 4193–4198.

[5] C. Nissler, S. Buttner, Z. C. Marton, L. Beckmann, and U. Thomasy,
“Evaluation and improvement of global pose estimation with multiple
AprilTags for industrial manipulators,” in IEEE International Confer-
ence on Emerging Technologies and Factory Automation, ETFA, 2016.

[6] D. Tang, T. Hu, L. Shen, Z. Ma, and C. Pan, “AprilTag array-aided ex-
trinsic calibration of camera–laser multi-sensor system Background,”
Robot. Biomim, vol. 3, 2016.

[7] J. Wang, C. Sadler, C. F. Montoya, and J. C. L. Liu, “Optimizing
ground vehicle tracking using unmanned aerial vehicle and embedded
apriltag design,” in 2016 International Conference on Computational
Science and Computational Intelligence (CSCI), Dec 2016, pp. 739–
744.

[8] C. Feng, Y. Xiao, A. Willette, W. Mcgee, and V. R. Kamat, “Towards
Autonomous Robotic In-Situ Assembly on Unstructured Construction
Sites Using Monocular Vision,” in Proceedings of the 31st ISARC,
2014, pp. 163–170.

[9] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system,” in Proceedings
2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99), Oct 1999, pp. 85–94.

[10] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, June 2005, pp. 590–596 vol.
2.

[11] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
M. Marı́n-Jiménez, “Automatic generation and detection of highly re-
liable fiducial markers under occlusion,” Pattern Recognition, vol. 47,
no. 6, pp. 2280 – 2292, 2014.

[12] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, vol. 76, pp. 38–47, aug 2018.

[13] J. DeGol, T. Bretl, and D. Hoiem, “Chromatag: a colored marker and
fast detection algorithm,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1472–1481.

[14] B. Atcheson, F. Heide, and W. Heidrich, “CALTag: High precision
fiducial markers for camera calibration,” in 15th International Work-
shop on Vision, Modeling and Visualization, Siegen, Germany, Nov.
2010.

[15] F. Bergamasco, A. Albarelli, E. Rodolà, and A. Torsello, “Rune-tag:
A high accuracy fiducial marker with strong occlusion resilience,” in
CVPR 2011, June 2011, pp. 113–120.

[16] J. Sattar, E. Bourque, P. Giguere, and G. Dudek, “Fourier tags:
Smoothly degradable fiducial markers for use in human-robot interac-
tion,” in Fourth Canadian Conference on Computer and Robot Vision
(CRV ’07), May 2007, pp. 165–174.

[17] R. Bencina, M. Kaltenbrunner, and S. Jorda, “Improved topological
fiducial tracking in the reactivision system,” in 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05) - Workshops, Sept 2005, pp. 99–99.

[18] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: A database and web-based tool for image annotation,”
International Journal of Computer Vision, vol. 77, no. 1, pp. 157–
173, May 2008.

https://www.frontiersin.org/article/10.3389/frobt.2017.00055
https://www.frontiersin.org/article/10.3389/frobt.2017.00055

	Introduction
	Related Work
	Methods
	Flexible Layout
	Complexity Metric
	Detector Speed-up
	Decimation
	Union-Find
	Fitting Quadrilaterals
	Tag Decoding

	Detecting Small Tags
	Experiment Setup

	Results and Discussion
	Flexible Layout
	Complexity Metric
	Detector Speed
	Detecting small tags

	Conclusion
	References

