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Abstract—Object pose tracking from a camera is a well-
developed method in computer vision. In theory, the pose can
be determined uniquely from a calibrated camera. However, in
practice, most real-time pose estimation algorithms experience
pose ambiguity. We consider that pose ambiguity, i.e., the detec-
tion of two distinct local minima according to an error function, is
caused by a geometric illusion. In this case, both ambiguous poses
are plausible, but we cannot select the pose with the minimum
error as the final pose. Thus, we developed a real-time algorithm
for correct pose estimation for a planar target object using an
analytical motion model. Our experimental results showed that
the proposed algorithm effectively reduced the effects of pose
jumping and pose jittering. To the best of our knowledge, this is
the first approach to address the pose ambiguity problem using
an analytical motion model in real-time applications.

I. INTRODUCTION

The objective of pose estimation is to calculate the position
and orientation of a target object from a calibrated camera.
Augmented reality (AR) [1], where synthetic objects are
inserted into a real scene in real-time, is a prime candidate
system for pose estimation. After obtaining the pose computed
using geometric information, the system can render computer-
generated images (CGI) according to the pose on the display.
For example, ARToolkit [2] is a system that is used widely with
AR applications. The target object in AR systems is usually the
planar fiducial marker, which is used frequently for navigation
and localization.

The information available for solving the pose estimation
problem is usually a set of point correspondences, which
comprise a 3D reference point expressed in object coordinates
and its 2D projection expressed in image coordinates [3], [4].
Using the object-space collinearity error, Lu et al. [4] derived
an iterative algorithm that computed the orthogonal rotation
matrices directly. Instead of using the iterative algorithm,
Ansar et al. [5] developed a framework that generated a set
of linear solutions to the pose estimation problem, and the
algorithm was applicable to points and lines. These online pose
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Fig. 1. Illustration of pose ambiguity, which is a geometric illusion. There
appears to be more than one 3D geometrical explanation based on the same
perspective-projected marker on the image plane.

Fig. 2. Pose estimation results. The images in the first column are the original
images. The images in the second column are CGIs, where the poses were
estimated using state-of-the-art algorithms. The images in the third column
were obtained using our algorithm.

estimation methods determined a unique pose in each frame
without considering the pose ambiguity problem.

Pose ambiguity is the main cause of pose jumping, as
shown in Fig. 1. According to our experience, several state-
of-the-art pose algorithms suffer from pose jumping. These
pose ambiguity problems have been discussed in previous stud-
ies [6], [7], [8]. Oberkampf et al. [6] provided a straightforward
interpretation for orthographic projection. They developed an
algorithm for planar targets, which used scaled orthographic
projection during each iteration step. Schweighofer et al. [7]



extended this method to address the general case of perspective
projection and developed an algorithm that obtained a unique
solution for pose estimation. However, the problem of pose
jumping still persists occasionally with these algorithms, as
shown in Fig. 2. In addition, the problem of pose jittering
also bothers users due to the noisy images. Wu et al. [8]
attempted to determine the correct pose with an empirical
motion model, but it would lose the accuracy of estimated
pose without analyzing the motion model based on the ground
truth.

Thus, to reduce the effects of pose jumping effectively,
we developed an algorithm that uses an analytical motion
model to obtain the pose of the target object. The motion
model is updated using a Kalman filter [9], which provides an
efficient computational method for estimating the true poses
by computing the weighted average of the measured pose
and the predicted pose from the motion model. Based on our
observations, one of the two ambiguous poses with distinct
local minima according to an error function is the correct
pose. Therefore, after obtaining the two ambiguous poses in
each iteration, the pose that is most similar to the predicted
pose is selected. If the predicted pose is realistic, it is almost
guaranteed that the pose selected is the correct one.

The main contributions of this study are as follows.

1) We can address the problem of pose jumping, because
we can select the correct pose from two ambiguous
poses using the analytical motion model.

2) The effects of pose jittering are reduced by the
Kalman filter. We can estimate the pose that tends to
be closer to the true pose than the measured pose. The
sequences of estimated poses are also much smoother
because the poses are much more consistent with the
previous ones.

3) This is the first work to attempt pose estimation
combined with an analytical motion model. If the
target object is not detected in some frames for long
sequences, we can simply use the pose predicted
by the motion model as the final pose to prevent
discontinuities in the sequence of poses.

The remainder of this article is organized as follows. First,
we describe the formulation of the pose estimation problem in
detail in Section II. We explain pose ambiguity and describe a
method to obtain the two poses with local minima according
to an error function in Section III. In Section IV, we describe
the details of our stable pose estimation algorithm. In Section
V, we present the results using our proposed pose estimation
algorithm and compare its performance with other competitive
pose estimation algorithms. Our conclusions are given in
Section VI.

II. PROBLEM FORMULATION

The main problem of camera pose estimation is determin-
ing the six degrees of freedom, which are parameterized based
on the orientation and position of the target object with respect
to a calibrated camera (with known internal parameters), as
shown in Fig. 3. Given a set of noncollinear 3D coordinates
of reference points pi = (xi, yi, zi)

t, i = 1, ..., n, n ≥ 3 ex-
pressed as object-space coordinates and a set of camera-space

X’

Y’

Z’

Z
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coordinate 
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pi: (x, y, z)
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R,t
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Fig. 3. Coordinate systems between a camera and target objects for addressing
the pose estimation problem.

coordinates qi = (x′i, y
′
i, z
′
i)

t, the transformation between them
can be formulated as

qi = Rpi + t, (1)

where

R =

rt1
rt2
rt3

 ∈ SO(3) and t =

(
tx
ty
tz

)
∈ R(3) (2)

are the rotation matrix and translation vector, respectively.

We use the normalized image plane located at z′ = 1 as
the camera reference frame. In this normalized image plane,
we define the image point vi = (ui, vi, 1)t as the projection
of pi on it. In the idealized pinhole camera model, vi, qi,
and the center of projection are collinear. We can express this
relationship using the following equation:

ui =
rt1pi + tx
rt3pi + tz

, vi =
rt2pi + ty
rt3pi + tz

. (3)

or
vi =

1

rt3pi + tz
(Rpi + t), (4)

which is known as the collinearity equation in photogramme-
try. Given the observed image points v̂i = (ûi, v̂i, 1)t, the pose
estimation algorithm needs to determine values for R and t
that minimize an appropriate error function. In principle, there
are two possible error functions. The first is the image-space
error, which was used by [3] and [6],

Eis(R, t) =

n∑
i=1

[
(ûi − rt1pi+tx

rt3pi+tz
)2 + (v̂i − rt2pi+ty

rt3pi+tz
)2
]

(5)

whereas the second is the object − space error, which was
used by [4] and [7]:

Eos(R, t) =

n∑
i=1

∥∥(I − V̂i)(Rpi + t)
∥∥2

(6)

where

V̂i =
v̂iv̂

t
i

v̂t
iv̂i

(7)



is the line-of-sight projection matrix, which is applied to a
scene point and projects the point orthogonally onto the line
of sight defined by the image point v̂i. In our study, we use
the object-space error as the error function.

III. POSE AMBIGUITY INTERPRETATION

Pose ambiguity describes situations where the error func-
tion has several local minima for a given configuration. Pose
ambiguity is caused by the low accuracy of reference point
extraction, which is almost inevitable in general cases. Fig. 1
shows the illustration of pose ambiguity.

Most recent pose estimation algorithms that operate in
real time experience pose ambiguity, as shown in Fig. 2.
Schweighofer et al. [7] found that when coplanar points
pi = (pix , piy , 0) are viewed by a perspective camera, the
algorithm typically derives two distinct minima, according to
Eis and Eos. We derive the two poses with the minima of Eos

using the method proposed in [7].

IV. STABLE POSE ESTIMATION ALGORITHM

After obtaining the poses with the local minima, some
previous methods have determined the final pose using the
lowest error Eos [7]. Unfortunately, these methods still ex-
perienced pose ambiguity even when selecting the optimal
solution of Eos. Indeed, the correct pose P̂ need not be
the pose with the lowest error. Based on our experimental
evidence, we determined that the second pose is the correct
one when pose jumping occurs. The results shown in Fig. 4
agree with our assumption: the two poses with local minima
sometimes interchange and one of them is correct. Based on
these observations, we develop our Stable Pose Estimation
Algorithm. During each time step, the system generates a
predicted pose P̃ based on a motion model. This motion model
simulates the orientation of the pose in real conditions and
is updated by the Kalman filter in each time step. Of two
candidates, the pose that is more similar to P̃ is selected as
the correct pose P̂ . The final pose is the weighted average of
the predicted pose P̃ and measured pose P̂ .

A. Motion Model

Assuming that the motion model of the pose rotation about
three axes (X, Y, and Z) is identical, we address only the case
where rotation occurs about the X-axis in the remainder of this
paper. The cases with rotation about the Y-axis and Z-axis are
the same.

To estimate the next rotation angle using a motion model,
the motion model needs to maintain the current angle and
angular velocity. The angle and angular velocity are described
by the linear state space xk = [x ẋ]t, where ẋ is the angular
velocity. We assume that between the (k− 1) and k time step
the system undergoes a constant angular acceleration of ak,
which is normally distributed with the mean 0 and standard
deviation σa for ∆t seconds. Based on Newton’s laws of
motion we conclude that

xk = Fxk−1 + Gak, (8)

where
F =

[
1 ∆t
0 1

]
and G =

[
∆t2

2
∆t

]
. (9)
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Fig. 4. Object-space errors Eos in a video sequence with a planar target.
The pose with the lower error Eos (the darker plot) is the final pose in each
frame. The rotation angle about the X-axis, Y-axis, and Z-axis of the poses
with the minimum error Eos changes dramatically during some frames.

We rewrite (8) in another form

xk = Fxk−1 + wk, (10)

where

wk ∼ N(0,Q) and Q = GGtσ2
a =

[
∆t4

4
∆t3

2
∆t3

2 ∆t2

]
σ2
a. (11)

For each time step, we measure the rotation angle about the
X-axis. Let us assume that the measurement noise vk is also
normally distributed with the mean 0 and standard deviation
σz:

mk = Hxk + vk, (12)

where

H = [1 0] and vk ∼ N(0,R), R = E[vkv
t
k] = σ2

z . (13)

B. Parameter Analysis

We need the ground truth of the rotation angles about the
X-, Y-, and Z-axis to measure the standard deviation of the
analytical motion model. We use the program Blender [10] to
calculate the rotation matrix of the moving camera relative to
the tracking marker to obtain reliable data, which are referred
to as the ground truth. To facilitate more precise camera
tracking, we place the checkerboard pattern around the tracking
marker, as shown in Fig. 5. To avoid the effect of pose jumping,
the measured pose should be the correct one from the two
ambiguous poses. We consider that the measured poses will
have a higher error variance when the area of the tracking
marker is smaller in a frame. Fig. 6 shows the differences in
the rotation angles about the X-, Y-, and Z-axis relative to the
area of the tracking marker, and it verifies our assumption.



(a)

(b) (c)

Fig. 5. We obtained the ground truth for the camera pose using Blender [10].
(a) The yellow crosses on the plane are the feature points of the tracking
marker and the chessboard pattern. (b) Feature points on the marker and the
chessboard pattern. The blue line and the red line denote the tracking path of
the features. Blender uses these tracking paths to solve the extrinsic parameters
of the camera. (c) The chessboard-based marker.
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Fig. 6. The differences in rotation angles about the X-axis, Y-axis, and Z-
axis of the ground truth poses and the poses generated using our proposed
algorithm without the motion model relative to the area of the marker.

Fig. 7 shows the relationship between the standard de-
viation of the rotation angles about the X-, Y-, and Z-axis
relative to the area of the marker. We consider that the standard
deviation of the rotation parameter has an inverse power law
(IPL) relationship to the area of the marker, and the existence
of the regression lines in Fig. 7 verifies our assumption to
some extent. We do not know how the camera moves in every
condition so it is impossible to analyze the standard deviation
σa of the angular acceleration of ak. Thus, we simply use
σa = 20.

C. Prediction and Updating Using the Kalman Filter

The operation of the two phases of the Kalman filter,
“Predict” and “Update,” are shown in Fig. 8. Due to pose
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about the X-, Y-, and Z-axis relative to the area of the marker.

 𝐱𝑘 = 𝐅𝐱𝑘−1
 𝐏𝑘 = 𝐅𝐏𝑘−1𝐅

𝑡 + 𝐐

𝐲𝑘 = 𝐦𝑘 − 𝐇 𝐱𝑘

𝐒𝑘 = 𝐇 𝐏𝑘𝐇
𝑡 + 𝐑

𝐊𝑘 =  𝐏𝑘𝐇
𝑡𝐒𝑘

−1

𝐱𝑘 =  𝐱𝑘 + 𝐊𝑘𝐲𝑘
𝐏𝑘 = (𝐼 − 𝐊𝑘𝐇) 𝐏𝑘

Predict Update

Fig. 8. Detailed operation of the two phases of the Kalman filter, “Predict”
and “Update.”

ambiguity, two pose measurements, m̂k1 and m̂k2, are ob-
tained in reality at each time step. Assuming that the a priori
state estimate x̂k is authentic, the measurement that is most
consistent with x̂k is regarded as the only measurement mk.
After the Kalman filter operations, a new a posteriori state
estimate xk is obtained, which can be used during the next
recursion.

D. Initial Conditions

To guarantee that the state estimate is reliable during each
time step, we need to ensure that the state estimate is correct
at the beginning. It is assumed that the difference between the
first and second minimum object-space errors Eos is usually
smaller when pose jumping occurs. This can be verified based
on Fig. 4 to some extent. To obtain the error difference
threshold value, we recorded the error differences in poses
using numerous marker-based video sequences, as shown in
Fig. 9. The result showed that pose jumping did not occur
when the error difference was larger than 0.015. Thus, we set
the error difference threshold to 0.015.

Based on this characteristic, we select the pose with the
first minimum object-space error Eos as the first measurement
m0 if the error difference between the two poses is greater than
the threshold. If we cannot find a suitable pose during the first
ten frames, we determine the first measurement m0 based on
a vote. The first measured poses are much more reliable after
this operation. After obtaining the first reliable measured pose,
the state estimate xk at each time step is similar to the previous
one (this is a distinguishing feature of the Kalman filter) and
all of them are reliable to some degree. In our experiments,
this was the crucial factor for avoiding pose jumping.

After determining the first measurement m0, the state esti-
mate and estimate covariance matrix, x0 and P0, respectively,
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Fig. 10. System flow of the stable pose estimation algorithm.

were initialized as follows:

x0 =

[
m0

0

]
and P0 =

[
L 0
0 L

]
, (14)

where L is a value determined by the variance of the initial
state. A higher L means that the initial state estimate is
very unreliable and the true value tends to be closer to the
measurement values. In this case, the state estimate is set to the
same value as the measurement. In this study, we set L = 10
as our initial condition.

Fig. 10 shows the process flow of our proposed stable pose
estimation algorithm. Finally, we use the first element of xk

as the output value of the pose estimation.

V. EXPERIMENTAL RESULTS

In this section, we discuss the effects of different parameter
settings and present the pose estimation results. Various video
sequences of markers with random rotation angles from the
camera were used as the test data. According to the marker
pattern in the database described by [11], we determined the
set of point correspondences between the object space and
image plane as pi and v̂i in Section II. Next, we calculated
the pose of the planar marker from the camera using the set of
point correspondences with the proposed algorithm and other
state-of-the-art algorithms.

The process was performed using a PC with an Intel
Core i7-2600K (3.40 GHz) processor and 16 GB of memory.
In our current implementation in C++, the proposed system
could process a 640*480 pixel image (without rendering 3D
computer-generated images) in approximately 0.79 ms. The
camera (webcam) used by our system was a Microsoft Life-
Cam Cinema and we obtained the intrinsic camera parameters
using the OpenCV library.
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Mean of absolute 
difference

Wu et al. [8]
Proposed 
algorithm

Rotation θ about X-axis 0.497 0.365

Rotation θ about Y-axis 0.269 0.181

Rotation θ about Z-axis 0.322 0.192

TABLE I. MEAN ABSOLUTE DIFFERENCES BETWEEN THE GROUND
TRUTH AND ANOTHER POSE ESTIMATION METHOD FOR THE ROTATION

ANGLES ABOUT THE X-, Y-, AND Z-AXIS.

A. Parameter Settings

We recorded various video sequences using a chessboard-
based marker at random distances from the camera and we
calculated the camera poses in these video sequences using
different parameter settings. Figure 11 shows the differences
in the rotation angles about the X-, Y-, and Z-axis between
the ground truth poses and other methods relative to the area.
The differences between the ground truth poses and those with
the proposed algorithm appeared to be smaller with the correct
parameter settings. An overall comparison is shown in Table
I. It shows that our proposed algorithm outperformed [8]
because it included the analytical motion model.

B. Pose Estimation Results Comparison

We compared the results using different pose estimation
algorithms by recorded various video sequences of a marker
placed at random rotation angles from the camera. Fig. 12
compares the proposed pose estimation results with the results
obtained using state-of-the-art algorithms. In each condition
and at every time step, our algorithm provided a high stability
solution for real-time pose estimation. The first row in Fig. 12
shows the original images with a fiducial marker. The second
and third rows show the pose estimation results with CGIs
based on Kato et al. [2], where the latter was implemented
using history functions. The fourth row shows the pose esti-
mation results based on Schweighofer et al. [7]. The final row



Fig. 12. Pose estimation results comparison. The first row shows the original
images with a marker. The second to fourth rows show the results obtained
using other algorithms, while the fifth row shows the results obtained using
our proposed algorithm.
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Fig. 13. Comparison of the rotation angles about the X-axis, Y-axis, and
Z-axis for various poses.

shows the results obtained using our proposed algorithm. Even
at a low resolution and with noisy images, our method obtained
pose sequences without pose jumping, which were markedly
better than the pose estimation results obtained using other
algorithms.

Fig. 13 shows the rotation angle of the marker relative
to the camera. When the pose jumped during the video
sequences, the rotation angle varied dramatically. The most
obvious examples are shown in the first and second charts
in Fig. 13. Our proposed algorithm avoided pose jumping

in most cases. Furthermore, much more stable poses were
generated using the analytical motion model. Pose jittering
implies that the difference in the values are unsettled during
video sequences and that they fluctuate around 0. Fig. 13 shows
that the pose sequences obtained using our algorithm were
much more stable and there was a smaller difference between
frames. We also applied temporal filters to the other methods
to reduce the effects of pose jittering but the final pose was
still affected badly by ambiguous poses nearby.

VI. CONCLUSION

In this study, we proposed a stable pose estimation algorith-
m based on an analytical motion model, which is suitable for
real-time applications. Our proposed motion modeling method
can be used with our proposed algorithm and other pose
estimation algorithms. This method reduces the effects of pose
jittering dramatically. The correct pose can be selected from
two candidate ambiguous poses using the motion model, so
the problem of pose jumping is overcome effectively.

To the best of our knowledge, this is the first study to
combine a pose estimation algorithm with an analytical motion
model. Several pose estimation applications are processed
during video formatting, so we cannot estimate the pose
simply by considering the information from one frame. The
implementation of the Kalman filter in the analytical motion
model means that the pose derived during each time step
is more consistent with the previous pose. The users of
these applications will feel more comfortable with the much
smoother pose sequences obtained with our method.
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