# Competition Robotics FIRST 

WPILib




729
765
767
859
955
975
1029 1093 1111

1127
1255 1261

1267
1269 1325

1327 1381

1415
1459
1461
1481
1483

OutlineViewer 22
ㄴำ
१००ПП ППППП ППППП 21Odometry and Kinematics 25
NetworkTables 26
Planning Path 27
roboRIO 28
GradleRIO Advanced 29
 ..... 30
Features Convenience ..... 31Projects Example WPILib 32
Projects Example Party Third 33


 ..... 36
Romi [ [
 ..... 38
Utilities Networking 39
 ..... 40
allwpilib १П १०००口 ..... 41


 . $\operatorname{ch}$ (

Teams Returning
and 2023 to 2022 from changes of overview the out check please team, returning a are you If issues. known the

Changelog Issues Known

Teams New
! $\operatorname{ch}$ (
Robotto-Zero- to Go


Overview Software . $\operatorname{cx}$.

Overview Software to Go


Programming Advanced . $\operatorname{ch}$ ( articles View Hardware . $\operatorname{sc}$. articles View Robot Romi WPILIb.-
articles View
Documentation API

Java
C++
Tools Software
 articles View

Projects Example

articles View
Reference Quick Light Status
FRC.
article View
libraries Party 3rd
 article View


חדשים בתכנות? 1.1

ำ เ


ำ . ำ

Java 1.1.1

Academy Code •

$\mathbf{C + +} 1.1 .2$

LearnCPP


$0321776402)$. : $\mathrm{B} \boldsymbol{\mathrm { Cl }} \mathrm{C})$ Edition 6 th Plus Primer $\mathrm{C}++$ 。

LabVIEW 1.1.3
LabVIEW Learn NI •
1.2 2 מאפס לרובוט

ำ
 เ ำ ㄴ
.


## Wiring Robot FRC to Introduction 2.1

allow to or kitbot the for board electronics basic a of wiring the details document This : : पारा testing. drivetrain basic
SPARK using System Control Robot a for setup the reflect section this in shown images Some other for similar be should layout and diagram Wiring Controllers. Motor MAX SPARK or connections show to provided are images of sets two appropriate, Where controllers. motor wires. integrated without and with controllers using

Overview 2.1.1
(PCM) Module Control Pneumatics / (PH) Hub Pneumatics (VRM) Module Regulator Voltage / (RPM) Module Power Radio cable) Ethernet and cable power (with radio OpenMesh
(RSL) Light Signal Robot


## Spark MAX

## DISCRETE MOTOR CONTROLLERS

(CAN/PWM Controlled)

More Information about the FRC Control System can be found at https://docs.wpilib.org/

## 120A Breaker

120 AMPERE

controllers motor other or MAX SPARK 4 x
cablesy- PWM 2 x
breaker Circuit 120A
breaker Circuit 40A 4x
wire Red ) $\mathrm{mm}^{2}$ (16 AWG 6
wire Red/Black ) $m m^{2}$ (6 AWG 10
wire Red/Black ) $\mathrm{mm}^{2}$ (1 AWG 18
cable CAN twisted Yellow/Green ) $\mathrm{mm}^{2}$ (0.5 AWG 22
ring (16x terminals disconnect quick (Yellow) $) m m^{2} 6-$ (4 AWG 1210- of Pairs 8 x controllers) wire integrated using if terminals connectors battery SB50 Anderson 2x
lugs Terminal ) $\mathrm{mm}^{2}$ (16 AWG 6
Battery 12V
tape Electrical Red/Black fasteners or material Lock Dual
ties Zip
plywood mm) 12(6-1/2" or 1/4"
Required: Tools
screwdriver headflat- small or Tool Wago size) repair (eyeglass screwdriver head flat small Very
crimpers and strippers, cutters, Wire driver nut or wrench end box unavailable) is imperial if work may mm (11 7/16" driver screw head Philips or driver wrench/nut 7/16" Additional unavailable) is metric if work may ( $3 / 166^{\prime}$ key Hex mm 5 only: PDP CTR For key Hex 1/16" only: PDP CTR For

## System Control the for Base the Create

$\qquad$
approximately plastic) or (wood material mm) 12(6-1/2" or $1 / 4^{\prime \prime}$ of piece cut board, test a For supporting the see board control Build Quick Robot a For cm). 40 x ( $6016{ }^{\prime \prime}$ x 24 " configuration. chassis chosen the for board size proper the for documentation

## Components System Control Core the Layout 2.1.4

REV


CTR

above. image the in shown is layout example An board. the on components the out Lay

## Components Fasten 2.1.5

FRC many in that Note board. the to components all fasten hardware, or Lock Dual the Using up stand to unlikely is alone Lock Dual and substantial be may contact robotto-robot- games fasteners bolt and nut use to wish may Teams components. electronic many for fastener a as to devices secure to Lock Dual without or with ties, cable above) image the in shown (as or board. the

## Connector Battery Side Robot Attach

2.1 .6

REV
connectors, Wago the use To PDH. the on connectors Wago the using involve will step next The found are connector Wago of sizes Two lever. the close then wire, the insert lever, the open PDH: the on
( $\sim 3 / 4$ ") mm 20 strip ), $\mathrm{mm}^{2} 25-(.75$ AWG 18-4 Accept connectors: power Main ( $\sim 1 / 2^{\prime \prime}$ ) mm 12 strip ), $\mathrm{mm}^{2}$ 10-(.25 AWG 24-8 Accept connectors: channel current High tinned be not should wires resistance connection minimize and force pullout maximize To connector. Wago the into inserting before twisted) not ideally (and
end Box mm) (11 7/16" lugs, terminal ) $\mathrm{mm}^{2}$ (16 AWG 6 Connector, Battery Requires: wire. black the off .75" Strip connector. battery of wire (red) positive to lug terminal Attach place. into clicks it until PDH the on terminal input power main black the above lever the Lift wire. the secure to down lever the Pull wire. the Insert breaker main the of side "Batt" the on nut the remove wrench, end box mm) (11 7/16" a Using connector battery the of terminal positive the secure and

7/16" Allen, mm 5 Allen, 1/16" lugs, terminal ) $\mathrm{mm}^{2}$ (16 AWG 6 Connector, Battery Requires: end Box mm) (11
connector. battery to lugs terminal Attach
cover. terminal PDP the securing screws two the remove wrench, Allen $1 / 16$ " a Using the from washer and bolt )(- negative the remove (3/16"), wrench Allen mm 5 a Using connector. battery the of terminal negative the fasten and PDP
main the of side "Batt" the on nut the remove wrench, end box mm) (11 7/16" a Using connector battery the of terminal positive the secure and breaker
wrench mm) (11 7/16" lugs, terminal $) m^{2}$ (16 AWG 6 1x wire, red ) $m m^{2}$ (16 AWG 6 Requires: $\mathrm{mm})\left(117 / 16^{\prime \prime}\right.$ the Using wire. red $) m m^{2}$ (16 AWG 6 the of end the to lug terminal one Secure terminal the place and breaker main 120A the of side "AUX" the from nut the remove wrench, the strip and cut to shortly it remove to wish may (you nut the secure Loosely stud. the over terminal positive the reach to required wire of length the out Measure wire). the of end other

PDH. the of
wire. red the of end other the strip and Cut
main 120A the of side "AUX" the to wire the secure wrench, mm) (11 7/16" the Using
breaker.
close then wire, the insert PDH, the of terminal input (red) positive the on lever the Lift terminal. the
(11 7/16" Allen, mm 5 lugs, terminal ) $m m^{2}$ (16 AWG 62 x wire, red ) $m m^{2}$ (16 AWG 6 Requires: end box mm)
(11 7/16" the Using wire. red ) $\mathrm{mm}^{2}$ (16 AWG 6 the of end the to lug terminal one Secure the place and breaker main 120A the of side "AUX" the from nut the remove end, box mm) strip, cut, to shortly it remove to wish may (you nut the secure Loosely stud. the over terminal the reach to required wire of length the out Measure wire). the of end other the crimp and PDP. the of terminal positive
wire.) $m m^{2}$ ( 16 AWG 6 red the of end 2 nd the to terminal the crimp and strip, Cut, main 120A the of side "AUX" the to wire the secure end, box mm) (11 7/16" the Using
breaker.
terminal. positive PDP the to end other the secure wrench, Allen mm 5 the Using

## connections power Insulate

tape Electrical Requires:
breaker. 120A the to connections two the insulate tape, electrical Using
CTR
insulate Also breaker. 120A the to connections two the insulate tape, electrical Using replaced. is cover the when exposed be will which terminals PDP the of part any cover terminal PDP the replace wrench, Allen $1 / 16$ " the Using

Power Controller Motor 2.1 .9 REV


12 or 10 , wire $) \mathrm{mm}^{2} 6$ - (4 AWG 12 or 10 only: Controllers Terminal Stripper Wire Requires: crimper wire terminals, fork/ring $) \mathrm{mm}^{2} 6$ - (4 AWG
image): (top controllers motor integrated wire other or MAX SPARK For
Wago the of one into insert then wires, input power black and red the strip and Cut pairs. terminal
image): (bottom controllers motor terminal For
terminal Wago the of one from reach to length appropriate to wire black and red Cut will that length the for extra little a (with controller motor the of side input the to pairs end) each on terminals the into inserted be
terminals. Wago the into insert then wires, the of each of end one Strip terminal fork or ring a on crimp and wire, each of end other the Strip )- to black +, to (red terminals input controller motor the to terminal the Attach

CTR
connectors, Wago the use To PDP. the on connectors Wago the using involve will step next The the angle then angle shallow a at hole rectangular the into screwdriver blade flat small a insert terminal. the opening lever, the actuate to in press to continue you as upwards screwdriver PDP: the on found are connector Wago of sizes Two ( $\left.\sim 7 / 166^{\prime \prime}\right) \mathrm{mm}$ 1211- strip ),$m m^{2} 6$ - ( 0.25 AWG 24-10 Accepts connector: Wago Small
( $\sim 1 / 2^{\prime \prime}$ ) mm 1312- strip ),$m m^{2}$ 16-(4 AWG 12-6 Accepts connector: Wago Large tinned be not should wires resistance connection minimize and force pullout maximize To connector. Wago the into inserting before twisted) not ideally (and
(4 AWG 12 or 10 only: Controllers Terminal Screwdriver, Flat Small Stripper, Wire Requires: crimper wire terminals, fork/ring ) $\mathrm{mm}^{2}$ 6-(4 AWG 12 or 10 wire, $) \mathrm{mm}^{2} 6$ -
image): (top controllers motor integrated wire other or MAX SPARK For
(larger) 40A the of one into insert then wires, input power black and red the strip and Cut pairs. terminal Wago
image): (bottom controllers motor terminal For
Wago (larger) 40A the of one from reach to length appropriate to wire black and red Cut length the for extra little a (with controller motor the of side input the to pairs terminal end) each on terminals the into inserted be will that terminals. Wago the into insert then wires, the of each of end one Strip terminal fork or ring a on crimp and wire, each of end other the Strip )- to black + , to (red terminals input controller motor the to terminal the Attach

## Connectors Weidmuller

wire- series LSF Weidmuller a use system the in connectors power and CAN the of number A for connector this using when mind in keep to things few a are There connector. boardtoresults: best
required verify to rules (consult ) $\mathrm{mm}^{2}$ ( 0.25 AWG 24 to ) $\mathrm{mm}^{2}$ (1.5 AWG 16 be should Wire wiring) power for gauge
mm )" ( $\sim 8$ 5/16 approximately stripped be should ends Wire the open to "button" corresponding the on down press wire, the remove or insert To terminal
secure: and clean is it that sure be to check connection the making After circuit short a cause may that connector the outside "whiskers" no are there that Verify correct the is and out comes wire the If fully. seated is it that verify to wire the on Tug the Occasionally further. back stripped and/or further inserted be to needs it gauge if even released button the and inserted wire the with open stuck remain may terminal a out and in wire the wiggling cases these in properly; inserted and stripped is wire the wire. the grip and shut latch to connector the allow often will amount small
and Red ) $m m^{2}$ (1 AWG 18 screwdriver, flat small very stripper, Wire fuse, mini 10A Requires:
Black
22).(20- channels fused switchablenon- the of one in PDH the into fuse 10A the Insert to connect and wire $) \mathrm{mm}^{2}$ ( 1 AWG 18 black and red the both on mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ Strip installed was fuse the where channel PDH the on terminals corresponding the leave to care Take roboRIO. the on input power the reach to length required the Measure and battery the as such components other any around wires the route to length enough management. cable or relief strain any for allow to
wire. the strip and Cut
of connector input power the to wires the connect screwdriver flat small very a Using screwed is connector power the that sure make Also C). to black V, to (red roboRIO the roboRIO. the to securely down
) $m m^{2}$ (1 AWG 18 screwdriver, flat small very stripper, Wire fuses, mini 10A/20A Requires:
screen silk the on shown locations the in PDP the in fuses mini 20A and 10A the Insert above) image the in (and
to connect and wire $) m m^{2}$ ( 1 AWG 18 black and red the both on mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ Strip PDB the on terminals PWR" Controller "Vbat the
leave to care Take roboRIO. the on input power the reach to length required the Measure and battery the as such components other any around wires the route to length enough management. cable or relief strain any for allow to
wire. the strip and Cut
of connector input power the to wires the connect screwdriver flat small very a Using screwed is connector power the that sure make Also C). to black V, to (red roboRIO the roboRIO. the to securely down

Power Radio 2.1 .12

REV

wire: black and red ) $\mathrm{mm}^{2}$ ( 1 AWG 18 (optional), screwdriver flat small stripper, Wire Requires:
22).(20- channels fused switchablenon- the of one in PDH the into fuse 10A the Insert connect and wire ) $\mathrm{mm}^{2}$ ( 1 AWG 18 black and red the of end the on mm ) ( $\sim 8 \sim 5 / 16$ " Strip $^{\text {. }}$ PDH. the on terminals corresponding the to wire the
Power Radio the on terminals Input" " 12 V the reach to required length the Measure other any around wires the route to length enough leave to care Take Module. management. cable or relief strain any for allow to and battery the as such components
wire. the of end the from mm$)\left(\sim 8 \sim 5 / 16^{\prime \prime}\right.$ strip and Cut terminals. Input 12V RPM the to wire the Connect

CTR
wire: black and red ) $\mathrm{mm}^{2}$ ( 1 AWG 18 (optional), screwdriver flat small stripper, Wire Requires:
wire. ) $\mathrm{mm}^{2}$ ( 1 AWG 18 black and red the of end the on mm ) ( $\sim 8 \sim 5 / 16$ " Strip the on PWR" PCM VRM "Vbat labeled pairs terminal two the of one to wire the Connect PDP.
to care Take VRM. the on terminals "12Vin" the reach to required length the Measure battery the as such components other any around wires the route to length enough leave management. cable or relief strain any for allow to and wire. the of end the from mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ strip and Cut terminals. 12Vin VRM the to wire the Connect

The roboRIO. the to directly cable injector POE passive Rev the connect NOT DO : : Incl cable Ethernet additional an using cable the of end socket the to connect MUST roboRIO step. next the in shown as
cable PoE radio Rev (optional), screwdriver flat Small Requires:
colored corresponding the into cable injector PoE passive the of ferrules the Insert VRM. the of section $12 \mathrm{~V} / 2 \mathrm{~A}$ the on terminals radio the on port Ethernet the into cable the of end plug (Ethernet) RJ45 the Connect POE) 24v18- (labeled connector barrel the to closest
(Optional) Power Pneumatics
wire black and red ) $\mathrm{mm}^{2}$ (1 AWG 18 (optional), screwdriver flat small stripper, Wire Requires: a with PDH the on port fused switchablenon- a either to wired be can Hub Pneumatics The 20A. to up breaker a with port protected breaker circuit a to or fuse smaller or 15A wire. ) $\mathrm{mm}^{2}$ ( 1 AWG 18 black and red the of end the on mm ) ( $\sim 8 \sim 5 / 16$ " Strip above described ways two the of one in PDH the to wire the Connect labeled PH the of end short the on terminals red the reach to required length the Measure components other any around wires the route to length enough leave to care Take .+/management. cable or relief strain any for allow to and battery the as such
wire. the of end other the from mm$)(\sim 8 \sim 5 / 16$ " strip and Cut terminals. input PH the to wire the Connect

wire black and red $) \mathrm{mm}^{2}$ (1 AWG 18 (optional), screwdriver flat small stripper, Wire Requires:
wire. ) $\mathrm{mm}^{2}$ ( 1 AWG 18 black and red the of end the on mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ Strip the on PWR" PCM VRM "Vbat labeled pairs terminal two the of one to wire the Connect PDP.
leave to care Take PCM. the on terminals "Vin" the reach to required length the Measure and battery the as such components other any around wires the route to length enough management. cable or relief strain any for allow to wire. the of end the from mm$)\left(\sim 8 \sim 5 / 16^{\prime \prime}\right.$ strip and Cut terminals. 12Vin PCM the to wire the Connect

Cables Ethernet 2.1 .14 REV
cables Ethernet 2x Requires:
port the to roboRIO the of socket (Ethernet) RJ45 the from cable Ethernet an Connect roboRIO. labeled Module Power Radio the on barrel the to closest radio the of socket RJ45 the from cable Ethernet an Connect RPM the on Radio WiFi labeled socket the to POE) 24v18- (labeled socket connector
to cable POE Passive Rev the of socket (Ethernet) RJ45 the from cable Ethernet an Connect roboRIO. the on port (Ethernet) RJ45 the

## Devices CAN 2.1.15

CAN Pneumatics to roboRIO
REV

cable CAN twisted yellow/green (optional), screwdriver flat small stripper, Wire Requires:
wires. CAN the of each of off mm) ( $\sim 8 \sim 5 / 16^{\prime}$ Strip
>YEL,(Yellow- roboRIO the on terminals CAN appropriate the into wires the Insert $>$ GRN).Green-
two the of (either PCM the of terminals CAN the reach to required length the Measure wires. the of end this off mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ strip and Cut pairs). available use may You PH. the on terminals CAN coded color appropriate the into wires the Insert out. or in defined no is there PH, the on pairs terminal Yellow/Green the of either

CTR

cable CAN twisted yellow/green (optional), screwdriver flat small stripper, Wire Requires:
wires. CAN the of each of off mm) ( $\sim 8 \sim 5 / 16$ " Strip
$>$ YEL,(Yellow- roboRIO the on terminals CAN appropriate the into wires the Insert $>$ GRN).Green-
two the of (either PCM the of terminals CAN the reach to required length the Measure wires. the of end this off mm$)\left(\sim 8 \sim 5 / 16^{\prime \prime}\right.$ strip and Cut pairs). available
may You PCM. the on terminals CAN coded color appropriate the into wires the Insert out. or in defined no is there PCM, the on pairs terminal Yellow/Green the of either use

CAN PD to Pneumatics

## REV


cable CAN twisted yellow/green (optional), screwdriver flat small stripper, Wire Requires:
wires. CAN the of each of off mm ) ( $\sim 8 \sim 5 / 16$ " Strip
PH. the on terminals CAN appropriate the into wires the Insert two the of (either PDH the of terminals CAN the reach to required length the Measure wires. the of end this off mm ) ( $\sim 8 \sim 5 / 16^{\prime \prime}$ strip and Cut pairs). available may You PDH. the on terminals CAN coded color appropriate the into wires the Insert out. or in defined no is there PDH, the on pairs terminal Yellow/Green the of either use

cable CAN twisted yellow/green (optional), screwdriver flat small stripper, Wire Requires:
wires. CAN the of each of off mm) ( $\sim 8 \sim 5 / 16^{\text {" }}$ Strip
PCM. the on terminals CAN appropriate the into wires the Insert two the of (either PDP the of terminals CAN the reach to required length the Measure wires. the of end this off mm$)\left(\sim 8 \sim 5 / 16^{\prime \prime}\right.$ strip and Cut pairs). available may You PDP. the on terminals CAN coded color appropriate the into wires the Insert out. or in defined no is there PDP, the on pairs terminal Yellow/Green the of either use

Wires Signal Controller Motor
is This signaling. PWM using controllers MAX SPARK the wire to how details section This CAN than troubleshoot to easier and complex less is it as point starting recommended a using wired be also can controllers) motor FRC other many (and MAXs SPARK The operation. and data diagnostic better functionality, advanced configuration, easier unlocks which needed. wire of amount the reduces
controllers (if cables PWM 4x MAX), SPARK using (if adapters PWM MAX SPARK 4x Requires: (Optional) cableY- PWM 2x optional), otherwise adapters, or wires integrated without
connect): (Direct 1 Option
a with adapter (small MAX SPARK the to adapter PWM the attach MAX, SPARK using If wires). black/white with connector pin 3
controller the On adapter. or controller the to cables extension PWM attach needed, If wiring, green/yellow have may controllers (some markings or colors the match side, black). to connect should green
outside the towards wire black the with roboRIO the to cable the of end other the Attach right the and 1 and 0 PWM to side left the connect to recommended is It roboRIO. the of any but experience, programming straightforward most the for 3 and 2 PWM to side the adjust and channel which to goes side which note you as long as work will channel accordingly. code
cable):(Y- 2 Option
a with adapter (small MAX SPARK the to adapter PWM the attach MAX, SPARK using If wires). black/white with connector pin 3
PWM the and adapter or controller the between cables extension PWM attach needed, If have may controllers (some markings or colors the match side, controller the On cable.Yblack). to connect should green wiring, green/yellow
side each controlling controllers the for cables PWM 2 the to cableY- PWM 1 Connect PWM the on wire black the match should cableY- the on wire brown The robot. the of
cable.
be should wire brown The roboRIO. the on ports PWM the to cablesY- PWM the Connect 0 PWM to side left the connect to recommended is It roboRIO. the of outside the towards but experience, programming straightforward most the for 1 PWM to side right the and adjust and channel which to goes side which note you as long as work will channel any accordingly. code the
is objective the CAN wiring When CAN. using wired be also can controllers MAX Spark The through running and end one on roboRIO the from running bus complete single a create to at device Distribution Power either have to recommended is It robot. the on devices CAN all locate to wish not do you If termination. inbuilt- have they because bus the of end other the terminating about info for Basics Wiring CAN see bus the of end the at devices these of one yourself.
connectors. with terminatedpre- are that cables CAN with come controllers MAX Spark The larger bridge to cables extension build or buy or directly, together cables these chain can You distribution power controllers, pneumatics as such devices CAN other to connect To gaps. connectors terminatedpre- these of one off cut either to need will you roboRIO the or boards, a just with extension own your build or extension, an on connector a off cut controller, the on connector. single
the use to sure make connectors, provided the using together controllers chaining When electrical ziptie, small a with connection the secure unavailable, If clip. retaining provided
method. similar other or tape,
small very wire, red $) \mathrm{mm}^{2}$ (1 AWG 18 Light, Signal Robot cable, pin 2 stripper, Wire Requires: screwdriver flat wires both strip and cable pin 2 the of off end one Cut terminal. the tighten and terminal " N " center, the into wire black the Insert the tighten and terminal "La" the into insert and wire red $) m m^{2}$ (1 AWG 18 the Strip terminal. terminal "Lb" the into insert to wire ) $m m^{2}$ (1 AWG 18 the of end other the strip and Cut (1 AWG 18 the with terminal "Lb" the into cable pin two the from wire red the Insert terminal. the tighten and wire red $\mathrm{mm}^{2}$ should wire black The roboRIO. the on port RSL the to connector pintwo- the Connect roboRIO. the of outside the to closest be
or ties cable using board control the to RSL the secure temporarily to wish may You : being is robot the as location visible more a to RSL the move to recommended is (it Lock Dual constructed)

## Breakers Circuit

REV
breakers circuit 40A 4x Requires:
Wago the with corresponding PDH the on positions the into Breakers Circuit amp40- Insert indicates graphic white the that Note to. connected are controllers motor the connectors pairs. terminal which with associated are breakers which before chassis robot the into board the insert and here stop Build, Quick Robot a on working If continuing.

CTR
breakers circuit 40A 4x Requires:
Wago the with corresponding PDP the on positions the into Breakers Circuit amp40- Insert breaker the breakers, all for that, Note to. connected are controllers motor the connectors negative All above). graphic (see terminal (red) positive nearest the with corresponds internally. connected directly are board the on terminals before chassis robot the into board the insert and here stop Build, Quick Robot a on working If continuing.

Power Motor 2.1.19
hardware connecting wire screwdriver, head phillips crimper, wire stripper, Wire Requires:
motor: CIM each For
CIM the from wires black and red the of ends the Strip
image): (top MAX SPARK including controllers wire integrated For
SPARK (the controller the from wires) green and white (or wires black and red the Strip and secured be should it CIM, the as such motors brushed for unused is wire white MAX method). insulation other or tape electrical with such insulated be should end the with controllers (for wires output controller matching the to wires motor the Connect an show above images The black). to green and white to red connect white/green,

KOP. Rookie the in provided are which terminals disconnect quick using example image): (bottom controllers wireintegrated-non- other or SPARK the For wires. motor the of each on terminal ring/fork a Crimp )- to black + , to (red controller motor the of side output the to wires the Attach

STOP 2.1 .20 the with made been have connections all sure make battery, the in plugging Before : $\mathrm{\square ll} \mathrm{Cl}$
all sure make to check robot the wire not did that someone have Ideally polarity. proper
correct. are connections
terminal positive the to connected is wire red the that verify and battery the with Start the of terminal + the to and breaker main the through passes wire red the that Check terminal. - the to directly travels wire black the that and PDP the to terminal PDP red the from goes wire red the that verify controller, motor each For M+!!!!) (not controller motor the on terminal V+
terminal red a from runs wire red the that verify device, controller motornon- each For component. the on terminal red a to connects PD the on roboRIO! THE NOT radio the into directly plugged is cable PoE the that sure Make
ground the off are wheels the so blocks on robot the put to recommended also is It : वाप dangerous. becoming from movement unexpected any prevent will This proceeding. before

## Wires Manage 2.1.21

ties Zip Requires:
before wires the of some manage to ties zip few a add to time good a be may Now : Oll neat. wiring robot the keep help will This proceeding.

Battery Connect 2.1.22
by robot the on Power connector. Anderson the of side robot the to battery the Connect housing. the of top the on ridge the into breaker main 120A the of top the on lever the moving the power smoke, any see or clicking, any hear you If right. it did probably you blinks, stuff If tripping. breakers circuit of sound the likely is clicking immediately, off system
to step configuration more one is there controllers, MAX SPARK using if on, moving Before by motor brushless a control to configured are controllers motor MAX SPARK The complete. cyan either blinking is controller the on light the that checking by this verify can You default. brushed to change To respectively). coast brushless or brake brushless (indicating magenta or color. changes LED status the until seconds 43 - for button mode the hold and press mode, brushed in is controller the that indicating yellow, or blue either to change should LED The how controls which mode, coast or brake the change To respectively). coast or (brake mode briefly. button mode the press applied, is signal neutral a when down slows motor the quickly
test to how including controllers, motor MAX SPARK the on information more For : : the see Client, Hardware REV the using by code any writing without motors/controllers your

[^0]code! your uploading try and roboRIO the to connect should you here, From

.

## Offline 3.1

ต
 . ㅂ

ำ

3.1.1 תיעוד
. .
(Installers) מתקינים 3.1 .2

כל הקבוצות
Installers") Offline "Individual for link on Click (Note:
Israel Utility Configuration Radio FRC 2023 or Utility Configuration Radio FRC 2023 •
Version


## קבוצות LabVIEW

 Choice) ® FIRST-[) USB LabVIEW Installers")
קבוצות Java או +++

Installer WPILib Java/C++ 。
page. the of bottom the at section assets the to scroll page, releases GitHub the on Once
Releases / v2023.1.1
This peterJohnson released
The documentation for
location with the same c
If you're new to FRC, sta
Minimum system requir
is Apple Silicon (arm64):
Studio 2022 is now requ
are working on removin
If you're returning from
image for 2023; this is a
If you're starting from a
automated corrections $f$
updated to be compatib
A complete list of know
WPILib is developed by
download. the begin to architecture and OS your for binary correct the on click Then
v Assets
©TWPILib_Linux-2023.1.1.
©WPILib_macos-Arm64
© WPILib_macos-Intel-2
©WPILL__Windows-202:
( : Source code (zip)
周 Source code (tar.qz)




# התקנת LabVIEW עבור LabVIEW FRC) בלבד) 

Assistant Vision NI using or LabVIEW in programming teams for is installation This : Olll should and LabVIEW install to need not do features these using not teams Java and C++ only. .Tools Game FRC the Installing to proceed
connection internet and computer with widely vary will times installation and Download installation and download file large a involves process this that note however specifications, complete. to hour an least at take likely will and

דרישות
NI, by supported officially not is 11 Windows 11). 10, (Windows higher or 10 Windows
work. to tested been has but

## הסרת גרסאות ישנות (מומלץ)

LabVIEW of install an maintain to need will you cRIOs programming keep to wish you If : $\operatorname{llll}$ versions these While extended. been has license 2014 FRC for LabVIEW The 2014. FRC® for been has that configuration a not is this computer, single a on existco- to able be should tested. extensively
versions. old any remove to recommended is it LabVIEW of version new the installing Before with done been has testing all but version, old the with existco- likely will version new The Data" "User $\operatorname{LLabVIEW~the~in~located~code~team~any~up~back~to~sure~Make~only.~} 2023$ FRC the Locate Programs. Remove or Add >> Start click Then installing.un- before directory Uninstall. select and Software", "NI labeled entry

## Competition Robotics FIRST

Settings

介ि Home

Find a setting
Apps
|
: =f Default apps

WI Offline maps
[相Apps for websites
$\square$ Video playback
$\square_{\uparrow}$ Startup
selectde- to is this do to way easiest The entries. all select appears, that box dialog the In Remove. Click "Name". of left the to boxcheck- the select and boxcheck- Only" "Products the prompted. if reboot and complete to uninstaller the for Wait
have you If installed. is software NI other no that assume instructions These : प०००] be not should that software the uncheck to necessary is it installed, software NI other uninstalled.

## installer LabVIEW Getting

2023 FRC for LabVIEW the download or Drive USB LabVIEW the insert and locate Either down.drop- the from version correct the select to sure Be NI. from installer
click button, Download the click not do offline, machines other on install to wish you If installer. full the download to Download, click then and Installers Offline Individual
connection internet fast a use to recommended is It ( $\sim 9 \mathrm{~GB}$ ). download large a is This : : वार interrupted. if resume to download the allow to Downloader NI the use to and

## התקנת LabVIEW

the of 31st January until active is license season's Each license. a requires LabVIEW NI 2021) 31, January on expires season 2020 the for license the (e.g. year following subject needed, as computers team many as on software the install to permitted are Teams provided and software, applicable the accompany that terms license and restrictions the to use to Rights FRC. for solely and software, the use mentors or members team only that during shown are that agreements license the of terms the by solely governed are LabVIEW software. applicable the of installation the

## Install Starting

Installer Online
Security Windows a if Yes Click process. install the start to file exe downloaded the Run prompt
10+) (Windows Installer Offline
mounted the from install.exe Run mount. select and file iso downloaded the on click Right prompt Security Windows a if "Yes" Click iso.
not may option mount the and files iso with associate may programs installed other : : प्रा install then file, iso the extract or mount to option the give not does software that If appear. iso. the extract to that use and Zip7-

## Name

Today (2)

## רישיון Manager Package NI

NI Package Man Sele

You must

NI

CAREFULLY THE SOFTWA PROCESS, Y WISH TO BE CONDITIONS, ACCOMPANY RECEIPT. ALL are accepting these terms.

The terms of tl
This license agr

Next click screen, this see you If

ביטול ההפעלה המהירה של Windows
NI Package Man
Sele
-

## התקנת Manager Package NI

NI Package Man Sele

Installing NI Pa

Installing NI Pa
window this in tracked be will Manager Package NI the of progress Installation

## List Product

Installing LabVIE
Sele
Select pro
PROGRAMMI
$\checkmark$ LabVIEW ADD-ONS
$\checkmark$ LabVIEW RVision DevLabVIEW R DRIVERS
$\checkmark$ NI CompaNI -IMAQd:

Next Click

## Packages Additional

Installing LabVIE
Sele

V JKI VI Pack
VI Package
v LabVIEW [ The LabVI implemen

- LabVIEW [ LabVIEW [
\ LabVIEW Core files running or
, LabVIEW F
The LabVI
Microsoft
$\checkmark$ NI Certific NI Certifica are installe Back

Next Click
agreements License

Installing LabVIE Sele

You must

NI

CAREFULLY
THE SOFTWA PROCESS, Y WISH TO BE
CONDITIONS,
ACCOMPANYI RECEIPT. ALL nem anonntion
This license agr Robotics Modu
NI Distributed S

Installing LabVIE
Sele
You must
Microsoft St
MICROSOFT
MICROSOFT
These license $t$
its affiliates) at media on whic

- updat
versions,
- suppl
- InterI
- supp

This license agr

Back

Next Click then accept..." "I Check

## Information Product

Installing LabVIE
Sele
Informatic
• NI Ope

Configur
If you need $t$
For more inf
subsection ir

- NI-IMA

Intel Pro
Installing the
interface dev
Performance
High-Perforn

- NI-VIS Back

Next Click

## Installation Start

Installing LabVIE
Sele
Review th

- Install

JKI VI Packag LabVIEW (32 LabVIEW Dat LabVIEW Rea LabVIEW Rep LabVIEW Rob LabVIEW Rur LabVIEW Run LabVIEW Rur LabVIEW Rur
LabWindows,
NI CompactR
NI Distribute
NI LabVIEW
NI Update Se
NI-IMAQdx

Back

Next Click

## Progress Overall

Installing LabVIE
Sele

Upgrading NI
$\square$
Installing NI Ur
window this in tracked be will progress installation Overall

## Service Update NI

3.2 .5
enable not to choose can You service. update NI the enable to whether prompted be will You service. update the

[^1]
## Wizard Activation NI

Activate Software

Let's get
You must obta

Log in to AC

Privacy Stater
button. Activate to in Log the Click
create to account Create select account, an have don't you If account. ni.com your into Log account. free a

## 14 licens

Identity-base fewer interrup Learn more

Check my a
Check my a
Enter a seria
Enter activa
Connect to
LabVIEW 2020
LabVIEW 2020

Privacy Staten
number serial a enter select down,drop- the From

A serial numb
Learn more

Enter a seria
\#\#\#\#\#\#\#\#\#
$\qquad$
$\qquad$

Privacy Staten
.Activate Click boxes. the all in number serial the Enter

Activate Software

## Congrat

Activation wa

8 ACTIVAT
$\checkmark$ LabVIEW
$\checkmark$ LabVIEW
$\checkmark$ LabVIEW
$\checkmark$ LabVIEW
$\checkmark$ LabVIEW
$\checkmark$ Vision Ac
$\checkmark$ Vision De
$\checkmark$ Vision De

Product Regis
the If appear. will message Successful" "Activation an successfully, activate products your If and number the enterre- can you and box text a you give will it incorrect, was number serial activated everything If activate. to expected not are above shown items The .Again Try select
.Finish click successfully,

## Restart

Installing LabVIE
Sele
programs. open any closing after Now Reboot Select
התקנת ה-Tools Game FRC
3.3


Station Driver FRC
Images and Tool Imaging roboRIO FRC
are Tool Imaging and Station Driver the for required components runtime LabVIEW The package. this in included
running for required are package FRC for Software LabVIEW the from components No : Flll Tool. Imaging or Station Driver the either
3. P 미
11). 10, (Windows higher or 10 Windows

NI. from Tools Game FRC the Download

File Size

## הסרת גרסאות ישנות (מומלץ)


any remove to recommended is it Tools Game FRC the of version new the installing Before will DS the that (note version old the with existco- likely will version new The versions. old Start click Then only. 2022 FRC with done been has testing all but versions), old overwrite .Uninstall select and Software", "NI labeled entry the Locate Programs. Remove or Add >>
tools. year's new a installing when versions previous uninstall to necessary only is It : : वार to necessary not is It tools. 2022 the installing before tools 2021 the uninstall example, For tools. game 2022 the of update new a to upgrading before uninstall

## Competition Robotics FIRST

Settings

ภ Home

Find a setting
Apps
\| $:$ 決 Apps \& features
: =־ Default apps
wil Offline maps
[1 Apps for websites

■ Video playback
$\square_{\uparrow}$ Startup
the selectde- to is this do to way easiest The entries. all select appears, that box dialog the In Wait .Remove Click "Name". of left the to boxcheck- the select and boxcheck- Only Products prompted. if reboot and complete to uninstaller the for

3.3.3 התקנה
 if rebooting including installation, the complete to screenon- prompts Follow installed. or if installer the restarting Tools, Game FRC the of installation the resume Then requested. necessary.

חילוץ

Windows a if Yes Click process. install the start to file executable downloaded the Run appears. prompt Security

10+) (Windows Offline
mounted the from install. exe Run .mount select and file iso downloaded the on click Right appears. prompt Security Windows a if Yes Click iso.

## Competition Robotics FIRST

Name
Today (2)
(6) ni-frc-2020
ni-frc-2020-
not may option mount the and files iso with associate may programs installed Other : $\mathrm{\square lll}$ install then file, iso the extract or mount to option the give not does software that If appear. iso. the extract to that use and Zip7-

You must

Package NI ㄴำ Manager.

ביטול ההפעלה המהירה של Windows

P Ni Package Mä
Select

You v

Disable Wi

Back



- Install

NI Package

## Installation Manager Package NI

PI Package Mä
window. this in tracked be will Manager Package NI the of progress Installation
NI Vision
Provides su
Display con
NI Linux
The NI Linu)
provisionin
install the la
LMI, the exc


Installing LabVIE
Sele
You must
Microsoft Si
MICROSOFT
MICROSOFT
These license $t$
its affiliates) at media on whic

- upda
versions,
- supp
- InterI
- supp

This license agr

Back

License NI the to agree you that confirming ,Next click then accept... I press and ahead Go agreement.

## Summary Review

I Installing FRC
Select
Review th

- Install

FRC Game $T$ LabVIEW Ru
NI License N
NI Linux RT
Vision Comr
Vision Deve
NI Certificat
NI System C
NI Vision Su
PXI Platform

Back
.Next 인
finished. it's when Next press and ahead go process, installation the showcases screen This

## Competition Robotics FIRST

## Wizard Activation NI

nI NI User Acco

Email

Password


the see will you account, this on software year's this activating time first the is this If : : this. ignore can You found. being not license valid a about above shown message
the If appear. will message Successful Activation an successfully, activate products your If and number the enterre- can you and box text a you give will it incorrect, was number serial .Next click successfully, activated everything If .Again Try select

## Service Update NI

enable not to choose can You service. update NI the enable to whether prompted be will You service. update the
 Blasts). mailE- or Updates Team Blog, (FRC channels communication usual our

אתחל מחדש להתקנה מלאה

Installing
programs. open any closing after Now Reboot select prompted, If

## WPILib מדריך התקנת

$\qquad$

LabVIEW 잉 to skip can teams LabVIEW teams. C++ and Java for intended is guide This
 shown. be will systems operating differentiating Notes systems. operating all for identical are

### 3.4.1 דרישות מקדימות

Architectures: and Systems Operating Supported
supported not are Arm and bit 32 only. bit 64 11, \& 10 Windows but work, may $2.34>=$ glibc with distributions Linux Other bit. 64 22.04, Ubuntu unsupported are
Arm. and Intel both higher, or 11 macOS
20.04, \& 18.04 Ubuntu 10.15, macOS supported: longer no are OSes following The : : हारा Windows. bit32- any and 8.1, Windows 7, Windows
necessary not is it that so years, different for folders different to install to designed is WPILib WPILib. year's this installing before version previous a uninstall to

Downloading
Installer WPILib
Downloads 2023 29, March - Release 2023.4.3 WPILib
platforms other for Downloads

Notes Release
.GitHub from installer the of release latest the download can You
page. the of bottom the at section assets the to scroll page, releases GitHub the on Once
download. the begin to architecture and OS your for binary correct the on click Then

 10+ Windows
open to Mount select and image disk downloaded the on click right can users 10+ Windows .WPILibInstaller.exe launch Then it.
3. It
follow then file, iso the extract or mount to option the give not does software that If appear. below. directions the
selecting and Zip7- selecting clicking,right- by image disk the extract to zip7-use can You the of bottom the at options more Show select to need may users 11 Windows .to... Extract menu. context

- Mount

Burn disc im
(I) Edit with Inte

7-Zip
CRC SHA
H Scan with M
(1) Share

Open with...
Give access t
PowerRenan
Restore prev
Send to
Cut
Copy
Create short
Delete
Rename
Properties
.WPILibInstaller.exe opening by installer the launch file, iso. the opening After
protected "Windows titled window a display may Windows installer, the launching After : : पार्य installer. the run to anyway Run select then ,info More Click PC". your
macOS
installed Tools Line Command Xcode the have to need will users macOS release, this For release. future a in requirement this removing on working are we installer; the running before Terminal. the in install-- select-xcode running by done be can This "WPILibInstaller"

.WPILibInstaller launch then and tar.gz. downloaded the extract should users Linux won't clickingdouble- so libraries, shared as explorer file the in executables treats Ubuntu with replaced ><version with instead terminal a in commands following the Run them. run installing. you're version the

WPILib_Linux-<version>.tar.gz xf- tar \$ WPILib_Linux-<version>/ cd WPILibInstaller/.
3. 님
installation. WPILib the with included options of list a showcases This
SysID, RobotBuilder, Shuffleboard, (Pathweaver, tools WPILib the just installs Only Tools JDK. and OutlineViewer) and Glass,
all extensions, Code, (VS environment development full the installs Everything JDK. and tools, WPILib dependencies),
 ㄴ


through access administrator for prompt will Windows Users, all for Install select you If : : पारा installation. during UAC
.
(w) WPILib Install

For licensing re separate from $t$

We strongly rec

Download (fastest)

Create VS other com install
only computer this for Download
. $\operatorname{ch}$ (
Code VS use don't and Skip
ㄴ

computer this on install offline for zip Code VS existing Select

## 니 

install offline for computers/OSes other with share to zip Code VS Create


process download the begin will This .only computer this for Download select and ahead Go is download the Once $\sim 100 \mathrm{MB}$ ). (it's connectivity internet on depending bit a take can and below. one the to similar looks that screen a with presented be should You .Next select done,
existing already an use not does It Code. VS of version separate a installs WPILib : Olll VS WPILib IE: year. the with appended tools the of copy own it's has year Each installation. copy! installed system a not and Code VS WPILib the launch Please . 2022 Code



## לאחר ההתקנה

3.4 .5
macOS



ㄴำ
 Launching. Allow
3. Pl

YYYY called desktop the on folder a create will rebooting and tools desktop Installing : 인 on available not are shortcuts tool Desktop year. current the is YYYY where, Tools WPILib macOS. and Linux

## Simulation for Installation C++ Additional 3.4.6

would this Windows, For installed. be to compiler native a that requires simulation robot C++ (Ubuntu) Linux and, later or 13 Xcode requires macOS Code), VS not( 2022 Studio Visual be package. essential-build the requires installer Studio Visual the in checked is option C++ with Development Desktop the Ensure support. simulation for







ㄴำำ


Viewer, Outline RobotBuilder, Shuffleboard, SmartDashboard, - Tools WPILib SysID Glass, Pathweaver,
. पाराप OpenCV, 이 - Dependencies WPILib
Code VS-

## הסרת ההתקנה

ต ज


Windows
the is YYYY where YYYY\wpilib\Public\Users \c: (folder wpilib appropriate the Delete uninstall) to year


variables" environment system the "edit ㄴำ





System Properties
Computer Name Hardware
macOS
uninstall) to year the is YYYY where $\sim /$ wpilib/YYYY( folder wpilib appropriate the Delete

uninstall). to year the is YYYY where $\sim /$ wpilib/YYYY( folder wpilib appropriate the Delete ~/wpilib/YYYY rf- rmeg

פתרון בעיות
 . .
3.5 השלבים הבאים





Basics Code Studio Visual
Code Studio Visual in Commands WPILib •
Program Robot a Creating
Code Robot Deploying and Building 。
Libraries Party 3rd Installing •
ต . $\operatorname{cov}$ (

Installing the at look controllers motor CAN party3rd- using teams that important It's : devices. these for code to required are steps extra as article Libraries Party 3rd


## 2 roboRIO your Imaging 4.1

 .here are 1.0 roboRIO NI the for instructions imaging The : :image boot appropriate an with configured card microSD a from boots 2.0 roboRIO NI The microSD The FRC. to specific libraries and drivers, OS, TimeReal- Linux NI the containing this on instructions the per application burner SD an and laptop a with imaged be must card
page.
supported. not is Tool Imaging roboRIO the with directly 2 roboRIO the Imaging : : वाल

## Requirements microSD 4.1.1

2GB with card a use to recommended is It cards. microSD all supports 2.0 roboRIO NI The capacity of more or

## Tips Operation 4.1.2

order in image valid a containing card microSD inserted fully a requires 2.0 roboRIO NI The intended. as operate and boot to
microSD the Once hang. will roboRIO the powered, while removed is card microSD the If power be or button, reset the using restarted be to need will roboRIO the replaced, is card cycled.
best but powered, while insertion or removal card microSD from result will damage No unpowered. while operations these perform to is practice
$F R C$ the of installation completed have must you roboRIO, your imaging Before : : पाराप Power CTRE the to wired properly power roboRIO the have must also You .Tools Game
the to wires power the sure Make Hub. Distribution Power REV or Panel Distribution screws total (4 roboRIO the to firmly secure is connector the that and secure are roboRIO check). to

## Card microSD the to Directly Imaging

utility, writing specialized a using card microSD the to transferred be will image The write can that tools most but below, listed are utilities Several burner. a called sometimes bootable a produce also will boards dev similar or Pi Raspberry a booting for images arbitrary 2.0. roboRIO for card SD
locate can You .FRC_roboRIO2_YEAR_VERSION.img.zip named are files image Supported SD the to navigating then and tool Imaging roboRIO the in button SD the clicking by them image. the of version latest the use to best generally is It folder. Images computer. that to file image this copy to need will you OS Windows non a using If

## Select Image

FRC_roboRIO_2022_v2.2.zip FRC_roboRIO2_2022_v2.2.zir FRC_roboRIO2_2021_v3.0.zip
cards. microSD to writing for well works dongle USB to microSD A
are drivers and OS the because roboRIO a on boot not will images Pi Raspberry : controller Pi Raspberry with compatible not is image roboRIO a Similarly, incompatible. boards.

# balenaEtcher with image the Writing 

.balenaEtcher install and Download
Launch
card microSD the to copy to want you file image the locate >- file from Flash device microSD destination the select $>$-target Select

Flash Press

# Imager Pi Raspberry with image the Writing 

.Imager Pi Raspberry from install and Download
Launch
card microSD the to copy to want you file image the select >- Custom Use >- OS Choose device microSD destination the select >-Storage Choose

Write Press

$$
\begin{array}{r}
\text { reformat, not Do drive. the format to prompt may Windows image, the writing After : } \begin{array}{r}
\text { agatil } \\
\text { again. image the write to need will you else or }
\end{array}
\end{array}
$$

## Number Team roboRIO the Setting

to need will teams this fix To number. team a set not does above process writing image The Imaging roboRIO the With robot. the to connect and robRIO the in card microSD the insert .Apply hit and box Number Team the out fill Next, .Settings Startup Edit to go Tool

## 1 roboRIO your Imaging

$$
\begin{aligned}
& \text { the of installation completed have must you roboRIO, your imaging Before }
\end{aligned}
$$

> Power the to wired properly power roboRIO the have must also You
> the that and secure are roboRIO the to wires power the sure Make Panel. Distribution check). to screws total ( 4 roboRIO the to firmly secure is connector
.here are 2.0 roboRIO NI the for instructions imaging The :

## roboRIO the Configuring 4.2 .1

software. latest the with roboRIO your image to used be will Tool Imaging roboRIO The
bottom the in uppop- Device" "New a see you If automatically. install should driver device The continuing. before complete to install driver the for wait screen, the of right

$$
\text { Tool Imaging the Launching } 4.2 .2
$$

Tools. Game FRC® NI the with installed are image latest and tool imaging roboRIO The have you If Desktop. the on shortcut the on clicking double by tool imaging the Launch selecting and icon the on clickingright- try to need may you roboRIO, your imaging difficulties instead. Administrator as Run

National<br>(x86) Files Program\C: at located also is tool imaging roboRIO The : Olll Tool roboRIO\project $\backslash 2020$ LabVIEW $\backslash$ Instruments

## Tool Imaging roboRIO

any indicate and roboRIOs available for scan will Tool Imaging roboRIO the launching, After the for settings and information show will box left bottom The box. left top the in found roboRIO the modifying for controls contains pane hand right The selected. currently roboRIO settings:
startup the configure to want you when used is option This - Settings Startup Edit roboRIO. the imaging without pane), right the in settings (the roboRIO the of settings roboRIO the on image new a load to want you when used is option This - Target Format option. common most the is This image). existing the reflash (or
season, this For firmware. roboRIO the update to used is option This - Firmware Update greater. or 5.0 version be to firmware roboRIO require will tool imaging the

## Firmware Updating

roboRIO your If image. later or 2019 the with work to v5.0 least at be must firmware roboRIO to need not do you tool) imaging the of left bottom the in shown (as 5.0 version least at is update.
firmware: roboRIO update To pane. left top the in selected is roboRIO your sure Make pane right top the in Firmware Update Select box Number Team the in number team a Enter right bottom the in file firmware latest the Select button Update the Click

## roboRIO the Imaging 4.2 .4

pane left top the in selected is roboRIO the sure Make pane right the in Target Format Select box the in number team your Enter box. the in version image latest the Select process. imaging the begin to Reformat Click

## Progress Imaging 4.2.5

left bottom the in bar progress A minutes. 103- approximately take will process imaging The progress. indicate will window the of

## Complete Imaging <br> 4.2.6

## 2

The roboRIO ir updated. The device is 172.2 roboRIO-1-FR You must depl

Close the click then Ok, Click above. dialog the see should you completes imaging the When Reset the using roboRIO the Reboot tool. imaging the close to right bottom the at button effect. take number team new the have to button
4.2.7 פתרון בעיות
include: steps troubleshooting roboRIO, your image to unable are you If Desktop the on clickingright- by Administrator as Tool Imaging roboRIO the running Try it. launch to icon and/or http://172.22.11.2/at browserweb- a with webpage roboRIO the accessing Try Control the in Adapters Network of list your in appears adapter network NI the that verify PC. different a try or Tools Game FRC NI the installingre- try not, If Panel.
adapters network other all Disable.
off. turned is firewall your sure Make
the of name device the if fails imaging where issue an experienced have teams Some a using (or computer the renaming Try it. in )-( dash a has using you're computer PC ). different
at for button reset the holding and pressing by Mode Safe into roboRIO the booting Try seconds. 5 least
Cable USB different a Try
PC different a Try

## כנפוג הראוטר

to software Utility Configuration Radio FRC® the use to how you show will guide This events. FRC of outside use for bridge wireless robot's your configure

## דרישות מקדימות

the configure to privileges administrator requires Utility Configuration Radio FRC The privileges necessary the request should program The machine. your on settings network you if but account), administratornon- a from run if password a require (may automatically account. administrator an from it running try trouble, having are links: following the from Installer Utility Configuration Radio FRC latest the Download Version Israel 23.0.2 Configuration Radio FRC


the to closest port ethernet bridge wireless the into computer your from directly Plug If ethernet. via computer your to connected are devices other no sure Make jack. power the of side socket the into PC the from cable Ethernet an plug PoE, via radio the powering configuring issues experience you If in). plug would roboRIO the (where adapter PoE
the on port alternate the to PC the connecting try may you adapter, PoE the through radio.
however DAP1522, LinkD- the as plug power same the use AC and ANOM5P- The : ใीया pin(center- VRM the on terminals 2 A 12 V the to radio the Wire radios. 12 V are they positive).

## Notes Application

4 Mbps the enforce to radio the program will Utility Configuration Radio the default, By home the In interface. wireless the over radio the exiting traffic on limit bandwidth streaming that means This limit. client per a not total, a is this mode) (AP configuration recommended. not is clients multiple to video
systems, operating other on work may It 10. and 87 , Windows on tested been has Utility The tested. been not has but

## Configuration Programmed

radio the into settings configuration of number a programs Utility Configuration Radio The include: These events). at (including modes all in radio the to apply settings These run. when
10. TE.AM. 1 of IP static a Set
programming future for 192.168.1.1 of side wired the on IP alternate an Set
interchangeably used be may they so ports wired the Bridge
above. graphic the in noted configuration LED The disabled be (may interface wireless the of side outbound the on limit bandwidth $4 \mathrm{Mb} / \mathrm{s}$ use) home for
to packets which and buffer internal (affects prioritization packet internal for rules QoS are: rules These reached). is limit bandwidth if discard ) 1150,1115 , 1110 (UDP Status and Control Robot
)1740, 1735 (TCP NetworkTables \& TCP Robot
disabled) is limit BW if (disabled traffic). other (All Bulk out: Serves enabled. server DHCP
side wired the on 10.TE.AM. 111-10.TE.AM. 11 side wireless the on 10.TE.AM. 237-10.TE.AM. 138
255.255.255.0 of mask Subnet
10.TE.AM. 255 address Broadcast
the of part as served are )lan. ( suffix domain and IP server DNS enabled. server DNS DHCP.
only: home At
multiple distinguish to number team the to appended Name" "Robot a have may SSID networks.
found be may ports (open rules firewall field the mimic to enabled be may option Firewall Manual) Game the in

## Software the Install

the Follow installer. the launch to FRC_Radio_Configuration_VERSION.exe on click Double installation. the complete to prompts
The present. already not is it if Npcap installing include will prompts installation the of Part leave should You install. the configure to checkboxes of number a contains installer Npcap defaults. the as options the
software the Launch
program. the launch to shortcut desktop or menu Start the Use

FRC (x86) Files Program $\backslash C$ : to installed is it program, the locate to need you If : $\mathrm{\square lll}$ FRC\Files Program\C: is path the machines bit32- For .Utility Configuration Radio Utility Configuration Radio

## prompted if changes, make to program the Allow

the to changes make to utility configuration the allowing about appear may prompt A appears. prompt the if Yes Click computer.

## interface network the Select

Network Interfac
Please select
If no network ir
will utility configuration the interface ethernet which the select to window uppop- the Use are interfaces ethernet machines, Windows On bridge. wireless the with communicate to use bridge a program not can utility configuration The Connection". Area "Local named typically connection. wireless a over
interfaces. available for scanre- to Refresh click listed, are interfaces ethernet no If
list. downdrop- the from use to want you interface the Select
.OK Click

## Note Firmware Mesh Open

the radio, ACOM5P- and ANOM5P- the program to Utility Configuration Radio FRC the For firmware. OpenWRT the of build specific FRC an running be must radio step. next the skip firmware, the loadre- or update to need not do you If

```
before updated be to need not do 2019/2020/2021/2022 in used Radios :बताप्रा
``` firmware. 2019 same the uses tool 2023 the configuring,

\section*{Radio Mesh Open to Firmware FRC Loading}

Radio FRC the using so do can you radio), the reset (or firmware FRC the load to need you If Utility. Configuration the select and program the launch software, the install to above instructions the Follow interface. Ethernet
dropdown. Radio the in selected is radio Mesh Open the sure Make Ethernet. via PC the to connected is radio the sure Make
the unplugging be also will this cable, PoE a using (If radio. the from power the Unplug fine) is this PC, the to Ethernet button Firmware Load the Press
the load radio, the detect should software The power. radio the in plug prompted, When complete. when you prompt and firmware
one the than other adapters all disabling try name, NPF about error an see you If : : पाराप to attempt should tool the found, is adapter one only If radio. the program to used being info. more for Adapters Network Disabling in steps the See one. that use other languages for configured Systems Operating with error this see also may Teams foreign a on programming or firmware loading issues experience you If English. US than Locale the setting or PC provided KOP the on as such OS, English an using try OS, language .page this on described as "en_us" to setting

\section*{Mode Operating and Radio Select 4.3.9}
selection default the cases, most For configure. to want you mode operating which Select mode AP 5GHz the it, support computers your If sufficient. be will Point Access 2.4 GHz of environments. many in congested less is 5 GHz as recommended, is

\section*{Options Select}
teams, most of case use the match to selected been have options the of values default The scenario: specific your to options these customize to wish may you however,

This radio. the by used SSID the to appended gets that string a is This Name: Robot to able be still and number team same the with networks multiple have to you allows
them. distinguish
mimic to attempt to configured be will firewall radio the checked, is box this If Firewall: open of list a For field. FRC the on present firewall the of behavior blocking port the Manual. Game FRC the see please ports, does it like limit bandwidth Mbps 4 a enforces radio the checked, is box this If Limit: BW streaming so client, per not limit, total a is this that Note events. at programmed when behavior. undesired cause may simultaneously clients multiple to video
no have options These radios. Mesh Open the to apply only Limit BW and Firewall : Cl Cl
means This firewall. field the emulate to radio the configures option "Firewall" The : ใरापा useful is This enabled. option this with wirelessly code deploy to able be not will you that competitions. at exist may that ports blocked simulating for

\section*{Process Configuration the Starting}
settings the entering bridge, wireless your preparing for instructions screenon- the Follow screenon- These process. configuration the starting and with, configured be will bridge the chosen. mode operating and model bridge the match to update instructions

\section*{Progress Configuration 4.3.12}

indicate: will window the process, configuration the Throughout
executed. being currently step The process. configuration the of progress overall The
far. so executed steps All

\section*{Completed Configuration 4.3.13}


\section*{Errors Configuration 4.3 .14}

error the in instructions the follow process, configuration the during occurs error an If problem. the correct to message

פתרון בעיות
4.3 .15
seconds. 10 for solid stayed has light power the that enough long wait you sure Make the in listed is interface one only and interface, network correct the have you sure Make down.drop-
off. turned is firewall your sure Make
devices other no sure make and bridge wireless the into computer your from directly Plug ethernet. via computer your to connected are
wireless the on jack power the to closest port the into plugged is ethernet the Ensure bridge.
using try English, US than other languages for configured System Operating an using If "en_us" to setting Locale the setting or PC provided KOP the on as such OS, English an
.page this on described as
the resolve doesn't this If .1.60 npcap installing after success reported have users Some radio the reinstall then and tool radio the and npcap uninstall to recommended it's issue, configuration. known a to back get to order in tool
computer. different a try fails, else all If


\section*{(LabVIEW) Program Drivetrain Test your Creating 5.1}
program LabVIEW FRC® basic a load and build create, to how covers document This : Clll LabVIEW installed have you that sure make beginning, Before roboRIO. a onto drivetrain a for as roboRIO your imaged and configured have you that and Tools Game FRC the and FRC for
.tutorial Robotto-Zero- the in described

\section*{Project a Creating 5．1．1}

New Create the display to link Project Robot roboRIO FRC the click and LabVIEW Launch box．dialog Project Robot FRC

\section*{Project Configuring 5.1.2}


Dialog: Project FRC New Create the in Fill
project your for name a Pick
in. project the place to folder a Select
number team your Enter
.Drive Arcade select unsure, If type. project a Select
Finish Click

\section*{Program the Running}

a after roboRIO the on remain not will manner this in deployed program a that Note : Clll step, next the follow starts roboRIO the time every run to program a deploy To cycle. power program. the Deploying

Robot the open to item Main.vi Robot the clickdouble- window, Explorer Project the In VI. Main
deploy to VI Main Robot the of ribbon) top the on Arrow (White button Run the Click the and VI, the by required items all VI, the deploys LabVIEW roboRIO. the to VI the all on Save click VIs, any save to prompted If roboRIO. the on memory to settings target prompts.
on information more For Mode. Teleop in robot the put software, Station Driver the Using Software Station Driver FRC the see software, Station Driver the using and configuring
article.
Enable. Click
responds. robot the how observe and joysticks the Move
a deploy you When stops. VI the that Notice VI. Main Robot the of button Abort the Click manipulate can you but roboRIO, the on runs program the button, Run the with program computer. host the from program the of objects panel front the

\section*{Program the Deploying}
the allows This roboRIO. your to program a deploy to need will you competition, the in run To debugging same the allow doesn't but controller, the of reboots across survive to program deploy To panel. front the from running as execution) highlight probes, panel, (front features program: your
it. expand to Specifications Build to next + the click Explorer, Project the In to build the for Wait Build. select and Deployment upBoot- Robot FRC on clickRightcomplete.
you If Startup. as Run select and Deployment UpBoot- Robot FRC on again clickRighta currently is there that indicates simply dialog This OK. click dialog, conflict a receive terminated/replaced. be will which roboRIO the on program click or completion successful on window deployment the close to box the check Either completes. deployment the when button close the of seconds few a within code deployed the running start automatically will roboRIO The closing. dialog the

\section*{(C++/Java) Program Drivetrain Test your Creating}
with comes WPILib program. robot a create to ready we're installed, is everything Once for recommended highly is templates these of Use programs. robot for templates several scratch. from code robot own their write to free are users advanced however, users; new has which examples provided the of one from project a creating through walks article This robot. basic a drive to written already code some
convenience the for hardware vendor involve that examples code includes guide This : : प्रा The KOP. the in included controller motor the to refers PWM document, this In user. the of similar is usage but motor), 500 (Falcon controller motor FX Talon the references tab CTRE a controlling MAX SPARK CAN the references tab REV The VictorSPX. and TalonSRX for has user the that assumption an is There motor. brushed for similar it's but motor, brushless firmware, (update device(s) the configured and vendordeps required the installed already
).REV CTRE( documentation manufacturer the to according etc) IDs, CAN assign

\section*{Project WPILib New a Creating}
"WPILib" type Then, .Ctrl+Shift+P with palette command Code Studio Visual the up Bring list the up bring will this "WPILib", with start commands WPILib all Since prompt. the into command: project" new a "Create the select Now, commands. Code VS specificWPILib- of

Window:" Creator Project "New the up bring will This

below: explained are Window Creator Project New the of elements The Example select example, this For create. to wish we project of kind The :Type Project project. this for used be will that Java) or ( \(\mathrm{C}++\) language the is This :Language project the generate to example or class base the select to used is box This :Base Project Started Getting select example, this For from.
located. be will project robot the which in folder the determines This :Folder Base the that name the specifies also This project. robot the of name The :Name Project
checked. is box Folder New Create the if given be will folder project project the hold to created be will folder new a checked, is this If :Folder New a Create located be will project the checked, not is it If folder. specifiedpreviously- the within not is folder the if thrown be will error An folder. specifiedpreviously- the in directly box Folder New Create the if given be will folder project checked. not is this and empty checked. is
names package for used be will which project, the for number team The :Number Team code. deploying when robot the locate to and project the within
supports WPILib While simulation. and test unit Enables :Support Desktop Enable then desktop, support not do libraries If not. may libraries software party third this, testing unit unless unchecked left be should It crash. may or compile not may code your this check not do example, this For it. support libraries all and needed is simulation or box.
will project robot the and Project" "Generate click configured, been have above the all Once created. be
the of corner handright- bottom the in appear will generation project in errors Any : \(\mathrm{\square lll}\) screen.

\section*{Project New The Opening}
project the opening of option the give will Code VS project, your creating successfully After just (or Ctrl+0 then Ctrl+K typing by later or now that do to choose can We above. shown as project. our saved we where folder the select and macOS) on Command+0
.authors the trust I Yes Click will file the on clicking Double left. the on hierarchy project the see will we opened Once editor. the in file that open

\section*{Only) (C++ Configurations \(\mathbf{C +}+5.2 .3\)}
project, a open we Whenever IntelliSense. up set to step more one is there projects, C++ For Click configurations. C++ refresh to asking corner right bottom the in uppop- a get should we IntelliSense. up set to "Yes"

PWM
Java

C++
\begin{tabular}{|r|}
\hline frc/TimedRobot.h>cinclude\# \\
frc/Timer. \(h><\) include\#
\end{tabular}\(|\)

CTRE
Java


REV
Java
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
; com.revrobotics. CANSparkMax import ; com.revrobotics.CANSparkMaxLowLevel. MotorType impor \\
;edu.wpi.first.wpilibj.TimedRobot impor ;edu.wpi.first.wpilibj. Timer impor ;edu.wpi.first.wpilibj.XboxController impor
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{12}{*}{}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} & \\
\hline & & \\
\hline
\end{tabular}

C++

this C++ In used. are that WPILib of components the reference to needs code Our statements. import with done is it Java in statements; \#include using accomplished is / WPI_TalonFX / PWMSparkMax driving), (for Joystick for classes references program The the for used class base (the TimedRobot` motors), controlling (for CANSparkMax joystick the connecting (for DifferentialDrive and autonomous), for (used Timer example), motors). the to control

\section*{robot sample our for variables the Defining 5.2.5}


19
20
:private
system drive Robot //
; \}0m_left\{ PWMSparkMax: :frc
;\}1m_right\{ PWMSparkMax::frc
m_right\}; m_robotDrive\{m_left, DifferentialDrive::frc
;\}0m_controller\{ XboxController::frc
m_timer; Timer::frc

CTRE
Java

5. 글
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{( (1)} \\
\hline & );0Joystick( new = m_stick Joystick final private Timer(); new = m_timer Timer final private \\
\hline & C++ \\
\hline &  \\
\hline & ```
                                    :private
                        system drive Robot //
;}1m_left{ WPI_TalonFX::can::motorcontrol::phoenix::ctre
;}2m_right{ WPI_TalonFX::can::motorcontrol::phoenix::ctre
    m_right}; m_robotDrive{m_left, DifferentialDrive::frc
;}0m_stick{ Joystick::frc
        m_timer; Timer::frc
``` \\
\hline & \[
\begin{aligned}
& \text { REV } \\
& \text { Java }
\end{aligned}
\] \\
\hline & ```
                    { TimedRobot extends Robot class public
                        );kBrushlessMotorType. ,1CANSparkMax( new = m_leftDrive CANSparkMax final private
);kBrushlessMotorType. ,2CANSparkMax( new = m_rightDrive CANSparkMax final private
DifferentialDrive(m_leftDrive, new = m_robotD̄rive DifferentialDrive final private
);0XboxController( new = m_controller XboxController final private
                Timer(); new = m timer Timer final private
``` \\
\hline
\end{tabular}

:private
kBrushless\} ; : :MotorType: :CANSparkMax:
two and drive arcade for 0 port USB on joystick a have will examples our in robot sample The
create we Here 2). and 1 IDs with CAN use examples (Vendor 1 and 0 ports PWM on motors This (m_timer). Timer and (m_stick) Joystick (m_robotDrive), DifferentialDrive type of objects things: three does code the of section
class. Robot our of members as variables the Defines 1.
variables. the Initializes 2 .
the of bottom the at section private the in are C++ for initializations variable The : Clll Motor the sets also code C++ The ).Robot ( class the to private are they means This program. every command a it give don't we if off shut will drive (the seconds 0.1 to expiration Safety autonomous. for used Timer the starts and seconds) . 1

\section*{Initialization Robot 5.2.6}

constructor. the after but up, starting is program robot the when run is method Robot Init The something run to wanted we If anything. do doesn't program sample our for RobotInit The default). the override to above code the provide could we here

\section*{Example Autonomous Simple 5.2.7}


from autonomous to transitions robot the time each once run is method Autonomous Init The method. this in Timer the restart we program, this In mode. another

In mode. autonomous in is robot the while period every once run is AutonomousPeriodic the example, this In 20 ms . to defaults which time, fixed a is period the class TimedRobot the speed half at forward drives so, if and seconds 2 than less is timer the if checks code periodic has seconds 2 than more If class. DifferentialDrive the of method. ArcadeDrive the using drive. robot the stops code the elapsed,

\section*{Teleoperation for Control Joystick 5.2.8}

Java

this In function. TeleopPeriodic and TeleopInit a has mode Teleop the Autonomous, in Like purposes illustration for provided is it ,TeleopInit in do to anything have don't we example the of axisY- the map to method ArcadeDrive the uses code the , TeleopPeriodic In only. motion. turning to axisX- the and motors drive the of motion forward/back to Joystick

\begin{tabular}{r} 
C \(++{ }_{4}\) \}\{ override ()TestInit void \\
\}\{ override ()TestPeriodic void \\
\hline
\end{tabular}
and TestInit the ,TeleopInit to Similar functionality. robot testing for used is Mode Test only. purposes illustrative for here provided are methods TestPeriodic

Robot a to Project the Deploying 5.2.10 robot. a onto program the deploying for here instructions the see Please

\title{
Program Test your Running 5.3
}

\section*{Overview 5.3.1}
language: programming your for described as Program Test a download and create should You

> C++/Java

LabVIEW

Operation Tethered 5.3.2
cable USB or ethernet via Station Driver the to tethered while program test your Running roboRIO and station driver the that and deployed successfully was program the confirm will configured. properly are
USB. or Ethernet over PC the to connected and on powered be should roboRIO The
5. 1 닌

\section*{Station Driver FRC the Starting 5.3.3}
by or Desktop the on icon the clickingdouble- by launched be can Station Driver FRC® The Station. Driver >FRCPrograms->AllStart- selecting

\section*{Station Driver the Up Setting 5.3.4}

do to order In robot. your to connect to order in number team your to set be must DS The return Press box. number team the in number team your enter then tab Setup the click this effect. take to setting the for box the outside click or already, robot the to connect to DS the for settings network correct the have typically will PCs DHCP. to set is adapter Network your sure make not, if but

Connectivity Confirm 5.3.5

Tethered 1: Fig.
Robot (or Link Enet the that confirm and Diagnostics click software, Station Driver the Using green. are leds Robot and wirelessly) operating if led, Radio

Wireless 2: Fig.
Robot the Operate 5.3.6

Tab Operation the Click
displayed is voltage battery that Confirm 1.
green. are indicators Joysticks and Code, Robot Communications, 2.
Mode Teleop in robot the Put 3.
responds. robot the how observe and joysticks the Move Enable. Click 4.
Disable Click 5.

Operation Wireless 5.3.7
as confirmed been have should operation tethered operation, wireless attempting Before Driver the to connected while program test your Running .Operation Tethered in described configured. properly is point access the that confirm will WiFi via Station

Point Access the Configuring
as use for radio robot the configuring on details for radio your Programming article the See point. access an
The robot. the to wirelessly station driver the connect point, access the configuring After a set you If Utility). Configuration Bridge the in entered (as number team your be will SSID the to connect to it enter to need will you Utility Configuration Bridge the using when key address IP an ("Obtain DHCP to set is adapter network computer the sure Make network. automatically").
and Connectivity Confirm in steps same the using operation wireless confirm now can You above. Robot the Operate


Spark MAX

DISCRETE MOTOR CONTROLLERS (CAN/PWM Controlled)

More Information about the FRC Control System can be found at https://docs.wpilib.org/

120A Breaker


\section*{roboRIO NI 6.2}
"brain" the as serves roboRIO The FRC. for used controller robot main the is roboRIONI- The hardware. other the of all commands that code generatedteam- running robot the for

\section*{Panel Distribution Power CTRE}

12VDC a from power distribute to designed is (PDP) Panel Distribution Power CTRE The small a and breakers circuit resettingauto- through components robot various to battery for rated pairs output 8 provides PDP The connections. fused function special of number provides PDP The current. continuous 30A for rated pairs 8 and current continuous 40A Regulator Voltage the for connectors as well as roboRIO, the for connectors 12 V dedicated current, logging for interface CAN a includes also It Module. Control Pneumatics and Module .Manual User PDP the see information, detailed more For voltage. battery and temperature,
6. It

\section*{Hub Distribution Power REV}
6.4
battery 12VDC a from power distribute to designed is (PDH) Hub Distribution Power REV The 3 channels, max) (40A currenthigh- 20 features PDH The components. robot various to Hub Distribution Power The channel. currentlow- switchable 1 and max), (15A currentlowconnect to ability the and display, voltage LED an terminals, WAGO latching toolless features telemetry. timereal- for Client Hardware REV the to CUSB- or CAN over

\section*{Module Regulator Voltage CTRE 6.5}
by powered is that module independent an is (VRM) Module Regulator Voltage CTRE The multiple has module The PDP. the on connector dedicated a to wired is device The volts. 12 the for power regulated provide to is VRM the of purpose The outputs. 5 V and 12 V regulated User VRM the see information, more For cameras. vision IP and circuits, custom radio, robot
.Manual
6. 님

\section*{Module Power Radio REV}
6.6
components, system critical most the of one keep to designed is Module Power Radio REV The Radio The competition. the of moments toughest the in powered radio, WiFi OpenMesh the power barrel traditional a through radio the powering for need the eliminates Module Power Module Power Radio the connectors, RJ45 socketed two with POE Passive 18V Utilizing jack. radio. the to directly power providing while roboRIO and radio the between signal passes by Module Power Radio the to power add easily roboRIO, and radio the connecting After coded color the utilizing Hub Distribution Power the on channels currentlow- the to it wiring terminals. WAGO button push

\section*{Radio ACOM5P- or ANOM5P- OpenMesh 6.7}
robot the as used is radio wireless ACOM5P- OpenMesh or ANOM5P- OpenMesh the Either be can device The robot. the to functionality communication wireless provide to radio also can It home. at use for laptop a of connection direct for Point Access an as configured of one by powered be should radio robot The field. the on use for bridge a as configured be For Ethernet. over controller roboRIO the to connected and VRM the on outputs \(12 \mathrm{~V} / 2 \mathrm{~A}\) the
. Radio your Programming see information, more
more has heavier, slightly is ACOM5P- The .purchase for available longer no is ANOM5P- The
AN.OM5P- the to compared texture surface rough a has and grates, cooling

\section*{Breaker Circuit 120A 6.8}
switch power robot main the robot: the on roles two serves Breaker Circuit Main 120A The circuit 120A The components. and wiring robot downstream for device protection a and boards. Distribution Power and battery robot the of terminals positive the to wired is breaker 185120F) (PN: Datasheet Series 18X Bussmann Cooper the see please information, more For

\section*{Breakers Circuit Action Snap 6.9}

Power the with used are ,Series VB3 and series MX5 breakers, circuit Action Snap The breakers circuit these on ratings The circuits. branch to current limit to Panel Distribution higher. considerably be can values peak temporary current, continuous for are
battery, (SLA) Acid Lead Sealed 18Ah 12V single a is robot FRC an for supply power The the see information, more For robot. FRC an of demands current high the meeting of capable
page. Battery Robot

\footnotetext{
complete a for Manual FRC the consult legal, be may numbers part battery Multiple
}

\section*{Light Signal Robot}
is It B12ME522.855PB- BradleyAllen- the be to required is (RSL) Light Signal Robot The disabled. while solid stay and enabled when flash will and roboRIO the by controlled directly

\section*{Module Control Pneumatics CTRE}
required outputs and inputs the of all contains (PCM) Module Control Pneumatics CTRE The contains PCM The compressor. board on the and solenoids pneumatic 24 V or 12 V operate to robot the when automatically compressor the control will and sensor pressure the for input an PCM the see information more For code. the in created been has solenoid a and enabled is
.Manual User

\section*{Hub Pneumatic REV}

24 V and 12 V both switching of capable is that module standalone a is Hub Pneumatic REV The allow which channels solenoid 16 features Hub Pneumatic The valves. solenoid pneumatic two the of combination a or solenoids, actingdouble- 8 solenoids, actingsingle- 16 to up for to solenoids 12 V even allowing regulated, fully is voltage output selectable user The types.
4.75 V . as low as drops battery robot the when active stay flexibility the increasing device, the into built are ports sensor pressure analog and Digital works Hub the on connection CUSB- The system. pneumatic the of functionality feedback and for need a without systems pneumatic test to users allowing Client, Hardware REV the with
controller. robot additional an
6. 님

\section*{Controllers Motor}

System Control FRC the with work which controllers motor different of variety a are There the of control voltage variable provide to used are devices These use. for approved are and .usage of order in here listed are They FRC. in used motors DC brushless and brushed

PartyThird- on section this See WPILib. from supported not is control CAN Party 3rd : Tlll information. more for Devices CAN

SRX Talon 6.14.1

Road The Cross from controller" motor "smart a is Controller Motor SRX Talon The PWM or bus CAN the over controlled be can SRX Talon The Robotics. Electronics/VEX switches limit from inputs take can device this control, bus CAN the using When interface. For control. advanced perform to order in sensors similar or encoders, potentiometers, and .Guide User's SRX Talon the see information more

The Cross from controller motor controlled PWM or CAN a is Controller Motor SPX Victor The the to connection easy allow to connectorized is device The Robotics. Electronics/VEX Road entering from debris prevent to sealed is case The bus. CAN a or connectors PWM roboRIO .Guide User SPX Victor the see information, more For controller. the

\section*{Controller Motor MAX SPARK 6.14.3}
controller motor DC brushless and brushed advanced an is Controller Motor MAX SPARK The from input uses MAX SPARK the control, USB or bus CAN using When Robotics. REV from NEO REV the of encoder integrated the including sensors, other and encoders, switches, limit over controlled be can MAX SPARK The modes. control advanced perform to Motor, Brushless MAX SPARK the see information, more For only). configuration/testing (for USB or CAN PWM, .Manual User's

\section*{Controller Motor TalonFX 6.14.4}
features It motor. brushless 500 Falcon the into integrated is Controller Motor TalonFX The more For more! and SRX Talon the of features smart the of all and encoder integrated an . Guide User 500 Falcon the see information
motor DC brushed inexpensive an is Robotics REV from Controller Motor SPARK The wired be may switches Limit interface. PWM the using controlled is SPARK The controller. information, more For directions. both or one in travel motor limit to SPARK the to directly
.Manual User's SPARK the see

\section*{SP Victor 6.14.6}
\[
\begin{aligned}
& \text { has manufacturer the use, FRC for legal still is controller motor this While : } \mathrm{Fll|l|} \text { product. this discontinued }
\end{aligned}
\]

Road The Cross from controller motor PWM a is Controller Motor SP Victor The heat for housing metal isolated electrically an has SP Victor The Robotics. Electronics/VEX from debris prevent to sealed is case The optional. fan the of use the making dissipation, models. previous of size the half approximately is controller The controller. the entering

\section*{Controller Motor Talon 6.14.7}
has manufacturer the use, FRC for legal still is controller motor this While : वार० product. this discontinued

DC brushed controlled PWM a is Electronics Road the Cross from Controller Motor Talon The cooling. passive with controller motor

Controller Motor \(\mathbf{8 8 4}\) Victor / Controller Motor \(\mathbf{8 8 8}\) Victor 6.14.8


PWM speed variable are Robotics VEX from controllers motor 888 Victor and 884 Victor The usable also is which 884, Victor the replaces 888 Victor The FRC. in use for controllers motor

FRC. in

``` product. this discontinued
```

Texas and Micro Luminary by made (formerly Robotics VEX from Controller Motor Jaguar The may Jaguar the FRC, For FRC. in use for controller motor speed variable a is Instruments) interface. PWM the using controlled be only

## Controller Motor 60CDMC- and 60DMC- 6.14.10



``` product. this discontinued
```

integrated features 60DMC- The Digilent. from controller motor PWM a is 60DMC- The and overheating prevent to foldbackcurrent- including protection and sensing thermal easier for status and direction, speed, indicate to LEDs colormulti- four and damage, manual reference 60DMC- the see information, more For debugging.
the to Due controller. 60DMC- the to capabilities controller smart CAN adds 60CDMC- The more For PWM. with usable only is 60CDMC- the product, this discontinuing manufacturer

Page Product 60CDMC- the see information

## Controller Motor Venom 6.14.11

the on based motor a into integrated is Fusion With Playing from Controller Motor Venom The enabling onboard, measured all are position and temperature, current, Speed, CIM. original schemes. wiring and sensing complicated without modes control advanced

Controller with Motor BLDC Dynamo Nidec 6.14.12
controller and motor brushless first the is Controller with Motor BLDC Dynamo Nidec The data motor The motor. the of back the into integrated is controller motor's This FRC. in legal specifics. device more provides sheet

PWM. using controlled are Mindsensors from Controllers Motor SD540C and SD540B The Limit support. manufacturer of lack to due SD540C the for available longer no is control CAN directions. both or one in travel motor limit to SD540 the to directly wired be may switches page FRC Mindsensors the see information more For

$$
\text { Relay BridgeH- Spike } 6.15
$$

> this discontinued has manufacturer the use, FRC for legal still is relay this While : : पारा product.
motors to power controlling for used device a is Robotics VEX from Relay BridgeH- Spike The On/Off provides Spike the motor, a to connected When electronics. robot custom other or independently are outputs Spike The directions. reverse and forward the both in control The circuits. electronic custom 2 to up to power provide to used be also can it so controlled from powered and roboRIO the of output relay a to connected be should Relay BridgeH- Spike .Guide User's Spike the see information, more For Panel. Distribution Power the

## Module Power Servo

to available power the expanding of capable is Robotics Rev from Module Power Servo The Power Servo The of. capable is supply power integrated roboRIO the what beyond servos passed are signals control All channels. 6 across power 6 V of 90 W to up provides Module Module Power Servo the see information, more For roboRIO. the from directly through .webpage

## HD3000 Lifecam Microsoft

the into directly plugged be can that webcam USB a is HD3000 Lifecam Microsoft The more For FPS. 30 at video 1280x720 to up capturing of capable is camera The roboRIO. about information more For .page product Microsoft the see camera, the about information documentation. this of section Processing Vision the see roboRIO, the with camera the using

## Credits Image

6.18

Digilent. of courtesy 60DMC- of Image Instruments. National of courtesy roboRIO of Image SRX, Talon Controller, Motor Jaguar of Images Mindsensors. of courtesy SD540 of Image VEX of courtesy Relay BridgeH- Spike and SPX, Victor SP, Victor 888, Victor FX, Talon and Module, Power Radio Hub, Distribution Power MAX, SPARK of Image Inc. Robotics, photos VRM and SPARK, PCM, PDP, Lifecam, Robotics. REV of courtesy Hub Pneumatic Inc. AndyMark of courtesy photos other All ®.FIRST of courtesy

components. optional and mandatory of variety wide a of consists software FRC® The of debugging and development, design, the in you assist to designed are elements These feedlback provide to and operation robot control with assist as well as code robot your brief a provide will document this component software each For troubleshooting. when further to link a and appropriate, if download, package the to link a purpose, its of overview available. where documentation
software FRC required All Windows. is components FRC for OS supported primary The 11. \& 10 Windows on tested been have components
and macOS on tested and supported also are programming C++/Java for tools the of Many systems, these using develop to able be should C++/Java in programming Teams Linux. Radio Station, Driver the as such operations onlyWindows- the for system Windows a using

Tool. Imaging roboRIO and Utility, Configuration

## (Windows FRC LabVIEW


three the of one is Professional, LabVIEW of version recent a on based FRC, LabVIEW graphical, a is LabVIEW robot. FRC an programming for languages supported officially VIs, called icons, of collection a of consist programs LabVIEW language. drivendataflowis installer FRC LabVIEW The VIs. the between data pass which wires with together wired A download. for available also is and Parts of Kit Kickoff the in found DVD a on distributed instructions installation including software, FRC LabVIEW the with started getting to guide
.here found be can

## Code Studio Visual


other (the Java and C++ for environment development supported the is Code Studio Visual A languages. programming based text orientedobject- are Both languages). supported two configuration and installation the including FRC, for Java or C++ with started getting to guide .here found be can Code Studio Visual of
robot the of state the controlling of purpose the for used be to allowed software only the is This devices. input of variety a from robot your to data sends software This competition. during information More issues. robot troubleshoot help to used tools of number a contains also It . here found be can LabVIEW NI by Powered Station Driver FRC the about

## Options Dashboard 7.5

## Only) (Windows Dashboard LabVIEW 7.5.1

default. by Station Driver FRC the by launched automatically is Dashboard LabVIEW The using robot the of operation the about feedback provide to is Dashboard the of purpose The Default FRC the about information More features. in built of variety a with display tabbed
.here found be can software Dashboard

## SmartDashboard 7.5.2


customizable creating automatically by data robot your view to you allows SmartDashboard documentation Additional robot. your from sent data of piece each for specifically indicators .here found be can SmartDashboard on

## Competition Robotics FIRST

## Shuffleboard 7.5.3

and setup the on improves also It SmartDashboard. as features same the has Shuffleboard less being of cost the at design modern a and features new with data your of visualization .here found be can Shuffleboard on documentation Additional efficient. resource

primary The debugging. for tool programmer's a being on focused Dashboard a is Glass tools. plotting signal advanced and visualization pose view, field the are advantages

## LiveWindow 7.6



Test the with use for designed Shuffleboard, and SmartDashboard of feature a is LiveWindow the on sensors from feedback see to user the allows LiveWindow Station. Driver the of Mode about information More code. user written the of independent actuators control and robot
.here found be can LiveWindow

## Only) (Windows Tool Imaging roboRIO FRC 7.7

can instructions Installation FRC. in use for roboRIO a setup and format to used is tool This found be can tool this using roboRIO your imaging on instructions Additional . here found be

## Only) (Windows Utility Configuration Radio FRC

To progras 1) Connect pow 2) Make sure to 3) Wait for the $P$ 4) Enter your te 5) Press "Confi
practice for radio standard the configure to used tool a is Utility Configuration Radio FRC The the of experience the mimic to settings network appropriate the sets tool This home. at use installer standalone a by installed is Utility Configuration Radio FRC The field. playing FRC
.here found be can that

## Only) (Windows Viewer Log Station Driver FRC

Station. Driver FRC the by created logs view to used is Viewer Log Station Driver FRC The happened what understanding for important information of variety a contain logs These Station Driver FRC the about information More match. FRC or session practice a during here found be can logs the understanding and Viewer Log

## RobotBuilder


robot Based Command a of structuring and setup in aid to designed tool a is RobotBuilder of components various the in enter to you allows RobotBuilder Java. or C++ for project a in are commands your what define and interface operator and subsystems robot your get to code template structural generate then will RobotBuilder structure. tree graphical information More .here found be can RobotBuilder about information More started. you .here found be can architecture programming Based Command the about
code robot actual their verify to teams C++ and Java for way a offers Simulation Robot VS from directly launched be can simulation This environment. simulated a in working is more For on. movement robot's their visualize can users that field 2D a includes and Code

## Only) (Windows Simulator Robot LabVIEW FRC 7.12

that environment programming LabVIEW the of component a is Simulator Robot FRC The and/or code test to environment simulated a in robot predefined a operate to you allows here found be can Simulator Robot FRC the using on Information functions. Station Driver Explorer. Project LabVIEW the in file Readme.html Simulation Robot the opening by or

PathWeaver 7.13

autonomous advanced for paths configure and generate quickly to teams allows PathWeaver robot their navigate quickly to team the allowing curves smooth have paths These routines.
.section PathWeaver the see information more For field. the on points between

## Identification System 7.14


the describe to used be can that constants calculate automatically teams helps tool This following, trajectory simulation, robot like features in use for robot your of properties physical .section Identification System the see information more For control. PID and

## OutlineViewer

the of contents the of all to add and modify view, to used utility a is OutlineViewer the of tab Variables the use can teams LabVIEW purposes. debugging for NetworkTables Outline the see information more For functionality. this accomplish to Dashboard LabVIEW .section Viewer

to teams for provided library software standard the is (WPILib) Library Robotics WPI The for subroutines and classes useful of set a contains WPILib robots. FRC® their for code write controllers, motor sensors, as (such system control FRC the of parts various with interfacing functions. utility other of assortment an as well as station), driver the and
basedtext- supportedofficially- two the of each for one WPILib, of versions two are There maintain to made is effort considerable A C++. for WPILibC and Java, for WPILibJ languages: be can they unless added not are features library - languages two these between parityfeaturenames method and class the possible when and C++, and Java both for supported reasonably for available is support builtcommunity- unofficial While similar.highly- or identical kept are C++. and Java cover only will documentation this ,python notably languages, other some appropriate their to due languages supportedofficially- the for chosen were C++ and Java classes. science computer schoolhigh- and industry both in ubiquity and abstractionof-level-
effort user increased of cost the at performance, endhigh- better offers C++ general, In ensure to much do not does compiler C++ the and manually, handled be must (memory greater much but performance, lesser offers Java runtime). at crash not will code user Java. use to encouraged strongly are users New/inexperienced convenience.

## documentation and code Source 8.2

the on online available is code source its of entirety the - library sourceopen- an is WPILib Page: GitHub WPILib
directories: source WPILibC and WPILibJ the in found be can code source C++ and Java The
code source Java 。
code source $\mathrm{C}++$ •

## Competition Robotics FIRST

questions detailed resolve to code source the read to encouraged strongly are users While official the on found be can documentation concisemore- functionality, library about WPILibC: and WPILibJ for pages documentation

9.1

Software. System Control FRC® for workarounds) (and issues known details article This

### 19.1.1 בעיות פתוחות

## Settings Ethernet 2.0 roboRIO

in work will This only. DHCP to configured is port Ethernet the 2.0, roboRIO the On Issue: communicate not will but server, DHCP a as acts radio the where setups networking normal Ethernet. via Station Driver the to directly tethered when
eth0 Adapter Ethernet the change to Dashboard Web roboRIO the Use Workaround: .Local Link or DHCP to Address IPv4 Configure

## Code No Reporting Station Driver

properly not to roboRIO the causes that 2.0 roboRIO the in occurrence rare a is There Issue: but connection successful a report to Station Driver the causes This program. robot the start roboRIO. the on deployed is code though even code, no
been have volunteers FIRST but cause, root the investigating currently are We Workaround: occurs. this when roboRIO the reboot to is recommendation the and aware made
also can seconds 5 for roboRIO the on button User physical the Pressing : : पारा If code. robot the start not will reboot a but start, not to code robot the cause that Ensure button. User the press rebooting, after start not does code robot the button. User the with contact in is robot the on nothing

## Communicate to Fails Sometimes Port Second Radio

port Ethernet second the causes that Radios OM5P the in occurrence rare a is There Issue: communicate. not to plug) power the from farthest one (the
the with communication restablish will radio the cycling power Generally, Workaround: from available switch linktp- the as such switch network a utilize Alternately, port. second switch network the into devices ethernet all plug and 005SW- brainboxes the or Choice FIRST tethering easier allows also This port. Ethernet first radio's the into switch the plug then and competition. at while

## Lockups System Causing I2C Onboard

in result can language, any in 2, or 1 roboRIO the on port I2C onboard the of Use Issue: specific the on dependent be to appears lockups these of frequency The lockups. system being is bus the how as well as differently) behave will roboRIOs different (i.e. hardware used.
to device another or port I2C MXP the use to is mitigation surefire only The Workaround: may roboRIO different a using and/or frequently less device the Accessing data. I2C the read assess to team each to up be will it lockups, of likelihood/frequency the reduce significantly the on identified definitively be not can lockup This lockup. of risk the of tolerance their occur. to believed is behavior this where match a for called be not will fault field a and field not will and responding stop completely will roboRIO the hang, CPU/kernel a is lockup This these of any via roboRIO your access can you If SSH. or webpage DS, the via accessible be issue. different a experiencing are you methods,
I2C roboRIO the using without sensor color REV the accessing for exist alternatives Several sensors. I2C other for used be could approach similar A port.
roboRIO the to data sends sensors, color REV 2 to up Supports .Pico Pi Raspberry a Use available. readily and $\$ 10$ ) than (less cost low is Pico Pi The serial. via via roboRIO the to data sends sensors, color 41- Supports . Pi Raspberry a Use a as Pi Raspberry a using already teams for useful Primarily NetworkTables. coprocessor.

## hang or slow be may 2.0 roboRIO on Properties Updating

Imaging the using reformatting without 2.0 roboRIO a on properties the Updating Issue: hang. or slow be may number) team the setting as (such Tool
be to able be should roboRIO the waiting tool the of minutes few a After Workaround: set. be should properties new the and rebooted

WPILib updating after Mac on crashes Simulation
running WPILib, of version newer a use to project the updating after macOS, On Issue: appearing. GUI the without crashes immediately simulation run Alternatively, .clean Gradle, in command a Run | WPILib run Code, VS In Workaround: directory. build the delete or terminal the in clean gradlew/.

## GradleRIO missing to due build Invalid

to similar errors shown get will they and broken get will cache Gradle user's a Rarely, Issue:
following: the

```
_'2020.3.2'] version: 'edu.wpi.first.GradleRIO', [id: plugin requested apply not Could
    'edu.wpi.first.GradleRIO' id with plugin a provide not does it as }
```


## Workaround:

need may machines Windows . $\sim \$$ USER_HOME/.gradle under located cache Gradle your Delete far. so Windows on up shown only has issue This .files hidden view to ability the enable to OS. alternative an on it get you if issue this report Please

## תווים סיניים ב-Log Station Driver

. . ㅂำ
showing Intellisense with issues have will launches Code VS when open files C++, In Issue: not or ones appropriate the just not and unit compilation a from options all from suggestions Code. VS in bug a is This files. header finding

Workaround:
open Code VS leave but Code, VS in files all Close 1.
exists it if folder, .vscode the in file c_cpp_properties.json Delete 2.
Code. VS in command Intellisense" C++ "Refresh the Run 3.
or (linuxathena platform a like looks that something see should you right bottom the In 4 . (release) linuxathena to it set and it click linuxathena not it's If etc). 64windowsx86-
$\min \sim 1$ Wait 5.
working be now should Intellisense file). header a (not file cpp main the Open 6.

## Editions N Windows on Simulation and Dashboards WPILib with Issues

on issues have will code) robot simulated and (dashboards CSCore using code WPILib Issue: Windows. of editions N Education cameras load not but run, will Shuffleboard • upstart- on crash will Smartdashbard • upstart- on crash will Simulation Robot • Pack Feature Media the Install Solution:

### 2023.1.0 Tools Game in Fixed 9.1.2 <br> startup at joysticks detect not does Station Driver

it when joysticks connected already detect not does application Station Driver The Issue: works. running already is it after joysticks Connecting up. starts or button rescan joystick the use or DS, the starting after joysticks Connect Workaround: joysticks. for rescan to shortcut F1 the

## Maxes Spark CAN using when startup on crash program Robot - Sysid

to configured was it if startup on crashes program robot deployed 2023.1.1's SysId Issue: Maxes. Spark CAN use
newer. or 2023.2.1 WPILib Install Solution:
work not does NetworkTableInstance client a flushing Manually
to flushed be to data the cause not does NetworkTableInstance a on flush() Calling Issue: release. WPILib upcoming an in fixed be will issue This immediately. subscribers remote faster a need that publishers NetworkTable the on option periodic the Set Workaround: rate: update Java
period. 10ms a with it update and myTopic for DoubleEntry a Get // PubSubOption. ,0(getEntry)."myTopic"(getDoubleTopictable. = myEntry DoubleEntry ));0.01(periodic $\rightarrow$
C++

```
    period. 10ms a with it update and myTopic for DoubleEntry a Get //
0. = periodic. { ,0).GetEntry("myTopic"table.GetDoubleTopic( = entry DoubleEntry::nt
```


## 2023 for New 9.2

This 2023. for software System Control FRC® to made been have improvements of number A as well as features and changes new the of overview brief a provide and describe will article the includes only document This changes. WPILib Java/C++ for changelog complete more a various the on viewed be can changes of list full the users, end for changes relevant most repositories. GitHub WPILib
.issues known of list the review also to recommended It's

## Years Previous from Projects Importing 9.2.1

years. previous from projects update to necessary is it changes, GradleRIO internal to Due compatible. be to imported be must projects 2022 any ,2023 for WPILib Installing After

## (Java/C++) Changes Major 9.2.2

the for important it's that library the to changes major the of some contain changes These sections other the see changes, breaking the of all include not does This recognize. to user changes. more for document this of
pub/sub introduces This 4.0. version as rewritten completely been has NetworkTables • timestamped including features, new of number a adds and NetworkTables to semantics browser by use easier for basedWebSockets- now also is protocol wire Its updates. use don't who users to transparent be should changes the of most While applications. still are clients V3 NetworkTables changes. breaking several are there features, new the dropped. been has support V2 but compatible,
logs data into recording telemetry roboton- for support Added •
consistent a as observed been has This default. by disabled now is telemetry LiveWindow • previous the restore to LiveWindow. enableAllTelemetry Use overruns. loop of source behavior
added been has library AprilTag •
11 from 17 to bumped been has version Java Bundled •
C++ running for required is 2022 Studio Visual support. 20 C++ with 12.1 GCC • Windows on Simulation
systems operating Mac on cameras USB supports now CameraServer •

## Architectures: and Systems Operating Supported

supported not are Arm and bit 32 bit. 64 11, \& 10 Windows •
but work, may $2.32>=$ glibc with distributions Linux Other bit. 64 22.04, Ubuntu • unsupported are

Arm. and Intel later, or 11 macOS •
20.04, \& 18.04 Ubuntu 10.15, macOS supported: longer no are OSes following The : : प्राप Windows. bit32- any and 8.1, Windows 7, Windows

# WPILib 9.2.3 

הספרייה הכללית
repeatedly()/RepeatCommand use ,perpetually()/PerpetualCommand Deprecated • instead until() to withInterrupt(BooleanSupplier) Renamed • InterpolatedTreeMap Added • decorator repeatedly matching and RepeatCommand Added • decorator unless (BooleanSupplier) Added • of property runsWhenDisabled the set to decorator ignoringDisable(boolean) Added • command a decorators handleInterrupt(Runnable) and finallyDo(BooleanConsumer) Added • Commands in factories command static Added • ComputerVisionUtil Added •
framework Trigger existing the of expansion an ,BooleanEvent and EventLoop Added • commandbasednon- encompassing
classes HID the to methods factory returning-BooleanEvent Added •
with etc.) CommandXboxController( classes HID of versions basedcommand- Added • methods factory returning-Trigger
controllers unicycle LTV Added •
fromRotations() radians; and rotations uses that method factory Rotation2d Added • fromRadians() and
PID heading on input continuous uses now HolonomicDriveController • classes geometry 3d various Added • Pose3d -

Quaternion -
Rotation3d -
Transform3d -
Translation3d -
Twist3d -
CoordinateAxis -
CoordinateSystem -
classes sim pneumatic various Added •
CTREPCMSim -

# DoubleSolenoidSim - 

REVPHSim -
SolenoidSim -
Translation2d to getAngle() Added •
instead isEnabled Use .Compressor.enable() Deprecated • methods triangle PS4Controller missing Add • mode test in control actuator LW disable to method Add • commands of representation Sendable Enhanced • Commands to moved been have factories static the ;CommandGroupBase Deprecated • and constructor Supplier<Command> SelectCommand's Refactor • ProxyCommand into ProxyScheduleCommand
commands default for check isFinished Remove • commands default remove to method Add •
class Button and consistent be to renamed were methods Button and Trigger • deprecated.
be should it as terminology, False/True use to changed are bindings 'sTrigger brevity, for variants; False and True both has type binding Each unambiguous. here: listed are variants True the only
edge. rising on schedule ):whenPressed and whenActive (replaces onTrue * on cancel edge, rising on schedule ):whileActiveOnce (replaces whileTrue * edge. falling
if schedule edge, rising on ):toggleWhenActive (replaces toggleOnTrue * scheduled. if cancel and unscheduled deprecated: completely are types binding Two as described better is which case use niche fairly a is this :cancelWhenActive * the for condition end an as )Trigger. rising () (edge rising trigger's the having ).Command.until() (using command behavior opno- the on relied this common, however :whileActiveContinuously * to way correct more The command. scheduledalready- an scheduling of Command. using is edge falling the before ends it if command the repeat the if is difference only the - RunCommand a or RepeatCommand/repeatedly commands two in result to likely more is that but interrupted, is command Manually behavior. desired the achieve than other each canceling perpetually is whileActiveContinuously like binding schedulingblindly- a implementing
intuitive. be not might though possible, still
times. compile C++ improve to instantiations template common Precompile •

## Changes Breaking

must Users framework. basedcommand- old the includes longer no release 2023 The : : पारा framework basedcommand- new the use to code existing refactor
 inverted be to need will turning) (i.e. axisZ- The WPILib. of rest the match to conventions behavior. old the restore to
classes Shuffleboard changes. breaking several introduced (NT4) 4.0 NetworkTables • provides GenericEntry as ;NetworkTableEntry of instead GenericEntry return now should name class the of replacement textual simple a methods, same the all nearly for guide migration NT4 the See removed. been have setters force the Also, suffice.
information. more
StateSpaceUtil from MakeMatrix() deprecated Removed • class KilloughDrive deprecated Removed •

MecanumDrive of detail implementation an was which ,Vector2d Removed • or )edu.wpi.first.math.Vector( ><N2Vector use Java, In KilloughDrive. and C++, In instead. )edu.wpi.first.math.geometry.Translation2d( Translation2d <frc/geometry/ from Translation2d or ><Eigen/Core from Eigen::Vector2d use instead. >Translation2d.h

Use classes. SpeedControllerGroup and SpeedController deprecated Removed • instead MotorControllerGroup and MotorController class MatrixUtils deprecated Removed • classes mentioned above used that overloads deprecated various Removed • available are functions Static functions. getInstance() deprecated various Removed • instead

SimDevice in functions deprecated various Removed •
property enum an be to interruptible command Refactored • flag boolean a than rather object command the of )getInterruptionBehavior()( be can decorator withInterruptBehavior(InterruptBehavior) the scheduling; when property this set to used
overridden be cannot groups command of methods lifecycle Command • value onlymove-new a - CommandPtr return to changed Decorators Command only] [C++ • commands holding for type
distances wheel use now SwerveDrivePoseEstimator and SwerveDriveOdometry • module's swerve a represent to SwerveModulePosition Use speeds; wheel of instead driven. distance and angle
distances wheel the in take now SwerveDrivePoseEstimator and SwerveDriveOdometry • parameter. variadic a as than rather array an in
distances wheel use now MecanumDrivePoseEstimator and MecanumDriveOdometry • wheel the represent to MecanumDriveWheelPositions Use speeds; wheel of instead distances.
classes estimation pose and odometry all on methods resetPosition and Constructors • parameters. distance wheel mandatory have now rearranged been have arguments function and constructor estimator pose and Odometry • documentation API the consult should Users implementations. between consistent be to accordingly. calls method the update and using they're class particular the for
methods C++20 of versions wpi Removed •
)><numbers (include wpi::numbers of instead std::numbers Use -
)><span (include wpi::span of instead std::span Use C++. in ElevatorFeedforward from argument template Removed •
9.2.4 סימולציה
values decimal NetworkTables for setting precision Added • elements GUI for support docking Added • plots in axis Y secondary Save •

## Shuffleboard 9.2.5

widget bar number to option orientation vertical Added • populating auto not widget Field2d Fixed • channels 24 support to Widget PowerDistribution Update •
image field Up Charged 2023 Added • and (kF PIDController by supported longer no features remove to widget PID Update • enable)

SmartDashboard 9.2.6

Macs. (Arm64) Silicon Apple on supported not is SmartDashboard $\qquad$
channels 24 support to Widget PowerDistribution Update • plots all clear to option Add • and (kF PIDController by supported longer no features remove to widget PID Update • enable)

Glass 9.2.7
values decimal NetworkTables for setting precision Added • elements GUI for support docking Added • plots in axis Y secondary Save •

PathWeaver 9.2.8
image field Up Charged 2023 Added •

GradleRIO 9.2.9
7.5.1 Gradle to Upgrade •
during off powered roboRIO if damaged get could scripts upstart- where issue Fixed • deploy

## cscore 9.2.10

4.6.0 opencv to Update • module ArUco Added •

OutlineViewer 9.2.11
values decimal NetworkTables for setting precision Added •

## Installer One in All WPILib 9.2.12

supported now are Macs (Arm64) Silicon Apple • 1.74 Code VS to Update •

7 .NET use to Update • issues known and changelog to links Add •

Code Studio Visual 9.2.13 הרחבת
5.8.2 JUnit to templates Update • dialog versions project from button copy Add • projects Romi importing Allow •

RobotBuilder 9.2.14
been has install RobotBuilder legacy the based,command- old of removal the With : : पार्य removed.

2022 from files save yaml import not will Robotbuilder changes, file project to Due : ใरापा earlier. or
parameters ><doublestd: : function and DoubleSupplier for support Add •
SmartDashboard to Buttons Joystick to tied commands put to option Add •
Controller PS4 Add •
Number Team Validate •

SysID 9.2.15
support 2 Pigeon Added •
0 of delay measurement a specify now can User • rotations per units overriding not option Units Override Fixed •

Romi 9.2.16
changes major No •


## WPILib 10.1 יסודות Code Studio Visual

FRC. in development Java and C++ for IDE supported the is Code Studio Visual Microsoft's WPILib the and Code Studio Visual using of basics the of some introduces article This extension.


니 ำ
 ज

10.1.2 2
 Visual-ㄴำ FRC. 길 Code Studio
10.1 .3

 .
 ต WPILib. ㄴำ

WPILib 10.1.4 הרחבת

# פקודות WPILib ב-Code Studio Visual 

## 

ㄴ
 GradleRIO ㄴํ
Intellisense C++ the to update an Force - Intellisense C++ Refresh C++: WPILib configuration.
for use to toolchain the Select - Toolchain C++ Current Select C++: WPILib current the clicking as same the is This vs...). roboRIO vs. desktop (i.e. Intellisense bar. status right bottom the in mode
Intellisense Switch - Types Binary Intellisense C++ Enabled Select C++: WPILib executable and shared, static, between
ำारा WPILib . 1 [1]

## ㄴำ 

RioLog whether Change - Setting Deploy on RioLog Start Auto Change WPILib: Enabled. to defaults This deploy. on automatically starts
robot building whether Change - Setting Enabled Support Desktop Change WPILib: defaults This purposes. simulation and test for this Enable enabled. is Desktop on code off. Support Desktop to
Java. $\overline{C l}$ C++
Setting Mode Offline in Deploy/Debug Except Commands Run Change WPILib: then other commands for Mode Online in running is GradleRIO whether Change Defaults online). from dependencies pull automatically to attempt (will deploy/debug mode). (online enabled to
Change - Setting Mode Offline in Command Deploy/Debug Run Change WPILib: to attempt (will deploy/debug for Mode Online in running is GradleRIO whether mode). (offline disabled to Defaults online). from dependencies pull automatically
whether Change - Setting Extension Simulate Default Select Change WPILib: build. in defined extensions simulation (all default by enabled are extensions simulation enabled) be will gradle
on tests skip to whether Change - Setting Deploy On Tests Skip Change WPILib: deploy) on run are (tests disabled to Defaults deploy.
robot stop to whether Change - Setting Entry on Simulation Stop Change WPILib: entry). on stop (don't disabled to Defaults simulation. running when entry on code
Debugger Windows as Store) (From Preview WinDbg Use Change WPILib: (from Preview WinDbg or debugger Code VS the use to whether Change - Setting

Store). Windows
GradleRIO WPILib the to update an for Check - Updates WPILib for Check WPILib: or tools, extension, Code Studio Visual the update not does This project. the for version the use to recommended strongly are Users dependencies. offline mode debug in roboRIO to code robot deploy and Build - Code Robot Debug WPILib: debugging start and
 on project code robot current the builds This - Code Robot Sim Hardware WPILib: comupter the to attached hardware using simulation in running it starts and PC your support. vendor Requires simulation. software pure then rather
to wizard a Open - Project Gradle 2020/2021/2022 WPILib a Import WPILib: 2022.2020-from project Gradle Code VS existing a from project new a create you help at is documentation Further
(e.g. tools Java WPILib the Install - GradleRIO from tools Install WPILib: offline the by default by done is this that Note etc.). Shuffleboard, SmartDashboard, installer

ㄴำ C++ or Javadocs WPILib the either Opens - Documentation API Open WPILib: documentation Doxygen (Project information project with widget a Opens - Information Project Open WPILib: etc.) version, extension version,
WPILib a open to used is command This - Palette Command WPILib Open WPILib: )WPILib typing and Ctrl+Shift+P hitting of (equivalent Palette Command WPILib the to links which page simple a opens This - Help WPILib Open WPILib: site) (this documentation
current the on flag the clear will This - Flag Updates WPILib for Ask Reset WPILib: you if version WPILib latest the to project a update to promptre- to you allowing project, update. not to chose previously
the in command arbitrary an run you lets This - Gradle in command a Run WPILib: environment command GradleRIO

## ㄴำ


variable Home Java Code VS the Set - Home FRC to Home Java Code VS Set WPILib: using not if needed is This extension. FRC the by discovered Home Java the to point to WPILib the with sync in are settings intellisense the sure make to installer offline the settings. build
stores extension WPILib the where folder the Shows - Folder Log Show WPILib: the to issue extension an debugging/reporting when useful be may This logs. internal developers WPILib
PC your on project code robot current the builds This - Code Robot Simulate WPILib: Enabled. to set be to Support Desktop requires This simulation. in running it starts and from output console view to used display RioLog the starts This - RioLog Start WPILib: program robot a
SmartDashboard, (e.g. tools WPILib launch to you allows This - Tool Start WPILib: Code VS inside from etc.) Shuffleboard,
any runs and project code robot current the builds This - Code Robot Test WPILib: Enabled. to set be to Support Desktop requires This tests. created

## Program Robot a Creating

with comes WPILib program. robot a create to ready we're installed, is everything Once for recommended highly is templates these of Use programs. robot for templates several scratch. from code robot own their write to free are users advanced however, users; new

## Class Base a Choosing

choose first must users templates, program robot WPILib the of one using project a start To Robot primary their create to classes base these subclass Users robot. their for class base a available choices three are There program. robot the of flow main the controls which class, class: base the for

TimedRobot

C++ - Java Documentation:
C++ - Java Source:
the of control provides It users. most for recommended class base the is class TimedRobot The are which methods, exit() and ,periodic() ,init() of collection a through program robot these During teleoperated). or autonomous (e.g. states robot specific during WPILib by called For receives. it data the to according acts and device input each polls typically code your calls, joystick the of state and joystick the of position the determine typically would you instance, of example an provides also class TimedRobot The accordingly. act and call each on buttons C++/Java( SendableChooser through routines autonomous retrieving
comments informative some removes that available is template Skeleton TimedRobot A : : Inll .TimedRobot with familiar already you're if this use can You example. autonomous the and .Skeleton TimedRobot of is below shown example The

(

the calling by changed be can This default. by ms 20 every called are methods Periodic rate. update desired new the with constructor superclass
overruns). (loop behavior unintended some cause can rate robot your Changing : : पार rate. custom a at methods schedule to Notifiers use also can Teams

Java


## RobotBase

C++ - Java Documentation:
C++ - Java Source:
not generally is and offered, classbase- minimal most the is class RobotBase The must everything user; the for handled is flow control robot No use. direct for recommended default by template The method. startCompetition() the inside scratch from written be etc). auto, (teleop, modes operation different the process to how showcases
startCompetition() blank a offers that available is template Skeleton RobotBase A : Cl
method.

## Robot Command

by Robot Timed a of functionality basic the to adds framework Robot Command The events These events. into data input raw the converting and inputs polling automatically a when instance, For triggered. is event the when executed is which code, user to tied are is it and called automatically is button that of pressing the to tied code pressed, is button Robot Command The directly. button that of state the of track keep or poll to necessary not but behavior, complex with code readto-easy- compact write to easier it makes framework understand to order in programmer a from investment time frontup- additional an requires
works. framework Robot Command the how
.Tutorial Programming BasedCommand- the see should Robot Command using Teams

## Romi

template. Bot Command - Romi or Timed - Romi the use should Romi a using Teams

Timed - Romi
an exposes that class RomiDrivetrain a provides template Timed - Romi The to user the to up It's method. zaxisRotate) double xaxisSpeed, arcadeDrive(double function. arcadeDrive this feed encoders. onboard Romi's the resetting and retrieving for functions provides also class This

Bot Command - Romi
an exposes that subsystem RomiDrivetrain a provides template Bot Command - Romi The feed to user the to up It's method. zaxisRotate) double xaxisSpeed, arcadeDrive(double function. arcadeDrive this onboard Romi's the resetting and retrieving for functions provides also subsystem This encoders.

## Class Base a Using Not

main() a in program their write simply and entirely class base a omit can users desired, If not should users - discouraged highly is This program. other any for would they as method, wish who those for supported is it but - code robot their writing when wheel" the "reinvent flow. program their over control absolute have to

> are they unless program robot a of method main ( ) the modify not should Users : : 제리 doing. are they what of sure absolutely

### 10.3.2 יצירת פרויקט WPILib חדש

Visual the up Bring project. robot new our create can we class, base a on decided we've Once prompt. the into "WPILib" type Then, .Ctrl+Shift+P with palette command Code Studio specificWPILib- of list the up bring will this "WPILib", with start commands WPILib all Since
command: project new a Create the select Now, commands. Code VS

Window:" Creator Project "New the up bring will This

below: explained are Window Creator Project New the of elements The project, example an be can This create. to wish we project of kind The :Type Project 1. the of each for exist Templates WPILib. by provided templates project the of one or which projects, basedCommand- for exists template a Additionally, classes. base robot this - features additional of number a include but class base TimedRobot the on built are teams. new for recommended highly is program robot of type
project. this for used be will that Java) or (C++ language the is This :Language 2. be will that template of type the specifies this project, template a is this If :Folder Base 3.
used.
located. be will project robot the which in folder the determines This :Location Project 4. the that name the specifies also This project. robot the of name The :Name Project 5. checked. is box Folder New Create the if given be will folder project
project the hold to created be will folder new a checked, is this If :Folder New a Create 6. located be will project the checked, not is it If folder. specifiedpreviously- the within not is folder the if thrown be will error An folder. specifiedpreviously- the in directly checked. not is this and empty


supports WPILib While simulation. and test unit Enables :Support Desktop Enable 8. then desktop, support not do libraries If not. may libraries software party third this, testing unit unless unchecked left be should It crash. may or compile not may code your
it. support libraries all and needed is simulation or
will project robot the and Project" "Generate click configured, been have above the all Once created. be
the of corner handright- bottom the in appear will generation project in errors Any : $\mathrm{\square lll}$ screen.
below. shown is selected are options all after example An
File Edit
Base F
C:IUs
Sele
Projec
Gettin
Create
This cr
the fol
Team
254

### 10.3.3 פתיחת הפרויקט החדש

project the opening of option the give will Code VS project, your creating successfully After just (or Ctrl+0 then Ctrl+K typing by later or now that do to choose can We below. shown as project. our saved we where folder the select and maceS) on Command +0

Visual Studio Coo
i Project
will file the on clicking Double left. the on hierarchy project the see will we opened Once editor. the in file that open


# 10.3.4 קונפיגורצית C++ (עבור C+C בלבד) 

project, a open we Whenever IntelliSense. up set to step more one is there projects, C++ For Click configurations. C++ refresh to asking corner right bottom the in uppop- a get should we

IntelliSense. up set to "Yes"
10.4 ספריות צד שלישי
need likely most will sensors advanced or controllers motor PWMnon- using are that Teams dependencies. vendor external install to

## Dependencies? Vendor Are What 10.4.1

software their add to others and REV, CTRE, as such vendors for way a is dependency vendor A devices. other and controllers motor with interface can library This projects. robot to library complex more to access have and CAN via devices their with interact can teams way, This control. PWM traditional than features depthin- and

## Dependencies Vendor Managing 10.4.2

its have can project robot each (so basis projectper- a on installed are dependencies Vendor "offline". or "online" installed be can dependencies Vendor dependencies). vendor of set own while internet, the over dependencies the downloading by done is functionality "online" The installer. specificvendor- a by provided typically is offline
reconnect to sure make mode, "online" the via dependency vendor a installing If : : पारा will cache the otherwise days 30 every about rebuild and internet the to computer the install. library downloaded the deleting completely clear,
offline the because available, when installers offline their using recommend Vendors : : पार्य working when useful extremely are that programs additional with bundled typically is installer devices. their with

Work? It Does How

## Java/C++ - Work? It Does How

$\sim /$ to system your on installed is library vendor the describing file JSON a C++, and Java For Windows). on Public\Users\C: is ~ and year the is YYYY (where wpilib/YYYY/vendordeps location online an from fetched be can file the or installer offline an by done be either can This the to add to Code VS from used then is file This Code. Studio Visual in item menu the using projectper- a on managed is information library Vendor project. individual each to library vendor given a of version consistent a to pointing always is project a that sure make to basis \wpilib\Public\Users\C: at cache Maven the in placed are themselves libraries The library. or (recommended) installer offline an with here copy local a place can Vendors .maven $\backslash Y Y Y Y$ a from library the fetch to build initial an for internet the to connected be to users require
location. Maven remote
C++, (Java, components multiple with libraries complex of specification allows file JSON This choose that Vendors simulation. to related complexities some handle helps also and etc.) JNI, VS within from updates for check to users enable also JSON the in URL remote a provide to

Code.

## LabVIEW - Work? It Does How

palettes various on items Party Third new few a be might there teams, LabVIEW For and ,Motor CAN labeled Control Motor >- Actuators in one ,Actuators in one (specifically, \Instruments National\Files Program\C: in folders to correspond These ).Sensors in one Party Third\WPI\Robotics Rock\vi.lib\2020 LabVIEW
vendor the from VIs the download LabVIEW, for libraries party third install to order In respective the into VIs party third the drop and drag Then installer). of sort some via (typically
VI. other any like just above mentioned folder

Libraries Installing
Code VS

[^2]and Ctrl+Shift+P press installer, offline an by installed been has that library vendor a add To Palette Command WPILib the open to right top the in icon WPILib the on click or WPILib type option the Select menu. the from it select then ,Libraries Vendor Manage typing begin and .(offline) libraries new Install to
click then each, to next box the checking by project the to add to libraries desired the Select library the adding project, the in folder vendordeps the to copied be will file JSON The .OK project. the to dependency a as or WPILib type and Ctrl+Shift+P press mode, online in library vendor a install to order In begin and Palette Command WPILib the open to right top the in icon WPILib the on click new Install on click then and menu, the in it select and Libraries Vendor Manage typing

URL. JSON vendor the paste + copy and instead (online) libraries

## חיפוש עדכונים (Offline)

offline, installed when even basis, projectper- a on managed version are dependencies Since each for (offline) updates for Check select and Libraries Vendor Manage to need will you update. to wish you project

## חיפוש עדכונים (Online)

a If location. update online an is populate optionally may vendors that file JSON the of Part check will (online) updates for Check running specified, location appropriate an has library location. remote the from available is library the of version newer a if

## הסרת תלות בספריה

the from Libraries Current Manage select project, a from dependency library a remove To .OK click and uninstall to libraries any for box the check menu, Libraries Vendor Manage project. the from dependencies as removed be will libraries These

## LineCommand-

the through done be also can URL vendor the from dependency library vendor a Adding enter and root, project the at instance linecommand- a Open task. gradle a via linecommandthe add will This URL. JSON vendor the is ><url where ><urlurl=-- vendordep gradlew libraries Vendor project. the of folder vendordeps the to file JSON dependency library vendor way. same the updated be can
folder. wpilib user the from JSONs vendordep fetch also can task gradle vendordep The vendordep gradlew example, For URL. file the as FRCLOCAL/Filename.json pass so, do To basedcommand- the for JSON the fetch will url=FRCLOCAL/WPILibNewCommands.json--
framework.
10.4.3 ספריות
offline installers, online offer they whether see to site vendor the visit to links these Click (online) Libraries New Install >- Code VS the to in plug to are below URLs both. or installers, feature.
Pigeon CANdle, CANifier, CANcoder, Contains - Framework Phoenix CTRE 2023
Tuner Phoenix and Libraries SPX Victor and SRX, Talon FX, Talon 2.0, Pigeon IMU, devices CAN CTRE configuring for program
electronics.com/release/com/ctre/phoenix/-https://maven.ctr (v5): Phoenix latest.json-frc2023-Phoenix5
electronics.com/release/com/ctre/-https://maven.ctr (Pro): Phoenix
latest.json-frc2023-phoenixpro/PhoenixPro
electronics.com/release/com/ctre/-https://maven.ctr v5): and (Pro Phoenix latest.json-frc2023-phoenixpro/PhoenixProAnd5
the use years, previous as library Phoenix same the of version 2023 the get To : : पारा Pro. Phoenix using you're if links json other the of one Use v5). (Phoenix above link first
you If project. a within links vendordep Phoenix above the of ONE use Only : : option. third the use project, same the in Pro Phoenix and v5 Phoenix both need

Venom the including devices PWF all for Library - Driver Fusion With Playing motor/controller
https://www.playingwithfusion.com/frc/playingwithfusion2023.json
Fusion Sensor and Micro,NavX- MXP,NavX- for Libraries - Labs Kauai https://dev.studica.com/releases/2023/NavX.json
Color and MAX SPARK including devices REV all for Library - REVLib Robotics REV V3 Sensor
2023.json-metadata.revrobotics.com/REVLib-https://software
software CV PhotonVision for Library - PhotonVision
https://maven. photonvision.org/repository/internal/org/photonvision/

> 1.0.json-json-json/1.0/PhotonLib-PhotonLib

PathPlanner for Library - PathPlanner
https://3015rangerrobotics.github.io/pathplannerlib/PathplannerLib.json

## Libraries Command WPILib

the by installed is It library. vendor a into split been has library command new WPILib The link: online following the with installed be also may It installation. offline for installer WPILib

Library Command New




Library Romi

the of part a are that classes helper several contain to created been has Library Romi A example. RomiReference
.Vendordep Romi

## 10.5 בנייה והורדה של קוד רובוט

Since roboRIO. the on run to order in deployed and ("built") compiled be must projects Robot compilation. ""cross- as known is this controller, robot the on natively compiled not is code the
of: one do project, robot a deploy and build To
Code" Robot "Build enter/select and Palette Command the Open 1.
Code VS the of corner right top the in ellipses the by indicated menu shortcut the Open 2.
Code" Robot "Build select and window
Code" Robot "Build select and hierarchy project the in file build.gradle the on clickRight- 3 .
from locations three the of any from Code" Robot "Deploy selecting by code robot Deploy the to program robot the deploy and necessary) (if build will That instructions. previous the roboRIO.
the Interrupting code. robot deploying while robot the off powering Avoid : : पारा from code your prevent and filesystem roboRIO the corrupt can process deployment .imagedre- is roboRIO the until working
the with open will RioLog the and (1) message Successful" "Build a see will we successful, If
(2). runs it as program robot the from output console

## Output Console Viewing 10.6

NetConsole. a implements roboRIO the programs based text of output console the viewing For Console The roboRIO: the from output NetConsole the view to ways main two are There Code. VS in plugin Riolog the and Station Driver FRC the in Viewer
interact to want you If output. program for only is NetConsole the roboRIO, the On : : It li console. Serial the or SSH use to need will you console system the with

Viewer Console 10.6.1
Viewer Console the Opening
the at gear the on click Then, Station. Driver FRC® the open first Viewer, Console open To Console". "View select and (1) window viewer message the of top

## Window Viewer Console

gear The green. in program robot our from output the displays window Viewer Console The displayed. messages of level the set and window the clear can right top the in

Plugin Code VS Riolog 10.6.2
VS in output NetConsole the view to used be can that view Code VS a is plugin Riolog The FRC1511). Stoeckl, Manuel version: Eclipse original the for (credit Code

## View RioLog the Opening

To deploy. roboRIO each of end the at automatically open will view RioLog the default, By start and palette command the open to Ctrl+Shift+P press manually, view RioLog the launch option. RioLog Start WPILib: the select then "RioLog", typing

## Window Riolog

三 Riolog
for controls of number a contains Riolog The pane. top the in appear should view RioLog The console: the manipulating
the background, the In display. the pause/resume will This - Display Pause/Resume • clicked. is button resume the when displayed be will and received be still will packets new

When packets. new accept to whether toggle will This - Incoming Discard/Accept • be will received packets all and paused be will display the discarded being are packets packets. receiving resume will again button the Clicking discarded.
display. the of contents current the clear will This - Clear -
print as categorized messages hides or shows This - Prints Show/Show Don't • statements
files log saved for viewer to switches This - Viewer to Switch • warnings as categorized messages hides or shows This - Warnings Show/Show Don't • stream console the to reconnects or disconnects This - Disconnect/Reconnect the in messages on timestamps hides or Shows - Timestamps Show Show/Don't • window
with later open or view and save can you file a into contents log the Copies - Log Save above) Viewer to Switch (see viewer RioLog the console the to connect to roboRIO the of number team the Sets - Number Team Set process deploy the by launched is RioLog if automatically set on, stream

# Program Robot a Debugging 10.7 

occurs, this When behave. to it expect we way the in behave not will program a Inevitably, can we that so doing, is it what doing is program the why out figure to necessary becomes it a called is behavior program undesired an Such instead. do, to it want we what do it make
"debugging." called is process this and "bug,"
in assist to order in variables monitor and flow program control to used tool a is debugger A FRC® an for session debug a up set to how describe will section This program. a debugging program. robot
to time know/have not do but programs their debug to need who users beginning For : : प्रा the printing by simply program a debug to possible often is it debugger, a use to how learn students that recommended strongly is it However, console. the to state program relevant debugger. a use to learn eventually

## Debugger the Running 10.7.1

Command the open to Item Menu WPILib the on click or WPILib type and Ctrl+Shift+P Press item menu Code Robot Debug the select and Debug Type populated.pre- WPILib with palette debugging. begin and roboRIO the to download will code The debugging. start to
so execution program the pause will debugger the which at code of line a is "breakpoint" A as debugging, while useful extremely is This state. program the examine can user the that determine to code problematic in points specific at program the pause to user the allows it behavior. expected the from deviating is program the exactly where encounters. it breakpoint first the at pause automatically will debugger The

## Breakpoint a Setting

a set to number) line the of left the (to window code source the of margin left the in Click on set been has breakpoint the indicates circle red small A program: user your in breakpoint line. corresponding the

## Statements Print with Debugging 10.7.3

them view and code your in statements print use to is program your debug to way Another be should statements Print Station. Driver the or Code Studio Visual in RioLog the using They quantities. high in used when especially efficient very not are they as care with added overruns. loop cause can they as competition for removed be should

Java
);"example"(print.outSystem.
C++
;"n\example" << outs()::wpi

## NetworkTables with Debugging 10.7.4

computer. debugging your with information robot share to used be can NetworkTables advantage One .OutlineViewer or Dashboard favorite your with viewed be can NetworkTables data. the analyze graphically to used be can Shuffleboard like tools that is NetworkTables of for interface operator an provide later to data same with used be then can tools same These drivers. your

More Learn 10.7.5
.link this see Code VS with debugging about more learn To •
and understand you help will article Code VS this in mentioned features the of Some • very be can feature bulb) light (yellow Fix Quick The code. your with problems diagnose import. to what including problems of variety a with helpful
Testing. Unit do to is issues many so debug to having prevent to ways best the of One • do to having prevent to way great a also is Simulation in works robot your that Verifying • robot. actual the on debugging complex

## Project Gradle a Importing 10.8

years previous a for files build the update to necessary is it project, the in changes to Due vendor year's last since again, libraries vendor import to necessary also is It project. Gradle projects. year's this with compatible be to updated be must libraries

## Import Automatic 10.8.1

year's current the into projects gradle years previous import to teams for easy it make To Code. VS into projects years previous importing for wizard a includes WPILib framework, In Code. VS into project the load and components gradle necessary the generate will This supported. not are upgrades place
new a to directory current the from files source project your copies process import The : : पार्य the for code the updates it Additionally, files. gradle the regenerates completely and directory you ,build.gradle the to updates standardnon- made you If 2022. in made changes package supported. not are upgrades place in reason, this For again. changes those make to need will must libraries vendor year's last since again, libraries vendor import to necessary also is It projects. year's this with compatible be to updated be

## Wizard Import the Launching

Click project. that import to prompted be will you project, year's previous a open you When .yes
"WPILib" type and Ctrl+Shift+P Press menu. the from it import to chose can you Alternately, WPILib a "Import typing Begin commands. WPILib the locate to icon WPILib the click or below. shown as dropdown the from it select and project" Gradle 2020/2021/2022
of process the to similar is This window. Importer Project WPILib the with presented be You'll contains window This below. shown are steps the and window the and project new a creating elements: following the
build.gradle the select should Users imported. be to project the Selects :Project Gradle 1. project. gradle the of directory root the in file located. be will project robot the which in folder the determines This :Location Project 2. the that name the specifies also This project. robot the of name The :Name Project 3. a be must This checked. is box Folder New Create the if given be will folder project
location. original the from directory different
project the hold to created be will folder new a checked, is this If :Folder New a Create 4. located be will project the checked, not is it If folder. specifiedpreviously- the within
not is folder the if thrown be will error An folder. specifiedpreviously- the in directly checked. not is this and empty
 . ำ
enabled. is support test unit and simulation checked, is this If :Support Desktop Enable 6. addition, In things. unexpected some do will this where cases some are there However, do. libraries all not which support desktop need libraries vendor all gradle Romi the using imported is project the checked, is this If :Project Romi Import 7. projects. Romi for checked be only should This template. upgrade. the begin to Project Import Click
then can You directory. project new the into copied and upgraded be will project gradle The the using later it open or below uppop- the using immediately project new the open either shortcut. macOS) for Command+0 (or Ctrl+0

## קונפיגורצית C++ (עבור C++ בלבד)

project, a open you Whenever IntelliSense. up set to step more one is there projects, C++ For Click configurations. C++ refresh to asking corner right bottom the in uppop- a get should you

IntelliSense. up set to Yes

## ספריות צד שלישי

details. for Libraries Party 3rd See libraries. party 3rd importre- and update to necessary is It

disadvantages. and advantages its of description a get to below dashboard each on Click

tables network displays It dashboard. focused driveteam looking modern a is Shuffleboard It code. robot with controlled and positioned be can that widgets of variety a using data widgets. custom advanced and playback, / recording tabs, like: features extra many includes

## Started Getting - Shuffleboard

$\qquad$

Shuffleboard of Tour

are that JavaFX as such technologies newer on based FRC® for dashboard a is Shuffleboard Java and C++ for dashboards creating for used be to designed is It programs. Java to available many with familiar already are you then past the in SmartDashboard used you've If programs. Shuffleboard But way. same the work fundamentally they since Shuffleboard of features the of highlights: the of some are Here SmartDashboard. in aren't that features many has
has components the of Each standard. graphics Java the ,JavaFX on based is Graphics "themes" or "skins" different have to possible becomes it so sheet style associated an themes. dark and light default supply We Shuffleboard. for
can you fact In .data your of display the for sheets multiple supports Shuffleboard which and if indicate and window) Shuffleboard the in tab a as (shown sheet new a create SmartDashboard a and tab Test a is there default By it. on autopopulated be should data vs. debugging robot for be might tabs Other arrives. data as autopopulated are that tab driving.
interface the keep to grid a on out laid are (widgets) elements display Graphical in resolution less or more have to size grid the change can You read. to easy and clean and drag using layout your change you help to provided are cues visual and layouts your preserved. is layout grid the although lines grid the off turn to choose can you Or drop.
run you when default by instantiated is layout previous the and saved are Layouts again. shuffleboard
robot your by sent data the review you lets that feature playback and record a is There if robot the of actions the review carefully can you way That finishes. it after program wrong. goes something
graph a onto data drag can you and data numeric for available are widgets Graph scale. same the on and time same the at points multiple see to
team's your to specific are that widgets own your writing by Shuffleboard extend can You in found be can it extending on Documentation requirements.
from values choose can you which from sources data are Here area: Sources tabs the of one into value a dragging by display to sources other or NetworkTables this In sources. other or robot the from displayed is data you where is This panes: Tab This tab. LiveWindow the in here shown are that subsystems modeTest- is it example of set own it's has window each and windows, tabbed of number any show can area populate.auto- and size grid like properties
the playback can you where controls likemedia- of set controls: Record/playback data historical see to session current

## Shuffleboard Starting


"Dashboard the setting by starts Station Driver the when it start automatically can You above. picture the in shown as tab settings the in Shuffleboard to Type" folder tools WPILib YEAR the in icon Shuffleboard the clickingdouble- by it run can You Desktop. Windows the on
"WPILib" type and Ctrl+Shift+P pressing by Code Studio Visual with from start can You Select Palette. Command WPILib the launch to right top the in logo WPILib the click or .Shuffleboard select then ,Tool Start
on vbs. is XXX (where file shuffleboard.XXX the on clickingdouble- by it run can You the is YYYY (where ~/WPILib/YYYY/tools/ in macOS) or Linux on py. and Windows system development a on useful is This Windows). on Public\Users $\backslash C$ : is ~ and year system. Linux or macOS a as such installed Station Driver the have not does that
on shuffleboard command: the typing by line command the from it start can You ~/WPILib/YYYY/tools from Linux or macOS on shuffleboard.py python or Windows often is This Windows). on Public $\backslash$ Users $\backslash$ : : is $\sim$ and year the is YYYY (where directory installed. Station Driver the have doesn't that system development a on easiest
the using tools the launch help scripts (macOS/Linux) py. and (Windows) vbs. The : : पार्टा JDK. correct

## dashboard the onto data robot Getting

the in methods use to simply is dashboard the on displayed data get to way easiest The write: Shuffleboard to number a write to example For class. SmartDashboard

Java

## ());getXjoystick1.

SmartDashboard.
of value X the of value a and value" X "Joystick label the with displayed field a see to to sent be will value joystick new a executed, is code of line this time Each joystick. the an see to want you whenever value joystick the write must you Remember: Shuffleboard. value the display only will program the of start the at once line this Executing value. updated executed. was code of line the time the at once

modes Autonomous and Teleop like modes operating regular in data display can robot Your is robot the when subsystems robot the all operate and status the display also can you but for one Shuffleboard, start you when tabs two see you'll default By mode. Test to switched as underlined is tab selected currently The mode. Test for another and Teleop/Autonomous below. picture the in seen be can

the to values of number a writing involves robot a of status the monitoring or debugging Often is that GUI a to values put can you Shuffleboard With by. stream them watching and console corresponding the updated, are values As program. your on based constructed automatically the on by streaming numbers catch to try to need no is there - value changes element GUI
screen.
teleop) or (autonomous mode operating normal in values Displaying
Java

correct the calling simply by Shuffleboard to values String or Numeric, Boolean, write can You is code additional no data, the of value the and name the including and type the for method required. value). name",SmartDashboard.putNumber("dashboardvalue) name",SmartDashboard.putString("dashboard- call types String value) name",SmartDashboard.putBoolean("dashboard- call types Boolean

```
data of type display the Changing
```

change often can you Shuffleboard to sent being values the of type data the on Depending displayed were values number that see can you example previous the In format. display the the for view voltage a as and angles, represent better to dial a numbers, decimal either as as...". "Show select and tile the on clickright- type display the set To potentiometer. turret menu. popup the in list the from types display choose can You
the while actuators and sensors your for values display to program your to code add may You not is robot the whenever Station Driver the from selected be can This mode. Test in is robot or RobotBuilder by generated automatically is values these display to code The field. the on designed is mode Test article. next the in described is and program your to added manually be can it addition In robot. a on actuators and sensors the of operation correct the verify to in loops PID tuning for and potentiometers as such sensors from setpoints obtaining for used
code. your
"Enable" setting and button "Test" the on clicking by Station Driver the in Mode Test Enable and actuators any of status the display will Shuffleboard this, doing When robot. the on subsystem. by organized program your by used sensors

## view Sources the from data Getting

rearrange just you and tabs the of one on appears automatically data NetworkTables Normally deleted accidentally was that value a recover to want might you Sometimes data. that use and key. NetworkTables / SmartDashboard the of part not is that value a display or tab the from under view NetworkTables from pane a onto dragged be can values the cases these For just and display to want you that value the Choose window. the of side left the on Sources the for widget of type default the with created automatically be will it and pane the to it drag type. data
divider the drag to possible is it - left the on visible not is view Sources the Sometimes : : पार्य move happens this If visible. not is sources the so Sources the and panes tabbed the between drag and click left then cursor, resizing divider a for look and edge left the over cursor the finished when and drag, and click to where see can you below images two the In view. the out
image. second the in shown as is divider the

## Streams Camera Displaying

for useful is This Shuffleboard. in tab a on viewed be can robot the from streams Camera helping or operators for view obstructed less a give to seeing is robot the what viewing a or computer station driver the on running algorithm vision a from output the visualize be can API CameraServer the using running is that stream Any robot. the on coprocessor widget. stream camera a in viewed

## Stream Camera a Adding

in source "CameraServer" the view and "Sources" select dashboard your to camera a add To camera of list A below. example the in shown as window Shuffleboard the in panel side left the Camera". Front "Robot called camera one only is there case this in shown, be will streams placed be also can stream the Alternatively displayed. be should it where tab the to that Drag as: "Show selecting and list Sources the in stream the on clickingright- by dashboard the on

Stream". Camera

File Recording
Sources Widget

- CameraServer

Name
Robot Front Camera
and resized be can It window. the in displayed be will it added is stream camera the Once it. like would you where moved
frame a high too or resolution a high too from data much too sending that aware Be : : पारा laptop. the and roboRIO the both on usage CPU high cause will rate

## widgets with Working

widgets. called are Shuffleboard in screen the on manipulate you that displays visual The publishes program robot the that values from displayed automatically generally are Widgets

NetworkTables. with
widgets Moving
widget, the over cursor the move Just drop. and drag with simply moved be can Widgets grid on widgets place only can you dragging When position. new the to it drag and clicklefta dragging When display. your of resolution the effect will grid the of size the and squares at room enough is there that means generally Green displayed. be will outline green or red too be or overlap will it that means generally red and widget the drop to location current the fit. doesn't it where location a to moved being is widget a below example the In drop. to big

widgets Resizing
The image. widget the of corner or edge the dragging and clicking by resized be can Widgets As widget. the resize to position right the in is it when cursorresize- a to change will cursor be can widget the that indicating drawn be will outline red or green a widgets, moving with the with area larger a to resized being widget a shows below example The not. or resized widgets. surrounding with overlap no is there that indicating outline green

## widgets of type display the Changing

It robot. the from published data the on depending types display in rich very is Shuffleboard depending it change to want might you but type, display default a choose automatically will the on clickright- widget, any for are displays possible the what see To application. the on the In type. desired the choose menu, popup the from and as..." "Show the select and widget the see can You boolean. a other the and number a one values, data two are below example two only has value boolean The each. to available are that options display of types different or text, or color), red/green (the box boolean a as shown be can it (true/false) values possible number graph, a as displayed be can value number The. switch. toggle or button toggle a value. the of context the on depending view voltage a or text, dial, slider, number bar,

to title the editing and bar title their in clickingdouble- by widgets of title the change can You select and widget the on clickright- then layout, a in contained is widget a If value. new the displayed. is that title widget the change can you there From properties. the

## properties widget Changing

colors represented, values of range the as such widget a of appearance the change can You and widget the on clickright- possible is this where cases In element. visual other some or the below, shown widget value boolean this In menu. popup the from properties" "Edit select edited. be all can color false and color true title, widget

## Lists with Working

visually it making layout, vertical a in together grouped tiles of sets are Shuffleboard in Lists than space screen less up take lists in tiles addition, In related. are tiles those that obvious tiles: individual
within labels smaller have instead they labels; header individual have don't lists in Tiles entries. list their
gaps smaller have lists another; one between gaps create together placed tiles Individual
tiles. between
follows: as created be can list A list. the in first be should that tile the on clickRightmenu. popup the from Layout" "List then layout...", new to "Add Select it. of top the at be will tile the and "List", labeled created be will list new A entry. list their of bottom the at is label their labels; header have not do lists in tiles that Note

## list a from tiles to/removing tiles Adding

follows: as list existing an to added be can tile A added. be to tile the and list the Identify
list. the onto tile new the Drag
tile the it, show to small too is size list current the If list. the to added be will tile The already not if added be will scrollbar vertical a and screenoff- list the to added be will present.
reverse: in process the following by list a from removed be can tile A
removed. be to it within tile the and list the Identify space. free with anywhere it place and list the of out tile the Drag location. that at placed and list the from removed be will tile The
list a in tiles Rearranging

selecting: and tile the on clickingright- by rearranged be can list a in Tiles
list. the of top the towards tile the moves up Move list. the of bottom the towards tile the moves down Move
list. a of top the to tile the moves top to Send
list. a of bottom the to tile the moves bottom to Send does: button each and ,Remove labeled buttons two are There tile outgrayed- with dropdown of section pinline; the (above button Remove top The layout. Shuffleboard the from tile the deletes label) outgrayed- with dropdown of section pinline; the (below button Remove bottom The layout. Shuffleboard the from it inside tiles all and list the deletes label) list
tiles Adding see it, deleting without list a of out entry an take to want you If .list a from tiles to/removing

list a Renaming

outside Click name. the changing and label list the on clickingdouble- by list a rename can You changes. save to label the


## tabs manipulating and Creating

data robot your of "views" different separate help uses Shuffleboard the layout tabbed The helping for display the has the tab a have might You useful. more displays the make and number a are There competitions. in use for tab different a and program robot the debug or NetworkTables from data which control can You powerful. very tabs make that options of in later described options populateauto- the using tabs your of each in appears sources other article. this

## tabs Default

SmartDashboard labeled tabs, two are there time first the for Shuffleboard open you When on depending had SmartDashboard that views two the to correspond These LiveWindow. and of both shuffleboard In mode. Test or Autonomous/Teleop in running is robot your whether time. any available are views these

File
Recordin
Sources Wid
$\checkmark$ CameraServer
Name
?
the using written are that values the all tab SmartDashboard the On autogenerated the all tab LiveWindow the On methods. of set SmartDashboard.putType() shown. are values debugging
tabs between Switching
case the In window. the of top the at label tab the on clicking tabs between switch can You associated are that values the see to LiveWindow or SmartDashboard on click simply above, tab. each with
tab. last the of right the to just symbol plus(+) the on clicking by tabs additional add can You tab the in label the on clickingdouble- by label the set can you tab new a create you Once tab the up bring to menu Tab the use or tab the on clickright- also can You it. editing and field. Title the editing by name the change can you window that from and preferences

Title
Auto pop
Source p
Tile size
Show gri
Horizont

Vertical

Since name. tab selected the of left the to symbol )minus(- the clicking by tabs hide can You permanently to possible not is it, NetworkTable relevant the on based generated are tabs table. the deleting without them delete
populateauto- to tab the Setting
values new populate automatically them have to is tabs with features powerful most the of One example above the In pane. Preferences tab the in supplied is that prefix source a on based is populate Auto and "SmartDashboard/Shooter" of prefix Source a has pane Preferences the sub- a specifies that class SmartDashboard the using written are that values Any on. turned one than more match that keys Note: tab. that on appear automatically will Shooter of key SmartDashboard/ with start also keys those Because tabs. both in appear will prefix Source appear will widgets those tab, SmartDashboard default the for prefix Source the that's and write to NetworkTables use can you pane, one in appear values have only To panes. both in Alternatively SmartDashboard. under not is that path different a use and values and labels have but cluttered, very it making tab SmartDashboard the in appear everything let could you filtered. better be will that needs your for tabs specific

## spacing and grid tab the Using

might tabs some So square). large per pixels of (number size Tile own it's have can tab Each the in size Tile The grid. fine a have might others and layout easier for resolution coarser have addition, In preferences. Shuffleboard the in settings global any overrides preferences Tab the of the of edge the and widget the in drawing the between padding the specify can you horizontal as to referred usually are parameters these interfaces user program you If widget.
vgap). (hgap, gap vertical and
tabs between widgets Moving
one from it deleting without tabs between widgets move easily to way no is there Currently hope We pane. new the into left the on hierarchy sources the from field the dragging and tab soon. update subsequent a in capability that have to

## Graphs with Working

see to useful very are Graphs time. over values numeric graph can you Shuffleboard With sensor the example For operating. is robot your as changing are values motor or sensor how tuning. during responding is it how see to loop PID a in graphed be can value
"Show select and heading the in clickright- and value numeric a choose graph, a create To graph choose then and as..."
set automatically will It selected. you that value the of plots line shows widget graph The can You seconds. 30 be will show will graph the that interval time default the and scale the below). (see graph the for setting the in that change

## Values Data Additional Adding

do To graph. same the on values multiple show to desirable often is it values related For the of side (left view source NetworkTables the from values additional drag simply that, shown as added be will value that and graph the onto it drop and window) Shuffleboard graph. the onto values additional drag to continue can You below.
the in shown as displayed not is it if legend the view to vertically graph the resize can You plot. the in used are that sources the all shows legend The below. image
time" "Visible the changing by graph the in shown are that seconds of number the set can You select and graph the on clickright- properties, the access To properties. widget graph the in properties". "Edit by off and on sources turn selectively can graph the time visible the setting to addition In (see window properties the in shown sources the of each for off and on switch the turning below).

# Recording a Playing 

by: back played be can recordings Previous
playback". "Load click then menu "Recording" the Selecting
date by grouped are Recordings shown. directory the from the from recording a Choose one. correct the identify help to made was recording the time the are names file the and list. the from recording correct the Select


## Playback the Controlling

the playing is recording the While file. that of playback begin will file recoding the Selecting to option the as well as recording the within time current the show will controls recording "transport" the back played being is recording the When it. watching while recording the loop controlled. be to playback the allow will controls

follows: as work controls The point data changed last the to playback the up backs button arrowdouble- left The playback the stops and starts controls play/pause The values robot current showing resumes and playback stops button stop square The value data changed next the to forward skips arrowdouble- right The the of parts different view to time in point any to positioning direct for allows slider The recording over and over run will playback the is, that looping, playback on turns switch loop The stopped until recording the of time total the and recording the within point current the shows time The

## Formats File Different to Converting


data recorded analyze To efficiency. for format binary custom a in are recordings Shuffleboard the convert to converters data supports Shuffleboard app, the through back it playing without but app, the with shipped is converter CSV simple a Only format. arbitrary an to recordings plugins. Shuffleboard in them include and converters custom write can teams
"Add the with selected be can files Individual once. at converted be can recordings Multiple "Add the with once at selected be can directory a in files recording all or button, Files" button. Directory"
but directory, $\sim /$ Shuffleboard/recordings the in generated be will recordings Converted button. "Change" the with selected manually be can only default, By right. top the in dropdown the with selected be can converters Different the in options as appear will plugins from converters Custom available. is converter CSV the dropdown.

## Notes Additional

where through playing is it if but timeline the scrubbing while properly display won't Graphs run. original the in as display will they then graph the by captured be can history graph the
are Those behaves. and looks Shuffleboard way the set that settings of number a are There menu. File the from accessed be can that pane Preferences Shuffleboard the on

## theme the Setting

depends setting the and Light Material and Dark Material themes, two supports Shuffleboard be can and application entire the to apply that styles css uses This preferences. your on time. any changed
when or yourself them moving or adding are you when grid a on tiles positions Shuffleboard be can it or tab each for when size tile default the set can You populated.auto- are they in resolution Finer changed. is setting default the after created tabs the all for globally set Shuffleboard the in set be can This tiles. of placement over control finer in results grid the below. shown as window Preferences

## files save layout the with Working

The options. menu as... Save / File and Save / File the using layout your save can You applied automatically be to layout previous the cause to options has window preferences to window layout" "Save a display will Shuffleboard addition, In starts. Shuffleboard when off turn to choose can You changed. has layout the if exit, on layout the save to you remind don't you so case this in manually layout the save to sure be but exit, on prompt automatic the changes. your loose

Theme
Default ti
Automat
Show co
specify robot, your on server NetworkTables your find to able be to Shuffleboard for order In running you're If pane. Preferences the on tab "NetworkTables" the in number team your the with populatedauto- be will field Server the Station, Driver running a with Shuffleboard can you Station, Driver the without computer a on running you're If information. correct address. network robotRIO the or number team your enter manually
bugs and issues, FAQ, Shuffleboard
were components system control other the of most as well as Shuffleboard : : पारा problems reporting before sure Be 8 . Java with work not will and 11 Java with developed Environment. Java default the as set is and installed 11 Java has computer your that

## Questions Asked Frequently

Shuffleboard? with requests feature or bugs issues, report I do How
creating by page GitHub Shuffleboard the on added be can requests feature and issues, Bugs, at look to try Please system. the into entered are they as them address to try will We issue. an that something duplicating aren't you sure make to ones new creating before issues existing Shuffleboard the on issues the find can You planned. is that work or reported been already has .page GitHub

## Shuffleboard? to extensions other or widgets own my add I can How

custom with program the extending on documentation of amount large a has Widgets Custom themes and widgets custom additional for used be can that projects plugin Sample plugins. .page GitHub Shuffleboard the on found be can
code? source the from Shuffleboard build I can How
GitHub the on repository the forking or cloning, downloading, by code source the get can You is directory current the that sure make source, the from Shuffleboard run and build To site. commands: these of one use and code source level top the

| Application | the run systemsWindows (for Command <br> file) gradlew.bat |
| ---: | ---: |
| Shuffleboard Running | :app:run ./gradlew |
| for classes utility and APIs the Building |  |
| creation plugin | :api:shadowJar./gradlew |
| file jar application complete the Building | :app:shadowJar ./gradlew |

## Code with Layouts - Shuffleboard

11.1 .2
tabs Using
By grouping. logical a in widgets organizes tab Each interface. tabbed a is Shuffleboard tabs new but - LiveWindow and SmartDashboard legacy the for tabs has Shuffleboard default, organization. better for program robot a from directly Shuffleboard in created be now can
tab new a Creating
Java
$\begin{array}{r}\text { ) ;"Title Tab"(getTabShuffleboard. = tab ShuffleboardTab } \\ \hline \text { C++ } \\ \hline \text { );"Title Tab"GetTab (: Shuffleboard = tab SShuffleboardTab } \\ \hline\end{array}$
which class, Shuffleboard the on method single a calling as simple as is tab new a Creating tab. the to data your adding for handle a return and Shuffleboard on tab new a create will time. each handle same the return will title tab same the with times multiple getTab Calling
tab a Selecting
Java

| ) ;"Title Tab" (selectTabShuffleboard. |
| ---: |
| C++ |
| );"Title Tab"SelectTab (: Shuffleboard |

title" "Tab and Title" "Tab (so sensitivecase- is This title. by selected be tab a lets method This method the time the at exists title that with tab a if works only and tabs), individual two are "Example" named tab a if effect an have only willselectTab("Example") calling so called, is defined. been previously has robot the by created ones just not Shuffleboard, in tab any select to used be can method This program.

חסרונות
created tabs normal from ways important few a in differ program robot a from created Tabs dashboard: the from
file save Shuffleboard the in saved Not
autopopulation for support No
program robot their in contents tab the specify to expected are Users
tabs normal from differentiate to color special a Have

## data Sending

specifying first without Shuffleboard to directly sent be cannot data SmartDashboard, Unlike in. placed be should data the tab what

## data simple Sending

add calling by done is these) of arrays and booleans, strings, (numbers, data simple Sending an overwrite not will but present, already not if value the set will method This tab. a on value. existing

Java

| ) "Numbers" (getTabShuffleboard. |
| :---: | :---: |
| ) ;3.14, "Pi" (add. |

robot), the on done calculation some of output the example, (for updated be to needs data If function periodic a in or needed when it update then value, the defining after getEntry () call

Java
);"Vision"(getTabShuffleboard. = tab ShuffleboardTab private
= distanceEntry NetworkTableEntry private )0,"target to Distance"(addtab.
() ; getEntry.
\{ ()calculate void public
;... = distance double

## reboots between persist choices Making

between persist to want may settings some dashboard, the from robot a configuring When the configure to forget) (or remember drivers having of instead reboots driverstation or robot match. each before settings
and roboRIO the on saved value the make will add of instead addPersistent using Simply starts. program robot the when loaded
controllers. motor or choosers as such data sendable to apply not does This : : पारा

Java


## data Retrieving

also is Shuffleboard from data retrieving friends, and SmartDashboard.getNumber Unlike article. previous the in covered we which NetworkTableEntries, the through done

Java


## Competition Robotics FIRST

( (1)
to dashboard the on set be can speed maximum the flaw: glaring a has example basic This maximum at (always saturated be to inputs the cause could which - 1] [0, outside value a the in covered - problem this avoid to way a is there Fortunately, reversed! even or speed),
article. next

## widgets Configuring

how as well as point, data a display to use to widget which exactly specify can programs Robot consult here, listed be to widgets many too are there As configured. be should widget that details. for docs the
widget a Specifying
chain: call the in add after withWidget Call
Java

|  |
| :---: |
| C++ |
| )"Drive"GetTab( (: Shuffleboard: frc ) , "Speed Max"Add (. here widget the specify // kNumberStider) : BuiltInWidgets: : WithWidget(frc. GetEntry(); |

values the modify to slider a use to widget Speed" "Max the configure we example, this In field. text basic a of instead

## properties widget Setting

speed), full to stop (full 1 to 0 from value a be to sense makes only speed maximum the Since can we Fortunately, zero. below drops value the if problems cause can 1 to 1 - from slider a method withProperties the using that modify

Java
)"Drive" (getTabShuffleboard.
) 1 ,"Speed Max" (add.

> C++


## Competition Robotics FIRST


#### Abstract

Notes sensitivewhitespace- and case- are names however, name; by specified be can Widgets it reason, this For "NumberSlider"). and slider" "Number from different is Slider" ("Number name. raw by of instead widget the specify to class widgets in built the use to recommended is WidgetType custom a creating by or name by specified be only can widget custom a However, widget. that for "max" and ("Max" sensitivewhitespace- nor sensitivecase- neither are names property Widget details for class BuiltInWidgets the in widget the on documentation the Consult same). the are widget. that of properties the on

\section*{Widgets Organizing}

Position and Size Widget Setting


tab. the in widget the of position and size the set to withPosition and withSize Call example, For be. should widget the high rows and wide columns of number the sets withSize some that Note grid. the in cell single a occupy widget the makes 1) withSize (1, calling the case which in size, specified the than greater be may that size minimum a have widgets
size. supported smallest the use will widget
columns and Rows widget. the of corner lefttop- the of column and row the sets withPosition number also is column leftmost the and 0 number is row topmost the so indexed, 0 - both are position its have also should widget every specified, is tab a in widget any of position the If 0 .
widgets. overlapping avoid to set
Java


## Layouts to Widgets Adding

smaller into them place to useful be can it data, related with tab a in widgets many are there If with retrieved is tab a to handle the how like Much tab. the in loose of instead subgroups with retrieved be can layout) another in even (or tab a inside layout a , Shuffleboard.getTab .ShuffleboardTab.getLayout

Java

| $\begin{array}{r} \text { )"Commands" (getTabShuffleboard. = elevatorCommands ShuffleboardLayout } \\ \text { ) kListBuiltInLayouts. "Elevator"(getLayout. } \end{array}$ |  |
| :---: | :---: |
|  | ElevatorDownCommand()); new(addelevatorCommands. ElevatorUpCommand()); new(addelevatorCommands. <br> ElevatorUpCommand()); new(addelevatorCommands. |

C++
properties\{ >>Value: nt<shared_ptr: std<StringMap: :wpi ))"HIDDEN"MakeString (: Value: :nt ,"position ${ }^{\text {Label"make_pair(: std }}$
)"Commands"GetTab(: Shuffleboard: frc = elevatorCommands ShuffleboardLayout: frc kList): BuiltInLayouts: frc ,"Elevator"GetLayout(.
)2 , 2WithSize(.
WithProperties(properties);
ElevatorDownCommand(); new = elevatorDown *ElevatorDownCommand ElevatorUpCommand(); new = elevatorUp *ElevatorUpCommand elevatorDown); ,"Down Elevator"elevatorCommands.Add( elevatorUp); ,"Up Elevator"elevatorCommands.Add(
what understand to easier it makes Shuffleboard framework basedcommand- the using When time.real- in subsystems and commands various of state the displaying by doing is robot the
or autonomous either in operating is robot the while subsystem a of status the see To currently is command what and is command default its what is that modes, teleoperated Shuffleboard: to instance subsystem a send subsystem, that using

Java
reference); - (subsystemputDataSmartDashboard.
C++
pointer);-PutData(subsystem : :SmartDashboard
this with associated command default the name, subsystem the display will Shuffleboard for command default the example this In command. running currently the and subsystem, that command current the also is it and AutonomousCommand called is subsystem Elevator the subsystem. Elevator the using is

## Mode Test in Subsystems

the in displayed be may subsystems station) driver the in (Test/Enabled mode Test In verifying for ideal is This subsystem. the of actuators and sensors the with tab LiveWindow actuators addition, In returning. are they that values the seeing by working are sensors of commanded their set to sliders using operated be can motors example, For operated. be can along displayed are constants F and D, I, P, the PIDSubsystems For direction. and speed adjusting by PIDSubsystems tuning for useful is This control. enable an and setpoint the with the Then PIDController. embedded the enabling and setpoint, a in putting constants, the observe) and enable, parameters, (change cycle This observed. be can response mechanism's found. is parameters of set reasonable a until repeated be can
$\qquad$
will RobotBuilder Using . here found be can PIDSubsystems tuning on information More that code The mode. Test in displayed subsystem the get to code the generate automatically string a is namesubsystem- where below shown is displayed subsystems have to necessary is subsystem: the of name the containing

## Commands Displaying

easily can that programs robot modular very makes subsystems and commands Using completely written be can commands because is this of Part modified. and tested be To Shuffleboard. from run easily be therefore can and commands other of independently here: shown as method SmartDashboard. putData the use Shuffleboard to command a write

Java
));
ElevatorMove( new
(putDataSmartDashboard.

> C++
));2.7ElevatorMove( new, "up ElevatorMove:"PutData(: SmartDashboard
this In command. the execute to button a and name command the display will Shuffleboard special needing without tested be easily can groups command and commands individual way contained commands of number a are there below image the In program. robot a in code test stops again it pressing and command the runs once button the Pressing list. Shuffleboard a in mode. teleop in enabled be must robot the feature this use To command. the


## Loops PID Tuning and Testing

the drive to algorithm good a have to is mechanisms control to sensors using in challenge One called is algorithm control used commonly most The speed. or position proper the to motors explain that playlist) controls robot the for (look videos of set good a is There control. PID motor into values sensor converts algorithm PID The here. described algorithms control the by: speeds
desired the from mechanism or robot the far how determine to values sensor Reading For goal. expected the to corresponds that value sensor the is setpoint The setpoint. very angle specified a to move to able be should joint wrist a with arm robot a example, that sensor a is potentiometer A sensor. a by indicated as angle that at stop and quickly get can program the input, analog an to it connecting By angle. rotational measure. can angle. the to proportional directly is that measurement voltage a
The value). desired the and value sensor the between difference (the error an Compute example For on. is wrist the setpoint the of side which indicates value error the of sign desired the than larger is angle wrist measured the that indicate might values negative from is angle wrist measured the far how is error the of magnitude The angle. wrist matches exactly angle measured the then zero, is error the If angle. wrist actual the a compute to algorithm PID the to input an as used be can error The angle. desired the speed. motor
a and direction correct the in motor the drive to used then is speed motor resultant The overshooting without possible as quickly as setpoint the reach will hopefully that speed setpoint). the past (moving
constants accepts and algorithm PID the implements that class PIDController a has WPILib that components three has algorithm PID The values. Kd and $\mathrm{Ki}, \mathrm{Kp}$, the to correspond that error. the from speed motor the computing to contribute
a generate will (Kp) constant a by multiplied when that term a is this - (proportional) P speed. and direction correct the in motor the move help will that speed motor the exists error the longer The errors. successive of sum the is term this - (integral) I If time. over errors the all of sum a simply is It be. will contribution integral the larger move, to trying is it load large a of because setpoint the to getting quite isn't wrist the enough contributes it until errors) the of (sum increase to continue will term integral the multiplied is errors the of sum The setpoint. the to move to it get to speed motor the to system. the for term integral the scale to (Ki) constant a by
down slow to used is It errors. the of change of rate the is value this - (differential) D between difference the taking by computed It's fast. too moving it's if speed motor the constant a by multiplied also is It value. error previous the and value error current the system. the of rest the match to it scale to (kd)

## Controller PID the Tuning

Shuffleboard results. accurate for constants adjusting of consists controller PID the Tuning setting for interface user a with subsystem PID a of details the displaying by process this helps operating is robot the while displayed is This operates. it well how testing and values constant station). driver the in "Test" setting by (done mode test in
(pot) sensor the as potentiometer a has that subsystem wrist a of picture mode test the is This to correspond that areas of number a has It motor. the to connected controller motor a and PIDSubsystem. the value. input sensor the is This potentiometer. the from value voltage input analog The
positive The stopped. as 0 with direction either in motor wrist the moves that slider A down. or up moving to correspond values negative and speed for used is that value feedforward a is ( F above described as constants PID The loops) PID
the reached has wrist the when value pot the to the corresponds that value setpoint The value desired
below. see working, longer No - controller PID the Enables
to linked video the at look can You performance. motor desired the get to gains PID various Try performance. desired the get to internet the on sources other or article this of beginning the at
the as 2020, in introduced
the affect not does option enable The
: 닐 this retain to how on below example the See loop. robot every updated is controller functionality.

## PIDController New the in Functionality Enable

will that dashboard your on button a create to how demonstrates example following The PIDController. the enable/disable

Java


C++


## Data of Hierarchies Viewing

a in hierarchy the displays hierarchy) the in (deeper it below keys other with key a Dragging left. the on sources NetworkTables the to similar tree,<br>source: data the Select

$\times$ SmartDasht
Sources Wid

- CameraServe

NetworkTable
tab. preferred the into key NetworkTables the drag and Click


# Widgets Custom - Shuffleboard 11.1.4 

Plugins inBuilt-
use, FRC® for tasks common handle that plugins inbuilt- of number a provides Shuffleboard connections. NetworkTables and widgets, all streams, camera as such

## Plugin Base

It use. FRC for necessary layouts and widgets, types, data the all defines plugin base The source those for widgets or types data special any or types, source the of any define not does This .Plugin CameraServer the and Plugin NetworkTables the by handled are Those types. or types source custom for plugins create to teams for easier it makes concerns of separation client. NetworkTables a needing without types data FRC the for ZeroMQ) HTTP, (eg protocols

## Plugin CameraServer

the from camerastreams viewing for widgets and sources provides plugin server camera The class. WPILib CameraServer camera available the discover to order in Plugin NetworkTables the on depends plugin This streams.

## discovery Stream

CameraPublisher/ the at looking by discovered automatically are sources CameraServer NetworkTable.

CameraPublisher/
>name camera</
]... ,"url2" ,"url1"[=streams
would frc.local-0000-roborio at server a with "Camera" named camera a example, For layout: table this have

| CameraPublisher/ |
| :---: | :---: |
| Camera/ |

the by roboRIO a on hosted streams camera all discover automatically will setup This streams camera have to want that projects WPILibnon- Any WPILib. in class CameraServer server. camera the for entry streams the set to have will shuffleboard in appear

Plugin NetworkTables
,LiveWindow the Since ntcore. by backed sources data provides plugin NetworkTables The data the send to NetworkTables use WPILib in classes Shuffleboard and ,SmartDashboard classes. those use to order in loaded be to need will plugin this station, driver the to users automatically, NetworkTables to reconnection and connection the handles plugin This of intricacies the about worry to have not will plugins custom of writers and shuffleboard of protocol. NetworkTables the

## Plugin a Creating סקירה כללית

custom and sources/types, data layouts, widgets, custom create to ability the provide Plugins .plugins inbuilt-following the provides Shuffleboard themes.
NetworkTables over published data to connect To Plugin: NetworkTables •
widgets custom in types data FRC® custom display To Plugin: Base •
CameraServer the from streams view To Plugin: CameraServer •
simple a and type data custom a creates which plugin Shuffleboard custom example An : : .here found be can it displaying for widget

Plugin Custom a Create
of subclass a be must class plugin the plugin, a define to order In plugin a of example An subclasses. its of one or edu.wpi.first.shuffleboard.api.Plugin following. as be would class

be can numbers version including used, are attributes these how on explanations Additional .here found
the of properties the loader plugin the tell to needed is annotation @Description the Note cannot it but constructor default a have to permitted are classes Plugin class. plugin custom arguments. any take

## plugin Building

shufflebloard the in folder pluginsexample- the utlize to is plugins build to way easiest The https://github.com/wpilibsuite/ clone git with Shuffleboard Clone tree. source you version WPILib the to corresponds that version the checkout and ,shuffleboard.git v2023.2.1 checkout git 2023.2.1). (e.g. installed have
the Copy directory. NAME-PLUGIN\plugins-example the in plugin your Put
 directory root shuffleboard the in settings.gradle Edit name. plugin your match to rename NAME" - plugins: PLUGIN-"example include add to
must they however, libraries, and plugins other on dependencies have to allowed are Plugins other on depends plugin a When file. build gradle or maven the in correctly included be the when load not does plugin the so dependencies those define to practice good is it plugins, shown as annotation @Requires the using done be can This well. as load not do dependencies below:

```
    )"1.2.3" = minVersion ,"Plugin Good" = name ,"com.example" = (group@Requires
)"1.0.0" = minVersion ,"Base" = name ,"edu.wpi.first.shuffleboard" = (group@Requires
    = summary ,"1.2.3" = version ,"MyPlugin" = name ,"com.example" = (group@Description
                                    )"plugin example An"↔
    { Plugin extends MyPlugin class public
```

loaded. be can that plugin the of version allowable minimum the specifies minVersion The it loaded, is 1.4 .7 version the with plugin the and 1.4.5, is minVersion the if example, For be not will it loaded, is 1.2 .4 version the with plugin the if However, so. do to allowed be will .minVersion the than less is it since to allowed

## Shuffleboard To Plugin Deploying

plugin the of file jar a generate to need will you Shuffleboard, in plugin a load to order In running by automatically done be can This folder. $\sim /$ Shuffleboard/plugins the in it put and

NAME:installPlugin-plugins:PLUGIN-: example gradlew root shuffleboard the from automatically be can it so plugin the of path the cache will Shuffleboard deploying, After under Cache Clear on click to necessary be may It loads. Shuffleboard time next the loaded Shuffleboard. into plugin a reload or plugin a remove to menu plugins the

## Plugin Adding Manually

from it add and file jar a to it compile to is Shuffleboard to plugin a add to way other The after libs $\backslash$ build in tab file the on click Shuffleboard, Open root shuffleboard the in build gradlew running menu. down drop the from Plugins choose and left, top the

Plugin
edu.wpi.first.shu
edu.wpi.first.shu
edu.wpi.first.shu
select and right, bottom the in button plugin" "Load the choose window, plugins the From file. jar your

## Types Data Custom Creating

integers be could data This data. of types different visualize and control to us allow Widgets is it widgets, using data of types these display to order In Objects. Java even or doubles and Class Data own your create to necessary not is It them. for class container a create to helpful strings. or arrays, doubles, as such types data fielded single handle will widget the if

## Class Data The Creating

coordinates. $y$ and $x$ its and Point 2D a for type data custom a create will we example, this In .ComplexData class abstract the extend must it class, type data custom a create to order In represented the returns that method asMap ( ) the implement also must class data custom Your annotation: @0verride the with below noted as map simple a as data

page) next on (continues

## Competition Robotics FIRST

(ำำ

$$
\begin{array}{r}
\text { y; }=\text { y.this } \\
\text { @Override } \\
\{\text { ()asMap }>\text { Object String, <Map public } \\
\text { y) ; "y" } \times, \text { "x"(ofMap. return }
\end{array}
$$

that ensure to methods hashcode and equals default the override to practice good also is It asMap() The same. the are fields their when equivalent considered are objects different the to mapped be will it as object Map simple a in represented data the return should method and X its as point the represent can we case, this In to. corresponds it entry NetworkTables them. containing Map a return and coordinates Y

> ;edu.wpi.first.shuffleboard.api.data.ComplexData import
> ;java.util.Map import
> $\{>$ MyPoint2D<ComplexData extends MyPoint2D class final public
> x; double final private
> y; double final private

цto them assign and needed fields different the all take should Constructor //
variables. instance corresponding their $\hookrightarrow$
\{ y) double $x$, double(Point public
$x_{;}=x$. this
$y ;=y . t h i s$
@Override
\{ ()asMap >Object String,<Map public
) ; y.this ,"y" ,x.this ,"x"(ofMap. return
is it however, variables, instance and fields edit or retrieve to added be can methods Other objects. data source the changing prevent to immutable classes these make to practice good For object. existing the manipulating of instead object copy new a make can you Instead, following the define can we point, our of coordinate $y$ the change to wanted we if example,
method:
\{ newY) double(withY MyPoint2D public
newY); ,x.thisMyPoint2D( new return
be can Same coordinate.y- new the with it returns and object MyPoint2D new a creates This coordinate. x the changing for done
one only have that types data Simple made: be can that types data different two are There fields data multiple have that types data Complex and string), or number single a (ie. field numbers). multiple strings, multiple (ie.
><DataTypeSimpleDataType the extend must class the type, data simple a define to order In this In method. getDefaultValue() the implement and needed type data the with class type. data simple our as double a use will we example,
$\{$ >Double<SimpleDataType extends MyDoubleDataType class final public
;"Double" = NAME String final static private
\{ ()MyDataType private );classDouble. (NAME, super
@Override
\{ ()getDefaultValue Double public 0.0 return
type data the of instance single a only that ensure to private to set is constructor class The exist. will
and class ComplexDataType the extend must class the type, data complex a define to order In class MyPoint2D our use will We methods. getDefaultValue() and fromMap() the override like. look would class type data complex a what see to example an as

| ```{ >MyPoint2D<ComplexDataType extends PointDataType class final public ;"MyPoint2D" = NAME String final static private PointDataType(); new = Instance PointDataType final static public { ()PointDataType private );classMyPoint2D. (NAME,super @Override { ()fromMap >MyPoint2D ,>Object String,<Map<Function public { >- map return map. )double( ),0.0 ,"x"(get0rDefaultmap. )doubleMyPoint2D(( new return ));0.0 , "y"(getOrDefault ↔ ;} @Override { ()getDefaultValue MyPoint2D public coordinates Y and X for 0 of values default use // );0 ,0MyPoint2D( new return``` |
| :---: |

noted: as works above code following The
entry NetworkTables the in values the using MyPoint2D new a creates method fromMap() The The values. entry the get cannot it if 0.0 return will method get0rDefault The to. bound is it present. is source no if object MyPoint2D new a return will getDefaultValue

## Plugin To Type Data Exporting

them export must plugin the Shuffleboard, by recognized be type data the have to order In example, For method. getDataTypes the overriding by
$\left.\begin{array}{r}\{\text { Plugin extends MyPlugin class public } \\ \text { @Override } \\ \text { \{ () getDataTypes >DataType<List public } \\ \text { ) ; Instance(PointDataType.ofList. return } \\ \}\end{array}\right\}$

## Widget A Creating

data different through published data with interact and change, view, to us allow Widgets control to widgets the provide plugins Base and NetworkTables, CameraServer, The sources. to us allow widgets custom However, types). data specificFRC- (including types data basic

Objects. Java or sections previous the in made we types data custom our control
Component interfaces. Sourced and Component the from inherits interface Widget basic The is Sourced Shuffleboard. in displayed be that components of block building basic most the is modify or display to sources data with interface and handle can that things for interface an the use not would nodes child have simply but bindings data support don't that Widgets data. towards blocks building basic are Both interface. Component the simply but interface Sourced data. display and modify to us allows and widgets making
example An needs. their suit to widget the customize to userend- the allows widget good A maximum its is, that slider, number the of range the control to user the allow to be could looks it how or widget the of view The itself. slider the of orientation the or minimum and static the defining for useful is that language based XML an is FXML FXML. using defined is Controls). and Labels (Panes, widget the of layout
.here found be can FXML about More

## FXML Widget's a Defining

our of coordinates $Y$ and $X$ the control us help to sliders two create will we example, this In the in file FXML the place to helpful is It sections. previous in created we type data Point2D class. Java the as package same
is Pane A .Pane a create to need we widget, our for window blank empty, an create to order In different many are There sliders. 2 case, this in nodes, child other contains that node parent a noted: as are they Pane, of types

Pane Stack •
child center default by StackPanes Also, overlaid. be to elements allow Panes Stack nodes.

Pane Grid •
system coordinate a using elements child defining useful extremely are Panes Grid pane. the on columns and rows of grid flexible a creating by

Pane Flow •
vertically flow can nodes Child set. boundary a at nodes child all wrap Panes Flow width the at (wrapped horizontally or pane) the for boundary height the at (wrapped pane). the of boundary Pane Anchor •
right side, left bottom, top, the in placed be to elements child allow Panes Anchor pane. the of center or side, a using row horizontal one in nodes child placing for useful extremely also are panes Layout .VBox a using column vertical one or HBox
following: the as be would FXML using Pane a defining for syntax basic The
javafx.scene.layout.*?> import?< _path/to/widget/class"/"fx:controller= http://javafx.com/fxml/1""xmlns:fx= StackPane< >root""fx:id= $\rightarrow$

StackPane>/<
class this of instance An class. widget the of name the contains attribute fx: controller The a have must class controller the work, to this For loaded. is file FXML the when created is constructor. argumentno-

## Class Widget A Creating

example, this In pane. that to elements child add now can we Pane, a have we that Now be can they so element each to fx:id an add to Remember objects. slider two add can we slider our position to VBox a use will We on. later make will we class Java our in referenced other. each of top on


The class. widget a create now can we file, FXML our creating finished have we that Now types data supported the states that annotation @Description a include should class widget the present, not is annotation @Description a If widget. the of name the and widget the of widgets. its return to method get () the implement must class plugin
file FXML the to points that annotation @ParametrizedController a include must also It must it source data one supports only that class the If widget. the of layout the containing must it sources, data multiple supports class the If class. SimpleAnnotatedWidget the extend .Types Widget see information, more For class. ComplexAnnotatedWidget the extend


Double. (ie. type data Java any reference can you type, data custom a using not are you If .NoneType.class pass can you binding data need not does widget the if or ), class our in declared we widgets the for fields create can we class our created have we that Now be: would example an sliders, two our For annotation. @FXML the using file FXML

method getView() the override to need we widget custom our on pane our display to order In .StackPane our return and

> iedu.wpi.first.shuffleboard.api.widget. Description import $\begin{array}{r}\text {;edu.wpi.first.shuffleboard.api.widget.ParametrizedController import } \\ \text {;edu.wpi.first.shuffleboard.api.widget.SimpleAnnotatedWidget import } \\ \text {;javafx.fxml. FXML import }\end{array}$ )classMyPoint2D. $=$ dataTypes, "MyPoint2D" $=$ (name@Description )"Point2DWidget.fxml" (@ParametrizedController
@FXML
root; StackPane private
page) next on (continues
(ำำ


## Listeners Adding and Elements Binding

the with relationships direct express to widgets JavaFX allows that mechanism a is Binding and NetworkTableEntry related its change will widget a changing example, For source. data versa. vice
by point 2D our of coordinate $Y$ and $X$ the changing be would case, this in example, An respectively. ySlider and xSlider of values the changing
@FXML the with tagged method initialize() the in bindings set to is practice good A .public not is method the if FXML from method the call to required is which annotation

page) next on (continues
(ำำ
\}
class< data MyPoint2D the to property value slider's the binds method initialize above The and coordinate the change will slider the changing Meaning, value. Y and X corresponding source no if or, value, source's data the get will method data0rDefault.map () The versa. vice value. default the return will present, is
changed. has source data or slider the when values change to way another is listener a Using be: would slider our for listener a example For

the to widget the of source data the in value the sets method setData() the case, this In .newValue

## Components Custom Exploring

must plugin defining the plugins; loading when discovered automatically not are Widgets be to plugins multiple allow to taken is approach This usable. be to it for it export explicitly

JAR. same the in defined

> @Override \{ () getComponents >ComponentType<List public

## type Data For Widget Default Set

the override can you type, data custom your for default as widget your set to order In as widgets default all for Map a stores that class plugin your in getDefaultComponents() below: noted
@Override
\{ () getDefaultComponents >ComponentType DataType, <Map public (Point2DWidget.forAnnotatedWidgetWidgetType., Instance(Point2DType.ofMap. return
));class $\rightarrow$

## Themes Custom

Cascading via themes custom for support has it application, JavaFX a is shuffleboard Since HTML making for webpages on used commonly are These short). for CSS( Stylesheets for here (see subset language different a for albeit support, has also JavaFX but nice, look
it). use to how on documentation
and Dark, Material Light, Material default: by themes three with comes Shuffleboard they addition, In stylesheet. design material same the on variations color are These Midnight. in ,defined components custom the for styles defines that stylesheet base.css a from inherit
the to applies only stylesheet design material base the uses; it that libraries or shuffleboard JavaFX. into built components UI
the with directory a in stylesheets the place theme: custom a define to ways two are There theme "Yellow" theoretical a example, for ;~/Shuffleboard/themes in theme the of name in placed be could
css.yellowtheme/Yellow/themes/Shuffleboard/~
theme. the of part as treated be will directory the in stylesheets the All

## Plugins via Themes Loading

bundle and share to easier them makes This plugins. by defined be also can themes Custom a need will object theme The define. to difficult more slightly are but widgets, custom with the where determine can loader plugin the that so plugin the in defined class a to reference in, is plugin the that JAR the in present not is that passed is class a If located. are stylesheets used. be to able be not will theme the

```
" = summary ,"1.2.3" = version ,"Plugin My" = name ,"com.example" = (group@Description
                                    )" \(\leftrightarrows\)
    \{ Plugin extends MyPlugin class
    /" ,"Name Theme My" , classTheme(MyPlugin. new = myTheme Theme final static private
                        "path/to/stylesheet/" , "path/to/stylesheet \(\rightarrow\)
                            @Override
                            () getThemes >Theme<List public
(myTheme) ; ofImmutableList. return
```


## Themes Default Shuffleboard's Extending or Modifying

framework the of lot a provide themes Dark Material and Light Material Shuffleboard's shuffleboard, to specific styles many as well as respectively, themes, dark and light for design. stylematerial- the with fit to components UI Medusa and ControlsFX, these for statements import add to need themes these modify to want that Themes stylesheets:

```
_for CSS design Material */ ;edu/wpi/first/shuffleboard/api/material.css"/" import@
                                    */ components JavaFX 
        „for CSS design Material */ ;edu/wpi/first/shuffleboard/api/base.css"/" import@
                            */ components shuffleboard }
_Light Material the for CSS */ ;edu/wpi/first/shuffleboard/app/light.css"/" import@
                                    */ theme }
_Dark Material the for CSS */ ;edu/wpi/first/shuffleboard/app/dark.css"/" import@
                            */ theme }
    _Midnight the for CSS */ ;edu/wpi/first/shuffleboard/app/midnight.css"/" import@
                            */ theme }
```

and ,dark.css ,light.css and ,material.css imports internally base.css that Note base. both import implicitly will light. css importing so ,base.css import all midnight.css well. as material.css and css

## Files CSS the for Code Source

https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/ material.css: • resources/edu/wpi/first/shuffleboard/api/material.css
https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/ $\quad$ resources/edu/wpi/first/shuffleboard/api/base.css:
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/ light.css: • resources/edu/wpi/first/shuffleboard/app/light.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/
dark.css: • resources/edu/wpi/first/shuffleboard/app/dark.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/ midnight.css: • resources/edu/wpi/first/shuffleboard/app/midnight.css

## Swatches Color Design Material

variables These everything. almost for variables swatch color uses CSS design material The needed. code custom of amount the reducing files, CSS custom from set be can the of shades darker progressively define variables $><100|200| 300|400| 500$-swatch- The but , material.css in set blue of shades default the uses theme light The color. primary same defines gray-><|light|dark-swatch- red. of shades with these overrides theme dark the colors. text or background various for use to gray of levels three

## Colors Swatch the Overriding

(light) red with blue Replacing



## Types Widget

several are there concerned, is interface the as far as straightforward pretty is Widget While widget. the define to easier it make to implementations intermediate

| Class |  | Description |
| ---: | ---: | ---: |
| AbstractWidget | titleProperty() and, getSources(), getProperties() Implements |  |
| ><TSingleTypeWidget type data single a support only that widgets for properties Adds |  |  |
| AnnotatedWidget | for getDataTypes() and getName() for implementations default Adds |  |
| annotation @Description a with widgets |  |  |$|$

widgets: define help to annotations two also are There

| Name | Description |
| ---: | ---: |
| @ParametrizedControlleatefined views JavaFX for controllers FXML be to widgets Allows |  |
| FXML via |  |
| @Description | single a in defined be types data supported and name the Lets |
|  |  |

AbstractWidget
and ,addSource() ,getSources() ,getProperties() implements class This so method >...)<? exportProperties(Property method a defines also It .titleProperty() components JavaFX the for properties or properties, widget custom add easy can subclasses this. use plugin base the in widgets the of Most widget. the in

## SingleTypeWidget

has and parametrized is interface This type. data single a supports only that widget of type A type data (single) the getting for method a as well as data, the getting or setting for methods widget. the of

AnnotatedWidget
@Description the at looking by getName() and getDataTypes() implements interface This the or present, be to annotation the requires This class. implementing the on annotation used. and loaded be to able be not will widget


## SingleSourceWidget

source. single a uses only that widget of type A

## SimpleAnnotatedWidget

Most .SingleSourceWidget and ,AnnotatedWidget ,><TSingleTypeWidget of combination A called field protected a has also This class. this from extend plugin base the in widgets a have doesn't widget the if value data default a use subclasses lets that dataOrDefault .null providing is source the if or source,
@ParametrizedController

FXML an it's that know shuffleboard let to class widget a on placed be can annotation This that parameter single a takes annotation The FXML. via defined view JavaFX a for controller a example, For .placed is it which on class the to relation in file FXML the where defines file FXML a for controller FXML an is that src/main/ java/com/acme directory the in widget either as annotation the use can src/main/resources/com/acme in
) "MyWidget.fxml"(@ParametrizedController
as or
)"com/acme/MyWidget.fxml/"(@ParametrizedController
single a by defined types data supported and name their have to widgets allows This .AnnotatedWidget alongside used when annotation,

## SmartDashboard 11.2

computer few relatively uses that dashboard efficient and simple a is SmartDashboard but has, Shuffleboard features the of some or look fancy the have not does It resources. driver the down bogging without widgets of variety a with data tables network displays it computer. station

## Introduction SmartDashboard 11.2.1

The time. real in data robot display will that program Java a is SmartDashboard The things: these with you helps SmartDashboard
as displayed be can It running. is program the while choice your of data robot Displays • etc. dials, graphs, like types display other many in elaborately more or fields text simple and commands executing currently the as such program robot the of state the Displays • subsystems any of status the
robot your on set be to variables cause to press can you that buttons Displays robot the by read be can that dashboard the on options startup choose to you Allows • program
robot, the from sent is data the as timereal- in formatted automatically is data displayed The screen new the save then and types widget display the or format the change can you but use. to simple extremely still is it options, these all with And later. again used be to layouts with methods SmartDashboard the of one call simply dashboard, the on data some display To screen. dashboard the on appear automatically will value the and name its and data the

## SmartDashboard the Installing


from directly launched be can and Installer WPILib the with packaged is SmartDashboard The tab. Setup the on button SmartDashboard the selecting by Station Driver the

הגדרת מספר הקבוצה
number. team your for prompted be should you SmartDashboard the launch you time first The Preferences the open to Preferences > File click this: after number team the change To

Team FRC® your enter and Number Team of right the to box the clickDouble- dialog. save. to box the outside click then Number,
not do number, team the for itself configure to moment a take will SmartDashboard : : alarmed. be

## Location Server NetworkTables Custom a Setting

connected a on running instances NetworkTables for look will SmartDashboard default, By address. IP different a at NetworkTables for look to useful sometimes it's but RoboRIO, SmartDashboard open roboRIO, the than other host a from SmartDashboard to connect To or address IP the enter field, Number Team the in and menu File the under preferences host. NetworkTables the of hostname
Simply .simulation WPILib with SmartDashboard using for useful incredibly is option This hostedlocally- your detect will SmartDashboard and field Number Team the to localhost add robot!

| Property |
| :--- |
| Team Number |
| Hide Menu |
| Automatically S |
| Grid Cell Width |
| Grid Cell Heig' |
| Window X Posi |
| Window Y Posi |
| Window Width |
| Window Height |
| Save File |
| Log to CSV |
| CSV File |

## File Save the Locating

box the click this do To SmartDashboard. the of location save the customize to wish may Users configuration. the save to like would you where folder the to browse then File Save to next overwritten be likely will components WPILib the for directories installation the in saved Files tools. the to updates on

## Indicator Connection a Adding

connection a add To robot. the to connected is SmartDashboard the if see to helpful often is It when red be will indicator This .Indicator Connection > Add > View select indicator, > View select indicator, this resize or move To connected. when green and disconnected the of center the drag then mode, editable into SmartDashboard the toggle to Editable place. in it lock to again item Editable the Select resize. to edges the or it move to indicator

## SmartDashboard the to Widgets Adding

robot the by sent "key" each for SmartDashboard the to added automatically are Widgets Displaying see SmartDashboard the to write to code robot adding on instructions For code.
.Program Robot the Within from Expressions

## Program Robot a from Expressions Displaying 11.2.2

of number a writing involves robot a of status the monitoring or debugging Often : प्टा values put can you SmartDashboard With by. stream them watching and console the to values updated, are values As program. your on based constructed automatically is that GUI a to numbers catch to try to need no is there - value changes element GUI corresponding the screen. the on by streaming

## SmartDashboard to Values Writing

Java


C++

the calling simply by SmartDashboard the to values String or Numeric, Boolean, write can You additional no data, the of value the and name the including and type the for method correct same the with value another write you that program your in time Any required. is code development or station driver the on screen the on element UI same the in appears it name, your of status getting and debugging of way great a is this imagine can you As computer. operating. is it as robot
is intervention user no automatically, SmartDashboard the on populated are Widgets may you written, first is value the when populated only are widgets the that Note required. an for routine code particular a trigger or mode particular a in robot your enable to need Changing sections two next the see widget, the of appearance the alter To appear. to item .Value a for Type Widget Display the Changing and Value a of Properties Display the

Data Stale
the and robot the between values communicating for NetworkTables uses SmartDashboard pairs. value and name of table distributed a as acts NetworkTables laptop. station driver replicated is it (robot) server or (laptop) client the either to added is pair name/value a If SmartDashboard the but robot the say, from, deleted is pair name/value a If other. the to still will values old the restarted, is robot the when then running, still are OutlineViewer or and running stopped never they because OutlineViewer and SmartDashboard the in appear will values old those restarts, robot the When tables. their in values those have to continue robot. the to replicated be
is it values, current showing are OutlineViewer and SmartDashboard the that ensure To old way, That time. same the at robot and clients NetworkTables the restart to necessary others. the to replicated get won't holding is one that values
in is program the if but changing, constantly isn't program the if problem a isn't usually This then changing, constantly is NetworkTables to added being keys of set the and development
current. is what see accurately to everything of restart the do to necessary be might it
value a of properties display the Changing 11.2.3
it's way the effect that properties of set a has SmartDashboard with displayed value Each displayed.
mode editing into display SmartDashboard the Setting

edit In mode. edit and mode display in, operate can it modes two has SmartDashboard The the put To properties. their edit and screen the on widgets around move can you mode on turn to "Editable" select then menu, "View" the click mode, edit into SmartDashboard mode. edit

## widget a of editor properties the Getting

the on clickRight- widget. a for properties the edit and display can you mode, edit in Once
"Properties...". select and widget
right- widgets the on item menu "Properties..." the to response in shown be will box dialog A menu. context click
color background widgets the Editing
this (in shown color background the click color, Background say, value, property a edit To the as used be will This up. pops that editor color the from color a choose and grey), case color. background widgets

## widgets other of properties Edit

appearance. the change to properties editable of sets different have types widget Different changeable are interval tick the and dial the of limits lower and upper the example, this In parameters.

Value a for Type Widget Display the Changing 11.2.4
The SmartDashboard. the with values displays that widget of type the change can One displayed. being value the of type the on depend widgets allowable

## Mode Edit Setting


from Editable selecting by done is This mode. edit in is SmartDashboard the that sure Make .menu View the

Type Widget Choosing
for use to widget of type the pick Then, .to... Change select and widget the on clickRight-
.LinePlot choose we case this In value. particular the

Arm the of values the show will Plot, Line a case, this In displayed. is type widget new The data your fit better it make to graph the of properties the set can You time. over value angle a of properties display the Changing See: .Properties... selecting and clickingright- by
.value

## Program Autonomous an Choosing 11.2.5

or reasons competitive for either program, autonomous one than more have teams Often different delays, time like things adding by vary often Programs software. new testing for joystick switches, involves usually run to strategy the choose to methods The etc. strategies, inputs. based hardware other or knobs buttons,
the choose to screen the on widget a display simply can you SmartDashboard the With that programs, based command with And run. to like would you that program autonomous an select to how shows article This commands. several of one in encapsulated is program with interface, user looking nice a and code of lines few a only with program autonomous Robots. BasedCommand- and TimedRobot both for examples

TimedRobot
):C++ ,Java( template TimedRobot the of part are below shown snippets code The : ใरान

## Object SendableChooser Creating

object. SendableChooser a to reference a hold to variable a create ,Robot.h / Robot.java In Using chooser. the to send to strings creating by added be can modes auto more or Two Auto My and Default example, this In them. between choose can one, SendableChooser the chosen, been has auto which store to variable a need also will You options. as shown are
.m_autoSelected
Java


C++

> m_chooser; >string::std<SendableChooser::frc
> ;"Default" = kAutoNameDefault string::std const
> ;"Auto My" = kAutoNameCustom string::std const m_autoSelected; string: std

## Options Up Setting

strings the case this in elements, defined of list a from pick to you allows chooser The using above strings as created options your add ,robotInit In above. defined we when default by selected one the be will setDefaultoption .addOption or setDefaultoption station driver your on dashboard the to it push will function putData The starts. dashboard the computer.

Java
$\left.\begin{array}{|c}\text { \{ () robotInit void public } \\ \text { kDefaultAuto) ; , "Auto Default" (setDefaultoptionm_chooser. } \\ \text { kCustomAuto);, "Auto My"(addOptionm_chooser. } \\ \text { m_chooser); "choices Auto" (putDataSmartDashboard. }\end{array}\right\}$

## C++

> \{ ()Robot::RobotInit void KAutoNameDefault); m_chooser. SetDefaultoption(kAutoNameDefault, KAutoNameCustom); m_chooser.AddOption(kAutoNameCustom, m_chooser) ;\&, "Modes Auto"PutData(: :SmartDashboard::frc

## Code Autonomous Running

variable m_autoSelected the use can you ,autonomousPeriodic and autonomousInit in Now, period. autonomous the during happens what change and chosen, was option which read to

Java


C++


## BasedCommand-

project example HatchbotTraditional the of part are below shown snippets code The : : पारा
):C++, Java(

## Object SendableChooser the Creating

Two object. SendableChooser a to reference a hold to variable a create ,RobotContainer In ,SendableChooser the Using variables. new in stored and created be can commands more or as shown are ComplexAuto and SimpleAuto example, this In them. between choose can one options.

Java

| = m_simpleAuto Command final private <br> DriveDistance( new <br> m_ , kAutoDriveSpeedAutoConstants. ,kAutoDriveDistanceInchesAutoConstants. <br> robotDrive); $\hookrightarrow$ <br> ${ }_{4} d r i v e s ~ t h e n ~ a n d ~ h a t c h, ~ a ~ d r o p s ~ f o r w a r d, ~ d r i v e s ~ t h a t ~ r o u t i n e ~ a u t o ~ c o m p l e x ~ A ~ / / ~$ backward. $\hookrightarrow$ <br> m_ComplexAuto(m_robotDrive, new = m_complexAuto Command final private hatchSubsystem); $\rightarrow$ <br> commands autonomous for chooser A // <br> () ;><SendableChooser new = m_chooser >Command<SendableChooser |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

pointers) raw (using C++

| ```routines autonomous The // kAutoDriveDistanceInches,::m_simpleAuto{AutoConstants DriveDistance m_drive};& kAutoDriveSpeed,::AutoConstants m_hatch};& m_drive,&m_complexAuto{ ComplexAuto routines autonomous the for chooser The // m_chooser; >*Command::frc2<SendableChooser::frc``` |
| :---: |
| ) CommandPtr (using C++ |
|  |

are they and between choose to programs autonomous two have you that Imagine them: between choose To .ComplexAuto and SimpleAuto commands in encapsulated
two the of instances add and object SendableChooser a create ,RobotContainer In default a as added one the and commands, of number any be can There it. to commands command each that Notice selected. initially is that one the becomes ), setDefault0ption( SendableChooser the on call method addOption() or setDefaultoption() an in included is
instance.
Java

| chooser command autonomous the to commands Add // m_simpleAuto); ,"Auto Simple"(setDefaultOptionm_chooser. m complexAuto) ; , "Auto Complex"(addOptionm_chooser. |
| :---: |
| pointers) raw (using C++ |
| chooser command autonomous the to commands Add // m_simpleAuto); \& ,"Auto Simple"m_chooser.SetDefaultOption( m_complexAuto) ; \& ,"Auto Complex"m_chooser.AddOption( |
| ) CommandPtr (using C++ |
| chooser command autonomous the to commands Add // chooser the into ownership move *not* do we that Note // m_simpleAuto.get()); ,"Auto Simple"m_chooser.SetDefaultOption( m_complexAuto.get()) ; ,"Auto Complex"m_chooser.AddOption( |
| dashboard: the to chooser the publish Then, |
| Java |
| dashboard the on chooser the Put // (m_chooser) ; putDataSmartDashboard. |
| C++ |
| dashboard the on chooser the Put // m_chooser);\&PutData(::SmartDashboard::frc |

## Command Autonomous an Starting

to polled is object SendableChooser the starts, period autonomous the when ,Robot.java In scheduled. be must command that and command selected the get

Java

| \{ () getAutonomousCommand Command public ();getSelectedm_chooser. return |
| :---: |
| \{ ()autonomousInit void public <br> ();getAutonomousCommandm_robotContainer. = m_autonomousCommand |

page) next on (continues

## Competition Robotics FIRST



Autonomous during Scheduler the Running
every (about period update station driver every scheduler the run will this ,Robot.java In run. to command autonomous selected the cause and 20 ms )
or function autonomousPeriodic() the in occur can scheduler the Running : $\square$ mode. autonomous in similarly function will both, robotPeriodic()

| Java |
| :---: |
| @Override <br> \{ ()robotPeriodic void public (); run().getInstanceCommandScheduler. |
| (Source) C++ |
| $\begin{gathered} \{() \text { Robot:: RobotPeriodic void } \\ \text { GetInstance().Run();::CommandScheduler::frc2 } \end{gathered}$ |

## Command Autonomous the Canceling

canceled. be will command autonomous the begins, period teleop the when ,Robot. java In
Java

| \{ ()teleopInit void public <br> when running stops autonomous the that sure makes This // to autonomous the want you If running. starts teleop // remove command, another by interrupted until continue // out. it comment or line this // null =! (m autonomousCommand if () ; cancelm_autonomousCommand. |  |
| :---: | :---: |
|  |  |
|  |  |

(Source) C++


## Display SmartDashboard

## Subsystems and Commands of Status the Displaying 11.2.6

they that find will you WPILib, of features programming basedcommand- the using are you If doing is robot the what diagnose help can It SmartDashboard. with integrated well very are running. currently what's of view a and control you gives it and time any at

## Displays Subsystem and Command of Overview

Scheduler with
commands runn

Subsystem with
your in subsystems and commands the of status the display can you SmartDashboard With time debugging the reduce significantly should outputs The ways. various in program robot possible. are that displays of number a see can you picture this In programs. your for are: here Displayed see can you example next the In .running commands No with currently Scheduler The • robot. the of status the showing running commands few a with like looks it what commands no currently are there that indicates that ExampleSubsystem subsystem, A • name the indicate will it running, are commands When it. "requiring" are that running subsystem. the using are that commands the of pressed be can that button start a shows that SmartDashboard to written command A • time. a at one commands your testing of way excellent an is This command. the run to running. that's code the debug help to dashboard the to written values data few a And • are there when like look would screen the what see you'll examples, following the In display. this produces that code the and running, commands

## Status Scheduler the Displaying

Java
());getInstance(CommandScheduler. putDataSmartDashboard.

C++
GetInstance());::CommandScheduler::PutData(frc2::SmartDashboard::frc
run). to commands your schedules that code (the Scheduler the of status the display can You as RobotProgram your in method RobotInit the to line single a adding by done easily is This to method putData the using written is instance Scheduler the example this In here. shown image. previous the in display the produces code of line This SmartDashboard.
and ExampleCommand running, commands two are there when status scheduler the is This screen previous the from message running. commands No the replaces This .newCommand various and runs program the as dashboard the on displayed commands see can You image. triggered. are commands

## Status Subsystem Displaying

Java

| (exampleSubsystem); putDataSmartDashboard. |
| ---: |
| C++ |
| exampleSubsystem); \&PutData(: :SmartDashboard::frc |

of instance and exampleSubsystem instance, command the writing are we example this In the in shown display the causes This SmartDashboard. the to class ExampleSubsystem the no that indicating --- dashes, few a contain either will field text The image. previous this using currently command the of name the or subsystem, this using current is command subsystem.
the reserving is command the is That subsystems. "require" will commands Running will it SmartDashboard, on subsystem a display you If use. exclusive its for subsystem by use in is ExampleSubsystem example, this In it. using currently is command which display .ExampleCommand

## Button a with Commands Activating

Java

| exampleCommand); ,"Command Autonomous" (putDataSmartDashboard. |
| ---: |
| C++ |
| exampleCommand);\&,"Command Autonomous"PutData(: :SmartDashboard::frc |

Pressing SmartDashboard. on command the for button a create to required code the is This label button the running, is command the While command. the schedule will button the command. the cancel will button the pressing and cancel to start from changes
button this Pressing .Command Autonomous labeled button a see can you example this In time a at one commands testing of way excellent an is and command associated the run will each for buttons Adding program. robot your to code test awaythrow- add to having without time. a at command one program, the test to simple it makes command

# working is SmartDashboard Verifying 11.2.7 

## Indicator Connection

the of address IP and status connection the include automatically will SmartDashboard window. the of title the in source NetworkTables

## Competition Robotics FIRST

## Widget Indicator Connection

green or red turn will which widget indicator connection a includes SmartDashboard For roboRIO. the by provided usually NetworkTables, to connection the on depending SmartDashboard the in Indicator Connection a Adding at look widget, this add to instructions

Intro.

## Example Program Robot


simply It SmartDashboard. the to value a writes that program robot minimal a is This However, working. is connection the that verify to second per times 50 counter a increments times 10 to updates the throttle will default by NetworkTables usage, bandwidth minimize to
second. per

## Program Sample the for Output SmartDashboard


being robot the of seconds 6 about after this like look should display SmartDashboard The correctly is connection the that check to need you then doesn't, it If mode. Teleop in enabled
up. set

## SmartDashboard in address IP the Verifying


set correctly is number team the that verify appearing, not is value the of display the If then , File selecting by viewed be can dialog preferences The picture. this in shown as Preferences

## OutlineViewer using Program Verifying

the using by values SmartDashboard generating is program robot the that verify can You $\sim /$ in located is that ,OutlineViewer. jar program, Java a is This program. OutlineViewer Windows) , on Public \Users $\backslash C$ : is ~ and year the is YYYY (where wpilib/YYYY/tools see information, more For Installer. Offline WPILib the of part as downloaded is OutlineViewer Ctrl+Shift+P press Code, Studio Visual In guides installation Windows/macOS/Linux the Command WPILib the launch to right top the in logo WPILib the click or "WPILib" type and .OutlineViewer select then and ,Tool Start Select Palette. click Then, zeroes. leading no with number team your enter box, Location" "Server the In .Start
written variable the is SmartDashboard/Counter value the table, the in row second the at Look value the see should you runs program the As NetworkTables. via SmartDashboard the to for look OutlineViewer, the in variable this see don't you If case). this in 41.0( increasing configuration. network the or program robot the with wrong something

Dashboard the and robot the between data send to NetworkTables uses SmartDashboard distributed a like pairs, value name, as data sends NetworkTables computer. Station) (Driver its place, one in changed is value a When computer. the and robot the between hashtable of set standard a and mechanism This place. other the in updated automatically is value SmartDashboard. the on displayed is data how is (keys) name subtables. and tables of set a creating space name the in structure hierarchical a is There the in is data LiveWindow and subtable SmartDashboard the in is data SmartDashboard below. shown as subtable LiveWindow
OutlineViewer the using displayed be can values and names the purposes, informational For all display will It SmartDashboard. the as location same the in installed is that application updated. are they as values and keys NetworkTables the

Values Data SmartDashboard

The .SmartDashboard/ with begin that names key with created are values SmartDashboard with SmartDashboard the to put data to correspond OutlineViewer with viewed values above statements: following the
SendableChooser(); new = chooser
AutonomousCommand()); new, "defaultAuto"(setDefault0ptionchooser.
AutonomousCommand()); new, "secondAuto"(addOptionchooser.
AutonomousCommand()); new, "thirdAuto"(addOptionchooser.
chooser); "Chooser"(putDataSmartDashboard.
);52.0, "degrees in position Arm" (putNumberSmartDashboard.
);"V1.2", "Version Program" (putStringSmartDashboard.
written is AutonomousCommand The call. putNumber() the with created is position Arm The code above the in shown not is that command) Command", putData("Autonomous a with Program value, string the and object SendableChooser a as created is chooser The fragment. call. putString() the with created is Version

## SmartDashboard of View

SmartDashboard the and shown as values table the generates step previous the from code The the in shown variables NetworkTables the to correspond numbers The here. shown as display step. previous
the in viewable is data The subsystem. by grouped automatically is data LiveWindow not are you If Station). Driver the on (set mode Test in is robot the when SmartDashboard grouped be to actuators and sensors cause still can you program, based command a writing key the see can you display above the In name. subsystem the specifying by viewing easy for start strings the All SmartDashboard. the on mode Test in output resultant the and names display to used are that values of group a then name, Subsystem the then LiveWindow/ with below: shown is display LiveWindow this generates that code The element. each


);5PWMVictorSPX( new = clawMotor );"Motor" ,"Claw"(setNameclawMotor.
created sliders using set be can but displayed, only not are actuators to correspond that Values mode. Test in SmartDashboard the in

## Window Live and Mode Test SmartDashboard: 11.2.9

## Values LiveWindow Displaying

to need no is There you. for actuators and sensors your add automatically will LiveWindow and yourself code the writing by displayed be also may values LiveWindow manually. it do them group and names the customize to you allows This program. robot your to it adding command actual are they whether displaying of method convenient a is This subsystems. in program. your in use to decide you that grouping a just or subsystems program based

## Program your to Code Necessary the Adding

by name display and name subsystem the set created, is that actuator or sensor each For mode, LiveWindow into put is SmartDashboard the When C++). in SetName( setName calling actuators. and sensors the display will it

Java


C++
;\}2 ,1ultrasonic\{ Ultrasonic::frc
);"Ultrasonic" ,"Arm" SetName(ultrasonic,: :SendableRegistry
;\}1elbow\{ Jaguar::frc
);"Elbow" ,"Arm" SetName(elbow,::SendableRegistry
;\}2wrist\{ Victor::frc
);"Wrist" ,"Arm" SetName(wrist,::SendableRegistry
of method addChild the using simplified be can this ,Subsystem a in are objects your If SubsystemBase

Java
);2,1Ultrasonic( new = ultrasonic Ultrasonic ultrasonic) ; ,"Ultrasonic"addChild(
page) next on (continues



## SmartDashboard in Display the Viewing

File View
Arm
Wrist

I
Elbow

I
Ultrasonic
subsystem. by grouped displayed be will LiveWindow the to added actuators and sensors The the of display the organize to helping the grouping arbitrary an just is name subsystem The controllers. motor two the for slider the operating by operated be can Actuators sensors.

## (LiveWindow) mode Test Enabling

the while actuators and sensors your for values display to program your to code add may You is robot the whenever Station Driver the from selected be can This mode. Test in is robot RobotBuilder by generated automatically is values these display to code The field. the on not of operation correct the verify to designed is mode Test article. next the in described is and from setpoints obtaining for used be can it addition In robot. a on actuators and sensors the code. your in loops PID tuning for and potentiometers as such sensors

Station Driver the with mode Test Setting

"Enable" setting and button "Test" the on clicking by Station Driver the in Mode Test Enable mode test to switch will display SmartDashboard the this, doing When robot. the on program. your by used sensors and actuators any of status the display will and (LiveWindow)

## display mode test implicit vs. Explicitly

Java

;\}0leftDrive\{ PWMSparkMax: frc
;\}1rigthDrive\{ PWMSparkMax: $: f r c$
accel\{\}; BuiltInAccelerometer::frc
;\}3arm\{ PWMVictorSPX: $: f r c$
\{ () Robot: : RobotInit void
page) next on (continues

);"Accelerometer" ,"SomeSubsystem" accel,\&SetName(::SendableRegistry::wpi
test in SmartDashboard the on displayed be automatically will actuators and sensors All PWMVictorSPX, PWMSparkMax, as (such type object the using named be will and mode In created. was object the which with number channel with etc.) BuiltInAccelerometer, in display, mode test the to actuators and sensors add explicitly can program the addition, the making specified be can names object and subsystem definedprogrammer- case which
actuators. and sensors those defining explicitly illustrates example This clearer. program

## mode Test in displayed is what Understanding

In mode. test into placed is robot the when display SmartDashboard the in output the is This WPILib by created implicitly were Ungrouped as listed objects the above shown display the subsystem a in contained are objects These created. were objects corresponding the when this in (PWMSparkMax type device the with named are and (1) "Ungrouped" called group group (2) "SomeSubsystem" the in shown objects The numbers. channel the and case), section. previous the in example code the from programmer the by created explicitly are sensors created Explicitly . SendableRegistry. setName() to calls the in named are These subsystem. specified the by grouped be will actuators and

SmartDashboard with Tuning PID
speed motor the determining for algorithm an is Differential) Integral, (Proportional, PID The with robot a example, For possible. as quickly as setpoint a reach to feedback sensor on based possible as fast as there move should position predetermined a to moves that elevator an to controller PID the Getting oscillation. to leading overshoot excessive without stop then difference the is that value error an compute to is idea The "tuning". called is way this behave (setpoint) desired the and element feedback mechanism the of value current the between channel analog an to connected potentiometer a be might there arm, the of case the In value. is value desired The arm. the of position the to proportional is that voltage a provides that current the and to, move should arm the position the for predetermined is that voltage the arm. the of position actual the for voltage the is value

## LiveWindow with values setpoint the Finding

the contain Subsystems PID The feedback. with mechanism each for Subsystem PID a Create mode Test use can You case). this in (potentiometer sensor feedback the and (motor) actuator actuator the adjust manually slider the Using actuators. and sensors subsystem the display to These positions. desired the of each for (2) values sensor the Note position. desired each to controller. PID the for setpoints the become will

## LiveWindow in PIDController the Viewing

```
Wrist
Motor
| I
Pot 2.526
            PIDSubs
    P: 2.000
    I: 0.000
    D: 0.000
    F: 0.000
Setpoint: 2.500
Enabled: Г
```

code. the in set are that parameters D and I, P, their display Subsystems PID the mode, Test In over errors of sum (P), error computed the to applied weights the are values D and I, P, The weights the by multiplied is terms those of Each (D). errors of change of rate the and (I), time be can values D and I, P, optimal the Choosing value. motor the form to together added and allows robot the on mode Test The experimentation. of amount some requires and difficult observed. response mechanism the and modified, be to values the
the as 2020, in introduced PIDController the affect not does option enable The : : पार्य this retain to how on here example the See loop. robot every updated is controller functionality.

## PIDController the Tuning

```
Wrist
Motor
I I
Pot 2.526
        PIDSub
        P: 2.000
        I: 0.000
        D: 0.000
    F: 0.000
Setpoint: 2.500
Enabled:
```

techniques describe that articles many are there and difficult be can controller PID the Tuning low a in fill values different try To first. value $P$ the with start to best is It used. be can that the fast how note and document, this in earlier determined setpoint a enter P , for number increase setpoint, the reaching never perhaps slowly, too responds it If responds. mechanism until process this Repeat value. P the reduce oscillating, perhaps quickly, too responds it If P. P a having that possible It's oscillation. without possible as fast as is that response a get you information Further mechanism. your of control adequate achieve to needed that's all is term
document. Controller Velocity Flywheel a Tuning the in located is
You'll program. the into inserted be can they values D and I, P, determined have you Once constructor the in or RobotBuilder in PIDSubsystem the for properties the in either them find code. your in Subsystem PID the for
controller. PID a with velocity controlling for used is term (feedforward) F The


Glass 11.3
to similar extremely is GUI Its tool. visualization data robot and dashboard new a is Glass tool programmer's a as used be to meant is it state, current its In .GUI Simulation the of that environment. competition a in dashboard proper a than rather

Station. Driver NI the in dashboards of list the within available be not will Glass : Flll

## Glass to Introduction 11.3.1

same the of many supports It tool. visualization data robot and dashboard new a is Glass advanced and visualization pose robot including supports, GUI Simulation the that widgets and debugging for tool programmer's a as used be to meant is it state, current its In plotting. use. competition for dashboard a as not

## Glass Opening

Tool Start on clicking Code, VS in )...( menu ellipsis the selecting by launched be can Glass .Glass choosing then and
 folder desktop Tools WPILib the inside shortcut the using by or macOS) and (Linux Glass.py
(Windows).

## Settings View Changing

Zoom The customized. be can that settings Style and Zoom contains item menu View The to you allows option Style the whereas application the in text the of size the dictates option modes. Dark and ,Light, Classic the between select below: is setting style Dark the of example An

## Data Application Clearing

custom other as well as positions and sizes widget including Glass, for data Application based varies file this of location The file. glass.ini a in stored is widgets for information system: operating your on
.\%APPDATA\% in located is file configuration the Windows, On •
.~/Library/Preferences in located is file configuration the macOS, On • the if $\sim /$. config or $\$ X D G \_C O N F I G \_H O M E ~ i n ~ l o c a t e d ~ i s ~ f i l e ~ c o n f i g u r a t i o n ~ t h e ~ L i n u x, ~ O n ~ \cdot ~$ exist. not does former
slate". "clean a to Glass restore to deleted be simply can file configuration glass.ini The

## Connections NetworkTables Establishing 11.3.2

It program. robot your with connection a establish to protocol NetworkTables the uses Glass robot. the from and to data receive and transmit to used also is

## Robot a to Connecting

and Settings NetworkTables - widgets two see will you launched, first is Glass When NetworkTables the in Mode under Client select robot, a to connect To .NetworkTables Apply on click and number team your enter widget, Settings
(including computer your on simulation in running is that robot a to connect also can You box. Team/IP the into localhost in typing by robots) Romi

Glass the of bar title the on visible always is status connection NetworkTables The : application.

## Entries NetworkTables Viewing

over sent being are that entries all view to used be can widget NetworkTables The so and table,sub- table, main by arranged hierarchically are entries These NetworkTables.
on.
pane Connections the under clients NetworkTables connected all view can you Furthermore, widget. the of

## Widgets Glass 11.3.3

include These code. robot in exist that types certain for available are widgets Specialized or instances, SendableChooser as such NetworkTables over sent manually are that objects
.LiveWindow over sent automatically is that hardware
of handful a only are there therefore, - infancy its in still is Glass in support Widget : : पारा continues. work development as grow will list This available. widgets

[^3]
## Widgets Hardware

via available usually are controllers) motor as (such hardware specific for Widgets clicking option, menu NetworkTables the selecting by accessed be can These LiveWindow. widget. desired the choosing and LiveWindow on
below: is widgets has that automatically) LiveWindow over (sent hardware of list The

> DigitalInput •
> DigitalOutput •
> SpeedController
> Gyro
gyroscopes: for widget the of example an is Here
$-90^{\circ}$

## Widget Chooser Sendable

It code. robot from instance SendableChooser a represents widget Chooser Sendable The SendableChooser your dashboards, other Like modes. autonomous select to used often is something use to is simplest The API. NetworkTables a using sent be to needs simply instance
:SmartDashboard like
Java
m_selector); ,"Selector Auto" (putDataSmartDashboard.
C++
m_selector);\&,"Selector Auto"PutData(: SmartDashboard::frc
.document this see please ,SendableChooser a creating on information more For : $\mathrm{O} \mid \mathrm{C}$
the underneath and menu NetworkTables the in appear will widget Chooser Sendable The table main the above, example the From over. sent was instance the that name table main .SmartDashboard be would name

## Widget Controller PID

A controller. certain a for values PID tune quickly to you allows widget Controller PID The use to is simplest The API. NetworkTables a using sent be must instance PIDController :SmartDashboard like something

Java
m_elevatorPIDController); ,"Controller PID Elevator"(putDataSmartDashboard.
C++
m_elevatorPIDController);\& ,"Controller PID Elevator"PutData(::SmartDashboard::frc
setpoints. various for values D and I, P, tune quickly to you allows This
displays widget This robot. a to connects Glass when default by created is widget FMSInfo The connected, is Station Driver a whether state, enabled robot's the about information basic the selecting by viewed be can It etc. data, specificgame- the connected, is FMS an whether .FMSInfo on clicking and item menu NetworkTables

## Framework BasedCommand- the for Widgets 11.3.4

These .framework basedcommand- the to specific are that widgets several has also Glass specific a on commands running actively view commands, schedule to widgets include .scheduler command the of state the view or subsystem,

Widget Selector Command
command a of instance specific a cancel and start to you allows widget Selector Command The MyCommand of instance an create can you example, For Glass. from NetworkTables) over (sent SmartDashboard: to it send and

Java
$\square$
MyCommand(...); new = command MyCommand
command); ,"Command My"(putDataSmartDashboard.
C++
frc/smartdashboard/SmartDashboard.h>< include\#
command\{...\}; MyCommand
command) ; \& ,"Command My"PutData(::SmartDashboard::frc
or API NetworkTables levellower- a using sent be also can instance MyCommand The : the that meaning used, was API SmartDashboard the case, this In .API Shuffleboard the using name. table SmartDashboard the under appear will widget Selector Command
appear will button Run a running, not is command the When states. two has widget The button, Cancel a running, is command the When command. the schedule will it clicking command. the cancel will This above). shown (as appear will text, Running... by accompanied

Widget Subsystem
scheduled currently the and command default the see to used be can widget Subsystem The your class, base SubsystemBase the using are you If subsystem. specific a on command widget, this view To LiveWindow. over NetworkTables to sent automatically be will subsystem menu. NetworkTables the in name table main LiveWindow the under look

In commands. scheduled currently all see to you allows widget Scheduler Command The GUI. the from canceled be can commands these of any addition,

To LiveWindow. over NetworkTables to sent automatically is instance CommandScheduler The menu. NetworkTables the in name table main LiveWindow the under look widget, this view

## Widget Field2d The 11.3.5

An widget. Field2d the using field the on position robot's your displaying supports Glass updated and NetworkTables, over sent created, be should class Field2d the of instance code. robot your in pose robot latest the with periodically

## Code User from Pose Robot Sending

Field2d a estimator), pose a or odometry by obtained (usually position robot's your send To then must instance The NetworkTables. over sent and code robot in created be must instance pose. robot latest the with periodically updated be


C++
frc/smartdashboard/Field2d.h>< include\#
frc/smartdashboard/SmartDashboard.h>< include\#
m_field; Field2d: $:$ frc
\{ Drivetrain() $|$
or API NetworkTables levellower- a using sent be also can instance Field2d The : : पारा the that meaning used, was API SmartDashboard the case, this In .API Shuffleboard the using name. table SmartDashboard the under appear will widget Field2d

## Field2d to Trajectories Sending

trajectories your that verifying for step debugging great a is trajectory your Visualizing the using Field2d in visualized easily be can Trajectories intended. as created are functions. SetTrajectory()/setTrajectory()

Java
\{ () robotInit void public
initialize to best is It autonomous. in follow to trajectory the Create //,
autonomous. in time wasting avoid to here trajectories //
$=$ m trajectory


> SmartDashboard. to Field2d Send // m field);\&PutData(::SmartDashboard::frc
> trajectory. the of pose starting the to odometry s'drivetrain the Reset // m_drive.Reset0dometry(m_trajectory.InitialPose());

> Field2d. to trajectory generated our Send // SetTrajectory(m_trajectory);>-)"traj"m_field.GetObject(

## Glass with Trajectories Viewing

>- NetworkTables dropdown the through Glass with viewed be can trajectory sent The .Field2d >- SmartDashboard

RamseteController/(Java) RamseteController the uses which example above The : once. least at enabled is autonomous until trajectory sent the show not will (C++)
to added be can widget Field2d the NetworkTables, over instance Field2d the sending After instance the that name table the choosing bar, menu the in NetworkTables selecting by Glass button. Field the on clicking then and over, sent was
desire. you as workspace Glass the on it place and resize can you appears, widget the Once select widget, the of name the customize to you allow will widget the of top the clickingRightand field the of dimensions the choose and image, robot custom a select image, field custom a robot.

PathWeaver a or file image an select either to choose can you image... Choose selecting When will file JSON the Choosing directory. same the in is file image the as long as file JSON the of size correct the and image the in field the of location correct the import automatically field.
same the is This .here from files JSON and image field latest the retrieve can You : .PathWeaver using paths generating when used are that JSON and image
bar. menu Field2d the on clicking right by ways of plethora a in customized be can Poses weight, arrow width, arrow style, weight, line width, line are: customization of Examples etc. color,
object pose traj shown previously the converting is style pose the customizing of usage One You .Line select and box dropdown Style the on Click poses. of list a than rather line, a to looks. trajectory the how in change immediate an notice should
fluid and nice a like look to trajectory our cause will This checkbox. Arrows the uncheck Now,
line!

## Widget Mechanism2d The 11.3.6

the using mechanisms robot's your of representations figurestick- displaying supports Glass extend or / and rotate can that ligaments of combinations supports It widget. Mechanism2d complicated more for combined be can they and elevators and arms as such retract, or sent populated, and created be should class Mechanism2d the of instance An mechanisms. robot your in states mechanism latest the with periodically updated and NetworkTables, over robot's your program and visualize to Simulation Physics the with used be also can It code.
built. is robot the before mechanisms

## Instance Mechanism2d the Configuring and Creating

is node root The drawn. is mechanism the where "canvas" the is object Mechanism2d The the would this arm jointed single a For .Mechanism2d to anchored is mechanism the where get To base. robot's the to attached it's where be would this elevator, an For point. pivot the on y) x, getRoot (name, call object), MechanismRoot2d a by (represented node root a and NetworkTables, within root the name to used is name The object. Mechanism2d container the follows system coordinate y / x The important. isn't otherwise but unique, be should left. bottom is $(0,0)-$ Field2d as orientation same
elevator. the of top on wrist rotational a with drawn, is elevator an below, examples the In C++ / Java in available is example Mechanism2d full The

Java

> object mechanism main the //
> );3 ,3Mechanism2d( new = mech Mechanism2d node root mechanism the // );0,2 ,"climber"(getRootmech. = root MechanismRoot2d
$C++$
object mechanism main the //
;\}3 ,3m_mech\{ Mechanism2d::frc
node root mechanism the //
);0 , 2 ,"climber"m_mech.GetRoot( = m_root *MechanismRoot2d::frc
three a has It mechanism. the of stage a represents object MechanismLigament2d Each Mechanism2d the of size the to (relative draw to length initial an name, a parameters, required to relative are angles Ligament degrees. in ligament the draw to angle initial an and object), (counterclockwise- Rotation2d as same the - notation math follow and ligament, parent the optional Two right. point will zero of angle an with root the on based ligament A positive). and object) Mechanism2d the of size the to relative (also width the change you let parameters to node another add to node ligament or node root a on Append()/append() Call color. the pass C++, In it. add to object MechanismLigament2d constructed a pass Java, In figure. the ligament. a add and construct to order in parameters construction the

Java

NetworkTables: to object Mechanism2d the publish Then, Java
$\square$
or API NetworkTables levellower- a using sent be also can instance Mechanism2d The : : 리 the that meaning used, was API SmartDashboard the case, this In .API Shuffleboard the using name. table SmartDashboard the under appear will widget Mechanism2d
the on setAngle() or setLength() call length, or angle ligament a manipulate To sensor of off based length ligament manipulating When object. MechanismLigament2d therefore (and length0- prevent to length minimum the add to sure make measurements, ligaments. invisible)

Java

|  |
| :---: |

> state s'mechanism dashboard the update // + SetLength(kElevatorMinimumLength>-m_elevator

## Glass in Mechanism2d the Viewing

can widget Mechanism2d the NetworkTables, over instance Mechanism2d the sending After that name table the choosing bar, menu the in NetworkTables selecting by Glass to added be button. Field the on clicking then and over, sent was instance the
workspace Glass the on it place and resize can you below, shown as appears widget the Once of name the customize to you allow will widget the of top the clickingRight- desire. you as

Simulation Physics with combined be can visualization Mechanism2d the above, mentioned As )C++ / Java( ArmSimulation The built. is robot your before mechanisms program you help to Mechanism2d and simulation physics combine examples )C++ / Java( ElevatorSimulation and without elevator and arm jointed single a programming practice can you that so visualization robot. a

## Plots 11.3.7

Some NetworkTables. from data of plotting comprehensive performance,high- at excels Glass examine, pause, to ability the and axes y multiple with plots plots, resizable include features plots. resume and

## Plot a Creating

then and bar menu main the on button Plot the selecting by created be can widget plot new A To window. plot each to added be can plots individual Several .Window Plot New on clicking can you Then widget. the inside button plot Add the click window, plot a within plot a add plot: the into widget NetworkTables the from sources various drag

y the zoom to plot the of top on scroll and around move to plot the on drag and click can You limits axis and zoom the that so it autoscale will graph the on clicking Double out. and in axes with you present will plot the on clickingright- Furthermore, plotting. is it data the of all fit if axes, $y$ tertiary and secondary display to want you whether including options, of plethora a etc. axes, certain lock to wish you

onto sources data drag can you available, axes y tertiary and secondary make to choose you If axis: desired your with correspond lines their make to axes those

of regardless constant, remains always range their that so axes certain lock can you Then, was entry) SmartDashboard/Kp/ the (with range axis secondary the example, this In panning.
12. and 9 between locked

box the of out straight features of lot a provides and use to easy is Dashboard LabVIEW The customized be can It feedback. joystick and selection, autonomous streams, camera like: C++ or Java by used be can it While project. Dashboard new a creating by LabVIEW using in customized be can which Shuffleboard or SmartDashboard prefer generally they teams, language. respective their

Dashboard LabVIEW FRC 11.4.1
LabVIEW a is Station Driver FRC ${ }^{\circledR}$ the by launched and installed application Dashboard The to ability the with robot, their from feedback basic with teams provide to designed program uses application Dashboard This needs. their suit to information the customize and expand useful. find may teams that tools of variety a contains and NetworkTables

Dashboard LabVIEW
camera a displaying for is pane left The sections. main two into broken is Dashboard The contains: pane right The image.
by up (hooked values motor drive and joystick for indicators contains that tab Drive • selection Autonomous an indicator, gyro a code), robot LabVIEW with used when default camera the for indicators and controls some and indicator connection a box, text
indicators and controls default some contains that tab Basic • left the in viewer the to similar viewer, camera secondary a contains that tab Camera • pane
LabVIEW using dashboard the customizing for tab Custom •
framework LabVIEW the in Mode Test with use for tab Test • Framework C\&C LabVIEW new the with use for tab Commands • between and/or before complete to lists task create to used be can that tab Checklist • matches
format view tree a in variables NetworkTables raw the displays that tab Variables • bottom the in located functionality, Record/Playback includes also Dashboard LabVIEW The .Record/Playback under below included is feature this about detail More right.

## Controls and Image Camera

are There robot. the on located acamera from feed video a display to used is pane left The area: tab the below camera the to related indicators and controls some also

Display Image Camera 1.
use. to display camera of type the select to you allows downdrop- This - Selector Mode 2. HW Camera USB compression), (software SW Camera USB Off, Camera are choices The setting Camera IP the that Note camera). (Axis Camera IP and compression) (hardware

USB. over roboRIO the to connected is PC your when work not will
and framerate resolution, the change to you allows control This - Settings Camera 3. the uppop- to control the click dashboard, the to stream image the of compression configuration.
stream. image the of usage bandwidth approximate Indicates - Indicator Bandwidth 4. should teams when yellow usage, bandwidth "safe" for green display will indicator The the on work will that levels beyond is bandwidth stream the if red and caution use field. competition
stream. image the of framerate received approximate the Indicates - Framerate 5.

## Drive

| Drive Came |
| :--- |
| Joystids |
| Drive Motors |
| No Camera |
| NT Connecti |
| No |

drive and joysticks the on feedback provides that section a contains pane center The the displays that section a and framework LabVIEW the with used when commands selector: autonomous and status NetworkTables using when joysticks 2 to up for values button and information Throttle and X,Y Displays 1. framework LabVIEW the
framework LabVIEW using when controllers motor to sent being values Displays 2. robot the from data NetworkTables the for indicator connection a Displays 3. value Gyro a Displays 4.
code language's Each modes. Autonomous select to used be can that box text a Displays 5. programs. autonomous multiple from select to box this using of examples have templates when default by values appropriate to up hooked are Gyro) the than (other indicators These Using see code C++/Java with them using on information For framework. LabVIEW the using .Code C++/Java with Dashboard LabVIEW the

## Camera

the on tab camera the use so output, camera single a display only can pane left The : needed. if output camera second a display to pane right
$\qquad$
are There robot. the on located camera a from feed video a display to used is tab camera The area: tab the below camera the to related indicators and controls some also

Display Image Camera 1.
use. to display camera of type the select to you allows downdrop- This - Selector Mode 2. HW Camera USB compression), (software SW Camera USB Off, Camera are choices The setting Camera IP the that Note camera). (Axis Camera IP and compression) (hardware

USB. over roboRIO the to connected is PC your when work not will
and framerate resolution, the change to you allows control This - Settings Camera 3. the uppop- to control the click dashboard, the to stream image the of compression configuration.
stream. image the of usage bandwidth approximate Indicates - Indicator Bandwidth 4. should teams when yellow usage, bandwidth "safe" for green display will indicator The the on work will that levels beyond is bandwidth stream the if red and caution use field. competition
stream. image the of framerate received approximate the Indicates - Framerate 5.

| ene oper |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Basic


can which controls/indicators directionalbi- populatedpre- of variety a contains tab Basic The key SmartDashboard The robot. the from information display or robot the control to used be the of exception the with indicator the to next labeled are item each with associated names $\mathrm{DB} /$ String to $0 \mathrm{DB} /$ String from increment and pattern naming same the follow which Strings contains framework LabVIEW The right. the on $9 \mathrm{DB} /$ String to $5 \mathrm{DB} /$ String and left the on 4 example an contains also It Teleop. in Sliders and Buttons the from reading of example an see code, C++Java with tab this using on detail more For Begin. in labels the customizing of
.Code C++/Java with Dashboard LabVIEW the Using

## Custom

using dashboard the to controls/indicators additional add to you allows tab Custom The need will you tab this customize To functionality. existing any removing without LabVIEW LabVIEW. in project Dashboard a create to
should teams C++ and (Java LabVIEW using teams for mode Test with use for is tab Test The libraries, the in items many For Mode). Test using when Shuffleboard or SmartDashboard use them to next ${ }^{* *}$ have which items All automatically. here populated be will info Input/Output select to it on click output, an control To dashboard. the by controlled be can that outputs are output. the enable to button green the hold and press then value the set to slider the drag it, used be also can tab This disabled. be will output the released, is button green the as soon As framework. LabVIEW the in provided is test example An robot. the on tests monitor and run to slider the of place in test the of status the show will box dropdown the from test this Selecting
controls. enable and

## Commands

are commands which see to mode Test in Robot the with used be can tab Commands The purposes. test for commands run manually to and running

## Checklist

## Drive

1. Secure
2. Etherr
3. Radio
4. Remo

This list

Modify t

Double
Shift Do
between or before perform to tasks of list a create to teams by used be can tab Checklist The checklist default the in populatedpre- are tab Checklist the using for Instructions matches.
file.

## Variables

The display. tree a in variables NetworkTables all shows pane left the of tab Variables The about Information variable. each for shown are type data and Value (Key), Name Variable with shown be will Entries tab. this in displayed also is usage bandwidth NetworkTables the robot. the with synced currently not are they if diamonds black
video record to you allows that feature Record/Playback a includes Dashboard LabVIEW The back it play and indicators) Dashboard your of state the as (such data NetworkTables and later.

## Recording

> Drive
> This tab is
> Place contr
> Dashboard
pane right the of background The button. Record circular red the click recording, begin To Stop square red the press recording, stop To recording. are you indicate to red turn will button.
right the of background The button. Play triangle green the click back, recording a play To camera the of bottom the at appear will controls playback and green pulsing begin will pane pane.
files $\log$ The back. play to file log a select to you allows dropdown The - Selector File 1. the of length the indicate also will dropdown the and time and date the using named are file. that playing begin immediately will logfile a Selecting file.
file. log the of playback resume and pause to you allows button This - button Play/Pause 2. to speed $1 / 10$ from speed playback adjust to you allows dropdown This - Speed Playback 3. ( 1 x ) timereal- is default the speed, 10 x
logfile the through rewind or forwardfast- to you allows slider This - Slider Control Time 4. slider. the dragging or location desired the on clicking by
or file a delete or rename to you allows dropdown this selected, file log a With - Settings 5. $\backslash$ Public $\backslash$ Users $\backslash C$ : (Typically Explorer Windows in logs the containing folder the open )Dashboard $\backslash$ Files Log $\backslash$ FRC\Documents

## Code C++/Java with Dashboard LabVIEW the Using 11.4.2

therefore is and values pass to NetworkTables utilizes Dashboard LabVIEW default The ranges value and keys the covers article This programs. robot Java and C++ with compatible Dashboard. the with work to use to

## Tab Drive

Drive
routines autonomous available the show so used be can dropdown Autonomous... Select The match. the for run to one choose and

Java

| ,"Backwards Drive" , "Forwards Drive"\{ ,"List Auto"(putStringArraySmartDashboard. <br> );\}"Shoot" $\leftrightarrow$ <br> auto of beginning the At // <br> uThis // )"Forwards Drive" ,"Selector Auto" (getStringSmartDashboard. = autoName String auto default the Forwards Drive" make would $\rightarrow$ <br> \{ (autoName) switch |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

page) next on (continues

here. gyro the populate will entry NetworkTables "Gyro" the to Sending
Java
()) ; getHeadingdrivetrain. , "Gyro"(putNumberSmartDashboard.

C++
Drivetrain.GetHeading()); ,"Gyro"PutNumber(::SmartDashboard::frc
2 for configured is This drivetrain. the to power motor the show that outputs four are There like Motors" "RobotDrive setting by done is This drivetrain. style tank a and side per motors below. example the

Java
(), getLeftFrontdrivetrain. \{ ,"Motors RobotDrive" (putNumberArraySmartDashboard. ()\});getRightBackdrivetrain. (), getLeftBackdrivetrain. (), getRightFrontdrivetrain. $\rightarrow$
C++
drivetrain. drivetrain.GetLeftFront(), \{ , "Gyro"PutNumberArray(: SmartDashboard::frc drivetrain.GetRightBack()\}); drivetrain.GetLeftBack(), GetRightFront(), $\rightarrow$

## Tab Basic


data. Dashboard send/receive to tablesub- "DB" a the in keys of number a uses tab Basic The receive). or (send directionalbi- all are fields other the only, output are LED's The

## Strings

ONE
My 21

Each 9". "DB/String to 0" "DB/String from rightto-left- bottom,to-top- labeled are strings The characters). what on depends number (exact characters 21 least at display can field String
strings: these to write To
Java
);"TestString Char 21 My" ,"0 DB/String"(putStringSmartDashboard.
C++
);"TestString Char 21 My" ,"0 DB/String"PutString(::SmartDashboard::frc
Dashboard: the on entered data string read To
Java
);"myDefaultData" ,"0 DB/String"(getStringSmartDashboard. = dashData String
C++
);"myDefaultData" ,"0 DB/String"GetString(::SmartDashboard::frc = dashData string::std

LEDs and Buttons

0 " "DB/Button from bottomto-top- labeled are and values boolean are LEDs and Buttons The LEDs the directional,bi- are Buttons The 3". "DB/LED to 0" "DB/LED and 3" "DB/Button to Buttons the to write To Dashboard. the on read and Robot the from written be to able only are LEDs: or

Java

| ); ;true, "0 DB/Button"(putBooleanSmartDashboard. |
| ---: |
| C++ |
| );true, "0 DB/Button"PutBoolean(::SmartDashboard::frc |

false) is value (default Buttons: the from read To
Java

| );false,"0 DB/Button"(getBooleanSmartDashboard. = buttonValue boolean |
| ---: |
| C++ |
| );false,"0 DB/Button"GetBoolean(::SmartDashboard::frc = buttonValue bool |

Sliders indicators: these to write

Java
);2.58,"0 DB/Slider"(putNumberSmartDashboard.
C++
);2.58,"0 DB/Slider"PutNumber(::SmartDashboard::frc
0.0) of value (default program: robot the into Dashboard the from values read To

Java
) ;0.0,"0 DB/Slider"(getNumberSmartDashboard. = dashData double

C++

```
);0.0 ,"0 DB/Slider"GetNumber(::SmartDashboard::frc = dashData double
```


## Connectivity Dashboard Troubleshooting 11.4.3

This events. from issues connectivity Dashboard of reports of number a received have We robot, your to connected not is Dashboard the if recognize to how explain help will document make. can you modification code a and condition this troubleshoot to steps

Dashboard LabVIEW dashboard LabVIEW and robot the between connectivity discusses section This

Connectivity Dashboard LabVIEW Recognizing
fairly be may it changing be to expect you that dashboard your on indicator an have you If without check to way a is there not, If connected. is Dashboard the if recognize to trivial variables the Dashboard, the of tab Variables the On code. robot your to changes any making Dashboard the Once robot. the with synced not are they when diamond black a with shown are disappear. will diamond the synced, are variables these and robot the to connects

## Connectivity Dashboard LabVIEW Troubleshooting

the to connected has Station Driver the (after Robot the to connect not does Dashboard the If are: steps troubleshooting recommended the robot)
should (which Station Driver the openre- then Dashboard, and Station Driver the Close 1. Dashboard). the launch the on button Code Robot Restart the using Code Robot the restart work, doesn't that If 2. Station Driver the of tab Diagnostics

## Connectivity Recognizing

SmartDashboard and robot the between connectivity discusses section This

## Connectivity SmartDashboard Recognizing

Connection a add to is SmartDashboard the with connectivity recognize to way typical The initialization during key one least at writing is code your sure make to and widget Indicator or moved be can indicator connection The indicator. connection the trigger to disabled or checked. is checkbox Editable the if sizedre-

Connectivity Shuffleboard Recognizing

NetworkTables: I
application the of corner right bottom the in not or connected is it if indicates Shuffleboard above. image the in shown as

Connectivity Glass Recognizing
on more for page this See top. the across bar the in not or connected is it if displays Glass connection. the configuring

## Connectivity Troubleshooting

the to connected has Station Driver the (after Robot the to connect not does Dashboard the If are: steps troubleshooting recommended the robot)
software) Station Driver the restart to need no is (there Dashboard the Restart 1.
the on button Code Robot Restart the using Code Robot the restart work, doesn't that If 2.
Station Driver the of tab Diagnostics
the in properly set is Server / Number Team the that verify connect, doesn't still it If 3. disabled or initialization during value a writes Code Robot your that and Dashboard


## Data TimeReal- Sending and Recording Telemetry: 12.1

accurate - process engineering the of part crucial a is data telemetry viewing and Recording for indispensable is and optimally, perform to robot your tune you helps data telemetry expected. as perform to fails it when robot your debugging data recording However, robot. the on (saved) recorded is data telemetry no default, By data more that namely dashboard, a on recording over benefits provide can robot the on very be can data recorded the all and limitations), bandwidth no are (there recorded be can telemetry of recording roboton- for support integrated has WPILib timestamped. accurately data downloading for tool a provides and classes DataLog and DataLogManager the via data CSV. to them converting and files log
telemetry their record can teams data, telemetry of recording roboton- to addition In : Cl C .recordings Shuffleboard with computer station driver their on data

Code Robot to Telemetry Adding 12.1.1
code. robot from data telemetry send and record to ways different several supports WPILib robot from statements print viewing for support provides Riolog the level, basic most the At console as scale not does but code, problematic of debugging flythe-on- for useful is This code. streams. data rich for suitable not are interfaces
data telemetry rich send easily more to users allow that dashboards several supports WPILib NetworkTables the with communicate dashboards WPILib All computer. stationdriver- the to dashboard one with logged (telemetry interoperable degree some to are they so and protocol, be not generally will widgets/formatting specific the but others, the on visible be will following the support currently dashboards) all WPILib thus (and NetworkTables compatible).
types: data
boolean .
boolean[]
double

```
double[]
    string
string[]
    byte[]
```

(for method WPILib associated an using dashboard WPILib a to sent be can data Telemetry directly by or question), in dashboard individual the for documentation the see details, more
.NetworkTables to publishing
is (this types data complex of serialization support yet not does NetworkTables While extended easily be can code user from types mutable 2023), for scheduled tentatively is usage whose interface, Sendable the via dashboards WPILib with directly interface to article. next the in described

## Sendable with Telemetry Robot

their from data of pieces small send easily to users allow APIs dashboard WPILib the While telemetry publishing for code write manually to tedious often is it dashboard, the to code robot logic. operational code's robot the from values
mark to code user of structure orientedobject- existing the leverage to is approach cleaner A WPILib The style. programming declarative a in logging telemetry for fields data important potentially, (and, from reading correctly of part tedious/tricky the handle then can framework write to has user the code of amount total the reducing greatly you, for fields those )to writing readability. improving and
implement that Classes interface. Sendable the with functionality this provides WPILib dashboard the to data send automatically that listeners value register to able are Sendable of any to sent declaratively be can classes These back. values receive cases, some in and, to teams for need the removing field), data ordinary an would one (as dashboards WPILib the updates. for send/poll to code own their write

## Sendable? is What 12.2.1

Classes telemetry. robot facilitate to WPILib by provided interface an is ) C ++ , Java( Sendable declared, once - dashboard the to state their send declaratively can Sendable implement that need the removes This loop. robot every values telemetry the send automatically will WPILib the from values receiving and sending of logic iterationto-iteration- the handle to teams for
logic. robot their from code telemetry their separate to teams allows also and dashboard,
sent be can so and ,Sendable implement already )Commands as (such classes WPILib Many their extend easily to able also are Users modification. user any without dashboard the to .Sendable implement to classes own
classes Implementing .initSendable method: one only contains interface Sendable The data, JSON structured to values data codein- of binding the perform to method this override Implementation NetworkTables. via dashboard robot the to sent automatically then is which .article next the in discussed is interface Sendable the of

## Dashboard the to Sendable a Sending 12.2.2

 Accordingly, it". forget and it "set - code user further any without WPILib, by dashboard a in not constructor, or block initialization an in dashboard the to sent be usually should they
function. periodic
method. putData dashboard's the use simply dashboard, the to object Sendable a send To from telemetry log automatically can Controller PID a uses that class "arm" an example, For constructor: its in following the calling by controller the

Java

| armPIDController); ""PID Arm" (putDataSmartDashboard. |
| ---: |
| C++ |
| armPIDController); ,"PID Arm"PutData( : SmartDashboard: frc |

dashboard the from sent values data the to setters bind classes Sendable some Additionally, parameters. robot of tuning remote allowing ,robot the to

## Logs Data Into Recording Telemetry RobotOn-

class DataLogManager The robot. the on (saved) recorded is data telemetry no default, By recording roboton- for class DataLog levellower- the around wrapper convenient a provides reasons. speed and size for binary are logs data WPILib The logs. data into data telemetry of code, robot to overhead minimal have WPILib by provided facilities log data the general, In mutex a mainly of consists operation log thread-the separate a on performed is I/O file all as data. the copying and acquisition

## Logs Data of Structure

12.3.1
(keys) identifiers string with entries of concept the have logs data NetworkTables, to Similar after changed be cannot type data the NetworkTables, Unlike type. data specified a with string JSON) typically (but arbitrary metadata-an have also entries and created, is entry the or source data the as such entry the about information additional convey to used be can that DataLog unidirectional-the is operation log data NetworkTables, unlike Also schema. data the and values) written of backread- support not does (it logs data write only can class the in values changing support not does (it logs data read only can class DataLogReader log). data
finishing, starting, allow records Control records. timestamped of series a of consist logs Data Timestamps changes. value data record records data and entries, of metadata the changing or is timestamp FPGA the RoboRIO, the on running when microseconds; integer in stored are ).Timer.getFPGATimestamp() by returned timestamp same (the used

## DataLogManager using Logging Data Standard 12.3.2

automatic provides that log data centralized a provides ) C + + , Java( class DataLogManager The and low is space disk when files old up cleans automatically It management. file log data number. match competition available) (if or date/time current on either based file the renames home/lvuser/ to or attached, is one if drive flash USB a to saved be will file data The otherwise.
DS the After connects. DS the until FRC_TBD_\{random\}.wpilog named initially are files Log is date/time the (where FRC_yyyyMMdd_ $\bar{H} H m m s s . w p i l o g ~ t o ~ r e n a m e d ~ i s ~ f i l e ~ l o g ~ t h e ~ c o n n e c t s, ~$ to renamed is file log the number, match a provides and connected is FMS the If UTC). .FRC_yyyyMMdd_HHmmss_\{event\}_\{match\}.wpilog
there If deleted. be will connected been not has DS a where files log existing all startup, On to (oldest deleted are files log FRC_ storage, target the on space free of MB 50 than less is remaining. files 10 are there OR free MB 50 is there until newest)
this (typically code of line single a requires only DataLogManager of usage basic most The log. data the to changes NetworkTables all record will This ). robotInit from called be would

Java

of logging for )DataLogManager. log()( function convenience a provides DataLogManager standard to printed also is message The log. data the in entry messages the to messages text .System. out. println() for replacement a be can this so output,
every log data the to UTC) (in time system roboRIO current the records also DataLogManager synchronize (roughly) to used be can This log. data the in entry systemTime the to seconds $\sim 5$ video. match or logs DS as such records other with log data the
.DataLogManager.getLog() via accessed be can DataLog managed the logging, custom For

## Data Joystick Logging

provides class DriverStation The data. joystick record not does default by DataLogManager function: startDataLog() the via data joystick and control DS of logging for support

Java

[^4]

## DataLog using Logging Data Custom 12.3.3

,BooleanLogEntry (e.g. classes LogEntry associated its and ) C++ Java( class DataLog The logs. data writing for access levellow- provides etc) ,DoubleLogEntry only values record to DataLogManager with conjunction in used be can classes LogEntry The NetworkTables: to not and log data a to

Java



## Robot the from Logs Data Downloading 12.3.4

a of instead memory flash integrated roboRIO the to stored being are files log data If to logs data delete and download periodically to important it's drive, flash USB removable up. filling from storage the avoid
for client SFTP a integrates application desktop DataLogTool the this, facilitate To local the to coprocessor) or roboRIO (e.g. device network a from files log data downloading computer.
steps: four of consists process This coprocessor or roboRIO to Connect
download to files what select and directory remote to Navigate
folder download Select
downloading after files remote delete optionally and files Download
radio the if wirelessly connect to able be not will it so SSH, uses downloader The : 린 field). competition the on is robot the when (e.g. enabled is firewall
/ Number Team the into entered be can hostname or address, IP number, team a Either entered, is number team a If to. connect to host remote the specifies field This field. Address address. connection the as used is frc.local-TEAM-roborio username the roboRIO, the For here. entered also are password and username remote The password. blank a with lvuser be should
as such roboRIO, the than other devices network to connecting supports also tool The authentication. basedpassword- SFTP supports device the as long as coprocessors,
device. the to connect to attempt will This device. remote the to connect to Connect Click application the If .Disconnect clicking by time any at aborted be can attempt connection The Number Team the above displayed be will error an device, remote the to connect to unable is attempted. be can connection new a and field Address /

Files Downloading
displayed. be will browser file simplified a established, successfully is connection the After first The download. to files which select and filesystem remote the navigate to used is This it typing by to navigated be can directory specific A directory. current the shows box text by performed be can navigation directory Alternatively, Enter. pressing and box text this in the Following textbox. dir remote the below listed are that directories the of one on clicking table the so shown, are extension wpilog. a with files Only files. of table a is directories of list data each to next checkbox The directory. current the in files log no are there if empty be will downloaded. be should file the whether indicates file log
computer. local the for browser file a up bring to Folder... Download Select Click the check downloaded, are they after device remote the from files the delete to want you If checkbox. download after Delete
the button, this clicking After appear. will Download selected, is folder download a Once each to next shown be will errors Any display. progress download a to change will display browser. file the to return to complete! Download Click file.

## CSV to Logs Data Converting

to functionality provides application desktop DataLogTool the files, binary are logs data As may logs data Multiple analysis. or processing further for files CSV into logs data convert be can exports data partial and processing, batch for tool the into loaded simultaneously be output. be to desired is that data the only selecting by performed

Files window. Files" "Input the in files log data opening by started is process conversion The records of number (e.g. file each on status Summary .File(s)... Open clicking by opened are file. the closes row table the in $X$ Clicking displayed. is entries) and entries the of view tree a displays window "Entries" the loaded, is file one least at After and bar title window "Entries" the on clicking right by view flat a to changed be can (this to unchecked or checked be can subtrees entire or entries Individual ).View Tree unchecking initial and information type data The export. the in included be should they whether indicate merged a shows view "Entries" the As table. the in shown also is entry each for metadata an over hovering open, is file input one than more if files, input all across entries all of view
entry. that contain files input what highlight will name entry's
well as )Folder... Output Select (via folder output the specify to used is window output The columns 3 with file CSV a outputs style output list The table). or (list style output the as exported every (for change value every for row a and value) and name, entry (timestamp, for column a and column timestamp a with file CSV a outputs style output table The entry). but entry), exported every (for change value every for output is row a entry; exported every a create will CSV Export Clicking entry. that for column correct the in placed is value the file. input each to corresponding folder output the in file csv.

## Visualization Log Data 12.3.6

stored data visualize and back play to users allowing tool partythird- a is AdvantageScope etc. synchronization, video displays, field graphs, line for support with logs, data WPILib in offers WPILib that Note .documentation AdvantageScope the in available are details More projects. partythird- for support no

## Logs Data of Processing Custom 12.3.7

can't that values binary of processing for (e.g. logs data of processing advanced more For , Java in logs data reading for class DataLogReader a provides WPILib CSV), to converted be documented. also is format log data the languages, other For .Python or , C++
data a over iterating supports it that in log, data a of view levellow- a provides DataLogReader any provide not does but types, data common of decoding and records data and control log's example printlog The entries. of map likeNetworkTables- a as such abstractions level higher usage. basic demonstrates )datalog. py Python the (and C++ and Java in

## Classes Sendable Own Your Writing 12.4

implement that classes own your writing method, one has only interface Sendable the Since dashboard) the from values consume and/or to values log automatically thus (and Sendable method, initSendable overridable the for implementation an provide just easy: extremely is (their values key to bound declaratively are fields class's your for getters and setters which in dashboard). the on names display
WPILib's from initSendable of implementation the is here example, For :BangBangController

Java
\{ builder) (SendableBuilderinitSendable void public
{ builder) SSendableBuilder: (wpiBangBangController::InitSendable void
{ builder) SSendableBuilder: (wpiBangBangController::InitSendable void
);"BangBangController"builder.SetSmartDashboardType(
);"BangBangController"builder.SetSmartDashboardType(
builder.AddDoubleProperty(
builder.AddDoubleProperty(
,} GetTolerance(); return { ]this[ ,"tolerance"
,} GetTolerance(); return { ]this[ ,"tolerance"
);} SetTolerance(tolerance); { tolerance) double](this%5B);} SetTolerance(tolerance); { tolerance) double](this[
builder.AddDoubleProperty(
builder.AddDoubleProperty(
,} GetSetpoint(); return { ]this[
,} GetSetpoint(); return { ]this[
);} SetSetpoint(setpoint); { setpoint) double](this%5B);} SetSetpoint(setpoint); { setpoint) double](this[
builder.AddDoubleProperty(
builder.AddDoubleProperty(
);nullptr ,} GetMeasurement(); return { ]this[ ,"measurement"
);nullptr ,} GetMeasurement(); return { ]this[ ,"measurement"
builder.AddDoubleProperty(
builder.AddDoubleProperty(
);nullptr ,} GetError(); return { ]this[ ,"error"
);nullptr ,} GetError(); return { ]this[ ,"error"
builder.AddBooleanProperty(
builder.AddBooleanProperty(
);nullptr ,} AtSetpoint(); return { ]this[ ,"atSetpoint"
);nullptr ,} AtSetpoint(); return { ]this[ ,"atSetpoint"
data Sendable background", the "in WPILib by values of updating automatic the enable To that field a If values. data specific than rather functions setter and getter to bound are names lambda a with inline defined be can they getters, and setters defined no has $\log$ to wish you
expression.

## Class SendableBuilder The 12.4.1

type of ,builder parameter, single a takes method initSendable the above, seen As getters of binding allow that methods exposes builder This ).C++, Java( SendableBuilder consumed values that ensuring safely for methods as well as names, dashboard to setters and behavior. robot unsafe cause not do dashboard the from

## Methods addProperty with Databinding

over transmitted ultimately are fields Sendable code, dashboard WPILib all Like the match SendableBuilder by provided methods databinding the thus and ,NetworkTables types: data NetworkTables supported addBooleanProperty :boolean
addBooleanArrayProperty :boolean[] addDoubleProperty :double
addDoubleArrayProperty :double[]
addStringProperty :string
addStringArrayProperty :string[]
addRawProperty :byte[]

## setActuator and setSafeState with Safety Ensuring

possible is it dashboard, the from values arbitrary consume to users allows Sendable Since unsafe extremely is This actuations. robot to directly controls dashboard pipe to users for robot controlling for interface good particularly a not are dashboards care; with done not if on change a to response in move to robot the expect not do generally users and movement, dashboard. the

SendableBuilder values, dashboard with interfacing when safety ensure users help To mechanism Sendable any place to called is which method, setSafeState a exposes hazardous potentially Any state. safe a into input dashboard on based actuates that safe suitable a with setSafeState call should implementation Sendable writtenuserWPILib the from implementation the is here example, For implementation. state class: PWMMotorController

Java

\{ builder) SendableBuilder: InitSendable(wpi: PWMMotorController void
);"Controller Motor"builder.SetSmartDashboardType( builder.SetActuator( ) ; \} Disable(); \{ ]this ,=builder.SetSafeState([ builder.AddDoubleProperty(
might that mechanism any mark to builder. setActuator(true) call may users Additionally, to Shuffleboard by used is this Currently, actuator. an as input Sendable of result a as move mode. LiveWindow in not when widgets actuator disable

## Libraries Telemetry PartyThird-

it! add to request pull a Open be? should it when here listed not library your Is : :
beyond functionality provide that exist frameworks and utilities logging partythird- Several WPILib: by provided currently is what
and ,logs data WPILib ,NetworkTables for tool visualization Data :AdvantageScope
for hooks with framework logging basedeverything"- "Log only): (Java in data logged replaying
plain (or Shuffleboard for API basedannotation- Minimalistic only): (Java Oblog telemetry. )NetworkTables


## Programs Robot Creating 13.1

Tutorial Drive Tank 13.1.1.
drive? tank using joysticks two with drive to robot my get I do How Question:
robot. your for drive tank up setting when consider to components four are There Solution: arcade the of instead used is drive.vi tank the sure make is do to want will you thing first The is consider to item second The previously. utilizing were you VI drive whichever or drive.vi the drive, tank In drive. to want you direction the to map to joysticks your want you how the control to used is joystick right the and motors left the control to used is joystick left the on up pushing by right turn robot your make to want you if example, For motors. right in accordingly joystick's your set to need will you joystick right the on down and joystick left lines PWM the confirm to want will you Next, below). detail more in shown is (this LabVIEW sure make Lastly, controlling. be will joysticks your ones same the are into, wired are you that will below steps The LabVIEW. in specified controllers motor the match controllers motor your detail: more in ideas these discuss
.Project roboRIO FRC click double and LabVIEW Open
block its at Look structure. case Enabled Teleop the of inside vi "Teleop" the click Double here: changes two make to want will You diagram.
the on clicking right by found be can This drive.vi. tank the with Drive Arcade Replace Drive Tank the clicking and >> Drive Robot >> Library Robotics WPI >> diagram block
VI.
two create to need will You Values.vi. Get the after is that function Array Index the Find what determine can You inputs. index the of one into each wire and constants numeric Driver FRC® the in tab Devices USB the at looking by be should index each of values the You to. tied are they (index) number which determine to joysticks two the Move Station. to intuitive is it because is This joystick. each for index axisY- the use to want likely will you when down and forward, go to motors the want you when joystick the on up push have will you then each, for index axisX- the select you If reverse. in go to them when In move. to motors robot the get to directions) axis(x-right or left joystick the move to right the as 5 index and control axisY- motors left my for 1 index selected I've setup, my image: following the in LabVIEW in adjustments the see can You control. axisY- motors
"Begin.vi." the on click double and Main.vi" "Robot your to back go to want will you Next to connected are motors right and left your that is VI this in confirm to thing first The Panel). Distribution (Power PDP your on are they as LabVIEW in lines PWM same the motor correct the has Motor.vi" 2 "Open the that is VI this in confirm to thing second The etc.). Victor, Jaguar, (Talon, selected controller
into wired are motors my and controllers motor Jaguar using am I example, For make: to need I changes the shows below image The 9. and 8 PWM
a drive to able now are you and to adjustments made have you that Vis the of all Save drive! tank with robot

## Tutorial Control and Command

organizes which season 2016 the for added template LabVIEW new a is Control and Command Each subsystems. specificrobot- of collection a for controllers and commands into code robot rate appropriate the at running machine state or loop control independent an has subsystem points. set and operations desired update that commands levelhigh- and mechanism the for commands. of sequences synchronous build to code autonomous for easy very it makes This wait to needing without commands same the use can it because benefits TeleOp Meanwhile, to according commands new of initiation and cancellation easy for allowing completion, for values control and sensor its displaying panel a has subsystem Each input. team drive the debugging. in aid to tracing command and time, over

## Control? and Command is What

relatively of up built be to tend robots FRC ® that recognizes Control and Command as to referred is these of Each etc. Arm, Shooter, Drive, as such mechanisms independent the of actuators and sensors various the coordinate will that code needs and subsystem a Gripper" "Close as such actions, or commands, requested complete to order in subsystem each will subsystems that is framework this of principles key the of One Arm". "Lower or other and motors updating for responsible solely is that loop controller independent an have change may which commands issue can controller subsystem the of outside Code actuators. subtle very is difference The outputs. any change directly not should but output, robot's the This project. the in location one from updated be possibly only can outputs that means this but through look to ability the you giving by unexpectedly behaving robot a debugging up speeds an where for project your searching than rather subsystem the to sent commands of list a change sensor, additional an add to easier becomes also It modified. been have may output
controller. the of outside code modify to needing without mechanism a disable or gearing,
set update to need typically will TeleOp, and Autonomous of consisting primarily code, Game to common very is it Autonomous, For mechanisms. certain of state the to react and points it carry up, that pick here, drive - operations of sequence a as operation robot's the define build quickly to logic additional with sequentially wired be can Commands etc. it, shoot there, the allowing asynchronously, execute can commands same the teleOp, For routines. complex commands new properly, implemented if and inputs, driver latest the process always to robot taking also while conditions field to respond quickly to team drive the allowing interrupt, will
sequences. command and commands automated of advantage

Control? and Command use I should Why
allowing templates, project LabVIEW existing the to functionality adds Control and Command used are Subsystems code. robot and robots sophisticated more with better scale to code of sequences from built is code game and implementation, the of details the abstract to points, set update can that VIs are themselves commands The VIs. command level high and units, mechanism and units engineering between scaling/mapping numerical perform a changing as such robot, the to made are changes physical If options. synchronization offer across change this reflect to Vis command few a just to made be can changes ratio, gearing base. code entire the
when debugging quicker and operation predictable more for makes encapsulation I/O step single to able are you VI, a is command each Because occur. do conflicts resource commands all of list a view to functionality Trace in built the use or commands through data consistent and notification asynchronous uses framework subsystem.The each to sent to logic simple in add or commands of sequence a program to easy it making propagation run. to command correct the determine

Explorer Project :1 Part
your for use will you files and Vis the of all for organization provides Explorer Project The help to Explorer Project the in components major the of description a is Below system. robot bold. in marked been have items used frequently most The system. our of expansion the with

2016 Robot
File Edit
Items $\square$
-. Proje
库

- Ta

4:

Computer My
a For on. loaded was project the that computer the on operation define that items The files. simulation with populated is and target simulation a as used is this project, robot
Files Support Sim
robot. simulated the for files description and models CAD 3D containing folder The Readme.html Simulation Robot
code robot write to order in need will you info robot and channels PWM the Documents robot. simulated the of wiring the matches that
Dependencies
you when populate will This code. robot's simulated the by used files the Shows target. robot simulated the for code the designate
Specifications Build
simulated the for code deploy and build to how define that files the contain will This target. robot
FRC.local)TEAM-(roboRIO- Target
(address). at located roboRIO the on operation define that items The
Drive
as serves This base. drive robot the for commands and implementation subsystem The
VIs. RobotDrive WPILib the for replacement custom a
Framework
often. very used not are that subsystem a of part not is that code robot for used VIs

## Begin

that code initialization for useful is This starts. first code robot when once Called subsystem. particular a to belong doesn't
Disabled
you when sensors debug to used be can and packet disabled each for once Called move. to robot the want don't

Finish
on called Not finishes. code robot when called be may this development, During off. turned is power when or abort
Tasks Periodic
monitoring or debugging for loops periodic hoc ad for place good A

## Data Global Robot

subsystem. a to belong doesn't that information robot sharing for Useful
aids. development code and Debugging
Vision processing. image and camera the for commands and Subsystem
Main.vi Robot

Autonomous.vi
code. developing while run will you that VI level Top

Teleop.vi
period. autonomous during runs that VI
packet. TeleOp each for called is that VI

Test.vi
mode. test in is station driver when runs that VI
SubSystems.vi
subsystems. all starts and contains that VI
Dependencies
code. robot the by used files the Shows
Specifications Build
correctly. works code once application startup a as code the run and build to Used

Create I/O refnum
\& initialize robot

Explorer Project Subsystem Drive

Commands:
operation. an out carry controller the request that VIs command the contains folder This commands. drive additional creating for templates contains also It
or add to Setpoints.ctl Drive edit to need may you command, new a creating After : : वार the into go to need also You operation. new the define to uses controller that fields update value. every for case a add to structure case the modify and Controller.vi Drive

## Implementation

subsystem. the build to used Controls and VIs the are These
VIs Infrastructure
loop. controller the of iteration each called is It Command: New for Check Drive a notifies completion upon and data, timing updates commands, new for checks It command. waiting
new a that controller the notify to VI this call Commands Helper.vi: Command Drive issued. been has command
timing, the combines and notifier the allocates It Initialization.vi: Controller Drive wire. data single a into information other and command, default
also may panel The loop. machine control/state the contains VI This Controller.vi: Drive debugging. for useful displays contain

Many controller. the of modes operational the defines typedef This Operation.ctl: Drive operation. an share can commands

Drive the of modes operating all by used fields data the contains It Setpoint.ctl: Drive subsystem.
the about information global publishing for place useful A Globals.vi: Published Drive subsystem. drive

## Subsystem Drive the Initializing :2 Part

that areas key out point that diagram block controller's the on comments green are There edit. to how know to want will you
This up. starts subsystem the when once execute will loop control the of left the to area The the publish may You data. state and I/O all initialize and allocate typically will you where is other that so private them keep to Only Mode Test for them register may you or refnums, I/O command. a using without motors update cannot code
rather Controller.vi respective their in subsystem each for resources the Initializing : : वार and conflicts resource potential reducing encapsulation, I/O improves Begin.vi in than debugging. simplifies
other no when values point set and operation default the select to is initialization the of Part processed. being is operation

Step 3: For update act Operations


Set implemented. actually are operations where statement case a is loop control the Inside the how on influence have all can sensors and count, iteration delay, iteration values, point subsystem. the of state operation each for value a has structure case This operates. subsystem
framework The VI. Trace the update optionally will loop controller the of iteration Each it find may you and description, and operation, name, subsystem the incorporates already VI Trace the Open information. trace the into values point set additional format to helpful to sent commands and setpoints current to running is code robot the while Enable click and subsystem. each
occur can This subsystem. the for actuators update to is controller the of goal primary The structure the of downstream it do to beneficial is it times, many but structure, case the within in location one only in and value correct the with updated always are values that ensure to
code. the

## Update m

Commands Shipped Subsystem Drive :3 Part
subsystem: new each for commands example shipped 3 are There

Time.vi For Drive
with synchronizes optionally It seconds. of number given a for run to motors the sets VI This command. the of completion the or elapses timer the until point set the at motors the operate will case Time for Drive The to necessary is it enabled, timeout safety the have motors the If issued. is command new a of smaller the for waits code the why is This 100 ms . every once least at motors the update 50 ms . and time remaining the


Current Comn

Immediate.vi Drive
to immediately motors the set will and motors the for speeds right and left desired the Gets points. set those
The command. the by defined point set the to motors the updates case Immediate The a until value this maintain to motors the want you since finished considered not is command command a anytime useful is timeout The value. timeout a until or in comes command new and band, dead the than smaller if requested be not will values Small band. dead a includes out. times command the unless creeping or growling in result will

## Driving.vi Stop

\section*{| Drive |
| :---: |
|  |}

stationary. robot the making motors, drive the Zero a with used When command. new a for waits and motors the off turns command Reserve The sequence, a of part is subsystem drive the that identifies reserve sequence, command named between resource subsystem arbitrate to helps This robot. the moving currently not if even commands. running simultaneously

## Commands New Creating :4 Part

a for commands new create easily to users allows framework Control and Command The project the In folder/Commands subsystem the open command new a Create To subsystem. new your of point starting the as use to Templates VI the of one choose window, explorer

Template. From New select and click, right command,
setpoint. new the about subsystem the notifies VI This :Immediate
and deadband the to value input the compares VI This :deadband with Immediate when useful very is This setpoint. new the about subsystem the notifies optionally used. being are values continuous joystick
given the for command this perform to subsystem the notifies VI This :duration With whether determines Synchronization state. default the to return then and duration, to operation the for waits or immediately, returns and operation the Starts VI this Autonomous for second the and TeleOp, for used commonly is option first The complete.
sequencing.
Distance". for "Drive command new the add will we example this In

By control. setpoints the to it add execute, to information additional needs command a If Duration and Setpoint, Right Setpoint, Left the for fields has subsystem Drive the default, reuse could command Distance for Drive The executed. be to operation the with along Setpoints.ctl Drive the to control numeric a add and ahead go let's but distance, as Duration (feet). Distance called

# Drive S 

```
File Edit
```

SubSystem
Operatior
Reserve
Left Setpo
0
Duration
0

2016 Robot
newly the modify can we command, our specify to needed fields the of all have we that Once enum's the from Distance for Drive select below, shown As Distance.vi. for Drive created not do units the If etc. speeds, distance, specify to parameters VI a add and menu down drop units. between map to place great a is VI command the match,

Distance for Drive the when happens what define to Controller Drive the to code add Next, Every for Case Add or Duplicate and Structure Case the on click Right executes. command case. Distance" for "Drive new a create will This Value.


Open node. unbundle setpoints" Cmd "Access the grow fields, setpoint new access to order In
structure, case the of diagram new the In loop. the of left the to outside, the on encoder(s) your There otherwise. it read and iteration loop first the on encoder the reset to call a added we new If power. motor the updates and values encoder compares that code simple some also is Trace. the to them adding consider also should you cluster, setpoints the to added are controls
below. image the in shown are changes necessary The


## Subsystem a Creating :5 Part

New» select and target roboRIO the on click right subsystem, new a create to order In operational the list subsystem, the of name the enter box, dialog up pop the In Subsystem. icon. the of color the specify and modes,
disk project the to added and generated be will folder subsystem the OK, click you When make that controls and VIs the of implementation base a contain will It tree. and folder The VI. Subsystems the into inserted be will controller new the to call A subsystem. a up control or machine state implement and I/O add to you for ready open, will VI controller generated The dialog. the in provided name and color the use will icons VI Generated code. operations. and fields point set for typedefs use will code
generated be will code This subsystem. created newly the of diagram block the is Below subsystem. the create you when automatically


# Resources LabVIEW 13.2 

Resources LabVIEW 13.2.1

FRC® programming specifically and LabVIEW in programming about more learn To : ${ }^{\circ} \mathrm{Clll}$ resources. following the out check LabVIEW, in robots

Basics LabVIEW<br>acquainted get you help can tutorials These .<br>provides NI model programming dataflow graphical, the of basics the and environment LabVIEW the with LabVIEW. in used<br>\section*{Tutorials FRC NI}

.advanced to basic from ranging presentations and tutorials specific FRC many hosts also NI linked Classes Training Advanced and Basic FRC the out check resource single depthin- an For page. the of bottom the near

Examples and Tutorials Installed
part as provided components and tasks of sorts all for examples and tutorials also are There (the screen Splash LabVIEW the from tutorials, the access To installation. LabVIEW your of the on tab Tutorials the on click launched) first is program the when appears that screen to free are you open is it once so document, one in all are tutorials the that Note side. left screen. splash the to returning without tutorials other to browse
anytime or Examples FRC Find then tab, Support the click either examples the access To FRC the open and Examples Find select menu, Help the open program a on working you're folder. Robotics

Resources Party Third
Library Trajectory and Control FRC •
2 LabVIEW FRC Of Book Secret •

## loops bad from Recovering - Respond to Target for Waiting

no with loop (a loop unconstrained an contains which code LabVIEW download you If : : पार्य to connect to unable is LabVIEW where state a into roboRIO the get to possible is it delay) to code fixed, new, load to required process the explains document This code. new download state. this from recover
the at hang code robot new download to attempts is issue this of symptom primary The other are there that Note above. shown as step respond" to (Target) target the for "Waiting LabVIEW to program C++Java a from switching as (such symptom this of causes possible them. of all or most resolve should here described steps the but program)
dialog. download the close to Cancel Click

Problem The

An code. LabVIEW your in loops unconstrained is issue this of source common One on one the as (such element delay any contain not does which loop a is loop unconstrained Vision and Tasks.VI Periodic Disabled.VI, looking, begin to where unsure are you If left). the code, the with issue the fix To loop. of type this for locations common the are Processing.VI loop. right the in found palette, Timing the from VI (ms) Wait the as such element delay a add

Settings Startup Dashboard Web roboRIO the on article the (see webserver roboRIO the Using App". Startup RT "Disable to box the Check details). more for

## Reboot

top the in Restart click by or device the on button Reset the using either roboRIO, the Reboot webpage. the of corner right

App No Clear

Settings Startup Dashboard Web roboRIO the on article the (see webserver roboRIO the Using App". Startup RT "Disable to box the Uncheck details). more for
13.
set to sure Make Startup). as Run or button Run the using (either code LabVIEW Load follow to need will you or roboRIO the rebooting before Startup as Run to code LabVIEW again. above instructions the

## Modes Camera Two Between Toggle To How

13.2 .3
code The modes. camera distinct two between toggle to button a use to how shows code This stages. four of consists
read. is joystick the on button a of value the stage, first the In
and Node Feedback a using reading previous the to compared is reading current the Next, when toggled only is mode camera the that ensure these Together, arithmetic. Boolean some the while times multiple forth and back toggling than rather pressed initially is button the down. held is button
the over stage second the of result the masking by toggled is mode camera the that, After function XOR the with it doing by and masking bit called is This value. mode camera current nothing do and true returns stage second the when mode camera the toggle will code the otherwise.

Each end. the at structure case the in mode camera each for code the insert can you Finally, mode. camera current the for code the run will section this run, is code the time

## Tutorials and Examples LabVIEW <br> 13.2.4

Tutorials Popular
Tutorial Movement Timed Autonomous
intervals time different on based autonomously robot your Move
Movement Autonomous on more See .
Tutorial Control Motor Basic
software and hardware motor roboRIO your Setup
Project Robot FRC and System Control FRC® the setup to Learn

Assistant Vision NI use to how and techniques Processing Image basic Learn
Processing Image and Cameras on more See .
Tutorial Control PID
it? implement I can how and Control PID is What
Tutorial Control and Command
Control? and Command is What
it? implement I do How
Tutorial Station Driver
Station Driver FRC the know to Get
Tutorial Mode Test
Mode Test use and setup to Learn
your post or documents more through Search discussions? and examples more for Looking posts your mark to forget Don't here! clicking by tutorial or code, example discussion, own tag! a with

## Project a to Motor Independent an Add

13.2.5
motor additional an add to need might you set, all is wheels the controls that drive your Once motor this Since arm. an as such wheels, the of independent completely something control to independent want definitely you'll drive, mecanum or arcade, tank, your of part be not will it. of control
contain already may that project a in motor single a up set to how show Snippets VI These image the drag just symbol, HAND>ARROW>LABVIEW the see you If drive. motormulti- a it. do you how here's Ok, code! voila: and diagram, block your into

Open Control Motor the using ,Begin.vi the in reference motor a create FIRST, in clickingright- by found be can These .VI Set Registry Refnum Control Motor and VI .Control Library $\gg$ RobotDrive $\gg$ Motor Robotics WPI to going and diagram block the to it connected and Motor" "Lift mine named I motor. your name and line PWM your Choose automatically which VI, Config Safety Control Motor the enabled and included also (I 7. PWM connection.) loses it if motor the off turns

Motor the using Teleop.vi the in exact) be to has name (the motor your reference Now, Output Set Control Motor the with do to what it tell and VI Get Registry Refnum Control

VIs. above the as place same the in are These .VI

on pressed is 4 button if forward move to Motor Lift the tells snippet next the example, For my on bumper left the is 4 button me, For otherwise. motionless remain to and 0 Joystick check options, button joystick depthin- more much For 0"). ("Joystick controller style Xbox

and drive the with do we like (just Finish.vi the in references the close to need we Finally, .VI Close Control Motor and VI Get Registry Refnum Control Motor the using joystick), all want really we itself, by structure sequence flat a in VI Close the shows picture this While VIs Get other the below VIs two these put just can You frame. same the in VIs Close the of drive). and joystick the (for VIs Close and
luck! Good ever! robot best the program you helps this hope I

## roboRIO the with Navigation Keyboard

13.2.6
navigation keyboard using robot the controlling for suggestions some provides example This control to keys D and S, W, A, the use we case, this In controller. other or joystick a of place in configuration. drive tank a in motors drive two can You VI. Main Dashboard the in included be to need will that code the is Snippet VI first The keyboard the to connection a opens code The 1. Loop of case True the into code this insert is information This key. pressed the reads it iteration each on and begins, loop the before Loop When project. robot the in VI Teleop the to passed then is which string, a to converted closed. is keyboard the to connection the running, stops 1
string the reads This VI. Teleop the in included be should that code is Snippet VI second The then Structure Case A pressed. was key which indicates that Dashboard the from value the on depending motors, right and left the to written be should values which determines this in case Each reverse. is S and right, is D left, is A forward, is W case, this In key. the change code, your in same the this keep can You speed. half at motors the runs example or fast drive can you so speed, the adjust to driver the allow to code additional add or values, motors, drive the to written are they selected, are values motor the Once necessary. as slow dashboard. the to published are values motor and

## Press Button ShotOne- a Making

button the cause will button joystick a pushing function, Values Get Joystick the using When multiple read likely most will you that means This released. is button the until TRUE read to the time each value TRUE one only read to want you if What press. each for values TRUE show will tutorial following The Button". Shot"One- a called often is This pressed? is button this. do to Teleop.vi your into drop can you that subVI a create to how you
project. your of folder Code Support the in VI new a create First,

snippet. code following the in drop VI, new the of diagram block the on Now
of value current the wired have We Node. Feedback the called function a uses code This the of arrow the of out coming wire The node. feedback the of side left the into button the feedback your on arrow the If button. the of value previous the represents node feedback reverse to option the find to click right here, shown as direction opposite the going is node direction. the
the want We TRUE. to FALSE from goes button the of value the pressed, is button a When the and TRUE, is button the of value current the when only TRUE be to VI this of output FALSE. is button the of value previous the of outputs and inputs the to indicator and control boolean the connect to need we Next
the connect to button the click then pane, connector the on block the click first this, do To VI. indicator. the for this Repeat below). diagram the (see two

VI this of multiples use can we that so VI this of properties the change to need we Next, category the select Then Properties. VI to go and Icon VI the click Right TeleOp.vi. our in execution". reentrant clone "Preallocated select and "Execution"
click Right function. VI's the of descriptive more be to Icon VI the change should we Lastly, Icon. new a Create Icon. Edit to go and Icon the
the from VI this drop and drag now can You name. descriptive a with VI the save Finally, Button_Press. VI: completed the of copy a is Here TeleOp.vi. your into folder Files Support
VI. this use could you how of example an Here's


## Code Robot Your to Features Safety Adding

executing is code your of all that sure making is projects complex with problem common A execution long priority, high with tasks when arise can Problems to. it expect you when known is what to leads This roboRIO. the on power processing hog calls frequent or times, In busy. being processor the to due execute to able not are that tasks the for "starvation" as other and joysticks the from input your to time reaction the slow simply will this cases most after long on stay to robot your of motors drive the cause also can this However, devices. safety implement can you this, from catastrophes robotic any avoid To them. stop to try you harmful potentially down shut automatically and starvation input task for check that features operations.
checks. safety of implementation easy allow that motors the for functions inbuilt- are There are: functions These

Configuration Safety Drive Robot<br>Configuration Safety Drive Motor<br>Configuration Safety Relay<br>Configuration Safety PWM<br>Configuration Safety Solenoid<br>Safety Update and Delay Drive Robot

checks safety the disable and enable can you functions, Configuration Safety the of all In The appropriate. is think you timeout what configure and running is programming your while of any if check will and enabled safety the have that devices all of cache a keep functions and disabled be will cache the in devices all has, any If limit. time their exceeded have them off. turned outputs relay/PWM/solenoid its have or stop immediate an to come will robot the a set to functions Configuration Safety Drive the use to how demonstrates below code The off. shut being before input no receive will motors the that limit time maximum

your than longer is that loop the to function Wait a adding try off,shut- safety the test To timeout!

Update and Delay Drive checks-Robot safety implementing to relates that function final The limit. time the exceeding without Mode Autonomous in roboRIO the put to you Safety-allows Output Drive the to calls costly making without output motor current the maintain will It the that so updated regularly are checks safety the that sure make also will and functions, stop. suddenly not will motors
your in implemented is check safety of sort some that recommended highly is it Overall, state! dangerous a in left unintentionally not is robot your that sure make to project

## Solenoids or Motors Control to Buttons Joystick Use to How

devices auxiliary our connecting to on moving are we working, systems drive our get all we As these control to buttons joystick use generally will we this, With solenoids. and motors as such joystick with devices control to ways several through go we'll this, with started get To devices. buttons.
into right this like document a from Snippet VI a drag and click can you that know you Did document. this in snippets the with it Try code? LabVIEW your

Setup:
excited) really you're (if more or two, one, add to need you'll configuration, the what matter No one. use only others the and joysticks 2 uses example first The "Begin.vi". the to joysticks named I below. snippet the like places, other in it use can we so name unique a one each Give If desk. my of sides right and left the on are they because "RightStick" and "LeftStick" them step. this skip can You great! configured, already are joysticks your

will we where is This "Teleop.VI" the in placed be will document this in code the of rest The solenoids. or motors our of aspects different control to buttons joystick our programming be

I when way other the and button one press $I$ when way one move to motor a want "I
button." different a press
on 0 button If motor. same the control to joysticks different two on 0 button uses code This the pressed, is RightStick on 0 button if and backward, moves motor the pressed, is LeftStick motor the pressed, is button neither or pressed are buttons both If forward. moves motor motor your name can you but "Motor5", reference motor my named I Here move. doesn't
"Begin.vi" the in want you whatever
of example an For control. for joystick same the from buttons multiple use to want may You
2. Scenario in snippet VI the or snippet VI following the at look this,

need. you buttons whatever use to free feel but 2, and 0 buttons joystick used I Here
speeds." various at move buttons joystick different want "I
the on based things different do motor one have to need you if helpful be could example This buttons 4 and 0 ) (button trigger a has joystick my say let's instance, For press. you buttons following the have should buttons following the case, this In 4). through 1 (buttons top on functions:
speed half at backward move-1 button
speed half at forward move - 2 button
speed $1 / 4$ at backward move - 3 button
speed $1 / 4$ at forward move - 4 button
speed) full at (forward ahead! speed full - trigger
"Boolean a to it wire and "JoystickGetValues.vi" the from array boolean the take then would We boolean the converts This Palette). ConversionPalette- (Numeric node Number" to Array structure. case a to numeric this Wire use. can we that number a to array example, this In array. the in values the of representation binary a to corresponds case Each off), buttons (all 0 cases: six added We combination. buttonone- a to corresponds case each Notice on). 4 (button 16 and on), 3 (button 8 on), 2 (button 4 on), 1 (button 2 on), 0 (button 1 did We time. same the at pressed 1 and 0 buttons to correspond would 33 . value skipped we it. handle case default the let we'll so requirements our in this define not
here: document Help Structure Case 2014 LabVIEW the review to helpful be might It
https://zone.ni.com/reference/en-XX/help/371361L-01/glang/case_structure/
here: structures case on Tutorials Community 3 also are There https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-1/ta-p/ 3505945? profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-2/ta-p/
3505933? profile.language $=$ en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-3/ta-p/
3505979?profile.language=en

case For case. each in constant single a need only we simple, were requirements our Since constant any use can We etc. $0.5,-$ a use we back) (half 2 case for 1 , a use we ahead) (full 1 (any pressed are buttons multiple if so default the as 0 case left I 1.- and 1 between value
these customize to free are course of You stop. will motor the reached) was state undefined want. you however states

## 3 Scenario

buttons." joystick my with solenoid a control to want "I
booleans. of array an in buttons the outputs joystick the how with familiar are we now, By to boolean this wire and in, interested are we button the get to array this index to need We to way easiest the input, an as Enum a requires Set.vi" "Solenoid the Since node. select a "Create select and Set.vi" "Solenoid the of input "Value" the click right to is enum the get the to one and terminal True the to copy one wire and constant this Duplicate Constant". input "Value" the to node select the of output the wire Then node. select the of terminal False
VI. solenoid the of

Roboting! Happy

## FRC for LabVIEW in Variables Global and Local

13.2.10
in used are they how variables, global and local to introduction an as serves example This your in them use to want might you how and Project, Robot FRC $\circledR^{\circledR}$ for LabVIEW default the project.
the within locations between data transfer to used be may variables global and variables Local conventional the breaking variables), (global VI's different within or variables) (local VI same for when, useful be may they Thus, famous. is LabVIEW which for Paradigm Flow Data another. to node the to directly value the wire cannot you reason, whatever
loop consecutive between data pass to need you that be may reason possible One Note: node feedback the that noted be also should It .post this in this covered Miro_T iterations; topic a be may that although register, shift the to equivalent an as used be may LabVIEW in day! another for

## Variables Global and Local to Introduction

a clickingright- by variable local a Create VI. same the within used be may variables Local Panel: Front your on indicator or control

## Competition Robotics FIRST

well. as diagram block the on palette Structures the from variable local a create may You variable which choose to clickleft- can you VI, one in variables local multiple have you When is: it

Numeric

Boolean
TF:
the from diagram block the to one Add differently. slightly created are variables Global panel. front separate a opens it it, clickdouble- you when that notice and palette, Structures front the to entities many as add you but diagram, block a have not does panel front This file: *.vi a as it save and wish you as panel
variables! global and local using when conditions race avoid to careful very Be : 릴 multiple in variable same the to writing accidentally not are you that sure make Essentially, thorough more a For written. last was it location which to know to way a without locations
VI... Main Robot the

VI: Processing Vision the of iteration each in read then And ...


Development LabVIEW the from VI Main Robot to deploying when user, the allows This Front Main's Robot from size image the change and vision enable/disable to Environment,

Panel.

Project? Your in Them Use You Can How

as such value, some is there Perhaps VI. Tasks Periodic the for diagram block the out Check the in from read then and VI, Teleop the in variable global a to written be may that boolean, a VI, Tasks Periodic the in use to values or code what decide then can You VI. Tasks Periodic variable: global boolean the on depending


## LabVIEW in Compressor the Using

Module Control Pneumatic the use to project roboRIO your up set to how shows snippet This are pressures specific when compressor the stops and starts automatically PCM The (PCM).

VIs. following the add to need will you program, roboRIO your In tank. the in measured links: following the out check information, more For Manual Pneumatics FRC

Guide User's PCM roboRIO the for Step by Step Pneumatics

## VI Begin

Begin.vi. the in snippet this Place

## Competition Robotics FIRST

## VI Teleop

outputs the using are you if required only is portion This Teleop.vi. the in snippet this Place processes. other for


## VI Finish

Finish.vi. the of frame etc. data, save Refs, Close in snippet this Place

controllers, motor through pneumatics and motors of control the discusses section This WPILib. C++ and Java with interface their and pneumatics, and solenoids
showcases section This robot! moving a to essential absolutely are motors your Programming moving! and up robot your getting for examples and classes helpful some

## Code in Controllers Motor Using

14.1.1
more send can controller CAN A PWM. and CAN flavors: main two in come controllers Motor set be only can controller PWM a whereas roboRIO, the to back information status detailed Using see classes, drivetrain WPI the with motors these using on information For value. a to
.Robot your Drive to Classes WPILib the

## Controllers Motor PWM Using

a For controller. motor CAN a as way same the in controlled be can controllers motor PWM use To .Depth in Controllers Motor PWM see work, they how on background detailed more WPI by provided class controller motor appropriate the use simply controller, motor PWM a approved All roboRIO. the on into plugged are controller(s) motor the port the it supply and them. for provided classes WPI have controllers motor
motor PWM other example; an as here used are classes VictorSP and Spark The : : पार्य API. same the exactly have classes controller

| Java |
| ---: |
| to connected is this port PWM RIO the is 0// );0Spark( new = spark Spark |
| 1 and 1 - between motor, the of output \% the // ) ;0.75-(setspark. |



## Controllers Motor CAN

Electronics CTR as such vendors through available are controllers motor CAN of handful A Robotics. REV and

MAX SPARK
either in used be can which Controller, Motor CAN MAX SPARK the regarding information For code. example and resources software MAX SPARK the to refer please mode, PWM or CAN

## Controllers Motor CAN CTRE

detailed more for software Phoenix the on documentation CTRE party third the to refer Please available is documentation The information.

## Depth in Controllers Motor PWM

that classes of number a are There control. motor for support extensive has WPILib : of classes two currently are There servos. and controllers motor of types different represent WPILib controllers. motor based CAN and controllers motor based PWM controllers, motor multiple control to you allow which DifferentialDrive) (like classes composite contains also CAN controllers; motor PWM of details the cover will article This object. single a with motors articles. separate in covered be will classes composite and controllers

## operation of theory brief Controllers, PWM

refer can PWM controllers, motor For Modulation. Width Pulse for stands PWM acronym The control To speed. motor control to uses controller the method the and signal input the both to motor. the of voltage input perceived the vary must controller the motor the of speed the the varying quickly, very off and on voltage input full the switches controller the this do To electrical and mechanical the of Because signal. control the on based on is it time of amount effect an produces switching rapid this FRC® in used motors of types the of constants time effect same the produces switching (50\% voltage lower fixed a applying of that to equivalent
$\sim 6 \mathrm{~V}$ ). applying as
bounds the at Even different. bit little a is input an for use controllers the signal PWM The of cycle duty a approaches never signal the reverse) max or forward (max range signal the of a and 10 ms or 5 ms either of period a with signal a use controllers the Instead $100 \%$. or $0 \%$ controller RC hobby typical the use controllers the of Many 1.5 ms . of width pulse midpoint

2 ms . to 1 ms of timing
values output Scaled vs Raw
the as value 1.0 to $1.0-$ scaled a take WPILib in classes controller motor the of all general, In generating of capable is roboRIO the on FPGA the in module PWM The actuator. an to output of steps 2000 in width pulse the vary can and 20 ms or 10,5 , of periods with signals PWM The midpoint). the around direction each in steps ( 1000 midpoint the around each $\sim .001 \mathrm{~ms}$ holds which case special a being 0 with range 20000 - this in are module this to sent values raw what about information contains controller motor each for class The (disabled). low signal the typical the as well as are deadband) the of side each and max (min, values bound typical the for range proper the into value scaled the map to values these use then can WPILib midpoint. of types different between seamlessly switch to code the for allows This controller. motor the
signaling. specific the of details the out abstracts and controllers

## Controllers Motor Calibrating

motor your calibrate to need ever you would why scaling, this all handles WPILib if So of measurement on based approximate are scaling for uses WPILib values The controller? an of timing the factors, of variety a to Due type. controller each of samples of number a "humming" eliminate definitively to order In slightly. vary may controller motor individual controller the drive and direction) one in movement slight as interpreted signal (midpoint the general, In recommended. still is controllers the calibrating extreme, each to way the all mode calibration into controller the putting involves controller each for procedure calibration on examples For midpoint. the to back then extreme, each to signal input the driving then Code/Using in Controllers Motor Using see code, your in controllers motor these use to how

Controllers Motor PWM

## Robot your Drive to Classes WPILib the Using

faster. driving get robot your make help to classes many includes WPILib
drivetrains Standard

Robots Drive Differential

(e.g., side per wheels omni or traction linein- more or two have typically bases drive These The Drive". Coast "West or drive", "tank steer","skid- as known be also may and 8WD) or 6WD of capable are drivetrains These drive. differential a of example an is drivetrain Parts of Kit causing directions opposite in sides two the driving by turn can and forward/backward driving translational sideways of capable not are drivetrains These sideways. skid to wheels the movement.

Drive Mecanum
robot the allow that wheels designed specially using driving of method a is drive Mecanum a with robot A robot. the of orientation the changing without direction any in drive to direction the in turn must direction) same the in pointing wheels (all drivetrain conventional is and turning first without direction any in move can robot mecanum A drive. to needs it forces the cause that rollers have robot) this on (shown wheels The drive. holonomic a called of case the in as forward straight than rather angle degree 45 a at applied be to driving from
drive. conventional a
pattern. »X« an form should drivetrain mecanum a on rollers the top, the from viewed When wheels two front the on forward) wheel the driving (when vectors force the in results This By outward. and forward pointing wheels two rear the and inward and forward pointing cancel vectors force the of components various directions, different in wheels the spinning has movements different of chart quick A movement. robot desired the in resulting out, in help may motions these of each for vectors force the out drawing below, provided been addition in wheels the of speeds the varying By work. drivetrains these how understanding and direction any in translation in resulting combined be can movements direction, the to simultaneously. rotation,

# Conventions Class Drive 

Inversion Motor
the is It default. by inverted longer no is drivetrain the of side right the 2022, of As invert can Users drivetrain. their for inversions proper manage to user the of responsibility objects. motor their on SetInverted()/setInverted() calling by motors

Java


C++


Python


## Inputs Squaring

robot the that such inputs joystick the manipulate to desirable often is it robots, driving When accomplish to way One range. output full the using still while speeds low at control finer has Differential the default By sign. the reapplying then input, joystick the squaring by is this a from in values passing if (e.g. desired not is this If inputs. the square will class Drive to it set and parameter squaredInputs the with methods drive the of one use PIDController),
false.

## Deadband Input

that means This 0.02. of deadband input an applies class Drive Differential the default, By be will above) described as squaring any (after 0.02 below magnitude a with values input are and centering joystick imperfect from result inputs small these cases most In 0 . to set motor unnecessary reduce helps deadband the movement, drivetrain cause to sufficient not the change To drivetrain. the to values small these applying from result may that heating method. setDeadband() the use deadband,

## Output Maximum

output. the limit to want and fast too driving is drivetrain their that feel drivers Sometimes is output maximum This method. setMaxOutput() the with accomplished be can This inputs. squared and deadband like functions drive previous the of result by multiplied

Safety Motor
breaks and watchdog a of concept the takes that WPILib in mechanism a is Safety Motor this that Note actuator. individual each for timer) Safety (Motor watchdog one into out it the by controlled is which Watchdog System the to addition in is mechanism protection does it if outputs actuator all disable will and FPGA the and code Communications Network

125 ms . for packet data valid a receive not
timer, watchdog a of purpose the as same the is mechanism Safety Motor the of purpose The code the if property or people themselves, to harm cause may which mechanisms disable to concept this breaks Safety Motor output. actuator the update properly not does and up locks necessary is it where determine appropriately can you that so basis actuator per a on out are enabled safety motor have should that mechanisms of Examples not. is it where and they value particular a on latched get systems these If arms. and trains drive like systems that mechanism a of example An themselves. or environment their to damage cause could latched gets mechanism this If shooter. a for flywheel spinning a is safety motor need not may default By disabled. is robot the until spinning continue simply will it value particular a on all for disabled and objects MecanumDrive and DifferentialDrive for enabled is Safety Motor
servos. and controllers motor other
been has it long how tracks that timer a maintaining by operates feature Safety Motor The Station Driver the in Code actuator. that for called been has method feed() the since with actuator any for values timeout the to timers these of comparison a initiates class motor each of methods set() The nominal). (100ms packets received 5 every enabled safety indicate to feed() call class servo the of methods setAngle() and set() the and class controller updated. been has actuator the of output the that
the using user the by with interacted be can controllers motor of interface Safety Motor The methods: following


Python
)TruesetSafetyEnabled ( exampleJaguar
)FalsesetSafetyEnabled ( exampleJaguar
) 1. setExpiration ( exampleJaguar
feed() exampleJaguar
the and mechanism the on Depending Safety. Motor enable objects Drive all default By safety motor the of length timeout the configure to wish may you program, your of structure global a not is and basis actuator per a on configured is length timeout The seconds). (in 100 ms . is value useful) minimum (and default The setting.

## Conventions Axis

the in reference external as UpWest-(North- convention axes NWU the use classes drive The positive the and left, points axis Y positive the ahead, points axis X positive The frame). world use general, in math and library, the of rest the because here NWU use We up. points axis Z convention. axes NWU
ahead, points axis X positive the where convention, Down)East-(North- NED follow Joysticks important it's However, down. points axis Z positive the and right, points axis Y positive the When translations. not axes, respective the around rotations are values axes that note to negative a is CW and value positive a is CCW you, toward pointing axis each with viewed a get you so axis, Y the around rotation CW a is joystick the on forward Pushing value. positive a get you so axis, X the around rotation CCW a is right the to Pushing value. negative value.
robots Drive Differential control to class DifferentialDrive the Using
drive common most the for classes Drive Robot separate provides WPILib : ใ०ा the handles class DifferentialDrive The mecanum). and (differential configurations train linein- more or two have typically bases drive These configuration. drivetrain differential steer","skid- as known be also may and 8WD) or 6WD (e.g., side per wheels omni or traction a of example an is drivetrain Parts of Kit The (WCD). Drive" Coast "West or drive", "tank ("Tank", styles different 3 with drive the control to methods are There drive. differential below. article the in explained "Curvature"), or "Arcade",

Coast" "West or steer""skid- of control the for provided method a is DifferentialDrive simple as is DifferentialDrive a Instantiating chassis. Parts of Kit the as such drivetrains, so: as

Java

(Header) C++
\{ Robot class :private
;\}1m_left\{ Spark::frc
page) next on (continues


```
    m_right}; m_drive{m_left, ;}2m_right{ Spark::frc
(Source) C++
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{()Robot: :RobotInit void sso do must you outputs, motor invert to want you if // );truem_left.SetInverted( here}} \\
\hline & \\
\hline
\end{tabular}
Python
```



## MotorControllerGroups with DifferentialDrive MotorMulti-

with these use to order In side. each on motor 1 than more have drivetrains FRC ® Many MotorController, single a into collected be to have side each on motors the DifferentialDrive, side) per ( 2 motor 4 a show below examples The class. MotorControllerGroup the using them pass and controllers additional the create simply motors, more to extend To drivetrain. inputs). of number arbitrary an takes (it constructor group MotorController the into all

Java

(Header) C++

page) next on (continues
(ำำ ำ

```
                m_rearRight}; m_right{m_frontRight, MotorControllerGroup::frc
                            m_right}; m_drive{m_left, DifferentialDrive::frc
```

(Source) C++

```
{ ()Robot::RobotInit void
uso do can you side entire the invert to want you if // );truem_left.SetInverted(
                                    here }
```

Python

```
                        ):self(robotInit def
                            )1Spark(.wpilib = frontLeft
                            )2Spark(.wpilib = rearLeft
            rearLeft) MotorControllerGroup(frontLeft,.wpilib = left
here so do can you side entire the invert to want you if # )TruesetInverted(.left
                            )3Spark(.wpilib = frontRight
                            )4Spark(.wpilib = rearRight
    rearLeft) MotorControllerGroup(frontLeft,.wpilib = right
    right) DifferentialDrive(left,.drive.wpilib = drive.self
```


## Modes Drive

your driving of modes default different three contains class DifferentialDrive The : ใ०ार motors. robot's independently side right and left the controls which Drive, Tank • speed turn and forward a controls which Drive, Arcade • car a like handle robot your makes which Drive, Arcade of subset a Drive, Curvature • turns. curvatureconstant- with

WCD or steerskid- controlling for methods default three contains class DifferentialDrive The and driving robot's the controlling of methods own your create can you that Note robots. motors. right and left for inputs derived the with tankDrive() call them have with (usually independently drivetrain the of side each control to used is mode Drive Tank The two of axisY- the use to how shows example This each). controlling axis joystick individual an been has objects the of Construction mode. Tank in drivetrain the run to joysticks separate construction. Joystick for here and construction drivetrain for above for omitted, rotation and speed/throttle using drivetrain the control to used is mode Drive Arcade The joysticks across split or joystick, single a from axes two with either used typically is This rate. from rotation the and stick one from coming throttle the with gamepad) single a on (often Construction mode. Arcade the with joystick single a use to how shows example This another. Joystick for here and construction drivetrain for above for omitted, been has objects the of construction.
using drivetrain the control to used is mode Drive Curvature the Drive, Arcade Like controls input control rotation the that is difference The rate. rotation and speed/throttle of wheel steering the like much change, heading of rate of instead curvature of radius the boolean third the when enabled is which place, in turning supports also mode This car. a true. is parameter

Java
\{ ()teleopPeriodic void public
rates right and left given a with drive Tank //
()) ; getYrightStick.- (), getYleftStick.-(tankDrivemyDrive.
rate turn and forward given a with drive Arcade //
()) ; getXdriveStick.- (), getYdriveStick.-(arcadeDrivemyDrive.
sfor button a as well as rate, turn and forward given a with drive Curvature // in-place. turning $\hookrightarrow$ driveStick. (), getXdriveStick.- (), getYdriveStick.-(curvatureDrivemyDrive.
)) ; 1 (getButton $\hookrightarrow$

C+ +

> \{ override ()TeleopPeriodic void rightStick.GetY());- leftStick.GetY(), -myDrive.TankDrive( rate turn and forward given a with drive Arcade // driveStick.GetX());- driveStick. GetY(),-myDrive.ArcadeDrive(
„quick-turn a as well as rate, turn and forward given a with drive Curvature // button $\hookrightarrow$ driveStick. driveStick.GetX(),- driveStick.GetY(),-myDrive.CurvatureDrive(

Python

```
): self(teleopPeriodic def
rates right and left given a with drive Tank \#
getY()).rightStick.self- getY(),.leftStick.self-tankDrive(.myDrive.self
rate turn and forward given a with drive Arcade \#
getX()).driveStick.self- getY(),.driveStick.self-arcadeDrive(.myDrive.self
sfor button a as well as rate, turn and forward given a with drive Curvature \# in-place. turning \(\hookrightarrow\) цgetX(),.driveStick.self- getY(),.driveStick.self-curvatureDrive(.myDrive.self )) 1getButton(.driveStick.self \(\hookrightarrow\)
```

robots Drive Mecanum control to class MecanumDrive the Using
Mecanum with drivetrains holonomic of control the for provided method a is MecanumDrive above. shown as kit, upgrade drive mecanum the with chassis Parts of Kit the as such wheels, so: as simple as is MecanumDrive a Instantiating

Java
@Override
\{ () robotInit void public
PWMSparkMax(kFrontLeftChannel); new = frontLeft PWMSparkMax
PWMSparkMax(kRearLeftChannel); new = rearLeft PWMSparkMax
PWMSparkMax(kFrontRightChannel); new = frontRight PWMSparkMax
PWMSparkMax(kRearRightChannel); new = rearRight PWMSparkMax
motors. side right the Invert // robot. your match to this remove or change to need may You // ; true(setInvertedfrontRight. ); true(setInvertedrearRight.
rearRight); frontRight, rearLeft, MecanumDrive(frontLeft, new = m_robotDrive
Joystick(kJoystickChannel); new = m_stick

C++

| ```:private ;0 = kFrontLeftChannel int constexpr static ;1 = kRearLeftChannel int constexpr static ;2 = kFrontRightChannel int constexpr static ;3 = kRearRightChannel int constexpr static ;0 = kJoystickChannel int constexpr static m_frontLeft{kFrontLeftChannel}; PWMSparkMax::frc m_rearLeft{kRearLeftChannel}; PWMSparkMax::frc m_frōntRight{kFrontRightChannel}; PWMSparkMax::frc m_rearRight{kRearRightChannel}; PWMSparkMax::frc m_frontRight, m_rearLeft, m_robotDrive{m_frontLeft, MecanumDrive::frc m_rearRight};``` |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

Python

(ำाำ
kJoystickChannel).selfJoystick(.wpilib = stick.self

See conventions. axis joystick common from different are conventions axis drive The : : पारा information. more for above Conventions Axis the
motors. robot's your driving of modes default different two contains class MecanumDrive The robot's The axis. X positive the from clockwise measured are Angles driveCartesian: • rate. rotation or angle its from independent is speed
at speed The ahead. straight from clockwisecounter- measured are Angles drivePolar: • rate. rotation or angle its from independent is (translation) drives robot the which

Java


C++
override ()TeleopPeriodic void
joystick. the of axes $Z$ and $Y, X$, the using Drive //
m_stick.GetZ());- m_stick.GetX(),- m_stick.GetY(),-m_robotDrive.driveCartesian( sof axis $Y$ the by given speed the at robot, the to relative degrees 45 at Drive // rotation. no with joystick, the $\rightarrow$
);0 deg, 45 m_stick.GetY(),-m_robotDrive.drivePolar(

Python
):self(teleopPeriodic def
.joystick the of axes $Z$ and $Y$, X , the using Drive //
.self- getX(),.stick.self- getY(),.stick.self-driveCartesian(.robotDrive.self
getZ()).stick $\rightarrow$
wof axis $Y$ the by given speed the at robot, the to relative degrees 45 at Drive //
.rotation no with joystick, the $\hookrightarrow$
) 0 ),45fromDegrees(.Rotation2d getY(),.stick.self-drivePolar(.robotDrive.self

Driving OrientedField-
xSpeed, double ySpeed, driveCartesian(double the to supplied be can parameter 4th A sensor. Gyro a from returned angle the method, gyroAngle) double zRotation, double drive mecanum with useful particularly is This supplied. value rotation the adjust will This in go can It sides. or back front, no has really robot the steering, of purposes the for since, move to robot the cause will object gyro a from degrees in angle the Adding direction. any it when drivers the towards and forwards, pushed is joystick the when drivers the from away
facing. is robot the direction what of regardless them, towards pulled is
especially drive, to easier much robot the makes often makes driving orientedfield- of use The robot the when reversed are controls the where system drive oriented""robot- a to compared drivers. the facing is
called. is driveCartesian() time each angle gyro the get to remember Just
smooth a promote to time over inputs joysticks the ramp to like also teams Many : : पारा .Limiter Rate Slew a with accomplished be can This jerk. reduce and acceleration
with Servos Controlling - Movement Power Low Repeatable 14.1.4 WPILib
order in motor the into feedback positional integrates which motor of type a are motors Servo the as position taking movement, controllable repeatable, perform to motor single a allow to hobby common the match which servos control to capability the provides WPILib signal. input width) pulse ms 2.4 - ms 0.6 signal, (PWM) Modulation Width (Pulse specification input

## object Servo a Constructing

| Java |
| ---: |
| );1Servo( new = exampleServo Servo |
| C++ |
| ;\}1\{ exampleServo Servo::frc |
| Python |
| )1Servo(.wpilib = exampleServo |

channel. a passing by constructed is object servo A

Java


WPILib: in values servo setting of methods two are There one to corresponds 0 value. 1.0 to 0 scaled a using position servo the Sets - Value Scaled • other the to corresponds 1.0 and servo the of extreme
This 180. to 0 from degrees in angle, the specifying by position servo the Set - Angle • Any . servo 322 HDHS - Hitec the as range same the with servos for work will method boundary. the to coerced be will range specified the outside method this to passed values

## APIs Pneumatics 14.2

14.2 .1 הפעלת בוכנות פנאומטיות

Pneumatics control to System Control FRC the Using
CTRE the cylinders, pneumatic control to solenoids operating for options two are There Hub. Pneumatics Robotics REV the and Module Control Pneumatics
control provides that device basedCAN- a is (PCM) Module Control Pneumatics CTRE The module. per solenoids 8 to up and compressor the over
the over control provides that device basedCAN- a is (PH) Hub Pneumatic REV The module. per solenoids 16 to up and compressor simple them make that classes of series a through WPILib into integrated are devices These PCM the by handled is switch Pressure and Compressor the of control loop closed The use. to
solenoid the controls that class Solenoid the by handled are Solenoids the and hardware pressure a using pressure robot's the regulating for responsible are modules These channels. the with communicate They off. and on solenoids switching and compressor a and switch


## Numbers Module

default The 0. is PCMs for ID Node default The ID. Node their by identified are Devices CAN the at it leave to recommended is it bus the on module single a using If 1. is PHs for ID Node solenoids corresponding modules the where used be can modules Additional ID. Node default Compressor and Solenoid the of constructors the in number module the by differentiated are
classes.

## Pressure Storing and Generating

The tanks. pneumatic in stored and compressor pneumatic a using created is Pressure robot's the by powered be must but robot, the on be to have necessarily doesn't compressor and default, by enabled is Compressor the on mode Loop" "Closed The module. pneumatics enabled is control loop closed When setting. this change teams that recommended not is it pressure digital the when on compressor the turn automatically will module pneumatic the is switch pressure the when off it turn and threshold) pressure the (below closed is switch on. turned be not will compressor the disabled is control loop closed When ( $\sim 120 \mathrm{PSI}$ ). open The compressor. the of status the query can users class, )C++ / Java( Compressor the Using queried be all can current compressor and state, switch pressure off), or on (currently state object. Compressor the from
compressor, the off turn to ability the want you if needed only is object Compressor The : ใी०ा status. compressor query or only), (PH sensor pressure the change

| Java |
| :---: |
| );CTREPCMPneumaticsModuleType. ,0Compressor( new = pcmCompressor Compressor <br> );REVPHPneumaticsModuleType. ,1Compressor( new = phCompressor Compressor <br> () ;enableDigitalpcmCompressor. <br> ();disablepcmCompressor. <br> ();enabledpcmCompressor. = enabled boolean (); getPressureSwitchValuepcmCompressor. = pressureSwitch boolean (); getCompressorCurrentpcmCompressor. = current double |
| C++ |
| CTREPCM\};::PneumaticsModuleType::frc ,0pcmCompressor\{ Compressor::frc <br> REVPH\};::PneumaticsModuleType::frc ,1phCompressor\{ Compressor::frc <br> pcmCompressor.EnableDigital(); <br> pcmCompressor.Disable(); <br> pcmCompressor.Enabled(); = enabled bool <br> pcmCompressor.GetPressureSwitchValue(); = pressureSwitch bool <br> pcmCompressor.GetCompressorCurrent(); = current double |

Analog REV the using control compressor enabling for methods has also Hub Pneumatic The method). enableAnalog( Sensor Pressure

## Control Solenoid

shifting including tasks, of variety a performing of part as valve solenoid a use can teams FRC a switch electronically to used is valve solenoid A mechanisms. robot moving and gearboxes Control Pneumatics robot's a by controlled are Solenoids "off". or "on" line air pressurized The CAN. via roboRIO robot's the to connected turn in is which Hub, Pneumatic or Module, the if indicates (which PH or PCM the on LEDs the via is state solenoid's a see to way easiest small the with actuated manually be can solenoids powered, un- When not). or "on" is valve body. valve the on button
typically are They port. output single a from pressure vent or apply solenoids acting Single (spring, cylinder the of action return the provide will force external an when either used solenoid double A solenoid. double a as act to pairs in or mechanism) separate gravity, neither where position center a have also (many ports output two between flow air switches when used commonly are valves solenoid Double input). the to connected or vented is output Double pressure. air using cylinder a of actions retract and extend the both control to wish you on channels separate two to back connect which inputs electrical two have valves solenoid breakout. solenoid the

WPILib in Solenoids Single
construct To ).C++ / Java( class Solenoid the using controlled are WPILib in solenoids Single and ID) CAN default (assumes number port desired the pass simply object, Solenoid a the to number port and type, module pneumatics ID, CAN or type module pneumatics disable to set(false) or enable to set(true) call solenoid the of value the set To constructor. output. solenoid the

Java

| ```);1 ,CTREPCMSolenoid(PneumaticsModuleType. new = exampleSolenoidPCM Solenoid );1 ,REVPHSolenoid(PneumaticsModuleType. new = exampleSolenoidPH Solenoid ); true(setexampleSolenoidPCM. );false(setexampleSolenoidPCM.``` |
| :---: |
| C++ |
| ;\}1 CTREPCM,::PneumaticsModuleType::exampleSolenoidPCM\{frc Solenoid::frc <br> ;\}1 REVPH,::PneumaticsModuleType::exampleSolenoidPH\{frc Solenoid::frc |
| );trueexampleSolenoidPCM.Set ( );falseexampleSolenoidPCM.Set ( |

## WPILib in Solenoids Double

These ).C++ / Java( WPILib in class DoubleSolenoid the by controlled are solenoids Double pass to numbers port two now are there but solenoid single the to similarly constructed are of state The (second). channel reverse a and (first) channel forward a constructor, the to channel (forward kForward activated), output (neither kOff to set be then can valve the passed be can ID CAN the Additionally, enabled). channel (reverse kReverse or enabled)

ID. CAN standardnon- a have teams if DoubleSolenoid the to
Java


## Solenoids Toggling

the using by toggling) as (known other the to output one from switched be can Solenoids method. .toggle()
toggled. be can it before it set to have will you off, to defaults DoubleSolenoid a Since : : पार्य
Java
);0, CTREPCMSolenoid(PneumaticsModuleType. new $=$ exampleSingle Solenoid
);2,1, CTREPCMDoubleSolenoid(PneumaticsModuleType. new = exampleDouble DoubleSolenoid

single for required Not start. to where knows it so DoubleSolenoid the Initialize // | solenoids. |
| ---: |

(kReverse); ; setexampleDouble.

C++

Transducers Pressure
measured the to proportial is voltage analog where sensor a is transducer pressure A
pressure.
using transducer pressure a read to used be may that inputs analog has Hub Pneumatic The class. Compressor the

Java
);REVPHPneumaticsModuleType. , 1Compressor( new $=$ phCompressor Compressor
()$;$ getPressurephCompressor. $=$ current double

C++
units/pressure.h>< include\#
REVPH\};::PneumaticsModuleType::frc,1phCompressor\{ Compressor::frc
phCompressor.GetPressure(); = current pounds_per_square_inch_t::units

## roboRIO

can and roboRIO, the on ports Input Analog the to connected be can transducer pressure A WPILib. in classes AnalogPotentiometer or AnalogInput the by read be

Java


| $\begin{array}{r} ; 25-=\text { offset , } 250=\text { scale double } \\ \text { _AnalogIn the */AnalogPotentiometer ( new }=\text { pressureTransducer AnalogPotentiometer } \\ \text { offset); scale, } 2 \text { port*/ } \end{array}$ |
| :---: |
| C++ |
| $\begin{array}{r} \text { manual product see conversion, voltage->pressure product-specific // } \\ 250(\mathrm{~V} / 5)-25 \text { case, this in // } \\ \text { ul from scaled is constructor AnalogPotentiometer the in parameter scale the // } \\ 5, \text { of instead } \\ 250 r-25 \text { is pressure the output, AnalogPotentiometer raw the is r if so // } \\ ; 25-=0 \text { ffset, } 250=\text { scale double } \\ \text { offset\}; scale, ,2 port*/ AnalogIn the } * / \text { pressureTransducer\{ AnalogPotentiometer::frc } \\ \text { units psi in values scaled // } \end{array}$ |

## 14.3 חיישנים

with communicate software and hardware robot your having of way integral an are Sensors level. software a at sensors those with interfacing highlights section This other. each

$$
14.3 .1 \text { סקירת חיישנים - תוכנה }
$$

see hardware, sensor to guide a For software. in sensors using covers section This : Cl Cl
.Hardware - Overview Sensor
a is processing vision "sensors", considered be definitely may cameras While : ใ०ार here. than rather ,section own its in covered is it that subject complicatedsufficiently-
their about information gather to able be to robots for vital often is it effective, be to order In are environment its of state the on robot the to feedback provide that Devices surroundings. included classes through sensors of variety large a supports innately WPILib "sensors." called through types sensor common using both to guide a provide will section This library. the in support. official without sensors for code writing as well as WPILib,
of variety a of measuring timereal- accurate allows which FPGA an includes roboRIO The functionality. this accessing for classes of number a provides turn, in WPILib, input. sensor
for: support native provides WPILib
Accelerometers •
Gyroscopes •
rangefinders Ultrasonic •
Potentiometers •
Counters •
encoders Quadrature •
switches Limit •
FPGA's the with directly interfacing for classes levellower- includes WPILib Additionally, outputs. and inputs analog and digital

## Software - Accelerometers 14.3.2

to guide hardware a For software. in accelerometers covers section This : $\begin{array}{r}\text { Hardware - Accelerometers see accelerometers, }\end{array}$
acceleration. measures that device a is accelerometer An axissingle- A axis.3- and axissingle- types: two in come generally Accelerometers accelerometer axis3- a dimension; spatial one along acceleration measures accelerometer once. at dimensions spatial three all along acceleration measures class. AnalogAccelerometer the through accelerometers axissingle- supports WPILib (such protocols communications complicated more require often accelerometers axisThreethe for support native has WPILib data. dimensionalmulti- send to order in I2C) or SPI as accelerometers: axis3- following

ADXL345_I2C •
ADXL345_SPI •
ADXL362•
BuiltInAccelerometer •

## AnalogAccelerometer

axissingle- a from values read to users allows )C++ ,Java( class AnalogAccelerometer The inputs. analog roboRIO's the of one to connected is that accelerometer

Java


> C++

0 input analog on accelerometer analog an Creates //
;\}0accelerometer\{ AnalogAccelerometer::frc
G per volt 1 to accelerometer the of sensitivity the Sets //
);1accelerometer.SetSensitivity(
volts 3 to accelerometer the of voltage zero the Sets // );3accelerometer.SetZero(
acceleration current the Gets // accelerometer.GetAcceleration(); = accel double
for one class, this of instances three use can they accelerometer, analog axis3- a have users If axis. each

## interface Accelerometer The

This ).C++ ,Java( interface Accelerometer the implement WPILib in accelerometers axis3- All accelerometers. axis3- supported all to common settings and functionality defines interface cardinal each along acceleration the for getters contains interface Accelerometer The accelerometer the accelerations of range the for setter a as well as $z$ ), and $y$, ( $x$, direction measure. will


Java
s'G 8 and 8-between measure to accelerometer the Sets // );k8G.Range(Accelerometer.setRangeaccelerometer.

C++
s'G 8 and 8- between measure to accelerometer the Sets // kRange_8G);::Range::accelerometer.SetRange(Accelerometer

## ADXL345_I2C

over accelerometer ADXL345 the for support provides )C++, Java( class ADXL345 I2C The bus. communications I2C the

Java
port I2C MXP the on object accelerometer ADXL345 an Creates //
S'G8 to 8- from range measurement a with //
); k8G.RangeAccelerometer. , kMXP. PortADXL345_I2C(I2C. new = accelerometer Accelerometer

C++
port I2C MXP the on object accelerometer ADXL345 an Creates // s'G 8 to 8- from range measurement a with // kRange_8G\};::Range::Accelerometer kMXP,::Port::accelerometer\{I2C ADXL345_I2C::frc

ADXL345_SPI
over accelerometer ADXL345 the for support provides )C++ ,Java( class ADXL345_SPI The bus. communications SPI the

Java
port SPI MXP the on object accelerometer ADXL345 an Creates //
s'G 8 to 8- from range measurement a with //
);k8G.RangeAccelerometer. ,kMXP.PortADXL345_SPI(SPI. new = accelerometer Accelerometer
C++
port SPI MXP the on object accelerometer ADXL345 an Creates // s'G 8 to 8- from range measurement a with // kRange_8G\};::Range::Accelerometer kMXP,::Port::accelerometer\{SPI ADXL345_SPI::frc

ADXL362

SPI the over accelerometer ADXL362 the for support provides )C++ ,Java( class ADXL362 The bus. communications

Java

```
    port SPI MXP the on object accelerometer ADXL362 an Creates //
    s'G 8 to 8- from range measurement a with //
);k8G.RangeAccelerometer. ,kMXP.PortADXL362(SPI. new = accelerometer Accelerometer
```

C++


#### Abstract

BuiltInAccelerometer inbuilt- own roboRIO's the to access provides )C++ ,Java( class BuiltInAccelerometer The accelerometer:

Java accelerometer built-in the for object an Creates // $s^{\prime} G 8+-$ to defaults Range // BuiltInAccelerometer(); new = accelerometer Accelerometer


C++
accelerometer built-in the for object an Creates //
accelerometer\{\}; BuiltInAccelerometer::frc

## accelerometers partyThird-

in available are that accelerometers of number a for support native provides WPILib While Heading and (Attitude AHRS popular few a are there Choice, FIRST through or parts of kit the are These accelerometers. include that FRC in used commonly devices System) Reference they output analog simple a have they if though libraries, vendor through controlled generally class. AnalogAccelerometer the with used be can
code in accelerometers Using

Precise acceleration. measure suggests, name their as Accelerometers, : : पार्य (since integrationdouble- through position determine to used be can accelerometers used are gyroscopes that way the in much position), of derivative second the is acceleration nearly not are FRC in use for available accelerometers the However, heading. determine to way. this used be to quality enoughhigh-
rough a needs which application any for FRC® in accelerometers use to recommended is it other with collisions detecting include can This acceleration. current the of measurement They retracted. automatically be can mechanisms vulnerable that so elements, field or robots autonomous an for terrain rough over passing is robot the when determine to used be also may

Stronghold). FIRST in defenses the traversing as (such routine
acceleration. the than jerk the measure to robust more often is it collisions, detecting For the rapidly how indicates and acceleration, of change) of rate (or derivative the is jerk The in spike sharp a causes collision a from impulse sudden the - changing are robot the on forces acceleration subsequent of difference the taking simply by determined be can Jerk jerk. the them: between time the by dividing and measurements,
$; 0=$ prevXAccel double
$; 0=$ prevYAccel double

C+ +

combine to idea good a often is it and noisy, quite are use FRC for legal accelerometers Most noise: the reduce to )C++ Java( class LinearFilter the with them

Java
BuiltInAccelerometer(); new = accelerometer Accelerometer
${ }_{4} X$ measured the of average moving a calculate will that LinearFilter a Create // loop main the of iterations 10 past the over acceleration $\hookrightarrow$
);10(movingAverageLinearFilter. = XAccelFilter LinearFilter
@Override
\{ () robotPeriodic void public acceleration $X$ filtered the Get //
()) ; getX(accelerometer.calculatexAccelFilter. = filteredXAccel double

```
accelerometer; BuiltInAccelerometer::frc
\X measured the of average moving a calculate will that LinearFilter a Create //
    loop main the of iterations 10 past the over acceleration }
        );10MovingAverage(::LinearFilter::frc = xAccelFilter auto
                            { ()Robot::RobotPeriodic void
                            acceleration X filtered the Get //
    xAccelFilter.Calculate(accelerometer.GetX()); = filteredXAccel double
```

Software - Gyroscopes 14.3.3

Gyroscopes see gyros, to guide hardware a For software. in gyros covers section This : : पारा .Hardware -
and/or measure to robotics in used typically sensor rate angular an is "gyro," or gyroscope, A gyro ADXRS450 the for support specific provides natively WPILib headings. robot stabilize analog of variety wider a for support general more as well as parts, of kit the in available Gyro the from inherit gyros party 3rd common Most class. AnalogGyro the through gyros too! usable easily them making interface

## interface Gyro The

This ).C++, Java( interface Gyro the implement WPILib in objects gyro supportednatively- All the zeroing heading, and rate angular current the getting for methods provides interface gyro. the calibrating and heading, current
gyro. a calibrating while stationary remain robot the that crucial is It : Tll


#### Abstract

ADIS16448 Devices Analog the See ).C++ ,Java( class ADIS16448_IMU the uses ADIS16448 The examples. and information additional for documentation ADIS16448 instructions outdated contains above linked documentation Devices Analog The : : वारा WPILib. into built now is ADIS16448 the as installation software for


Java
port MXP the into plugged ADIS16448 //
ADIS16448_IMU(); new = gyro ADIS16448_IMU

C++

Devices Analog the See ).C++ ,Java( class ADIS16470_IMU the uses ADIS16470 The examples. and information additional for documentation ADIS16470
instructions outdated contains above linked documentation Devices Analog The : : पाराप WPILib. into built now is ADIS16470 the as installation software for

Java

| port MXP the into plugged ADIS16470 // |
| ---: |
| ADIS16470_IMU(); new $=$ gyro ADIS16470_IMU |

C++
port MXP the into plugged ADIS16470 //
gyro; ADIS16470_IMU

## ADXRS450_Gyro

ADXRS450 Devices Analog the for support provides )C++ ,Java( class ADXRS450_Gyro The bus. SPI the over connects which parts, of kit the in available gyro

FPGA; the in circuitry special through handled is accumulation Gyro ADXRS450 : : वार used. be may ADXRS450_Gyro of instance single a only accordingly


## AnalogGyro

analog an with gyro axissingle- any for support provides )C++ Java( class AnalogGyro The output.
accordingly, FPGA; the in circuitry special through handled is accumulation Gyro : : पार्य 1. and 0 ports analog on used be only may `sAnalogGyro
$\qquad$
Java
0 port on object AnalogGyro an Creates // );0AnalogGyro( new = gyro AnalogGyro

C++
0 port on object AnalogGyro an Creates //
;\}0gyro\{ AnalogGyro::frc

## navX

documentation navX the See interface. Gyro the implements and class AHRS the uses navX The types. connection additional for

Java


Pigeon
either can Pigeon The .Gyro implements that class WPI_PigeonIMU the use should Pigeon The contains Guide User's IMU Pigeon The TalonSRX. a to cable data by or CAN with connected be Pigeon. the using on details full

Java
0 ID device with Bus CAN on is Pigeon // );0WPI_PigeonIMU( new = gyro WPI_PigeonIMU connection) your on based other the or one (choose OR //
0 ID device with Bus CAN on is TalonSRX // );0TalonSRX( new = talon TalonSRX
above created talon the uses Pigeon // WPI_PigeonIMU(talon); new = gyro WPI_PigeonIMU
C++
0 ID device with Bus CAN on is Pigeon // ;\}0gyro\{ WPI PigeonTMU connection) your on based other the or one (choose OR //
0 ID device with Bus CAN on is TalonSRX // ;\}0talon\{ TalonSRX above created talon the uses Pigeon // gyro\{talon\}; WPI_PigeonIMU
(adding integrating by inferred is position position, than rather rate measure gyros As : ㄱㅣㅣ always are measurements angle gyro Thus, angle. in change total the get to signal rate the up) the either when gyro the of angle the by (determined angle zero arbitrary some to relative accumulated to subject also are and called), was method zeroing a or on turned was robot of amount The used. is gyro the longer the magnitude in increase that "drift") (called errors
gyro. of type the with varies drift
Since heading. robot controlling and measuring both for FRC in useful extremely are Gyros to tends match FRC an of course the over drift gyro total short, generally are matches FRC Moreover, gyro). qualitygood- a for degrees of couple a of order the (on small manageably be accurate remain to measurement heading absolute the require applications gyro useful all not match. entire the of course the over

## dashboard the on heading robot the Displaying

a of form the in Gyro a from data heading displaying for widget a includes Shuffleboard robot the to lines sight when heading robot the viewing for helpful be can This compass. obscured: are

Java
here above from declaration gyro Use //
\{ () robotInit void public
dashboard the on heading gyro the for indicator compass a Places //
$(\mathrm{gyro}) ; \mathrm{add}) . "$ "tab Example" (getTabShuffleboard.


## driving while heading Stabilizing

robot the that so driving, while heading robot stabilize to is gyro a for use common very A and mecanum as such drives holonomic for important especially is This straight. drives well. as drives tank for useful extremely is but swerve,
heading, the or rate turn the either on controller PID a closing by achieved typically is This a be would this drive, tank a (for control turning one's to loop the of output the piping and drive). the of sides two the between differential speed

## Competition Robotics FIRST

> sensor the that ensure to careful be should users loops, control all with Like $: \square \square][\square$ unstable be will loop the not, are they If consistent. are direction turning the and direction wildly. turn will robot the and

## rate turn using stabilization drive Tank Example:

the on closed loop P simple a using heading stabilize to how shows example following The for setpoint the zero, of rate turn a have should turning not is that robot a Since rate. turn simple. very method this making zero, implicitly is loop the

Java
here above from declaration gyro Use //
loop P simple a for gain The //
;1 = kP double
drive and controllers motor Initialize //
);0Spark( new = left1 Spark
);1Spark( new = left2 Spark
);2Spark( new = right1 Spark
);3Spark( new = right2 Spark
left2) ; MotorControllerGroup(left1, new = leftMotors MotorControllerGroup
right2) ; MotorControllerGroup(right1, new = rightMotors MotorControllerGroup
rightMotors); DifferentialDrive(leftMotors, new = drive DifferentialDrive
@Override
\{ ()robotInit void public
);true(setInvertedrightMotors.
@Override
\{ ()autonomousPeriodic void public
change to heading the want t'don we since 0, implicitly is Setpoint //
() ;getRategyro.- = error double
sthe stabilize to gyro the using speed, half at continuously forward Drives //
heading $\hookrightarrow$
error); * kP - 5. error, * kP + 5.(tankDrivedrive.

C++

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

page) next on (continues
(ำํำ

$$
\begin{aligned}
& \text {;\}3right2\{ Spark::frc } \\
& \text { left2\}; leftMotors\{left1, MotorControllerGroup::frc } \\
& \text { right2\}; rightMotors\{right1, MotorControllerGroup::frc } \\
& \text { rightMotors\}; drive\{leftMotors, DifferentialDrive::frc } \\
& \text { \{ ()Robot::RobotInit void } \\
& \text { ); truerightMotors.SetInverted( } \\
& \text { \{ ()Robot::AutonomousPeriodic void } \\
& \text { change to heading the want t'don we since 0, implicitly is Setpoint // } \\
& \text { gyro.GetRate();- = error double } \\
& \text { „the stabilize to gyro the using speed, half at continuously forward Drives // } \\
& \text { heading }_{\hookrightarrow} \\
& \text { error); * kP - 5. error, * kP + 5.drive.TankDrive( }
\end{aligned}
$$

the closing When loop. control complicatedmore- a use can implementations advancedMoreeffective. particularly are loops PI stabilization, heading for rate turn the on loop

## heading using stabilization drive Tank Example:

the on closed loop P simple a using heading stabilize to how shows example following The current the to setpoint the set to need will we example, rate turn the in Unlike heading. complicated.more- slightly method this making motion, starting before heading Java

page) next on (continues
(ำำ ำ

> @0verride
> \{ ()autonomousInit void public
> auto of start at heading current to setpoint Set //
> () ; getAnglegyro. = heading
> @Override
> \{ ()autonomousPeriodic void public ();getAnglegyro. - heading = error double
> „the stabilize to gyro the using speed, half at continuously forward Drives //
> heading $\hookrightarrow$
> error); * kP - 5. error, * kP + 5.(tankDrivedrive.

C++
here above from declaration gyro Use //
loop P simple a for gain The //
;1 = kP double
motion the starting when robot the of heading The //
heading; double
drive and controllers motor Initialize //
;\}0left1\{ Spark::frc
;\}1left2\{ Spark::frc
;\}2right1\{ Spark::frc
;\}3right2\{ Spark::frc
left2\}; leftMotors\{left1, MotorControllerGroup::frc right2\}; rightMotors\{right1, MotorControllerGroup::frc
rightMotors\}; drive\{leftMotors, DifferentialDrive::frc
\{ ()Robot::RobotInit void
);truerightMotors.SetInverted(
\{ ()Robot::AutonomousInit void auto of start at heading current to setpoint Set //
gyro.GetAngle(); = heading
\{ ()Robot::AutonomousPeriodic void gyro.GetAngle(); - heading = error double
„the stabilize to gyro the using speed, half at continuously forward Drives // heading $\hookrightarrow$
error); * kP - 5. error, * kP + 5.drive.TankDrive(
the closing When loop. control complicatedmore- a use can implementations advancedMoreeffective. particularly are loops PD stabilization, heading for heading the on loop

## heading set a to Turning

specified a face to robot a turning is gyro a for application usefulhighly- and common Another during used be can or routine, driving autonomous an of component a be can This direction. elements. field with robot a align help to control teleoperated
with unlike - loop PID a with accomplished often is this stabilization, heading with like Much example following The heading. the on closed be only can loop the however, stabilization, loop: P simple a with degrees 90 face to robot the turn will code


C++
here above from declaration gyro Use //
loop P simple a for gain The // ;0.05 = kP double
drive and controllers motor Initialize // ;\}0left1\{ Spark::frc ;\}1left2\{ Spark::frc
;\}2right1\{ Spark::frc
;\}3right2\{ Spark::frc
left2\}; leftMotors\{left1, MotorControllerGroup::frc right2\}; rightMotors\{right1, MotorControllerGroup::frc
page) next on (continues

loops. control complicatedmore- use can implementations advancedmore- before, As
the in friction static to due correctly tune to tricky be can loops angleto-Turn- : account to ways of number a are There used. is loop P simple a if especially drivetrain, the of output the to output" "minimum a add to is common/effective most the of one this; for on controllers velocity tunedwell- to cascade to is strategy effective Another loop. control drive. the of side each

## Software - Ultrasonics 14.3.4

see ultrasonics, to guide hardware a For software. in ultrasonics covers section This : : पार
.Hardware - Ultrasonics
frequencyhigh- using object an to distance measure to used commonly is sensor ultrasonic An of "field their within object closest the to distance the measure ultrasonics Generally, sound.
view."
WPILib: by natively supported ultrasonics of types primary two are There

> ultrasonics responsePing-•
> ultrasonics Analog •

## ultrasonics responsePing-

ping- As ultrasonics. responseping- for support provides )C++, Java( class Ultrasonic The and ping the sending both for pins separate require name) the (per ultrasonics response when input and output both for numbers pin DIO specify must users response, the measuring instance: Ultrasonic an constructing

Java

> 2. and 1 DIO on object Ultrasonic ping-response a Creates //
> );2, 1Ultrasonic( new $=m_{\text {_ }}$ rangeFinder Ultrasonic

> 2. and 1 DIO on object Ultrasonic ping-response a Creates // ;\}2,1m_rangeFinder\{ Ultrasonic::frc
the C++ in Java; in millimeters or inches either in retrieved be then can measurement The unit: length desired any to convert automatically to used is library units

Java

$$
\begin{array}{r}
\text { millimeters in distance the read can We // } \\
\text { (); getRangeMMm_rangeFinder. = distanceMillimeters double } \\
\text { inches in or } \ldots \text { // } \\
\text { (); getRangeInchesm_rangeFinder. = distanceInches double }
\end{array}
$$

C++
distance the read can We //
m_rangeFinder.GetRange(); = distance meter_t::units auto-convert units // distance; = distanceMillimeters millimeter_t::units
distance; = distanceInches inch_t::units
ultrasonics Analog
measured the to corresponding voltage analog an return simply sensors ultrasonic Some class. AnalogPotentiometer the with used be simply may can sensors These distance.

## ultrasonics partyThird-

communications complicated more use may partiesthird- by offered sensors ultrasonic Other such any for support native provide not does WPILib SPI). or I2C as (such protocols libraries. vendor with controlled be typically will they ultrasonics;

## code in ultrasonics Using

For routines. autonomous during spacing determining for useful very are sensors Ultrasonic move )willC++ ,Java( project example UltrasonicPID the from code following the example, detects: sensor the object nearest the from away meter 1 to robot the

Java

page) next on (continues
(ㄴำ ำ

$$
\begin{aligned}
& ; 0=\text { kLeftMotorPort int final static } \\
& ; 1=\text { kRightMotorPort int final static } \\
; 0= & \text { kUltrasonicPingPort int final static } \\
; 1= & \text { kUltrasonicEchoPort int final static }
\end{aligned}
$$

outliers, sudden to susceptible and noisy quite be to tend sensors Ultrasonic // filter median 5-sample a with filtered are measurements so // ) ;5MedianFilter ( new = m_filter MedianFilter final private uUltrasonic(kUltrasonicPingPort, new = m_ultrasonic Ultrasonic final private
kUltrasonicEchoPort) ; $\rightarrow$
PWMSparkMax(kLeftMotorPort); new = m_leftMotor PWMSparkMax final private
PWMSparkMax(kRightMotorPort); new = m_rightMotor PWMSparkMax final private m_ DifferentialDrive(m_leftMotor, new = m_robotDrive Differentialdrive final private kD); KI, PIDController(kP, new = m_pidController PIDController final private
@Override
\{ ()autonomousInit void public controller pid the of setpoint Set //
(kHoldDistanceMillimeters) ; setSetpointm_pidController.
@0verride
\{ ()autonomousPeriodic void public
() ; getRangeMMm_ultrasonic. = measurement double
(measurement) ; calculatem fil̄̄er. = filteredMeasurement double (filteredMeasurement) ; calculatem_pidController. = pidOutput double
linear is output PID -- squaring input disable //
); false ,0 (pidOutput, arcadeDrivem_robotDrive.
(Header) C++

(ำำ ำ

$$
\begin{aligned}
& \text { constant speed integral // } \\
; 0.0 & =\text { kI double constexpr static } \\
& \text { constant speed derivative // } \\
; 0.0 & =\text { kD double constexpr static }
\end{aligned}
$$

sudden to susceptible and noisy quite be to tend sensors Ultrasonic // filter median 5-sample a with filtered are measurements so outliers, //
;\}5m_filter\{ >millimeter_t::units<MedianFilter::frc
kUltrasonicEchoPort\}; m_ultrasonic\{kUltrasonicPingPort, Ultrasonic::frc
m_left\{kLeftMotorPort\}; PWMSparkMax::frc
m_right\{kRightMotorPort\}; PWMSparkMax::frc
m_right\}; m_robotDrive\{m_left, DifferentialDrive::frc
kD\}; kĪ, m_pidController\{kP, PIDController::frc2
(Source) C++

> \{ ()Robot::AutonomousInit void controller pid the of setpoint Set //
> m_pidController. SetSetpoint(kHoldDistance. value()) ;
\{ ()Robot::AutonomousPeriodic void
m_ultrasonic.GetRange(); = measurement millimeter_t::units
m_filter.Calculate(measurement); = filteredMeasurement millimeter_t::units m_pidController.Calculate(filteredMeasurement.value()); = pidOutput double
linear is output PID -- squaring input disable //
);false , 0 m_robotDrive.ArcadeDrive(pidOutput,
be will they where ,Shuffleboard to sent be can ultrasonics responseping- Additionally, widgets: own their with displayed

Java
dashboard the of tab Sensors"" the on ultrasonic the Add // automatically update will Data //
(m_rangeFinder); add). "Sensors"(getTabShuffleboard.
C++
dashboard the of tab Sensors"" the on ultrasonic the Add //
automatically update will Data //
).Add(m_rangeFinder);"Sensors"GetTab(: :Shuffleboard::frc
on edges pulse of counting the allows that class versatile a is )C++, Java( class Counter The classes WPILib complicatedmore- several in component a as used is Counter input. digital a own. its on useful quite also is but ),Ultrasonic and Encoder as (such

8 than more no meaning FPGA, roboRIO the in units counter 8 of total a are There : Flll resources as contained those including time, one any at instantiated be may objects Counter another by used be may Counter a when on information detailed For objects. WPILib other in documentation. API official the to refer object,

## counter a Configuring

functionalities. differing provide to ways of number a in configured be can class Counter The

Modes Counter
modes: different four of one in operate to configured be may object Counter The channels. different two of edges the on based down and up Counts :mode pulseTwo- 1.
channel. single a on pulse a of duration the Measures :mode periodSemi- 2. the with channel, one of edges the on based down and up Counts :mode lengthPulse- 3. channel. that on pulse the of duration the by determined direction
with channel, one of edges the on based down and up Counts :mode direction External 4. direction. the specifying channel separate a
increment to configured be can counter the mode, periodsemi- except modes all In : Clll counters default, By decoding). (1X pulse per once or decoding), ( 2 X edge per once either count only will counter the specified is channel one only if though mode, pulsetwo- to set are up.
"up specified the on edge/pulse every for up count will Counter the mode, pulsetwo- In can counter A channel." "down specified the on edge/pulse every for down and channel," code: following the with pulsetwo- in initialized be

Java


C++
mode two-pulse in object Counter new a Create // k2Pulse\};::Mode::Counter::counter\{frc Counter::frc
\{ ()Robot::RobotInit void
counter the for channels input the up Set //
);1counter.SetUpSource(
);2counter.SetDownSource(
$2 X$ to type decoding the Set //
); true , truecounter.SetUpSourceEdge( ); true , truecounter.SetDownSourceEdge(

## mode periodSemi-

either channel, a on pulses the of duration the count will Counter the mode, periodsemi- In A edge. rising next the to edge falling a from or edge, falling next the to edge rising a from code: following the with mode periodsemi- in initialized be can counter

Java
mode two-pulse in object Counter new a Create // );kSemiperiod.ModeCounter(Counter. new = counter Counter
@Override
\{ () robotInit void public
counter the for channel input the up Set //
); 1(setUpSourcecounter.
edge falling to edge rising from duration pulse count to encoder the Set // ); true(setSemiPeriodModecounter.
mode two-pulse in object Counter new a Create //
kSemiperiod\};: :Mode: : Counter: : counter\{frc Counter::frc
\{ounter the for channel input the up Set // void
) ;lounter. SetUpSource(
method: getPeriod( ) the call width, pulse the get To
Java
seconds in width pulse measured the Return // (); getPeriodcounter.

C++
seconds in width pulse measured the Return // counter.GetPeriod();

## mode lengthPulse-

of length the on depending down or up either count will counter the mode, lengthpulse- In count forward a as interpreted be will time threshold specified the below pulse A pulse. the sensors tooth gear some for useful is This count. reverse a is threshold the above pulse a and follows: as mode this in initialized be can counter A manner. this in direction encode which

Java


C++
mode two-pulse in object Counter new a Create //
kPulseLength\};::Mode: : Counter: :counter\{frc Counter::frc
\{ ()Robot: RobotInit void
counter the for channel input the up Set //
) ;1counter.SetUpSource(
page) next on (continues


## parameters counter Configuring

will it distance; of units about assumptions any make not does class Counter The : Users value. pulseper-distance- the calculate to used were units whatever in values return always are time of units However, used. units distance the over control complete have thus seconds. in
on depend not does calculation pulseper-distance- the in used pulses of number The : ใ००ा and (rising cycle full a be to considered be always should "pulse" each - type decoding the
falling).
additional of number a offers class Counter the configurations, specificmode- the from Apart methods: configuration

Java


C++
pulses 256 every for 4 of distance a return to counter the Configures // getRate of units the changes Also // );256./4.counter.SetDistancePerPulse(
seconds 1. after stopped itself consider to counter the Configures // );1.counter.SetMaxPeriod(

10 below is rate its when stopped itself consider to counter the Configures // );10counter.SetMinRate(
counter the of direction the Reverses // );truecounter. SetReverseDirection(
samples 5 over measurement period its average to counter an Configures // samples 127 and 1 between be Can // ) ;5counter. SetSamplesToAverage(
users: to exposes always class Counter the that information some is there mode, of Regardless
method: get () the with count current the obtain can Users

| Java |
| ---: |


| count current the returns // |
| ---: |
| (); getcounter. |

count current the returns //
counter.Get ();

## Distance

will returned value distance the absolute; not distance, relative measure Counters : $\mathrm{Cl|l|}$ value encoder the or on turned was robot the when encoder the of position the on depend .reset last was
by traveled distance total the obtain can users configured, been has pulse per distance the If method: getDistance() the with sensor counted the

Java

| distance current the returns // <br> (); igetDistancecounter. |
| ---: |
| C++ |
| distance current the returns // |
| counter. GetDistance(); |

Rate
seconds. in always are class Counter the for time of Units : : पारा
method: getRate() the with counter the of change of rate current the obtain can Users

| Java |
| ---: |
| counter the of rate current the Gets // |
| ()$;$ getRatecounter. |


| counter the of rate current the Gets // |
| ---: |
| counter.GetRate(); |

## Stopped

method: getStopped() the with stationary is counter the whether obtain can Users
Java
stopped is counter the whether Gets //

(); getStoppedcounter. $|$| C++ |
| ---: |
| stoped is counter the whether Gets // |
| counter.GetStopped(); |

כיוון
getDirection() the with moved last counter the which in direction the obtain can Users method:

Java

| moved counter the which in direction last the Gets // |
| ---: |
| (); igetDirectioncounter. |

C++
moved counter the which in direction last the Gets //
counter. GetDirection();

## Period

period. the of not pulse, the of duration the returns method this , mode periodsemi- In : Clll
getPeriod() the with period recentmost- the of seconds) (in duration the obtain can Users method:

Java
seconds in period current the returns // ();getPeriodcounter.

C++
seconds in period current the returns // counter.GetPeriod();
is This method. reset() the call zero, of reading distance a to counter a reset To physical desired actual the to corresponds distance measured the that ensuring for useful measurement.

Java
zero of distance a read to encoder the Resets //
(); resetcounter.

C++
zero of distance a read to encoder the Resets // counter.Reset();

## code in counters Using

is class Counter the since but - applications robot of variety wide a for useful are Counters applications these of Many here. them of summary good a provide to difficult is it varied, so quadrature a to alternative cheaper a often is counter simple a - class Encoder the with overlap
.Software - Encoders see code, in encoders for uses potential of summary a For encoder.

Software - Encoders 14.3.6
see encoders, to guide hardware a For software. in encoders covers section This : Clll

shaft). a of rotation the (usually, motion measure to used devices are Encoders
into directly plugged are that encoders for used only are document this in classes The : : प्रा encoders using for documentation vendors« appropriate the reference Please roboRIO! the controllers. motor into plugged

## Class Encoder The - Encoders Quadrature

).C++ ,Java( class Encoder the through encoders quadrature for support provides WPILib encoders. from data reading and configuring for API simple a provides class This

## Competition Robotics FIRST

Channel A (leads)
out- periodquarter- a are that channels two on signals wavesquare- produce encoders These and rotation, the measure to used are pulses The "quadrature"). term, the (hence phaseofother. the "leads" channel which from determined be can motion of direction the

## Encoder Quadrature a Initializing

follows: as instantiated be can encoder quadrature A
Java


## Type Decoding

modes: different three in signals encoder decode can class Encoder WPILib The signal encoder the of period complete every for distance the Increments :Decoding 1X • edges). four per (once
(once signal encoder the of periodhalf- every for distance the Increments :Decoding 2X • edges). two per
times (four signal encoder the of edge every for distance the Increments :Decoding 4X • period). per
rate in "jitter" increased of cost potential the at but precision, greatest the offers decoding 4X constructor: following the use type, decoding different a use To measurements.

> 1 and 0 pins DIO on encoder an Initializes // non-inverted and encoding $2 X ~ / /$ ) ;k2X.EncodingTypeEncoder. false ,1 ,0Encoder( new = encoder Encoder

C++
1 and 0 pins DIO on encoder an Initializes // non-inverted and encoding $2 X / /$
k2X\};::EncodingType::Encoder::frc ,false , 1 ,0encoder\{ Encoder::frc

Parameters Encoder Quadrature Configuring
will it distance; of units about assumptions any make not does class Encoder The : : पारा Users value. pulseper-distance- the calculate to used were units whatever in values return always are time of units However, used. units distance the over control complete have thus seconds. in
on depend not does calculation pulseper-distance- the in used pulses of number The : : पार्य edges). (four cycle full a be to considered be always should "pulse" each - type decoding the
methods: configuration of number a offers class Encoder The
Java

| );256.0/4.0(setDistancePerPulseencoder. <br> seconds 1. after stopped itself consider to encoder the Configures // );0.1(setMaxPeriodencoder. <br> 10 below is rate its when stopped itself consider to encoder the Configures // );10(setMinRateencoder. <br> encoder the of direction the Reverses // );true(setReverseDirectionencoder. <br> samples 5 over measurement period its average to encoder an Configures // samples 127 and 1 between be Can // );5(setSamplesToAverageencoder. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

> C++
pulses 256 every for 4 of distance a return to encoder the Configures // getRate of units the changes Also // );256.0/4.0encoder.SetDistancePerPulse(
seconds 1. after stopped itself consider to encoder the Configures // );0.1encoder.SetMaxPeriod(

10 below is rate its when stopped itself consider to encoder the Configures // );10encoder.SetMinRate(
encoder the of direction the Reverses //
); trueencoder.SetReverseDirection(
samples 5 over measurement period its average to encoder an Configures // samples 127 and 1 between be Can // );5encoder.SetSamplesToAverage(

## Encoders Quadrature from information Reading

the of motion the about user the to information of wealth a provides class Encoder The encoder.

## Distance

value distance the absolute; not distance, relative measure encoders Quadrature : $\operatorname{llll}$ the or on turned was robot the when encoder the of position the on depend will returned .reset last was value encoder
method: getDistance() the with encoder the by traveled distance total the obtain can Users
Java
traveled distance the Gets //
();getDistanceencoder.

C++
traveled distance the Gets // encoder.GetDistance();

Rate
seconds. in always are class Encoder the for time of Units
: 닐
method: getRate() the with encoder the of change of rate current the obtain can Users
Java
encoder the of rate current the Gets //
(); igetRateencoder. $|$
method: getStopped() the with stationary is encoder the whether obtain can Users
Java

| stopped is encoder the whether Gets // |
| ---: |
| ()$;$ getStoppedencoder. |

stopped is encoder the whether Gets // encoder.GetStopped();

כיוIן
getDirection() the with moved last encoder the which in direction the obtain can Users method:

Java

| moved encoder the which in direction last the Gets // |
| ---: |
| (); igetDirectionencoder. |

C++
moved encoder the which in direction last the Gets //
encoder. GetDirection();

## Period

method: getPeriod() the with seconds) (in pulses encoder the of period the obtain can Users
Java

| encoder the of period current the Gets // |
| ---: |
| ()$;$ getPeriodencoder. |

C++
encoder the of period current the Gets //
encoder. GetPeriod();

## Encoder Quadrature a Resetting

This method. reset () the call zero, of reading distance a to encoder quadrature a reset To physical desired actual the to corresponds distance measured the that ensuring for useful is routine: homing a during called often is and measurement,

| Jero of distance a read to encoder the Resets // |
| ---: | ---: |
| (); ; resetencoder. |$|$

the through encoders PWM) as marketed (also cycle duty for support provides WPILib and configuring for API simple a provides class This ).C++, Java( class DutyCycleEncoder encoders. cycle duty from data reading automatically. encoders cycle duty handles FPGA roboRIO's The encoders: cycle duty of Examples

Encoder Mag AndyMark •
Encoder Mag CTRE •
Encoder Bore Through REV •
Lamprey2 221 Team •
MA3 Digital US •

## Encoder Cycle Duty a Initializing

follows: as instantiated be can encoder cycle duty A
Java

| 0 pins DIO on encoder cycle duty a Initializes // |
| :---: | :---: |
| ) ;0DutyCycleEncoder( new = encoder DutyCycleEncoder |

C++
0 pins DIO on encoder cycle duty a Initializes // ;\}0encoder\{ DutyCycleEncoder::frc

## Parameters Encoder Cycle Duty Configuring

distance; of units about assumptions any make not does class DutyCycleEncoder The : : Inll value. rotationper-distance- the calculate to used were units whatever in values return will it used. units distance the over control complete have thus Users
methods: configuration of number a offers class DutyCycleEncoder The
Java

| rotation every for 4 of distance a return to encoder the Configures // );4.0(setDistancePerRotationencoder. |
| :---: |
| C++ |
| rotation every for 4 of distance a return to encoder the Configures // );4.0encoder.SetDistancePerRotation( |

## Encoders Cycle Duty from Distance Reading

starting the on depend not does It distance. absolute measure encoders Cycle Duty : Clll encoder. the of position
method: getDistance() the with encoder the by measured distance the obtain can Users

| Java |
| ---: |
| traveled distance the Gets // <br> () ; getDistanceencoder. |
| C++ |
| traveled distance the Gets /1 <br> encoder.GetDistance(); |

## Connected is Encoder Cycle Duty a Detecting

the that detect to possible is it pulses, of set continuous a output encoders cycle duty As unplugged. been has encoder

Java
connected is encoder the if Gets //
();isConnectedencoder. $|$

## Encoder Cycle Duty a Resetting

is This method. reset() the call 0 , is distance current the so encoder an reset To physical desired actual the to corresponds distance measured the that ensuring for useful homed. be to need don't encoders cycle duty encoders, quadrature Unlike measurement. so starts program the when set be to stored be can offset position the reset, after However, method a provides class Preferences The again. performed be to have doesn't reset the that roboRIO. the on values the retrieve and save to

Java
position current the at zero of distance a read to encoder the Resets //
(); ; resetencoder. $|$

C++
position current the at zero of distance a read to encoder the Resets // encoder.Reset();
reset was encoder the when from offset position the get // encoder.GetPositionOffset();
rotation a half to offset position the set //
);0.5encoder.SetPositionOffset(

## Class AnalogEncoder The - Encoders Analog

class AnalogEncoder the through encoders absolute analog for support provides WPILib duty from data reading and configuring for API simple a provides class This ).C++ ,Java( encoders. cycle
encoders: analog of Examples
Lamprey2 221 Team •
Encoder Magnetic Absolute Thrifty •
MA3 Digital US •

## Encoder Analog an Initializing

follows: as instantiated be can encoder analog An
Java

| 0 pins InputAnalog on encoder cycle duty a Initializes // <br> );0AnalogEncoder ( new $=$ encoder AnalogEncoder |
| ---: |

C++
0 pins DIO on encoder cycle duty a Initializes // ;\}0encoder\{ AnalogEncoder::frc

## Parameters Encoder Analog Configuring

it distance; of units about assumptions any make not does class AnalogEncoder The : value. rotationper-distance- the calculate to used were units whatever in values return will used. units distance the over control complete have thus Users
methods: configuration of number a offers class AnalogEncoder The
Java
rotation every for 4 of distance a return to encoder the Configures // $\begin{array}{r}\text { ) } \\ \text { (4.0(setDistancePerRotationencoder. }\end{array}$
C++
rotation every for 4 of distance a return to encoder the Configures // );4.0encoder. SetDistancePerRotation(

## Encoders Analog from Distance Reading

starting the on depend not does It distance. absolute measure encoders Analog : Clll encoder. the of position
method: getDistance() the with encoder the by measured distance the obtain can Users
Java

| measured distance the Gets // <br> (); getDistanceencoder. |
| ---: |
| C++ |
| measured distance the Gets // <br> encoder.GetDistance(); |

## Encoder Analog an Resetting

is This method. reset() the call 0 , is distance current the so encoder analog an reset To physical desired actual the to corresponds distance measured the that ensuring for useful homed. be to need don't encoders cycle duty encoders, quadrature Unlike measurement. so starts program the when set be to stored be can offset position the reset, after However, method a provides class Preferences The again. performed be to have doesn't reset the that roboRIO. the on values the retrieve and save to

Java


## Code in Encoders Using

requirement a nearly very are they $\mathrm{FRC®}$; in sensors useful most the of some are Encoders potential The movement. and actuations automatednontrivially- of capable robot a make to an but here, fully summarize to numerous too are code robot in encoders of applications below: provided is example

## Distance a to Driving

is This routine. distance" to "drive simple a create to drive robot a on used be can Encoders cause will momentum robot's the that disadvantage the has but mode, autonomous in useful using or Controller PID a using include methods Better distance. intended the overshoot to it

Planning Path

DutyCycleEncoder other if similar is but class, Encoder the uses example following The : : प्रा for suited better typically are encoders quadrature However, used. is AnalogEncoder or position. absolute an have don't and times many over roll they since drivetrains

Java



## Mechanism a Homing

their that ensure to important often is it distance, relative measure encoders quadrature Since a which in routine," "homing a is this do to way typical A place. right the in is point""zeroswitch), limit a with accomplished (usually position known a hits it until moved is mechanism
example: basic a provides code following The reset. is encoder the then and "home," or
analog and encoders cycle duty like encoders absolute for necessary not is Homing : : पारा encoders.

Java

page) next on (continues



## Software - Inputs Analog 14.3.7

inputs, analog to guide hardware a For software. in inputs analog covers section This : : वार

value the read to used be can that channels input analog 8 to up supports FPGA roboRIO's The a outputs that sensor any for used be may inputs Analog sensor. a from voltage analog an of voltage. simple voltage, the to proportional integer bit12- a return default by FPGA the from inputs Analog volts. 5 to 0 from

## class Analoginput The

to than class wrapper Potentiometers Analog the use to convenient more often is It : ใll units. meaningful to scaling supports it as directly, AnalogInput use
the through provided is inputs analog FPGA the on voltages the reading for Support ).C++ ,Java( class AnalogInput
follows: as initialized be may AnalogInput An
Java


Averaging and Oversampling

These averaging. and oversampling both supports modules input analog FPGA's The the at used be may Both ways. important few a in differ but similar, highly are behaviors time. same
and together, samples consecutive multiple add will FPGA the enabled, is oversampling When $n$ for - oversampling of bits of number the specify may Users value. accumulated the return
$: 2^{n}$ is together added samples of number the oversampling, of bits
Java
together. added be will samples 16 oversampling. 4-bit to AnalogInput the Sets // update the and 16, of factor a about by increase will values reported the Thus, // amount. similar a by decrease will rate // );4(setOversampleBitsanalog.

> C++
together. added be will samples 16 oversampling. 4-bit to AnalogInput the Sets // update the and 16, of factor a about by increase will values reported the Thus, // page) next on (continues
(ㄴำ
amount. similar a by decrease will rate //
) ;4analog.Set0versampleBits(

Averaging
the by divided are values accumulated the except oversampling, like much behaves Averaging often is This change. not does values returned the of scaling the that so samples of number rounding the by introduced error roundoff additional the occasionally but convenient,moreundesirable. is

Java
together. averaged be will samples 16 averaging. 4-bit to AnalogInput the Sets // 16. of factor a by decrease will rate update The // );4(setAverageBitsanalog.

C++
together. averaged be will samples 16 averaging. 4-bit to AnalogInput the Sets // 16. of factor a by decrease will rate update The // );4analog.SetAverageBits(
oversampling the time, same the at used are averaging and oversampling When : : पार्य oversampling bit2- Thus, averaged. are values oversampled the then and first, applied is by values returned the of scale the increase will time same the at used averaging bit2- and
4. of factor a approximately by rate update the decrease and 2 , of factor a approximately

## AnalogInput an from values Reading

methods: different four of one with AnalogInput an from read be can Values

## getValue

input, analog the from value measured instantaneous raw the returns method getValue The The settings. averaging and oversampling ignoring and calibration any applying without integer. an is value returned

Java

| (); getValueanalog. |
| ---: | ---: |
| C+ + |
| analog.GetValue(); |

input. analog the from voltage measured instantaneous the returns method getVoltage The a represent to rescaled is value the but ignored, are settings averaging and Oversampling double. a is value returned The voltage.

Java

|  | () ; getVoltageanalog. |
| ---: | ---: |
| C+ + |  |
|  | analog.GetVoltage(); |

## getAverageValue

value The input. analog the from value averaged the returns method getAverageValue The an is value returned The applied. both are averaging and oversampling but rescaled, not is integer.

Java

|  | () ; getAverageValueanalog. |
| ---: | ---: |
| C+ + |  |
| analog.GetAverageValue(); |  |

## getAverageVoltage

input. analog the from voltage averaged the returns method getAverageVoltage The double. a is value returned The applied. all are averaging and oversampling, Rescaling,

Java

|  | ()$;$ getAverageVoltageanalog. |
| ---: | ---: |
| C+ + |  |
| analog.GetAverageVoltage(); |  |

## Accumulator

volts of units in value a returning support currently not do methods accumulator The : वारा ).long a (specifically, integer an be always will value returned the -
(adds integrates which accumulator, an support additionally 1 and 0 channels input Analog values. measured past all of sum the is value returned the that so indefinitely, signal the up) accumulation. to prior applied are averaging and Oversampling

Java
0 to accumulator the of value initial the Sets //
time over change will value the which from point" starting" the is This //
) ;0(setAccumlatorInitialvalueanalog. $|$

C++
0 to accumulator the of value initial the Sets //
time over change will value the which from point" starting" the is This // );0analog.SetAccumulatorInitialValue(
from subtracted is value This 0. to accumulator the of center"" the Sets // accumulation. to prior values measured all // );0analog.SetAccumulatorCenter(
started/ last was accumulator the since samples accumulated of number the Returns // reset $\rightarrow$ analog.GetAccumulatorCount();
long. is type Return accumulator. the of value the Returns // analog.GetAccumulatorValue();
value initial the to accumulator the Resets // analog.ResetAccumulator();
value and count synchronized Obtaining
This value. the and count the of measurements matched obtain to necessarily is it Sometimes, method: getAccumulator0utput the using done be can

Java
measurements matched the hold to object AccumulatorResult an Instantiate // AccumulatorResult(); new = result AccumulatorResult measurements matched the with AccumulatorResult the Fill // (result); getAccumulatorOutputanalog.

AccumulatorResult the from values the Read // ;countresult. = count long ;valueresult. = value long
fill to variables value and count The //
count; int_64t
value; int_64t
code in inputs analog Using
(including sensors of variety wide a for code write to used be can class AnalogInput The as data their return that more) and ultrasonics, gyroscopes, accelerometers, potentiometers, the of one use to convenient more always almost is it possible if However, voltage. analog an voltages analog the (reading code levellower- the handles that classes WPILib existing other AnalogInput use directly only should Users you. for units) meaningful to them converting and resort." "last a as
refer should users code, in sensors analog use effectively to how of examples for Accordingly,
classes. specificmore- with deal that chapter this of pages other the to

Software - Potentiometers Analog 14.3.8
analog to guide hardware a For software. in potentiometers analog covers section This : : पार
.Hardware - Potentiometers Analog see potentiometers,
converted be to position about information allow that resistors variable are Potentiometers whatever control to roboRIO the by read be can signal This signal. voltage analog an into potentiometer. the to attached is device
Inputs Analog an with directly potentiometer a from information read to possible is it While re- handles that )C++, Java( class AnalogPotentiometer an provides WPILib ,Software this use to encouraged strongly is It user. the for units meaningful into values the scaling class.
be should class this - misnomer a of something is name AnalogPotentiometer the fact, In analog scaledlinearly- simple, a as signal their return that sensors of majority vast the for used voltage.
class AnalogPotentiometer The
are constructor AnalogPotentiometer the in parameters "scale" or range" "full The : : प्रा a represent they is, That 5.0 - from not range, actual the to 10 - of range a from factors scale scale. voltage a than rather scale, fractional native
follows: as initialized be can AnalogPotentiometer An
Java

```
            0 port analog on AnalogPotentiometer an Initializes //
    ube could (this 0-180 is units) external meaningful (in motion of range full The //
                                    instance) for degrees, }
    uthe when located is mechanism the where i.e. motion, the of point" starting" The //
                            30. is 0v, reads potentiometer }
                );30 ,180 ,0AnalogPotentiometer( new = pot AnalogPotentiometer
```

C++


## AnalogInput underlying the Customizing

be must this oversampling, with AnalogInput the of scaling the changes user the If : : पारा .AnalogPotentiometer the to passed setting scale the in reflected
the by used AnalogInput underlying the to settings custom apply to like would user the If is AnalogInput the which in used be may constructor alternative an ,AnalogPotentiometer injected:

Java
averaging 2-bit enables and 0, port on AnalogInput an Initializes // );0AnalogInput( new = input AnalogInput ); 2(setAverageBitsinput.

AnalogInput given the with AnalogPotentiometer an Initializes // ${ }_{4}$ be could (this 0-180 is units) external meaningful (in motion of range full The // instance) for degrees, $\hookrightarrow$ ${ }_{4}$ the when located is mechanism the where i.e. motion, the of point" starting" The // 30. is 0 v , reads potentiometer $\rightarrow$
);30,180 AnalogPotentiometer(input, new = pot AnalogPotentiometer
C++
averaging 2-bit enables and 0, port on AnalogInput an Initializes // ;\}0input\{ AnalogInput::frc );2input.SetAverageBits(

AnalogInput given the with AnalogPotentiometer an Initializes // $u^{\text {be }}$ could (this 0-180 is units) external meaningful (in motion of range full The // instance) for degrees, $\hookrightarrow$ uthe when located is mechanism the where i.e. motion, the of point" starting" The // 30. is 0 v , reads potentiometer $\hookrightarrow$ ;\}30 , 180 pot\{input, AnalogPotentiometer::frc

## AnalogPotentiometer the from values Reading

method: get the calling simply by read be can value scaled The

> Java

| (); getpot. |
| ---: |
| C++ |
| $\square \operatorname{pot} . \operatorname{Get}() ;$ |

## code in AnalogPotentiometers Using

same the measure that sensors other way the in much code in used be can sensors Analog be can it angle, arm an measuring potentiometer a is sensor analog the If be. can thing other to similarly used be can it sensor, ultrasonic an is it If .encoder an to similarly used .ultrasonics
have generally potentiometers physical actual, that mind in keep to important very is it mechanism physical the both in present be should Safeguards motion. of range limited a its past traveling by sensor the break not does mechanism the that ensure to code the and
throw. maximum

## Software - Inputs Digital 14.3.9

inputs, digital to guide hardware a For software. in inputs digital covers section This : : .Hardware - Inputs Digital see
through available made are these of 10 inputs. digital 26 to up supports FPGA roboRIO's The MXP the through available are 16 other the while itself, RIO the on ports DIO inbuilt- the port. breakout
RIO the on ports inbuilt- the default, By "low." or "high" - states two of one read inputs Digital - Inputs Digital see information, more (for resistors uppull- internal to due "high" read will sort. some of switches with used commonlymost- are inputs digital Accordingly, ).Hardware ).C++, Java( class DigitalInput the through provided is usage this for Support

## class Digitallnput The

follows: as initialized be can DigitalInput A
Java


## Digitallnput the of value the Reading

method: get the with polled be can DigitalInput the of state The
Java

| open. is circuit the if true Returns input. digital the of value the Gets // |
| ---: |
| (); ; getinput. |

C++

| open. is circuit the if true Returns input. digital the of value the Gets // |
| ---: |
| input.Get(); |

AnalogInput an from Digitallnput a Creating
analog that share can argument number port a with constructed AnalogTrigger An : $\mathrm{\square lll}$ port. same the share not may objects AnalogInput two but ,AnalogInput separate a with port
achieved easily be can This input. digital a as input analog an use to desirable is it Sometimes, ).C++ ,Java( class AnalogTrigger the using an ,AnalogPotentiometer with As follows. as initialized be may AnalogTrigger An settings: sampling the customize to wishes user the if explicitly passed be may AnalogInput

Java


C++


## points trigger the Setting

.Software - Inputs Analog see values, AnalogInput "raw" of scaling the on details For : :
the values what at specify to necessary is it one, digital a to signal analog the convert To around "dithering" avoid to different be may values These disable. and enable will trigger point: transition the

Java

```
1 0 0 0 ~ o f ~ v a l u e ~ a ~ a t ~ d i s a b l e ~ a n d ~ 3 5 0 0 , ~ o f ~ v a l u e ~ r a w ~ a ~ a t ~ e n a b l e ~ t o ~ t r i g g e r ~ t h e ~ S e t s ~ / / ~
    );3500 ,1000(setLimitsRawtrigger.
u1.5 of value a at disable and volts, 4 of voltage a at enable to trigger the Sets //
                                    volts ↔
    );4 ,1.5(setLimitsVoltagetrigger.
```

C++
1000 of value a at disable and 3500, of value raw a at enable to trigger the Sets // );3500 , 1000trigger. SetLimitsRaw(
u1.5 of value a at disable and volts, 4 of voltage a at enable to trigger the Sets // volts $\rightarrow$
);4 ,1.5trigger.SetLimitsVoltage(

## code in DigitalInputs Using

is class This .DigitalInput a through used be will robot the on switches all almost As control. robot effective for important extremely

## mechanism a of motion the Limiting

some given be should FRC® in elevators) and arms as (such mechanisms motorized all Nearly of range their of end the at themselves damaging from them prevent to switch" "limit of form below: given is example short A motions.

Java

|  |
| :---: |
|  |

mechanism the for Motor //
;\}0spark\{ Spark:
mechanism a Homing
encoder. an with mechanism a "home" to able being for important very are switches Limit .Mechanism a Homing see this, of example an For

## Switches Limit Programming 14.3.10

are switches limit While robots. on mechanisms control to used often are switches Limit ideal them makes This part. moving a of position single a sense can only they use, to simple the controlling at good so not but limit some exceed doesn't movement that ensuring for on joint shoulder rotational a example, For limit. the approaches it as movement the of speed limit A encoder. absolute an or potentiometer a using controlled be best would arm robot a the stop would switch limit the failed, ever potentiometer the if that sure make could switch damage. causing and far too going from robot
a if control will This outputs. closed" "normally or open" "normally have can switches Limit hardware switch limit about more learn To closed. or opened is switch the means signal high .article this see

## Switches Limit Two with Motor a Controlling


page) next on (continues

## Competition Robotics FIRST



## APIs Hardware Miscellaneous 14.4

standalone. are that APIs hardware miscellaneous highlights section This

## LEDs Addressable 14.4.1

They reasons. of variety a for years several for teams by used commonly been have strips LED their for marker visual a provide audience, the from functionality robot debug to teams allow WS2812 controlling for API an has WPILib appeal. visual some add simply can and robot, PWM. via connected pin data their with LEDs

## Object AddressableLED the Instantiating

must It argument. an as port PWM the takes that object AddressableLED an create first You LED your on located LEDs of number the set you Then roboRIO. the on header PWM a be function. setLength() the with done be can with strip,
 periodically. this run to recommended not it's and

AddressableLEDBuffer an create to have you'll set, been has strip the of length the After myAddressableLed. call then You'll input. an as LEDs of number the takes that object call can you Finally, data. output led the set to setData(myAddressableLEDBuffer) the of example full a is Below continuously. output the write to myAddressableLed.start() process. initialization

Array. an uses instead and AddressableLEDBuffer, an have not does C++ : Clll
Java
\{ () robotInit void public
9 port PWM //

## Competition Robotics FIRST



## Color One to Strip Entire the Setting

takes which setRGB() methods. two using strip the on led individual an to set be can Color input. an as values HSV takes which setHSV ( ) and input an as values RGB

## Values RGB Using

easy quite it's as model color common fairly a is This Blue. and Green, Red, for stands RGB the of index arguments: 4 takes that method setRGB the with set be can LEDs understand. to Blue and Green, Red, of amount The blue. of amount green, of amount red, of amount LED, 255.0- between values integer are

Java


Values HSV Using
being saturation tint, or color the describes Hue Value. and Saturation, Hue, for stands HSV 180. - 0 from integer an is Hue WPILib, In brightness. the being value and gray, of amount the ,Google's like picker color a at look you If 255. - 0 from integers are Value and Saturation that way same the is This $100 \%$. to $0 \%$ from are Value and Saturation and $360-0$ be will Hue or correct, are WPILib to entered values HSV the sure Make colors. HSV handles OpenCV expected. was as same the be not might produced color the
hue, LED, the of index arguments: 4 takes that method setHSV the with set be can LEDs red to strip LED an of color the setting for below shown is example An value. and saturation, 0 ). of (hue

Java


## Effect Rainbow a Creating

equally it loop, for the of Inside things. important of couple a does method below The hue LED individual the stores and strand the of length entire the over hue the distributes the using pixel specified that of value HSV the sets loop for the Then .hue called variable a to value. hue
that pixel the iterates then m_rainbowFirstPixelHue the loop, for the of outside Moving checks then m_rainbowFirstPixelHue effect. rainbow the creating hue "initial" the contains a is hue HSV because is This 180. of boundaries hue the inside is hue the that sure make to
180.0- from value
so possible, as clean as method robotPeriodic() the keep to practice robot good It's : : पार rainbow() method this call We'll data. LED our setting handling for method a create we'll .robotPeriodic() from it call and

## Java

| \{ ()rainbow void private pixel every For // \{ )++i ();getLengthm_ledBuffer. < i ;0 = i var( for color the because rainbows for easier is hue - hue the Calculate // precess to needs value one only so circle a is shape // <br> ()))getLengthm_ledBuffer. / 180 * (i + (m_rainbowFirstPixelHue = hue var final <br> move"" rainbow the make to by Increase // |
| :---: |
| C++ |
| \{ ()Robot::Rainbow void pixel every For // |

page) next on (continues


## Controllers Motor 14.5

DC brushed For move. motors making for robot your on responsible is controller motor A motor the that voltage the regulates controller motor the 775 s , or CIMs as such motors MAX, Spark the as such controllers motor brushless For bulb. light a like much receives, motor. the of "phase" each to delivered power the regulates controller the
controller. speed a is controller motor a for name Another : : पारा
motor the removing by controller motor legalcompetition-non- quick, a make can One : leads. motor's the to equivalents or PowerPoles attaching and drill BRUSHED cordless a from the that note but motor, the damage not will drill the by supplied voltage the that sure Make volts. 24 to up at fine is 775
 motor! the destroy will controller, motor brushed conventional

## Controllers Motor Legal FRC 14.5.1

FRC® of list full the is This sets. feature and sizes shapes, of lots in come controllers Motor 2023: of as controllers motor Legal 2)334-410-1,334-410- (P/N: Controller Motor 60c 60/DMC DMC • to connected 3367)217- and BDC24,MDL- BDC,MDL- (P/N: Controller Motor Jaguar • only PWM
(P/N only actuator integral control to Controller with Motor BLDC Dynamo Nidec • 3740)am- 000,840205-

SD540Bx2, SD540Bx1, SD540x4, SD540x2, SD540x1, (P/N: Controller Motor SD540 • SD540C) SD540Bx4,
4260)am- 1200,11-REV- (P/N: Controller Motor Spark • 4261)am- 2158,11-REV- (P/N: Controller Motor MAX Spark •
for 6515_Short)am-6515,am-708850,19-6515,217- (P/N: Controller Motor FX Talon • only 500 Falcon integral controlling
2195)am- and CTRE_Talon_SR, CTRE_Talon, (P/N: Controller Motor Talon • 838288)14-2854,am- 8080,217- (P/N: Controller Motor SRX Talon • only motor integral controlling for 10001)BDC- (P/N Controller with Motor Venom • 12/12)884-VICTOR- (P/N: Controller Motor 884 Victor • 2769)217- (P/N: Controller Motor 888 Victor • 868380)14-2855,am-9090,217- (P/N: Controller Motor SP Victor • 3748)am- 868388,17-9191,217- (P/N: Controller Motor SPX Victor •
14.6 פניאומטיקה
using another or state one in that's something make to way easy and quick a are Pneumatics
.
controllers Pneumatics Legal FRC 14.6.1
4243)217-2858,am- (P/N: Module Control Pneumatics • 1852)11-REV- (P/N Hub Pneumatic •

## Relays 14.7

fashion. On/Off an in electronics custom or motor a to power controls relay A

## Modules Relay Legal FRC 14.7.1

H)RELAY-SPIKE- and 0220217- (P/N: Relay BridgeH- Spike • AD- DC200D,SSR6M25-AD- DC200D,SSR6M12-AD- (P/N: Relay Direct Automation • DC200D)SSR6M40-
1850)11-REV- (P/N channel switched (PDH) Hub Distribution Power •


## Devices CAN Using 15.1

controller robot the between connection of methods other over advantages many has CAN devices. peripheral and
much in results often which device, to device from chaineddaisy- are connections CAN
itself. RIO the to device each wire to having than runs wire shorter
thus, - connection PWM a over than connection CAN a over sent be can data more Much PWM are than setfeature- expansive more much a of capable are controllers motor CAN controllers. motor
again RIO, the to back data send can controllers motor CAN so directional,bi- is CAN Controllers. PWM by offered be can than setfeature- expansive more a facilitating
.guide wiring robot the of section relevant the see devices, CAN wiring on instructions For describe will sections following The classes. WPILib own their have generally devices CAN classes. these of several of use the

Module Control Pneumatics 15.2
control complete provides that device basedCAN- a is (PCM) Module Control Pneumatics The WPILib into integrated is PCM The module. per solenoids 8 to up and compressor the over use. to simple it make that classes of series a through Compressor the by handled is switch Pressure and Compressor the of control loop closed The and ) C++ ,Java( Solenoid the by handled are Solenoids the and ), C++, Java( class classes. ) C + + , Java( DoubleSolenoid are solenoids corresponding module's the where used be can module PCM additional An Compressor and Solenoid the of constructors the in number module the by differentiated classes. for Compressor a Operating see compressor, the controlling on information more For .Pneumatics
.Cylinders Pneumatic Operating see solenoids, controlling on information more For
the over control complete provides that device basedCAN- a is (PH) Hub Pneumatic The a through WPILib into integrated is PH The module. per solenoids 16 to up and compressor use. to simple it make that classes of series Compressor the by handled is switch Pressure and Compressor the of control loop closed The and $) \mathrm{C}++$, Java( Solenoid the by handled are Solenoids the and ), $\mathrm{C}++$, Java( class classes. ) C ++ , Java( DoubleSolenoid are solenoids corresponding module's the where used be can module PH additional An Compressor and Solenoid the of constructors the in number module the by differentiated classes. for Compressor a Operating see compressor, the controlling on information more For .Pneumatics
.Cylinders Pneumatic Operating see solenoids, controlling on information more For

# Module Distribution Power 15.4 

use can (PDH) Hub Distribution Power Rev and (PDP) Panel Distribution Power CTRE The robot's the regarding information status of wealth a communicate to connectivity CAN their current report to capability the has This code. user in use for roboRIO, the to use power and use, energy robot total the draw, current robot total the voltage, bus the temperature, number a for used be can data This channel. power device each of draw current individual the avoidance. brownout and limiting torque motor as such techniques, control advanced of

## Object Distribution Power a Creating 15.4.1

PowerDistribution the of instance an create module, Distribution Power either the use To and detected, be will object Distribution Power the arguments, no With ).C++, Java( class additional default,non- is ID CAN the If REV. for 1 or CTRE for 0 of ID CAN use must type. and ID CAN the specify to available are constructors

Java


Voltage Bus the Reading 15.4.2
Java


robot the when detecting things) other (among for useful be can voltage bus the Monitoring See manner. controlled a in brownout avoid to taken be can action that so brownout, a near is information. more for document Brownouts roboRIO the

## Temperature the Reading

15.4 .3

## Java

| Celsius. degrees in PDP, the of temperature the Retrieves // (); getTemperaturem_pdp. = temperatureCelsius double temperatureCelsius); "Temperature"(putNumberSmartDashboard. |
| :---: |
| C++ |
| m_pdp.GetTemperature(); = temperatureCelsius double $\qquad$ |

too drawing been has robot the if detecting for useful be can temperature the Monitoring wiring other or short a is there if or while, a for down shut be to needs and power much
problem.

Energy and Power, Current, Total the Reading 15.4.4
Java


C+ +
channels. all of current total the Get //
m_pdp.GetTotalCurrent(); = totalCurrent double
totalCurrent) ; ,"Current Total"PutNumber(: SmartDashboard: frc
channels. all of power total the Get //
Watts. units the with current the by multiplied voltage bus the is Power //
m_pdp.GetTotalPower(); = totalPower double
totalPower) ; , "Power Total"PutNumber(: SmartDashboard: frc
channels. all of energy total the Get //
Joules. units with time over summed power the is Energy //
m_pdp.GetTotalEnergy(); = totalEnergy double
totalEnergy) ; ,"Energy Total"PutNumber(: SmartDashboard::frc

## Competition Robotics FIRST

power much how controlling for useful be can energy and power current, total the Monitoring mechanisms that ensuring and brownouts preventing for both battery, the from drawn being is voltage bus the is Power required. actions the perform to available power sufficient have with time over summed power the is Energy Watts. units the with current the by multiplied

Joules. units

## Currents Channel Individual Reading 15.4.5

power device individual the by drawn current the monitor to users allows also PDP/PDH The channels PDH 24 or 15)(0- channels PDP 16 the of any on current the read can You channels.
23).(0-

Java

| Amperes. in 7, channel through going current the Get // 0.125A. of increments in current the returns PDP The // accurate. less be to tend readings current the currents low At // );7(getCurrentm_pdp. = current7 double current7); ,"7 Channel Current"(pūtNumberSmartDashboard. |
| :---: |
| C++ |
| Amperes. in 7, channel through going current the Get // 0.125A. of increments in current the returns PDP The // accurate. less be to tend readings current the currents low At // );7m_pdp.GetCurrent( = current7 double current7); ,"7 Channel Current"PutNumber(: :SmartDashboard: frc |

stalled or shorts detecting for useful be can draws current device individual Monitoring
motors.
(PDH) Channel Switchable the Using 15.4.6
circuits. custom control to off or on switched be can that channel one has PDH REV The
Java


## Devices CAN PartyThird- 15.5

expansive offer devices CAN As peripherals. CAN own their offer vendors FRC $\circledR^{\circledR}$ of number A As operate. to libraries code expansive similarly require devices CAN vendor sets,featureinstead are but WPILib, of part official an as maintained not are libraries these result, a 3rd see libraries, partythird- installing to guide a For themselves. vendors the by maintained Libraries Party
to links with along vendors, various from devices CAN partythird- common of list A below: provided is documentation, external corresponding

Electronics CTR
15.5.1

General libraries. external with peripherals CAN several offers (CTRE) Electronics CTR include: devices CTRE all for resources

Documentation Software Device Phoenix

## Controllers Motor CTRE

## Motor) 500 Falcon (with FX Talon

)C++ ,Java Pro: | C++ ,Java (v5: Documentation API -
Manual User's Hardware -
)Pro, v5( Documentation Software -
SRX Talon
) $\mathrm{C}++$, Java ( Documentation API
Manual User's Hardware -
Documentation Software
SPX Victor
) C + + , Java( Documentation API -
Manual User's Hardware -
Documentation Software -

Sensors CTRE
CANcoder
) C++ ,Java Pro: | C + + , Java (v5: Documentation API
Manual User's Hardware -
)Pro, v5( Documentation Software

### 2.0 Pigeon

) C ++ ,Java Pro: | C + + ,Java (v5: Documentation API
Manual User's Hardware
)Pro, v5( Documentation Software -
IMU Pigeon
) +++ ,Java( Documentation API -
Manual User's Hardware -
Documentation Software -

CANifier
) +++ ,Java( Documentation API
Manual User's Hardware -
Documentation Software

Devices CAN Other CTRE
Controller LED CANdle
) C + + Java( Documentation API
Manual User's Hardware -
Documentation Software -

## Robotics REV 15.5.2

feature- similar a has which controller, motor MAX SPARK the offers currently Robotics REV SRX. Talon the to set

Controllers Motor REV

MAX SPARK
) $\mathrm{C}++$, Java( Documentation API
Manual Technical -

## Fusion With Playing

Time- a as well as motor/controller integrated Venom the offers (PWF) Fusion With Playing sensor: distance Flightof-

Venom
) C + + ,Java( Documentation API
Manual Technical -

Sensors PWF
Sensor Flight of Time
) C + + Java( Documentation API
Manual Technical -

## ספציפיקציות מכשירי CAN בFRC

and system CAN FRC® current the of functions basic the describe to seeks document This system. the with work to seeking devices CAN new any for requirements the

Addressing
into ID the breaks that scheme definedpre- a on based IDs arbitration assign nodes CAN FRC components: 5

Type Device
currently of table A addressed. being device of type the describing value bit5- a is This assigned type device new a have to wish you If below. found be can types device assigned FIRST. to request a submit please pool, Reserved the from

| Types Device |  |
| ---: | ---: |
| Messages Broadcast | 0 |
| Controller Robot | 1 |
| Controller Motor | 2 |
| Controller Relay | 3 |
| Sensor Gyro | 4 |
| Accelerometer | 5 |
| Sensor Ultrasonic | 6 |
| Sensor Tooth Gear | 7 |
| Module Distribution Power | 8 |
| Controller Pneumatics | 9 |
| Miscellaneous | 10 |
| Breakout IO | 11 |
| Reserved | $3012-$ |
| Update Firmware | 31 |

assigned Currently device. CAN the of manufacturer the indicating value bit8- an is This from assigned ID manufacturer a have to wish you If below. table the in found be can values FIRST. to request a submit please pool,Reserved the

| Manufacturer |  |
| ---: | ---: |
| Broadcast | 0 |
| NI | 1 |
| Micro Luminary | 2 |
| DEKA | 3 |
| Electronics CTR | 4 |
| Robotics REV | 5 |
| Grapple | 6 |
| MindSensors | 7 |
| Use Team | 8 |
| Labs Kauai | 9 |
| Copperforge | 10 |
| Fusion With Playing | 11 |
| Studica | 12 |
| Bot Thrifty The | 13 |
| Robotics Redux | 14 |
| Reserved | $25515-$ |

Identifier API/Message
or command particular a identifies that value bit10- a is Identifier Message or API The combination Type Device + Manufacturer each for unique are identifiers These type. message may Controller Motor Micro Luminary a for Set" "Voltage a be may that identifier API an (so Power CTR a for Get Current or Controller Motor Electronics CTR a for Get" "Status a be Module). Distribution the and Class API bit6- the fields:sub- 2 into down broken further is identifier Message The Index. API bit4-

Class API
a into grouped are messages Similar grouping. API an for identifier bit6- a is Class API The in shown is Controller Motor Jaguar the for Classes API the of example An Class. API single below. table the

| Class API |  |
| ---: | ---: |
| Mode Control Voltage | 0 |
| Mode Control Speed | 1 |
| Mode Compensation Voltage | 2 |
| Mode Control Position | 3 |
| Mode Control Current | 4 |
| Status | 5 |
| Status Periodic | 6 |
| Configuration | 7 |
| Ack | 8 |

example An Class. API an within message particular a for identifier bit4- a is Index API The in shown is Class API Control Speed Controller Motor Jaguar the for values Index API the of below. table the

| Index API |  |
| ---: | ---: |
| Control Enable | 0 |
| Control Disable | 1 |
| Setpoint Set | 2 |
| Constant P | 3 |
| Constant I | 4 |
| Constant D | 5 |
| Reference Set | 6 |
| Enable Trusted | 7 |
| Ack No Set Trusted | 8 |
| Ack No Setpoint Set Trusted | 10 |
| Ack No Setpoint Set | 11 |

Number Device
type. particular a of device the of number the indicating quantity bit6- a is Number Device System. Control FRC the of components other match to 0 ID device to default should Devices messages. broadcast specific device for reserved be may 0x3F Device

Frames Protected
15.6.2
relays, controllers, (motor capability control actuator implement which Nodes CAN FRC and enabled is robot the that verify to way a implement must etc.) controllers, pneumatics roboRIO). the (i.e. controller robot main the with originate commands that

Messages Broadcast
and type device the setting by nodes all to sent messages are messages Broadcast defined currently The 0 . is messages broadcast for Class API The 0 . to fields manufacturer below: table the in shown are messages broadcast

| Description |  |
| ---: | ---: |
| Disable | 0 |
| Halt System | 1 |
| Reset System | 2 |
| Assign Device | 3 |
| Query Device | 4 |
| Heartbeat | 5 |
| Sync | 6 |
| Update | 7 |
| Version Firmware | 8 |
| Enumerate | 9 |
| Resume System | 10 |

0). (arbID message Disable the receiving when immediately disable should Devices optional. is messages broadcast other of Implementation

## Nodes CAN FRC for Requirements

must: they System, FRC the in use for accepted be to Nodes CAN For format: FRC prescribed the match which IDs Arbitration using Communicate

Types) Device CAN - 1 Table (per Type Device CAN issued valid, A Codes) Manufacturer CAN - 2 Table (per ID Manufacturer issued valid, A manufacturer device the by documented and assigned Index(s) and Class(es) API to intended are type device the of units multiple if number device selectable user A network. same the on existco-

Broadcast the in detailed as requirements message Broadcast minimum the Support section. Messages commands, issuing is robot the that assure to scheme a utilize actuators, controlling If present. still is and enabled, is $\circledR$ ® FIRST with arrange or Java and C++, LabVIEW, for support library software Provide interfaces. such provide to Partners System Control FIRST's or

## Heartbeat Universal

and listen can bus the on device any that heartbeat CAN universal a provides roboRIO The $0 \times 01011840$ of ID CAN full a has heartbeat The 20 ms . every sent is heartbeat This to. react It ). $0 \times 062$ ID API and 0 ID Device type, RobotController ID, Manufacturer NI the is (which the is layout The 4). (index 5 byte is here in byte important The packet. CAN byte 8 an is bitfield. following

| Description | Width |
| ---: | ---: |
| RedAlliance | 1 |
| Enabled | 1 |
| Autonomous | 1 |
| Test | 1 |
| WatchdogEnabled | 1 |
| Reserved | 3 |

are controllers motor means that set, is flag that If .WatchdogEnabled is for watch to flag The enabled.
considered be can program robot the received, was packet this since passed has 100 ms If disabled. been has robot the if as act should devices and hung,


## .website Git the on available is Git on guide depthin- more A

for known also Torvalds, Linus by created (VCS) System Control Version Distributed a is changes tracking for system a is Control Version kernel. Linux the maintaining and creating are: Control Version Git of advantages The developers. for code of branches into environments testing of Separation
history removing without commit particular a to navigate to Ability them combining including ways, various in commits manage to Ability
here see features, other Various

דרישות מקדימות

Windows
links: following the from Git install and download to have You
Windows
macOS •
Linux •

## Vocabulary Git

commands: and structures data core several around revolves Git directory root the in folder git. a including code, your of structure data the Repository: additions and files all includes which repository, the of state saved particular a Commit: This history. unique a has branch Each commits. of set a grouping of means a Branch: branches. stable and development separating for used primarily is
changes local your with repository remote the update Push: changes remote the with repository local your update Pull: modify to repository a of copy local a retrieve Clone: original the against compare to and modify, to repository existingpre- a duplicate Fork: single a into branches/commits/forks different from changes various combine Merge: history

## Repository

project. a of files and history, structure, the containing structure data a is repository Git A of: consist usually repositories Git repository. the about information various the contains folder This folder. git. A included want not do you that directories or files the contains file This file. gitignore. A commit. you when
repository. the of content main the is This folders. and Files
repository the Creating
possibly or cloud, the being remote a - remote a through or locally, repository the store can You hosting free popular a is GitHub repository. your hosts that server or medium storage another use. will tutorial this what that's and it, use developers Numerous service.
few a are Bitbucket and Gitlab repositories. host can that providers various are There : : Itll Github. to alternatives
similar look It'll homepage. the visit to want you'll account, your verifying and creating After image. shown the to
right. top the in icon plus the Click
; start a
Repository" "New click Then
repository" "Create click then and information, appropriate the out Fill

## Create a

$\qquad$
(
 PublicPrivat You chInitialize th This will let $y$

Code Studio Visual in terminal a open to used be can Ctrl+~ shortcut keyboard The : : पार्य Windows. for

An directory. project your to navigate and window PowerShell a open to want you'll Now on engine search your consult Please .here found be can PowerShell on tutorial excellent systems. operating alternative on terminal a open to how
track. to something have to git for order in created be to needs file a empty, is directory a If contents the with README.md called file a created we example, Directory Empty below the In should commands Project Existing below the projects, Robot FRC® For .Repo Example \# of details More. Creator Project WPILib Code VS the by created project a of root the in run be sections. subsequent the in found be can commands various the on
with Folder" Example\Documents\ExampleUser9007\Users\"C: filepath the Replace : OLD https://github.com/ URL remote the replace and in, repo the create to want you one the previous the in created you repo the for URL the with ExampleUser9007/ExampleRepo.git steps.

Directory Empty


Folder" C:\Users\ExampleUser9007\Documents\Example" cd > init git >
Folder/ C:/Users/ExampleUser9007/Documents/Example in repository Git empty Initialized git/. $\hookrightarrow$ . add git >
commit" First" m- commit git > commit First fafafa] (root-commit) [main deletions(-) 0 insertions(+), 1 changed, file 1 README.md 100644 mode create
https://github.com/ExampleUser9007/ExampleRepo.git origin add remote git > main origin u- push git >

## Commits 16.1.4

of versions or states saved are Commits commits. of composed primarily are Repositories code.
favorite your in file that Open README.md. called file a created we example, previous the In close. and save simply bit, a for file the with tinkering After lines. few a edit and editor text commands. following the type and PowerShell to Navigate
README.md add git $>$
repository" the to description a Adds" m- commit git $>$
repository the to description a Adds bcbcbc] [main
deletions(-) 0 insertions(+), 2 changed, file 1
push git $>$
on guide A project. maintainable a of part key a is messages commit good Writing : ClO .here found be can messages commit writing

Pull Git
the into merge automatically to wish not does user the when used be can fetch git : : पारा branch working current
remote the When repository. remote the from commits or history the retrieves command This .Merging See merge. automatically to attempt will it have, not do you work contains

> pull git Run:

Add Git
commit. next the in included be will they that so file(s) specified the "stages" command This extension and name the is FILENAME.txt where FILENAME.txt add git run file, single a For .. add git run, gitignore via excluded isn't that file/folder every add To add. to file the of unexcluded untracked, every stage will command this repository the of root the in run When
file.

## Commit Git

the to it adds and state the saves This locally. it stores and commit the creates command This the to made were ("diffs") changes whatever of consist will commit The history. repository's explaining message" "commit a specify to required is It commit. last the since files staged accomplishes. change the what or files of set this changed you why here" message "type m- commit git Run:

Push Git
(Cloud) remote the to changes local your (Push) Upload push git Run:

## Branches 16.1.5

can they then and same, the off start They worlds. parallel to similar are Git in Branches this. to similar look to flow control Git the Consider paths. varying different into out "branch"

## Competition Robotics FIRST

 warned! been have You target. the past history

```
.id-commit hard-- reset git Run:
```

Forks 16.1.8
repository) (original upstream the merge can You branches. to similarly treated be can Forks repository). (forked origin the into

## Repo Existing an Cloning

it clone can you remote, a on stored and created already is repository a that situation the In using
https://github.com/myrepo.git clone git
.commits to skip can you this, follow you If repo. git your with replaced is myrepo.git where

## Fork a Updating

https://github.com/ORIGINAL_OWNER/ upstream add remote git upstream: the Add 1. ORIGINAL_REPOSITORY.git
$v$ - remote git via: added was it Confirm 2.
upstream fetch git upstream: from changes Pull 3.
name-branch-upstream/upstream merge git head: into changes the Merge 4.

Gitignore 16.1.9
included is that file gitignore. the modify not do teams that important extremely is It : ใराप working. not deployment offline to lead can This project. robot their with
git with commit automatically not to files of list a as used commonly is file gitignore. A up show not also will They committed. be not will file this in listed directory or files Any .add
.status git with .here found be can Information Additional
end the at slash forward a with hide, to folder the containing line new a add Simply
exclude/-to-directory EX:

## File a Hiding

relative directory prepending any including hide, to file the of name the with line new a Add repository. the of root the to

> hide.txt-to-directory/file EX:
hide2.txt-to-file EX:

## Information Additional 16.1.10

website. git official the at found be can tutorial depthin- more much A repository. rules flight git the at found be can mistakes common correcting for guide A

## Library Units C++ The 16.2

type C++ the leverages library This teams. C++ for library Units a with coupled is WPILib unit perform automatically parameters, method for dimensionality proper enforce to system type C++ the Since types. unit defined arbitrary define to users allow even and conversions, cost. runtime no essentially has library the time,compile- at enforced is system

## Library Units the Using 16.2.1

source your in header relevant the include must You library. onlyheader- a is library units The units. available of list a Here's use. to want you units the for files

(ㄴำ

|  | units/illuminance.h>< include\# units/impedance.h>< include\# units/inductance.h>< include\# units/length.h>< include\# units/luminous_flux.h>< include\# units/luminous_intensity.h>< include\# units/magnetic_field_strength.h>< include\# units̄/magnétic_flux.h>< include\# units/mass.h>< include\# units/moment_of_inertia.h>< include\# units/power.h>< include\# units/pressure.h>< include\# units/radiation.h>< include\# units/solid_angle.h>< include\# units/substance.h>< include\# units/temperature.h>< include\# units/time.h>< include\# units/torque.h>< include\# units/velocity.h>< include\# units/voltage.h>< include\# units/volume.h>< include\# |
| :---: | :---: |

.units::math::abs() like functions awareunit- provides header units/math.h The

## Types Container and Types Unit

container and types unit definitions: type of sorts two around based is library units C++ The types.

## Types Unit

Unit value. stored actual any without unit, a of concept abstract the to correspond types Unit defined are types unit all - library units the of block" "building fundamental the are types types unit "basic" of number small a from template) compound_unit the (using constructively etc). ,seconds ,meters as (such means types unit other building in use their values, numerical contain cannot types unit While that dimensionality, its specify to parameter template a uses method or type a when that
type. unit a be will parameter

## Types Container

that - unit some to according dimensioned quantity actual an to correspond types Container from constructed are types Container value. numerical the hold actually what are they is, type container corresponding a have types unit Most template. unit_t the with types unit corresponds units::meter type unit the example, for - _t by suffixed name same the has that .units: :meter_t type container the to
will it parameter), method a or variable a (as used is unit a of quantity specific a Whenever value actual the store will types container default, By type. container the of instance an be manually. template unit_t the calling by this change may users advanced - double a as .documentation the in found be can types container and unit of list full A

## Units of Instances Creating

type: container its of instance an create we unit, specific a of instance an create To
second. per meters 5 of value a has speed variable The //
;\}5.0speed\{ meter_per_second_t: :units
common more the of some for defined literals type has library units the Alternatively, define to auto via inference type with conjunction in used be can These types. container succinctly: more unit a

```
second. per meters 5 of value a has speed variable The //
    mps;_5 = speed auto
```

types the as long as type, container another an of value a using initialized be also can Units a from created be can value meter_t a example, For another. one between converted be can value. foot_t

| ft;_6 $=$ feet auto |
| ---: |
| meters\{feet $;$ meter_t: $:$ units |

.convertible implicitly are types unit convertible representing types container all fact, In legal: perfectly is following the Thus,

```
ft;_6 = distance meter_t::units
```

our in anywhere length, of unit other any of place in length of unit any use can we short, In us. for conversion correct the perform automatically will library units the code;

## Units with Arithmetic Performing

type, data underlying their of operations arithmetic ordinary the of all support types Container must addition Thus, sound. dimensionally be must operation the that condition added the with
types: container compatible two on performed be always

type container the yields and types, container of pair any on performed be may Multiplication unit: compound a of
for checked be only will type this type, unit compound a yields calculation a When : प्रा used, is auto If explicitly. specified is type result the if operation of point the at validity to want may we time, by distance divide we when example, For occur. not will check this type return the If ).units: :meter_per_second_t (i.e. velocity a indeed, is, result the ensure made. be not will check this , auto as declared is
square_meter_t is result values, meter_t two Multiply // 35_sq_m is product // m; 7 * m 5 = product auto
meter_per_second_t a is result second_t, a by value meter_t a Divide // 12_mps is speed // s; $0.5 / \mathrm{m} 6=$ speed meter_per_second_t::units

## Functions ><cmath

arithmetic the which on type any accept to templated are )clamp as (such functions std Some these with work will types container as stored Quantities performed. be can operations issue. without functions
units The ).double (e.g. types numerical ordinary on only work functions std other However, accept that functions these of several for wrappers contains namespace units: : math library's etc. , pow ,sqrt include functions such of Examples units.

$$
\text { sqrt(area);::math::units = sideLength meter_t: } \begin{array}{r}
\text { squits }
\end{array}
$$

## Wrapper Unit the Removing

as serves This method. value() the use value, underlying its to type container a convert To necessary. when only used be should which system, type units the from hatch escape an

```
    m;_6.5 = distance meter t::units
distance.value(); = distanceMeters double
```


## Code WPILib in Library Units the of Example 16.2.2

units the use )kinematics (ex. WPILib of features new in methods for arguments Several .trajectory a sampling of example an is Here library.
robot the where represents This seconds. 1.2 at trajectory the Sample //
traversal. of seconds 1.2 after be should //
s) ; 1. 2 trajectory. Sample( $=$ point State: :Trajectory
sthe to equivalent exactly is this convertible, implicitly are time of units Since //
code above $\leftrightarrows$
unit of choices multiple with work naturally could that objects represent classes WPILib Some or meters) (e.g. distance linear either on operate might profile motion a example, for - types template a as required is type unit the classes, such For radians). (e.g. distance angular parameter:

```
constraints profile motion trapezoidal of set new a Creates // second per meters 10 of velocity Max // squared second per meters 20 of acceleration Max // mps_sq\};_20 mps,_10Constraints\{::>meters::units<TrapezoidProfile::frc
```

page) next on (continues


```
        constraints profile motion trapezoidal of set new a Creates //
                        second per radians 10 of velocity Max //
    squared second per radians 20 of acceleration Max //
s};_1 / rad_per_s__20 rad_per_s,_10Constraints{::>radians::units<TrapezoidProfile::frc
```

library. units the for page GitHub official the visit please documentation, detailed more For

## Joysticks 16.3

Almost robot. the control to program Station Driver the with used be can joystick A Joysticks joystick. a as used be can Windows by recognized be can that "controller" any for subclasses relevant three has class This class. GenericHID the using accessed are extending by controllers other for own your implement also may You joysticks. preconfigured second The joysticks. flight standard for useful is which Joystick is first The .GenericHID XInput (in F310 Logitech or One, Xbox 360, Xbox the for works which XboxController is the of axis Each controller. that using for ideal is class PS4Controller the Finally, mode).

1. to 1 - from ranges controller

Commands $\operatorname{lill~section:~the~in~detailed~is~classes~these~the~use~to~way~based~command~The~}$
.Triggers- $\square$

Joysticks Station Driver 16.3.1

图 FRC Driver S
use for joystick the configure and setup to used is Station Driver the of Tab Devices USB The green. up light to table the in entry its cause will joystick a on button a Pressing robot. the with to used be can that POV the and buttons axes, of values the show will joystick the Selecting numbers. button or axis and features joystick physical between mapping the determine
joysticks the reorder To joystick. each to index joystick a assigns also Tab Devices USB The devices of ordering the preserve to try will software Station Driver The drag. and click simply each check and in be should devices your order what note to idea good a is It runs. between correct. are they that software Station Driver the start you time
the on changes status for looking routinely is it mode, disabled in is Station Driver the When opened are devices new and list the from removed are devices Unplugged devices. joystick Driver the force will joystick a unplugging FMS, the to connected not When added. and that check in, joystick the plug again: joystick the using start To mode. disabled into Station enabled in is Station Driver the While robot. the enablere- then spot, right the in up shows it update timely and operation consuming time a is This devices. new for scan not will it mode, priority. takes devices attached from signals of
are joysticks the position whatever read will routine startup the joysticks some For : : Illl is joystick the when (or on turned is computer the when therefore, position, center the as in position. center their at be should joysticks the in) plugged

Driver the competition, at System Management Field the to connected is robot the When the and robot your disable cannot you that means This .FMS the by dictated is mode Station the of refresh complete manual A changes. joystick detect to order in itself disable cannot DS close will this that Note keyboard. the on key F1 the pressing by initiated be can joysticks
above. noted as position center their in be should devices all so devices, all openre- and

Class Joystick 16.3.2

Java

significantly robot the operate to joystick flight a using make to designed is class Joystick The and $\mathrm{Z}, \mathrm{Y}, \mathrm{X}$, specific the set to need may user the joystick, flight the on Depending easier.
accessing for methods special offers class This uses. joystick flight your that channels Throttle joystick. flight the of magnitude and angle the

Class XboxController 16.3.3

Java
sused be to Port USB the is 0 // );0XboxController( new = exampleXbox XboxController Station Driver the on indicated as $\hookrightarrow$

C++
${ }_{\text {u }}$ the on indicated as used be to Port USB the is $0 / /$;\}0exampleXbox\{ XboxController Station Driver $\rightarrow$

Python

> son indicated as used be to Port USB the is 0 \# )0XboxController(.wpilib $=$ exampleXbox Station Driver the $\leftrightarrow$
, getXButtonPressed, getXButton (e.g. methods named provides class XboxController The with accessed be can indices the and buttons, the of each for ) getXButtonReleased by controlled be can controller the of feature rumble The .XboxController.Button.kX.value

Many .value) XboxController.setRumble(GenericHID.RumbleType.kRightRumble, using and backwards / forwards just for stick left the uses that drive arcade stick split a do users turning. right / left for stick right the

Class PS4Controller 16.3.4

Java

```
uas used be to Port USB the is 0 // );0PS4Controller( new = examplePS4 PS4Controller
    Station Driver the on indicated }
```

C++
uthe on indicated as used be to Port USB the is 0 // ;\}0examplePS4\{ PS4Controller Station Driver $\rightarrow$

Python
цon indicated as used be to Port USB the is 0 \# )0PS4Controller(.wpilib = examplePS4 Station Driver the $\hookrightarrow$
,getSquareButton (e.g. methods named provides class PS4Controller The the and buttons, the of each for )getSquareButtonReleased , getSquareButtonPressed feature rumble The .PS4Controller.Button.kSquare.value with accessed be can indices PS4Controller.setRumble(GenericHID. using by controlled be can controller the of .value) RumbleType.kRightRumble,

1- read or angles different 8 of one select can that hat directional a is POV the joysticks, On careful Be POV. a as same the works padD- XboxController/PS4Controller The unpressed. for they ensure to user the for hard is it as requirements angle exact with POV a using when desired. angle the exactly select

Usage GenericHID 16.3.6

above) classes the of any using not (if index) getRawAxis(int. with used be can axis An as axis an of index the each are example this in one and Zero value. current the returns that above. mentioned Station Driver the in found

Java

| );kLeftMotorPortPWMSparkMax(Constants. new = m_leftMotor PWMSparkMax final private );kRightMotorPortPWMSparkMax(Constants. new = m_rightMotor PWMSparkMax final private m_ DifferentialDrive(m_leftMotor, new = m_robotDrive DifferentialDrive final private rightMotor); $\hookrightarrow$ <br> );kJoystickPortGenericHID(Constants. new = m stick GenerichID final private |
| :---: |
|  |  |

C++


Python

$$
\begin{array}{r}
\text { PWMVictorSPX(LEFT_MOTOR_PORT).wpilib }=\text { leftMotor } \\
\text { PWMVictorSPX(RIGHT_MOTOR_PORT).wpilib }=\text { rightMotor } \\
\text { rightMotor) DifferentialDrive(leftMotor,.drive.wpilib }=\text { robotDrive.self } \\
\text { GenericHID(JOYSTICK_PORT).wpilib = stick.self }
\end{array}
$$

## Usage Button 16.3.7

For framework. basedcommand- the using not code for is following the as such Usage : : पारा .Triggers-प Commands प्राप see framework, basedcommand- the in usage button
respond to methods released and pressed the use to want usually will you axis, an Unlike check. last the since activated been has button the if true return will These input. button to continuously to having not but occurs event the when once action an taking for helpful is This down. held is button the while it do

Java


Python

(
turnIntakeOff()
should Toggles button. a of press the with off and on something toggle to is request common A state. robot the of track keep to user the require they as caution, with used be

Java



## Preferences Robot Setting 16.4

the on memory flash the in values store to used is class )C++, Java( Preferences Robot The calibration as such robot the on preferences remembering for be might values The roboRIO. without change to like would you that etc. setpoints, values, PID potentiometers, for settings Shuffleboard or SmartDashboard on viewed be can values The program. the rebuild to having program. robot the by written and read and
controller PID a of setpoint the change to Preferences utilize to how shows example This ,Java( example Simulation Arm the from adapted are examples code The constant. P the and the use to how see to Simulator Robot the in example Simulation Arm the run can You ).C++ robot. a needing without dashboards the using it with interact and class preference

## Preferences Initializing 16.4.1

Java

| ;"ArmPosition" $=$ kArmPositionKey String final static public |
| ---: |
| $; " A r m P " ~=~ k A r m P K e y ~ S t r i n g ~ f i n a l ~ s t a t i c ~ p u b l i c ~$ |

arm. this drives that controller PID the for gain P The //
$; 50.0=$ kDefaultArmKp double final static public
$; 75.0=$ kDefaultArmSetpointDegrees double final static public

C++

> ;"ArmPosition" $=$ kArmPositionKey string_view: :std constexpr static ;"ArmP" $=$ KArmPKey string_view: :std constexpr static
> ;50.0 = kDefaultArmKp double constexpr static deg;_75.0 = kDefaultArmSetpoint degree_t::units constexpr static
\{ Arm(): : Arm
keys the if Preferences to constant $P$ and setpoint position Arm the Set // exist already t'don //
m_armSetpoint.value()); InitDouble(kArmPositionKey, ::Preferences::frc
m_armKp); InitDouble(kArmPKey,::Preferences::frc
like constant, a in key the store to helpful It's key. the name, a using stored are Preferences avoid and times multiple it typing avoid to above code the in KArmPKey and kArmPositionKey from retrieved data the hold to armPositionDeg and KArmKp variables, declare also We typos. preferences.

The database. Preferences the in exists already it if see to checked is key each , robotInit In exists already key that for data if check to key the parameter, one takes method containsKey setDouble The written. is value default a exist, doesn't it If database. preferences the in similar are There write. to data the and write to key the parameters, two takes method strings. and ints, booleans, like types data other for methods
a of constructor the in placed be could code of type this Framework, Command the using If Command. or Subsystem

## Preferences Reading 16.4.2

Java

| \{ ()loadPreferences void public <br> Teleop entering on kP and setpoint Arm for Preferences Read // <br> m_ , kArmPositionKey(Constants.getDoublePreferences. = m_armSetpointDegrees <br> armSetpointDegrees) ; $\rightarrow$ <br> \{ m_armkp)) , KArmPKey(Constants.getDoublePreferences. =! (m_armKp if m _armKp) ; , KArmPKey (Constants.getDoublePreferences. $=\overline{\mathrm{m}}$ armKp <br> (m_armKp); setPm_controller. |
| :---: |
| C++ |
| ()Arm::LoadPreferences void <br> Teleop entering on kP and setpoint Arm for Preferences Read // degree_t\{::units = m_armSetpoint m_armSetpoint.value())\}; GetDouble(kArmPositionKey,::Preferences::frc \{ m_armKp)) GetDouble(kArmPKey, ::Preferences::frc =! (m_armKp if m_armKp); GetDouble(kArmPKey,::Preferences::frc = m_armKp m_controller.SetP(m_armKp); |
|  |

read, to key the parameters, two takes method getDouble The easy. is preference a Reading for methods similar are There exist. doesn't preference the case in use to value default a and strings. and ints, booleans, like types data other
as such it, read you when it use can you preferences, in stored is that data the on Depending the as such later, it use and variable a in it store can you Or above. constant proportional the below. telopPeriodic in used is which setpoint,

Java

| @Override <br> \{ ()teleopPeriodic void public \{ ()) getTrigger(m_joystick. if normal. like control PID run we Here, // () ; reachSetpointm_arm. <br> \{else \} motor. the disable we Otherwise, // <br> () ;stopm_arm. |
| :---: |
|  |

```
*/ preferences. the from setpoint the maintain and reach to loop control the Run **/
    \{ () reachSetpoint void public
                                    = pidOutput var
                            (calculatem_controller.
    (m_armSetpointDegrees)) ; degreesToRadiansUnits. (), getDistancem_ēncoder.
    (pidOutput) ; sētVoltagem_motor.
```


from read setpoint a with normal, like control PID run we Here, //
degrees. in preferences //
m_controller.Calculate( = pidOutput double
radian_t\{m_armSetpoint\}.value( $\overline{)})$ );:(units m_encoder. GetDistance(),
volt_t\{pidOutput\}) ; ::m_motor. SetVoltage(units

## SmartDashboard in Preferences Using 16.4.3

SmartDashboard in Preferences Displaying

View selecting by display the to added be can display Preferences the SmartDashboard, the In stored file preferences the of contents the reveals This .Preferences Robot then Add... then memory. flash roboRIO the in

## SmartDashboard in Preferences Editing

be to need values the If code. the from values default the with here shown are values The saved. and here edited be can they adjusted

## Shuffleboard in Preferences Using 16.4.4

## Shuffleboard in Preferences Displaying


the dragging by display the to added be can display Preferences the Shuffleboard, In preferences the of contents the reveals This window. sources the from field preferences memory. flash roboRIO the in stored file
be to need values the If code. the from values default the with here shown are values The here. edited be can they adjusted

## Mode Test Using 16.5

all that verify to code put to place a have to programmers enable to designed is mode Test place a is there templates program robot the of each In functioning. are robot the on systems robot. the to code test add to

Mode Test Enabling 16.5.1
teleop. or autonomous like just Station Driver the from enabled be can robot the on mode Test The robot. the enable and button "Test" the select Station, Driver the in mode test enable To run. then will code mode test

## Mode Test in LiveWindow 16.5.2

sensor all and Dashboard the on controlled be can outputs actuator all LiveWindow, With added are actuators and sensors The tuned. be also can Controllers PID seen. be can values for Window Live and Mode Test SmartDashboard: See necessary. is code no automatically, details. more

## code robot your to code mode Test Adding 16.5.3

run is method testPeriodic the and once, run is method testInit the mode, test in When modes. control autonomous and teleop to similar , robotPeriodic to addition in tick, per once
Test. from methods Teleop written already your calling as painless as be can mode test Adding before mode, Test in run only is that feature new a out try to code special write can you Or all move to code write even could You code. autonomous or teleop your into it integrating crew! pit the help to sensors all check and motors
that code LiveWindow the with interfere may it code, test own your write you If : : पाराप LiveWindow. call to need may You automatically. enabled is and actuators control can this. avoid to method testInit your in setEnabled (false)

## Stacktraces Reading 16.6

occurred. has error unexpected An
some in up show message this see will you error, unexpected an hits code robot your When abruptly robot your notice also probably You'll RioLog). or Station (Driver output console
.exceptions unhandled called are errors unexpected These move. never possibly or stop, which bugs more or one has code your that means it occurs, exception unhandled an When fixed. be to need those fixing and finding in involved techniques and tools the of some explore will article This bugs.

## Trace"? "Stack a What's 16.6.1

printed been has trace stack a that signal a is message occurred has error unexpected The out.
which about information store to used is structure data stack call the C++, and Java In executed. being currently is method or function
exception unhandled the when stack this on was what about information prints trace stack A problem the before just running were which code of lines the to you points This occurred. usually it's issue, your of cause root exact the to you point always doesn't it While happened. looking. start to place best the

## Exception"? "Unhandled an What's 16.6.2

continue cannot processor the where arises which condition any is error unrecoverable An started and compiled code the though even that, implies always almost It code. executing continue. to execution for sense makes longer no it running, correctly isn't that code is exception unhandled an of cause root the cases, all almost In malfunctioned. has hardware any that implies never almost It implemented.

Issue? My Fix I Do How So 16.6.3
Trace Stack the Read
trace. stack the for occurred has error unexpected the above search start, To
Java
this: like something look should it Java, In

> java.lang. exception: Unhandled frc.robot.Robot.robotInit(Robot.java:24): at Error NullPointerException $\hookrightarrow$
> frc.robot.Robot.robotInit(Robot.java:24) at
> edu.wpi.first.wpilibj. TimedRobot.startCompetition(TimedRobot.java:94) at
> edu.wpi.first.wpilibj. RobotBase.runRobot(RobotBase.java:35) at
> edu.wpi.first.wpilibj.RobotBase.lambda\$startRobot\$0(RobotBase.java:387) at java.base/java.lang.Thread.run(Thread.java:834) at
here: of out pick to things important few a There's Error an was There •
exception Unhandled an to due was error The • java.lang.NullPointerException a was exception The • Robot.java of inside 24 line running while happened error The • happened. error the when executing method the of name the was robotInit code) team’s your (AKA, package frc. robot. Robot the in function a is robotInit • edu.wpi.first.wpilibj the from functions of number a from called was robotInit • libraries) WPILib the (AKA, package
time the at stack the of state the represent at word the with starting lines indented of list The right method the by called was which method, one represents line Each happened. error the it. below
entries more see might you codebase, your inside deep happened error the If example, For stack: the on

```
sexception: Unhandled frc.robot.Robot.buggyMethod(TooManyBugs.java:1138): at Error
                            java.lang.NullPointerException }
        frc.robot.Robot.buggyMethod(TooManyBugs.java:1138) at
                        frc.robot.Robot.barInit(Bar.java:21) at
                            frc.robot.Robot.fooInit(Foo.java:34) at
                            frc.robot.Robot.robotInit(Robot.java:24) at
    edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:94) at
        edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:335) at
edu.wpi.first.wpilibj.RobotBase.lambda$startRobot$0(RobotBase.java:387) at
    java.base/java.lang.Thread.run(Thread.java:834) at
```

called turn in which ,barInit called turn in which ,fooInit called robotInit case: this In NullPointerException the ,buggyMethod of execution the during Then, .buggyMethod occurred.
C++
will C++ issues. into run programs when automatically traces stack produce usually will Java to need will debugger stepsingle- a Usually, info. same the extract to digging more require program. robot executing the to up hooked be
Code: VS of tab debugger the in found be can traces Stack

this: to similar look generally will C++ in traces Stack

here: of out pick to things important few a There's paused. currently is execution code The •
exception an having thread one was paused it reason The • Robot.cpp of inside 20 line running while happened error The • happened. error the when executing method the of name the was RobotInit code) team's your (AKA, namespace Robot: : the in function a is RobotInit • the (AKA, namespace frc: : the from functions of number a from called was RobotInit • libraries) WPILib
happened. error the time the at stack the of state the represents window stack" "call This it. below right method the by called was which method, one represents line Each
the with simulation, in examples code running are you assume page this in examples The apply should techniques Similar errors. unexpected for watching and connected debugger robot. real a on running while
the triggering are which code of lines the found and trace, stack the found you've Once cause. root determining of process the start can you exception, unhandled notice may You fruitful. be will code in location problematic the near) (or in looking just Often, referencing. you're example an match don't which lines or forgot, you things
luck more have often will code with working experience of lots have who Developers : : पार come will experience The discouraged! be don't ok, That's folks. newer than code at looking time. with
questions: following the ask to is code analyzing for strategy key A error)? particular this have didn't (I.e., "worked" code the time last the was When • now? and version, working last the between code the in changed has What • effective. more strategy particular this make help changes code careful and testing Frequent

## Debugger Step Single the Run

is debugger stepsingle- The issue. the spot to enough isn't code at looking just Sometimes, the to up leading events of series the inspect to you allows it - case this in option great a exception. unhandled

## Information More for Search

Searches errors. of cause root the understanding for resource phenomenal a is Google good yield often will exception the of name the and language programming the involving potential and about, comes it how means, error the what for explanations more on results
fixes.

Help Outside Seeking
When online). and personin- (both others from help and advice out seek can you fails, else all If the provide to important very it's codebase, your with familiar aren't who folks with working information: following
)github.com on (EX: code, source your to Access • trace. stack full the including error, the of text full The •

## Patterns \& Examples Common 16.6.4

exceptions. runtime in result which issues common of number a are There

## References and Pointers Null

has which something indicate to it use they - "null" of concept the have Java and C++ Both meaningful. anything to refer not does and initialized, been yet not error. runtime a produce will reference "null" a Manipulating
code: following the consider example, For
Java
armMotorCtrl; PWMSparkMax
@0verride
robotInit void public
) ; true(setInvertedarmMotorCtrl.

C++

this: like looks that output see you'll run, When
Java
java.lang. exception: Unhandled frc.robot.Robot.robotInit(Robot.java:23): at Error NullPointerException $\hookrightarrow$
frc. robot.Robot.robotInit(Robot.java:23) at
edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107) at
edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:373) at
edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463) at
frc.robot.Main.main(Main.java:23) at
цrobot The edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:388): at Warning
error. code a to due usually is This unexpectedly. quit program $\rightarrow$
occurred. error the where determine help can stacktrace above The
information. more for https://wpilib.org/stacktrace See
${ }^{4}$ The edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): at Error
${ }_{4}$ the handled have should it) by called methods (or method startCompetition() $\rightarrow$ above. exception $\hookrightarrow$
robotInit() the of inside happened issue the that see can you trace, stack the Reading Pointer". "Null involved exception the and 23, line on function,
.armMotorCtrl - null be could which thing one only is there see can you 23, line to going By never but declared, is object armMotorCtrl the that see can you up, further Looking instantiated.
when stop and debugger, step single the with code of lines through step can you Alternatively, null. is it that show would point that at object armMotorCtrl the Inspecting 23. line hit you
C++

W32/0xc0000005 occurred: has Exception
violation. access read thrown: exception Unhandled nullptr. was this->motorRef
above the in 20 line to points that window debugger a in up show will this Simulation, In code. buggy Code: VS in tab debugger the clicking by trace stack full the view can You

value. a assigned never but declared, was motorRef variable member our - specific is error The exception the operator, >- the using method a call to it use to attempt we when Therefore, occurs.
.nullptr was type its states exception The

## Issues Object Null Fixing

In it. using before initialized been has reference each ensure to want will you Generally, the calling before armMotorCtrl the instantiate to code of line missing a is there case, this method. setInverted() this: like look could implementation functional A

Java


## Zero by Divide

Most results. reasonable expect and zero, by integer an divide to possible generally not is it Exception. Unhandled an raise will roboRIO) the (including processors
code: following the consider example, For
Java



# :private armLengthRatio; int ;39 = elbowToWrist in int <br> TODO// ;0 = shoulderToElbow_in int 

this: like looks that output see you'll run, When
Java
********** starting program Robot **********
java.lang. exception: Unhandled frc.robot.Robot.robotInit(Robot.java:24): at Error zero by / ArithmeticException: $\hookrightarrow$ frc.robot.Robot.robotInit(Robot.java:24) at
edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107) at edu.wpi.first.wpilibj.RobotBase. runRobot(RobotBase.java:373) at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463) at frc.robot.Main.main(Main.java:23) at
${ }_{u}$ robot The edu.wpi.first.wpilibj.RobotBase. runRobot(RobotBase.java:388): at Warning error. code a to due usually is This unexpectedly. quit program $\rightarrow$ occurred. error the where determine help can stacktrace above The information. more for https://wpilib.org/stacktrace See uThe edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): at Error цthe handled have should it) by called methods (or method startCompetition() $\rightarrow$ above. exception $\hookrightarrow$
zero by / java.lang.ArithmeticException: a see can we trace, stack the at Looking the on used are which variables two the at look you If 24 . line on occurred has exception zero. to initialized been has them of one notice might you operator, $=$ the of side handrightthe in used is variable valuezero- the Furthermore, it! update to forgot someone like Looks happens. error zero by divide the Hence, operation. division a of denominator inspect could you 24 , line on stopping and debugger stepsingle- the running by Alternatively, .0 of value a has shoulderToElbow_in discover to variables all of value the
C++

W32/0xc0000094 occurred: has Exception цInteger 0xC0000094: frcUserProgram.exe: in 0x00007FF71B223CD6 at exception Unhandled zero. by division $\hookrightarrow$
above the in 20 line to points that window debugger a in up show will this Simulation, In code. buggy
Code: VS in tab debugger the clicking by trace stack full the view can You
you If .zero by division Integer as described is error the see we message, the at Looking 20 , line on operator $=$ the of side handright- the on used are which variables two the at look update to forgot someone like Looks zero. to initialized been has them of one notice might you operation. division a of denominator the in used is variable valuezero- the Furthermore, it!
happens. error zero by divide the Hence,
operating an on or roboRIO, the on different slightly look might messages error the that Note
windows. than other system

## Issues Zero By Divide Fixing

thinking by start to important It's ways. of number a in fixed be can issues Zero By Divide it did Why plausible? it Is .means calculation your of denominator the in zero a what about saw? you case particular the in happen
0 . than other number different a use to need just you Sometimes, this: like look could implementation functional A

Java
armLengthRatio; int
;39 = elbowToWrist_in int
page) next on (continues

| ( |  |
| :---: | :---: |
|  | ```;3 = shoulderToElbow in int @Override { () robotInit void public shoulderToElbow_in; / elbowToWrist_in = armLengthRatio``` |
|  | , |
|  | C++ |
|  | ```{ TimedRobot::frc public : Robot class :public { override RobotInit() void shoulderToElbow_in; / elbowToWrist_in = armLengthRatio :private armLengthRatio; int ;39 = elbowToWrist in int 3 = shoulderToElbow_in int``` |
|  | ; $\}$ |

can calculation the around statements if/else adding value, valid a is zero if Alternatively, zero. by division a perform processor the making avoid to behavior alternate define you help - issue the around get you help can double or float be to types variable changing Finally, by-divide- a of results the represent to NaN like values special have numbers pointfloatingthat consumes which code in this handle to have still may you However, operation. zero value. calculation's

Allocated Already Resource HAL
hardware- two put to attempts code the when occurs error specificFRC- common very A pin). IO roboRIO (usually, resource HAL same the on entities related code: following the consider example, For

Java

page) next on (continues
);0.5m_frontLeftMotor.Set( ) ;0.25m_rearLeftMotor.Set(
:private
;\}0m_frontLeftMotor\{ PWMVictorSPX::frc ; \} 0 m_rearLeftMotor\{ PWMVictorSPX: :frc
this: like looks that output see you'll run, When
Java
********** starting program Robot $* * * * * * * * * *$ edu.wpi.first. exception: Unhandled frc.robot.Robot.robotInit(Robot.java:25): at Error 1029- Code: hal.util.AllocationException: $\hookrightarrow$ allocated. previously 0 DIO or PWM allocation: previous the of Location frc. robot.Robot.robotInit(Robot.java:24) at
edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107) at edu.wpi.first.wpilibj.RobotBase. runRobot(RobotBase.java:373) at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463) at frc.robot.Main.main(Main.java:23) at
allocation: current the of Location
Method) edu.wpi.first.hal.PWMJNI.initializePWMPort(Native at edu.wpi.first.wpilibj.PWM. <init>(PWM.java:66) at edu.wpi.first.wpilibj.motorcontrol.PWMMotorController.<init> at (PWMMotorController.java:27) $\rightarrow$ edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax.<init>(PWMSparkMax.java:35) at frc.robot.Robot.robotInit(Robot.java:25) at
edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107) at edu.wpi.first.wpilibj.RobotBase. runRobot(RobotBase.java:373) at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463) at frc.robot.Main.main(Main.java:23) at
${ }_{u}$ robot The edu.wpi.first.wpilibj.RobotBase. runRobot(RobotBase.java:388): at Warning error. code a to due usually is This unexpectedly. quit program $\rightarrow$ occurred. error the where determine help can stacktrace above The information. more for https://wpilib.org/stacktrace See uThe edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): at Error sthe handled have should it) by called methods (or method startCompetition() $\hookrightarrow$ above. exception $\hookrightarrow$
occurred. has edu.wpi.first.hal.util.AllocationException a that shows trace stack This .allocated. previously 0 DIO or PWM message: helpful the gives also It
first the that shows trace stack first The traces. stack two see we trace, stack our at Looking actually error the that shows trace stack second The .Robot.java: 25 in occurred allocation Halfway code. own our in looking by start should we However, WPILib. within deep happened that code robot team's the of line last the to reference a find can you trace, stack the through .Robot. java: 25 WPILib: into called
declared is controller motor first the where is 24 line see we code, the at peek a Taking both that note also can We declared. is controller motor second the where is 25 line and isn't and sense, logical make doesn't This . 0 output PWM to assigned are controllers motor
and message error custom a generates purposely WPILib Therefore, possible. physically configuration. hardware achievablenon- a of developers software the alert to exception
C++
messages get you'll Instead, issue. this from stacktrace a see specifically won't you C++, In following: the like look which

```
    allocated. previously 0 DIO or PWM [C::31]: PWM at Error
                                    allocation: previous the of Location
    [0xb6f01b68] 0x50 + bool) frc::PWM::PWM(int, at
    _frc::PWMMotorController::PWMMotorController(std::basic_string_view<char, at
                            [0xb6ef7d50] 0x70 + int) ,> std::char traits<char> ↔
                            [0xb6e9af1c] 0x3c + frc::PWMVictorSPX::PWMVictorSPX(\overline{int) at}
        _0xa8 + Robot**) frc::impl::RunRobot<Robot>(wpi::priority_mutex&, void at
                                    [0x13718] ↔
                            [0x13c9c] 0x3d4 + frc::StartRobot<Robot>() int at
                            [0xb57ec580] 0x114 + libc_start_main__ at
                            0 Channel allocation:: current the of Location
                            [0xb6e81b5c] 0x5fb5c + at
                            [0xb6f01e4c] 0x334 + bool) frc::PWM::PWM(int, at
    ufrc::PWMMotorController::PWMMotorController(std::basic_string_view<char, at
                            [0xb6ef7d50] 0x70 + int) ,> std::char_traits<char> }
            [0xb6e9af1c] 0x3c + frc::PWMVictorSPX::PWMVictorSPX(int) at
        _0xb4 + Robot**) frc::impl::RunRobot<Robot>(wpi::priority_mutex&, void at
```

                            [0x13724] \(\hookrightarrow\)
                            [0x13c9c] 0x3d4 + frc::StartRobot<Robot>() int at
                            [0xb57ec580] 0x114 + libc_start_main__ at
    sto due usually is This unexpectedly. quit program robot The Error: RunRobot: at Error
error. code a $\hookrightarrow$
occurred. error the where determine help can stacktrace above The
information. more for https://wpilib.org/stacktrace See
」 $0 \times 1 \mathrm{c} 8$ + Robot**) frc::impl::RunRobot<Robot>(wpi::priority_mutex\&, void at
[0x13838] $\hookrightarrow$
[0x13c9c] 0x3d4 + frc::StartRobot<Robot>() int at
[0xb57ec580] 0x114 + libc_start_main__ at
'frc::RuntimeError' of instance an throwing after called terminate
allocated. previously 0 DIO or PWM what():
allocation: previous the of Location
[0xb6f01b68] 0x50 + bool) frc::PWM::PWM(int, at
ıfrc::PWMMotorController::PWMMotorController(std::basic_string_view<char, at
[0xb6ef7d50] $0 x 70$ + int) ,> std::char traits<char> $\rightarrow$
[0xb6e9af1c] 0x3c + frc::PWMVictorSPX::PWMVictorSPX(īnt) at
ц0xa8 + Robot**) frc::impl::RunRobot<Robot>(wpi::priority_mutex\&, void at
[0x13718] $\rightarrow$
[0x13c9c] 0x3d4 + frc::StartRobot<Robot>() int at
[0xb57ec580] 0x114 + libc_start_main__ at
0 Channel allocation:: current the of Location
string That .allocated. previously 0 DIO or PWM string, the is here notice to thing key The usage. 0 pin on up" "doubled incorrectly has code in something that clue primary your is it simulation, in running are you If roboRIO. a on generated was above example message The different. look might

Just fix. to errors straightforward most the of some are allocated already Resource HAL: what's to that compare and robot, the on wiring electrical the at looking time of bit a spend code. in

Therefore, . 1 and 0 ports PWM into plugged are controllers motor left the example, the In this: like look would code corrected

|  | Java |
| :---: | :---: |
|  | ```leftFrontMotor; PWMSparkMax leftRearMotor; PWMSparkMax @Override { ()robotInit void public );0PWMSparkMax( new = leftFrontMotor );1PWMSparkMax( new = leftRearMotor``` |
|  | \} |
|  | C++ |
|  | ```17 :start-lineno: { TimedRobot::frc public : Robot class :public override RobotInit() void );0.5m_frontLeftMotor.Set( );0.25m_rearLeftMotor.Set( :private ;}0m_frontLeftMotor{ PWMVictorSPX::frc ;}1m_rearLeftMotor{ PWMVictorSPX::frc``` |
|  |  |

recognized... not is gradlew
that error common a is command external or internal an as recognized not is gradlew gradlew a contain not does in currently are you that directory or project the when occur can directory. wrong the open you when occurs usually This file.
files. many contain not does sidebar handleft- the that see can you screenshot, above the In project. your deploy and build properly to files of couple a needs Code VS minimum, a At
gradlew •
build.gradle •
gradlew.bat •
possible two have you then directory, project your in files above the of one any see not do you If causes.
project. bad or corrupt A •
directory. wrong the in are You •
recognized... not is gradlew Fixing
problem the identify First fix. to problem easy fairly a is recognized... not is gradlew source:
directory correct the is directory project the that Verify - directory? wrong the in you Are
this. open and
The solve. to complex more is issue This - files? essential missing project your Is in. code necessary copy manually and project your recreate to is solution recommended

## Data as Functions Treating 16.7

when do to learns anyone things first the of one language, programming of Regardless "subroutine"). a or "method" a as known (also function a write to is computer a programming avoid us lets functions writing - code organized of part fundamental a are Functions duplicated writing of Instead again. over and over code of piece same the duplicating from execute to want we code the contains that function single a call we code, of sections to easier also is name function the well, function the named we (provided places multiple about information additional some needs code of section the If itself!). code the than read needs it if and "parameters", as function the to those pass we run, to context surrounding its value" "return a that call we finishes, it once code the of rest the to back something yield to
"signature"); function's the called are value return and parameters the (together,
code. the of part another to code the of part one from functions pass to need we Sometimes, a of part as functions of thinking to used we're if concept, strange a like seem might This just are functions level, basic a at But right. own their in objects than rather definition class around it pass and variable a as double a or integer an store can we way same the in - data function a is value whose variable A function. a with thing same the do can we program, our C++. in "functor" or pointer" "function a and Java, in interface" "functional a called is

## Data? as Functions Treat to Want We Would Why 16.7.1

function. the of definition the on) (depends to coupled is function a calls that code Typically, function the calling code the when problematic becomes it time, the all occurs this While code the of knowledge direct without and independently developed is WPILib) example, (for this solve we Sometimes team). FRC an from code example, (for function the defines that functions and data of collections define which interfaces, class of use the through challenge a on dependency a have only really we often However, together. used be to meant are that .class entire an on than rather, function single
joystick a whenever code certain execute to users for ways several offers WPILib example, For a pass to user the allow to is this do to ways cleanest and easiest the of one - pressed is button code the write to has only user the way, This methods. joystick WPILib the of one to function not and arm") robot my "move (e.g., things specificteam- and interesting the with deals that standard a from inputs button read ("properly thing universal and prone,error- boring, the joystick").
to refer that objects Command on built is framework basedCommand- the example, another For as (such types Command included the of Many classes. Subsystem various on defined methods with associated functions just not - function any with work )RunCommand and InstantCommand passing support to need we generically, commands building support To . Subsystem single a interacts (which Command a to hardware) the with interacts (which Subsystem a from functions scheduler). the with
were it if as data, of piece a as function single a pass to able be to want we cases, these In really we when class, entire an provide to user the ask to sense make doesn't it - variable a function. shapedappropriately- single a us give to them want just
call we When function. a calling as same the not is function a passing that important It's some cause value, return a receive either and it of inside code the execute we function, a particular in nothing function, a pass we When both. or code, the in elsewhere effectssideto code other some allowing are we function the passing by Instead, immediately. happens mean always not does code in function a of name the Seeing future. the in function the call run! being is function the in code the that
name the to refers either that syntax some see will we function, a passes that code of Inside of inside passed be to function new a defines else or way, special a in function existing an of which on depends it) around rules the (and needed syntax specific The expression. call the using. are we language programming

## Java in Data as Functions Treating 16.7.2

"functional A .interfaces functional of instances as dataas-functions- represents Java originally was Java since - method single a only has that class of kind special a is interface" single a representing of way no has it programming, orientedobject- for strictly designed only that classes of group particular a defines it Instead, class. a from detached function interface, functional own its has signature function of type Each functions. single represent signature. that of definition function single a with interface an is which
worry to need really don't we WPILib of context the in but complicated, sound might This internal is that does that code the - themselves interfaces functional the using about much a to written we've that function a pass to how is know to need we all Instead, WPILib. to the consider example, simple a For parameter. a as interface functional a takes that method scheduled, when that, InstantCommand an creates (which Commands.runOnce of signature terminates): then and once function given the runs
and ,documentation basedCommand- the in explained is parameter requirements The : : पार here. discussed be not will
requirements) Subsystem... action, (RunnablerunOnce CommandBase static public
Java the is Runnable A ).action (named parameter Runnable a it give to us expects runOnce ,runOnce call we When value. no returns and parameters no takes that function a for term to ways two are There value. return no and parameters no with function a it give to need we define can we or reference", "method a using function existing some to refer can we this: do expression". "lambda a using inline want we function the

## References Method

:Runnable our as function existingalready- an pass us lets reference method A
„drivetrain`the of method`resetEncoders` the runs that InstantCommand an Create //
object $\leftrightarrows$
drivetrain); run0nce(drivetrain:: resetEncoders, = disableCommand Command
of method resetEncoders the to reference a is drivetrain: : resetEncoders expression The the reset itself not does code of line this - call method a not is It object. drivetrain the scheduled. is it when so do will that Command a returns it Instead, drivetrain. the of encoders must it is, that - Runnable a be must resetEncoders work, to this for order in that Remember
this: like look must signature its So, value. no return and parameters no take
list parameter empty an has and parameters, no returns it because void // ()resetEncoders void public
method the interpret to able be not will Java this, match not does signature function the If make is do to need we all that Note compile. not will code the and Runnable a as reference
functional Runnable the in method single the of signature the matches signature the that sure .Runnable a as it name explicitly to need don't we - interface

## Java in Expressions Lambda

function a define can we want, we what does that function named a have already not do we If function our writing by this do We !runOnce to call the of inside right means, that - "inline" function the to list argument the link to symbol "arrow" an uses that syntax special a with body:

```
            speed half at forward drive the runs that InstantCommand an Create //
u,} );0.0 ,0.5(arcadeDrivedrivetrain. { >- run0nce(() = driveHalfSpeed Command
                                    drivetrain); }
```

may it expression"; "lambda a \} 0.0); drivetrain.arcadeDrive(0.5, \{ >- () calls Java function" "anonymous or function", "inline function", "arrow an called confusinglyless- be writing of way another just is it funky, bit a look may this While name). no has it (because code the and list, argument function's the are arrow the before parentheses the - function a a represents here expression" "lambda The body. function the is brackets the in contained again note - parameters of set specific a with drivetrain.arcadeDrive calls that function be to Command the to it passes and it defines merely but function, the call not does this that scheduled. is Command the when later run
a as expression lambda the name explicitly to need not do we references, method with As signature its as long so Runnable a is expression lambda our that infer can Java - Runnable takes lambda our Accordingly, interface. Runnable the in method single the of that matches our contract, Runnable the match not did it if - statement return no has and arguments no compile. to fail would code

## Expressions Lambda Java in State Capturing

function the of outside lives that object an references body function our example, above the In the from variable a of "capture" a called is This object). drivetrain the (namely, itself Usually scope"). "enclosing or scope" "outer the called sometimes is (which code surrounding which in body method enclosing the from variables local either are variables captured the that which in definition class enclosing an of fields else or defined, is expression lambda the defined. is method
can we caveat: major one with general, in do to thing safe fairly a is state capturing Java In variable a capture to legal only is it means That final". "effectively is that state capture only that Note initialization. after reassigned never is variable that if scope enclosing the from are objects Java that Remember change: cannot state captured the that mean not does this the but - capture after change may to points reference the that object the so references, object. another to point to made be cannot itself reference
they're if )boolean and , double , int (like types primitive capture only can we means This a in wrapped be must it change, can that variable state a capture to want we If constants. .object mutable

## Expressions Lambda Java for Sugar Syntactic

with help To cases. some in verbose needlessly be can syntax expression lambda full The the of some where cases in sugar") "syntactic (called shortcuts some take us lets Java this, redundant. is notation

## Lambdas LineOne- for Brackets Body Function Omitting

brackets the omit us lets Java line, one only is expression lambda our of body function the If semicolons trailing omit also we brackets, function omitting When body. function the around keyword. return the And
written: be instead could above lambda Runnable our So, speed half at forward drive the runs that InstantCommand an Create // drivetrain); ),0.0, 0.5(arcadeDrivedrivetrain. >- run0nce(() = driveHalfSpeed Command

## Parameters Lambda Single around Parentheses Omitting

we argument, single a only takes that interface functional a for is expression lambda the If list: parameter the around parenthesis the omit can argument single its around parenthesis no with lambda this write can We // (a));println.outSystem. >- (a = exampleLambda IntConsumer

## C++ in Data as Functions Treating 16.7.3

only we'll article, this of sake the For data. as functions treat to ways of number a has C++ WPILibC. using to relevant are that parts the about talk
https://en.( class std::function the with represented are types function WPILibC, In templated is class library standard This ).cppreference.com/w/cpp/utility/functional/function template a as type function a it provide to have we means that - signature function's the on have we where above, Java to this (compare function the of signature the specify to parameter signature). of kind each for type interface separate a signature call the at look Let's practice. in use to is it than complicated more lot a sounds This given the runs scheduled, when that, InstantCommand an creates (which cmd::RunOnce of terminates): then and once function
and ,documentation basedCommand- the in explained is parameter requirements The : : पार here. discussed be not will

> (RunOnce CommandPtr requirements) ; $>*$ Subsystem<initializer_list::std

A ).action (named parameter ><void()std: :function a it give to us expects run0nce and parameters no takes that std: : function a for type $C++$ the is ><void()std: :function and parameters no with type function a is , void ( ) parameter, template (the value no returns
parameters no with function a it give to need we , run0nce call we When value). return no that way a in methods class existing to refer to way clean a lacks $C++$ value. return no and define to is this do to way typical the so , std: : function a to converted be automatically can expression". "lambda a with inline function new a

> C++ in Expressions Lambda
using expression function inline short a write to need we , run0nce to function a pass To few a in varies but declarations, function $C++$ ordinary resembles that syntax special a
ways: important

> speed half at forward drive the runs that InstantCommand an Create //
> ,$\}$ );0.0,0.5drivetrain.ArcadeDrive( \{ ]thisRunOnce([::cmd = driveHalfSpeed CommandPtr
> drivetrain\});\{ $\rightarrow \mid$
a parts: three has It expression". "lambda a \} body; \{ (params) [captures] calls C++ body function a and (parentheses), list parameter optional an brackets), (square list capture lambda a between difference real only the but strange, little a look may It brackets). (curly addition the is name) function a of lack the from (apart function ordinary an and expression list. capture the of
lambda our value, return no and parameters no with function a wants RunOnce Since here expression" "lambda The statement. return no and list parameter no has expression - parameters of set specific a with drivetrain. ArcadeDrive calls that function a represents it passes and it defines merely but function, the call not does code above the that again note scheduled. is Command the when later run be to Command the to

## Expressions Lambda C++ in State Capturing

function the of outside lives that object an references body function our example, above the In the from variable a of "capture" a called is This object). drivetrain the (namely, itself Usually scope"). "enclosing or scope" "outer the called sometimes is (which code surrounding which in body method enclosing the from variables local either are variables captured the that which in definition class enclosing an of fields else or defined, is expression lambda the defined. is method
generally we that is this of cost One Java. than semantics powerfulmore- somewhat has $\mathrm{C}++$ capture to it want we exactly how out figure to help some compiler C++ the give to need of purposes the For .list capture the of purpose the is This scope. enclosing the from state list capture a use to sufficient usually is it framework, basedCommand- WPILibC the using enclosing the capturing by class enclosing the of members to access gives which ,[this] of value. by pointer this class's
explicitly captured be must and pointer, this the with captured be cannot locals Method instead by implicitly by (or list capture the in them including by value by or reference by either since value,by- locals capture to safer typically is It semantics). capture default a specifying details, more For reference. by captures it object an of lifespan the outlive can lambda a .semantics capture on documentation library standard C++ the consult


ㄴ
17.1
: $\operatorname{ch}$ (

FIRST

Documentation Robotics REV •

## 17.2 פורומים

 questions) software Station Driver and LabVIEW (roboRIO,

Station) Driver-ㄴำ


## Robotics REV 17.4

Power Hub, Pneumatic Sensors, MAX, (SPARK components Robotics REV for Support the via or 2267255-844- at phone via provided is Module) Power Radio Hub, Distribution .support@revrobotics.com address email

ספסים נוספים 17.5

Copperforge
(NavX) Labs Kauai
Limelight •
(Discord) PhotonVision •
Fusion with Playing •

## תמיכה לא רשמית

ต


Delphi Chief •
Discord FRC •

## 17.7 דיווח על באגים

 //github.com/wpilibsuite


## 

coil a in magnets spinning of interaction the by generated force the motors, electric In motion. spinning opposes which wire of
boolean
the represent to intended false), or (true values possible two only with data of form A algebra. Boolean and logic of values truth two
stack call
what of track keep program the helps which memory of region organizedspecially- A to added and recorded is point call the another, calls function each As in. is it function variables local Additionally, references. of "stack" a forming structure, the of top the info. more for Wikipedia on stack call See stack. this in stored be also will
theorem limit central
are variables independent many when that states which probability in concept core A regardless distribution, Gaussian) (or "normal" a like look to tends result the up, added Central See distributed. normally are themselves variables independent the whether of info. more for Wikipedia on Theorem Limit

Mechanics Classical
large, relatively of motion the describes and studies which physics of branch The info. more for Wikipedia on Mechanics Classical See objects. slow relatively
cots
available commonly part order) custom not (i.e. standard a shelf, the off Commercial purchase. for teams all to vendor a from
composition
smaller of out entities software "composing") (or building for term software formal A info. more for Wikipedia on composition object See entities. component

CRTP
derives $X^{`}$ class a which in idiom software A - Pattern Template Recurring Continuously
on CRTP See argument. template a as itself $X^{`}$ using instantiation template class a from info. more for Wikipedia

C++ . .
programming declarative
than rather do, should program a what describing on focuses which software of style A info. more for Wikipedia on programming declarative See done. gets it how
injection dependency
upon. depends it objects all receives class each where pattern design software A dependency See always. not but constructor, the through passed are these Sometimes info. more for Wikipedia on injection

Deprecated features. new receive longer no will and replaced been has that Software For that. after removed be may but year, 1 least at for maintained be will software 2022 the in usable be will it season, 2022 the to prior deprecated is method a if example, use not to encouraged are Teams season. 2023 the to prior removed be may but season, year one least at features deprecates always WPILib code. new in methods deprecated codebase. the from them removing to prior

## pattern design

intentionally pattern design A code. organizing of style chosenintentionally- particular, A into developers constrain to language programming a of features certain using excludes on pattern. design See space.problem- particular a to suitedwell- are that solutions info. more for Wikipedia
DHCP
assign to device central a allows that protocol the Protocol, Configuration Host Dynamic devices. other all to addresses IP unique
encapsulation
other of details implementation the hide to class a uses which pattern design software A info. more for Wikipedia on encapsulation See classes.
entry
active, always is subscriber The .subscriber and publisher combined a , NetworkTables In is value a (e.g. performed is operation publish a until created not is publisher the but a maintaining than convenient more be may This entry). the on published, aka "set", subscriber. and publisher separate

## enumeration

values. definedpre- of set a to refer to used typically set, a of elements all of list A programming drivenevent-
some of result a as "events" generate code of parts certain where programming of style A to respond and for listen code of parts other Then, etc). interaction, user (sensors, input info. more for Wikipedia on basedevent- See events. these "handle"
point floating
fixed a using arithmetic, basedcomputer- in numbers real approximating for method A support systems computer Typically exponent. integer an by scaled integer precision floating storage) bit(64- precision "double" and storage) bit(32- precision "single" both 754. IEEE by defined as values, point

FMS
 Competition.

FPGA
many of consisting circuit integrated specialized a - array gate programmableFieldits allows This patterns. different in act to configured be can which elements, logic digital Instruments National FRC, of context the In manufacturing. after changed be to behavior the process to it allows which FPGA RIO's the for configuration specific a provides info. more for Wikipedia on FPGA See rate. high very a at outputs and inputs electrical

GradleRIO
roboRIO. the to code robot of deployment the powers that mechanism The
to measurements rotation the up add can It rotation. of rate measures that device A short) for ("gyro", robot. the of heading determine
degrees. in angle an as expressed usually pointed, is robot the direction The programming imperative
step, by step doing, be should code the what on focuses that programming of style A info. more for Wikipedia on

See loop. every
IMU
a and accelerometer an both combines that sensor a Unit, Measurement Inertial sensor. single a into gyroscope

Java
. $\operatorname{ck}$.
JSON
values. named into data organizing of way standardized A Notation. Object JavaScript Javascript, in was usage original the While .serialized easily be can data organized The on JSON See languages. programming modern most by interested and used be can it info. more for Wikipedia

KOP
the to distributed checklists, Kit Kickoff the on listed items of collection the Parts, of Kit Donation Product a with shipping) (except completely for paid or Choice, FIRST via team (PDV). Voucher
KOP 믿
out) opt not did (that team every to distributed (chassis) base drive a contains KOP The the is chassis KOP the season, 2023 the For .KOP the of part as LabVIEW . .
NetworkTables
programs. between data communicate to system messaging subscribepublish- A mass
in changes resist will mass more with Objects object. physical a in matter of amount the info. more for Wikipedia on mass See mass. less with objects than more motion
inertia of moment
is mass that how and has, it mass much how both describes that object an of property The inertia of moments higher with Objects rotation. of axis certain a to relative distributed inertia. of moments lower with objects than more motion rotational in changes resist the moving or mass, more adding by accomplished is inertia of moment the Increasing for Wikipedia on inertia of moment See rotation. of axis the from away further mass info. more
motor DC magnetpermanent-
of type This competition. robotics FIRST the for motors legal all of classification The this turn, In field. magnetic a create to it uses and input, as current direct takes motor output the turns that force a create to magnet physical a with interacts field magnetic the ensure to used are means ("brushed") mechanical or ("brushless") Electrical shaft. forces creates that direction a in points always field magnetic generatedelectricallySee rotates. shaft motor's the as even magnet, physical the with interacts it when info. more for Wikipedia on motor magnetpermanent-
persistent
startup. at restored and server the by file a to saved is that topic a ,NetworkTables In
property
updated and stored topic a about (metadata) information named ,NetworkTables In
A properties. of number any have may topic A data. topic's the from separately JSON. in represented be can that type data any be can value property's
publisher
timestamped sends and creates and topic a defines that object an ,NetworkTables In values. data

## pose

is body rigid a how describes that information rotation and position of collection The point. reference fixed some to relative space, in oriented
RAII
Java) in not but C++, (in behavior language a Initialization; Is Acquisition Resource lifetime. object to tied is resource a holding where

## reflectionretro-

rather at, in came it angle same the at back light incoming reflecting of property The FRC Most it. scattering or it, absorbing mirror), a (like angle incident an than more for Wikipedia on retroreflector See reflective.retro- are targets processing vision information.
composition recursive
same the of components contain may object composite the which in composition of type A groups. command more or one contain may group command a example, For itself. as type .composition recursive also See info. more for Wikipedia on composition recursive See

## retained

stop publishers all after even server the by alive kept is that topic a ,NetworkTables In publishing.
serialized
be to data the of description the allows that scheme organization data a of property The file a writing or Reading channel. communication some over byte, by byte order, in sent all not byte, by byte written or read is data the (IE, fashion serial this in done is disk on requiring again byte, by byte done also is bus I2C or SPI a over data Sending once). at serialized. be can data the


## library software

software See software. other by used and into imported be can that code of collection A info. more for Wikipedia on library
valve solenoid
speaking, Strictly electromagnet. small a by actuated is which valve controllingairflow- A the is valve the and electromagnet, the forms which wire of coil the is solenoid the valve and solenoid of set the However, airflow. redirects actually which mechanism more for Wikipedia on .valve solenoid See solenoid". "a called simply often is together info.

## machine state

defined,well- discrete, many into problem a divides that construct programming A between moving by solved is problem the how defines then "states", exclusivemutuallyinfo. more more for Wikipedia on machine state See states. different
subscriber
or one to updates value data timestamped receives that object an , NetworkTables In
s.topic more

## telemetry

robot your of performance the about data timereal- sending and recording of process The "tele" are roots word's the us, among linguists the For file. log or readout timereal- a to info. more for Wikipedia on telemetry See (measurement). "metry" and (remote)
consists and (teleop) Period Teleoperated the called is match each of phase second The robots. their controlling drivers of
topic
torque
channel. data named a ,NetworkTables In
rotation of axis some from distance a at applied force $A$
the along point each at accelerations and velocities with curve, smooth a is trajectory A field. the on endpoints two connecting curve,
transitory
publishing. stops publisher last the after disappear will that topic a ,NetworkTables In


## LabVIEW NI by Powered Station Driver FRC 19.1

NI by Powered Station Driver FRC® the of features and use the describes article This LabVIEW.
.document this see software Station Driver the installing on information For

Station Driver FRC the Starting
19.1.1
by or Desktop the on icon the clickingdouble- by launched be can Station Driver FRC The Station. Driver $>$ FRCPrograms- $>$ AllStart- selecting
be also can It .Dashboard LabVIEW the launches Station Driver FRC the default By : Cllll .Shuffleboard and SmartDashboard Dashboards: other the launch to Tab Setup on configured Shuffleboard. and SmartDashboard use to installed be must WPILib

# Shortcuts Key Station Driver 

refresh. Joystick a Force - F1 keyboards) most on Enter above keys 3 (the robot the Enable - $1+]+[$ Robot the Disable - Enter
roboRIO the triggered is stop emergency an After robot. the Stop Emergency - Space again. enabled be can robot the before rebooted be to need will


StopE- Station Team the press must teams match, a in FMS to connected When : Ollll shortcuts key StopE- and enable/disable DS the as robot their stop emergency to button ignored. are

## Station Driver the Up Setting

do to order In robot. your to connect to order in number team your to set be should DS The return Press box. number team the in number team your enter then tab Setup the click this effect. take to setting the for box the outside click or already, robot the to connect to DS the for settings network correct the have typically will PCs DHCP. to set is adapter Network your sure make not, if but

Pane Status

Team \#

always is and display the of center the in located is Station Driver the of Pane Status The the about information critical of selection a displays It selected. tab the of regardless visible robot: and DS the of state
your match should This for. configured currently is DS the number Team The - \# Team
Tab. Setup the see number team the change To number. team FRC
this roboRIO the with communicating and connected is DS the If - Voltage Battery over voltage of chart small a with and number a as voltage battery current displays when red turn will indicator numeric the of background The icon. battery the in time Current Understanding and Brownout roboRIO See triggered. is brownout roboRIO the information. more for Draw

DS. the for items status major display indicators three These - Indicators Status Major the with communicating currently is DS the whether indicates "Communications" The and TCP the for half in split is (it roboRIO the on Task Communications Network FRC Code Robot team the whether shows indicator Code" "Robot The communication). UDP robot the in Task Station Driver the not or whether by (determined running currently is one least at if shows indicator "Joysticks" The voltage), battery the updating is code DS. the by recognized and in plugged is joystick
the indicating message status overall an provides String Status The - String Status Code", Robot "No Communication", Robot "No are examples Some robot. the of state is brownout roboRIO the When Enabled". "Teleoperated and Stopped", "Emergency Brownout". "Voltage display will this triggered

Tab Operation

status key additional provide and robot the of mode the control to used is Tab Operations The running. is robot the while indicators
Mode. Robot the controls section This - Mode Robot
the of portion Teleoperated the in code the run to robot the causes Mode Teleoperated match.
the of portion Autonomous the in code the run to robot the causes Mode Autonomous match.
match FRC an as transitions same the through cycle to robot the causes Mode Practice setup the on found be can mode practice for (timing pressed is button Enable the after tab).
can match regular a in run doesn't that code test where mode additional an is tested. be Station Driver also See robot. the disable and enable controls These - Enable/Disable 2. .Shortcuts Key enabled. been has robot the time of amount the Indicates - Time Elapsed in. plugged is PC the whether and battery PC DS of state current Indicates - Battery PC PC. DS the of Utilization CPU the Indicates - CPU\% PC to user the allows Classmate the on account Driver the on not When - Mode Window (rectangle). docked and (arrow) floating between toggle the to transmit to station team the sets FMS, to connected not When - Station Team robot.
will 2 and 1 sections in controls the System Management Field the to connected When : ใll out. greyed be will 7 Section in control the and Connected FMS words the by replaced be

## Tab Diagnostics

diagnose to use can teams that indicators status additional contains Tab Diagnostics The robot: their with issues number. Version Station Driver the Indicates - Version DS Image. roboRIO the of version the indicating String - Version Image roboRIO use. in WPILib of version the indicating String - Version WPILib to connected devices of version firmware the indicating String - Versions Device CAN not has Framework Phoenix CTRE the if present be not may items These bus. CAN the loaded. been
memory. roboRIO the about stats shows section This - Stats Memory various to status connection show indicators these of half top The - Indicators Connection components.
port. ethernet the to connected something has computer the indicates Link" "Enet 10.XX.YY.1. at bridge wireless robot the to status ping the indicates Radio" "Robot a of fallback a (with mDNS using roboRIO the to status ping the indicates "Robot" address). 10.TE.AM. 2 static
ping a NOT is (this FMS from packets receiving is DS the if indicates "FMS" indicator).
network of status indicates indicators of section second The - Indicators Network communication purposes; informational for provided are These firewalls. and adapters section. this in indicators unlit more or one with even established be may
adapter Ethernet detected the of address IP the indicates "Enet"
enabled as detected been has adapter wireless a if indicates "WiFi"
detected been has connection USB roboRIO a if indicates "USB"
will firewalls Enabled enabled. as detected are firewalls any if indicates "Firewall"
Private $)=$ Prv Public, $=$ Pub Domain, $=($ Dom orange in show
(after roboRIO the of reboot remote a perform to attempts button This - roboRIO Reboot dialog). confirmation a through clicking
(but robot the on running code the restart to attempts button This - Code Robot Restart OS). the restart not

Tab Setup 19.1.7

the of operation the control to use can teams buttons of number a contains Tab Setup The Station: Driver
name mDNS the controls This Number. Team FRC your contain Should - Number Team show will arrow dropdown the on clicking Shift at. be to robot the expects DS the that purposes. troubleshooting for network the on detected names roboRIO all
Default Station. Driver the by launched is Dashboard what Controls - Type Dashboard information more (for Storage.ini" Data DS "FRC the by to pointed file the launches Program the in Dashboard.exe is this default By ).dashboard custom a setting about the at dashboard a launch to attempts LabVIEW folder. Dashboard (x86)\FRC Files default the to back fall will but dashboard, LabVIEW built custom a for location default respective the launch Shuffleboard and SmartDashboard found. is dashboard no if forwards Remote installation. WPILib Java and C++ the with included dashboards field. IP Dashboard in specified IP the to data dashboard LabVIEW
entered Text API. Data Game the of testing home at for used be can box This - Data Game to connected When Side. Robot the on API Data Game the in appear will box this into automatically. field the by populated be will data this FMS, practice the of portion each of timing the control boxes These - Timing Mode Practice automatically DS the mode practice in enabled is robot the When sequence. mode bottom. to top from indicated modes the through proceeds
Practice the when sounded are tones audio whether controls button This - Control Audio used. is Mode

## Tab Devices USB

DS the to connected Devices USB the about information the includes tab Devices USB The DS. the to connected devices USB compatible all of list a contains This - List Setup USB the before ${ }^{*} 2$ put and green in name the highlight will device a on button a Pressing name device
disabled, is robot the While devices. USB the of Rescan a force will button This - Rescan a force To list. the to them add and devices new for scan automatically will DS the to connected when as (such Enabled is robot the while scanre- to or scanre- complete button. this use or F1 press match) a during FMS
and buttons Axes, the of status current the show indicators These - indicators Device joystick. the of POV
appear. will control Rumble the controllers) BoxX- as (such devices XInput For - Rumble "Right is bar top The device. the of functionality rumble the test to used be can This the along anywhere holding and Clicking Rumble". "Left is bar bottom the and Rumble" $=$ rumble full is right 0 , = rumble no is (left proportionally rumble the activate will bar code. robot in set value Rumble the indicate not will and only control a is This 1).

## Devices Locking and ArrangingRe-


is This slot. specific a into device USB a "locking" of capability the has Station Driver The by triggered be also can and position new a to dragged is device the if automatically done the under underline an with up show will devices "Locked" device. the on clicking double the to connected not is device the when even slot its reserve will device locked A device. unconnected (and unlocked be can Devices underlined). and out grayed as (shown computer entry. the on clicking double by removed) devices
long as position their maintain should they device, same the of more or two have you If : : पार्य you If in. locked were they ports same the in computer the into plugged remain devices all as If device. the not port, the follow should lock the devices identical two of ports the switch the swapping) of instead port new a into it plug and device one (take ports the arrangere- you the of more or one unplug you If slots). swap may devices (the determinate not is behavior locked proper the to return should they move; may others the of positions the devices, of set reconnected. are devices all when slots
devices: 4 shows above image The Example:
unless position this in stay will device This joystick. 3" Attack "Logitech Locked A unlocked or else somewhere dragged
joystick 3D" Extreme "Logitech unlocked An
gamepad F310 Logitech a is which (Controller)" F310 "Gamepad unlocked An
Xbox MadCatz a is which (Controller)" GamePad "MadCatz disconnected but Locked, A
Controller 360
Gamepad F310 the in result will joystick 3D Extreme Logitech the unplugging example, this In 2 and 1 Slots in devices the if (even Gamepad MadCatz the in Plugging 1. slot to up moving
3. Slot occupying it in result will empty) are slots those and removed are
contains tab This Tab. Power CAN/Robot the is DS the of side left the on tab last The bus: CAN the of status the and roboRIO the of status power the about information
DS the since occurred have that faults Comms of number the Indicates - Faults Comms connected been has
occurred have that (Brownouts) faults power input of number the Indicates - Faults 12V connected been has DS the since
circuits) short by caused (typically faults of number the Indicates - Faults 6V/5V/3.3V connected been has DS the since Rails Voltage User the on occurred have that
bus CAN the of utilization percentage the Indicates - Utilization Bus CAN has DS the since faults CAN of types 4 the of each of counts the Indicates - faults CAN connected been turn will above) image the in blue in (shown tab this for indicator the detected, is fault a If red.

Tab Messages
the and/or Code, User WPILib, DS, the from messages diagnostic displays tab Messages The displayed. are Errors only default, By severity. by filtered are messages The roboRIO.
will that menu a display will This icon. Gear the click tab, Messages the for settings access To Errors+Warnings+Prints), or Errors+Warnings (Errors, level detail the select to you allow Log DS the launch or messages, viewing for window Console larger a launch box, the clear

Viewer.

## Tab Charts 19.1.11

diagnose teams help to status robot of indicators advanced displays and plots tab Charts The issues: robot
right) the on axis the (against green in milliseconds in time trip charts graph top The left). the on axis the (against orange in second per packets lost and roboRIO left), the on axis the (against yellow in voltage battery plots graph bottom The on line continuous a as mode Requested DS right), the on axis the (against red in CPU it. above line discontinuous a as mode robot and chart the of bottom the the in modes Reported Robot and Requested DS the for used colors the shows key This chart. bottom

Charts. DS the of scale time the change controls These - scale Chart .Viewer File Log DS the launches button This
be to robot the commanding is Station Driver the that mode the is mode Requested DS The methods reporting on based running actually is code what is mode Reported Robot The in. language. each for frameworks coding the in contained

Tab Both
19.1.12
side. by side Charts and Messages displays which tab Both the is side right the on tab last The

## Practices Best Station Driver

James Chong, Juan from contributions with Peterson, Steve by created was document This Ryan and Ross, Joe Roadfeldt, Chris Picone, Chris McKaskle, Greg Kosbab, Rick Henry,Colefound be can posts upfollow- and post original The Sjostrand.
Robotics FIRST the at team your for stopper a isn't station driver the ensure to Want easy an is laptop station driver solid a configuring and Building field? (FRC) Competition lessons find to on Read competition. your and day build stop between time the for project matches. of thousands over teams many by learned

## Competition The For Departing To Prior 19.2.1

dedicated A do. teams Many station. driver a as solely used be to laptop a Dedicate at compete to ready being - goal one for configuration the manage you allows machine Station Driver providedFRC- the except software other no means Dedicated field. the running. or installed Dashboard associated and software
durable more much They're Why? station. driver your for laptop classbusiness- a Use around banged being survive They'll Buy. Best at special Friday Black $\$ 300$ the than the and drivers, device quality higher have laptops classBusiness- competition. the at your makes This laptops. consumer than period longer a for maintained are drivers popular two are Latitude Dell and series T ThinkPad Lenovo longer. last investment for thousands are There competitions. at see commonly you'll brands classbusinesslevel entry good a is kits rookie recent in provided laptop The eBay. on day every sale vision with more do they as displays bigger to it from graduate often Teams machine. dashboards. and
dashboard and Station Driver FRC® The new. than rather laptops used Consider instead, - laptop new a buy to need don't you so resources, system few very uses software computer used a by donated one get even might You one. used old year 54- cheap a buy
area. your in store
features recommended Laptop

$$
\text { RAM of } 4 \mathrm{~GB}-\mathrm{RAM}
$$

$1440 \times 1050$. of resolution minimum with greater, or 13 " of size display A

> Ports

The port. sizedfull- a it's that Ensure preferred. highly is port Ethernet inbuilt- A use. repeated to up hold don't ports Ethernet hinged
extends This connection. Ethernet your make to saver port Ethernet an Use a have you if important particularly is This laptop. the on port the of life the port. Ethernet hinged a with laptop gradeconsumer-
laptop the replace either dodgy, is laptop your on port Ethernet the If Many brand. reputable a from dongle Ethernet USB a buy or (recommended) primarily Ethernet, inbuilt- than reliable less is Ethernet USB that find teams
the in rookies to given dongles The drivers. bad and hardware cheap to due well. working for reputation a have KOP
minimum ports USB 2
the at computers onlytouch- on troubleshooting do quickly to hard It's keyboard. A field.
it replace and $\$ 50$ spend disk, rotating a has laptop the If (SSD). disk statesolid- A SSD. a with

OS common most the Being 11. or 10 Windows of release current the to Updated Windows for fixed and found be to likely more are bugs competitions, at seen now versions. Windows older on than 11 and 10
to time you allows This competition. the before week a updates Windows all Install the open so, do To functions. station driver with interfere not will updates the ensure updates pending Install date.to-up- you're that see and page settings Update Windows date. to up you're sure make to again check and Reboot not. if during installing from updates prevent to Updates Windows for Hours" "Active Change Windows >- Security \& Update >- Settings >- Start to Navigate hours. competition time take competition, a to traveling you're If hours. active Change select then Update, reboot not does station driver your ensure help will This account. into differences zone field. the on installing update to due fail or
Windows use Instead, software. antimalware or antivirus party 3rd any Remove Windows for internet the to connecting only you're Since 11. or 10 Windows on Defender station driver your on software install Only low. is risk the updating, software FRC and interfere might that variables eliminate to is here goal Your driving. for needed that's that ("bloatware") software preinstalled unneeded any Remove operation. proper with back gaming for machine Steam your as laptop the use Don't machine. the with came separate a having as far as go teams Many event. the before night the hotel the at laptop. programming

These department. IT school's the from installations 11 or 10 Windows managed Avoid unwanted with come often and environment school the for built are deployments operation. robot's your with interferes that software
power / battery Laptop
powered and battery both for plan power your in sleep to computer the Put off Turn operation.
Suspend: Selective USB off Turn
Options. Power select then tray, the in icon battery/charging the on click Right
plan. power your of settings plan the Edit
link. settings power advanced Change the Click
suspend selective USB the disable and settings advanced the in down Scroll in. Plugged and Battery both for setting
the making after hour an least at for charge a hold can battery laptop the Ensure through go to team drive and robot the for time of plenty allows This above. changes power. mains without station alliance the reach and queue the
roboRIO. the to connecting use for cable Ethernet and USB trusted a Bring
on falling from controllers joystick/gamepad your prevent to relief retention/strain Add intermittent with issues prevent helps This ports. USB the on yanking and/or floor the connections. controller

Administrator the of member a be must drive to use you account user Windows The group.

## Competition The At

using firewall Windows off Turn
by or switch FiWi- hardware dedicated the using either adapter, FiWi- the off Turn panel. control Settings Adapter the in it disabling pit. the in it's when station driver the Charge
password. the knows team drive the on everyone ensure or passwords login Remove password the knowing without field the at arrive drivers often how at surprised be You'd laptop. the for
using startup", as "run to set and permanently deployed is code LabView your Ensure turn you time every code deploy must you If Tutorial. LabView the in instructions the wrong. it doing you're on, robot the getting of chance the minimizes This sites. web related FRC to browsing web Limit competition. the during malware
any be won't likely There updates. software do to access internet using on plan Don't a contact updates, need do you If quality. in widely varies FiWi- hotel and venue, the in pit. the in Advisor System Control

## Match Each Before

yours. before match the of end the to prior in logged and on is laptop the sure Make or Code Studio Visual e.g., - match the during needed aren't that programs Close competing. are you when - LabView station. player each in you for provided is Power field. the to charger laptop your Bring know never You shelf. station player the to tape loopand-hook- with laptop your Fasten the blast and issue programming autonomous an have will partner alliance your when wall.
ports. USB correct the to assigned are controllers and joysticks Ensure joysticks assign to drop and drag software, Station Driver FRC the in tab USB the In needed. as
green appear not do controllers / joysticks if (F1) button rescan the Use become controllers or joystick if competition during (F1) button rescan the Use competition. during gray turn otherwise or in back plugged are then and unplugged

## Viewer File Log Station Driver

log creates Station Driver FRC® the debugging, in aid to information provide to effort an In the using later reviewed be can logs These running. while data diagnostic important of files in installed shortcut the via found be can Viewer Log The Viewer. Log Station Driver FRC the in icon Gear the via or Files, Program in folder Station Driver FRC the menuin Start the Station. Driver

Driver FRC the to functionality similar provide that exist tools partythird- Several : : पार्य offers WPILib that Note .Reader DSLOG and AdvantageScope including Viewer, Log Station projects. partythird- for support no

## Logs Event <br> 19.3.1

(not tab Diagnostics the on box Messages the to sent messages all logs Station Driver The Log viewing When file. Log Event new a into tab) Operation the on box Messages User the a in overlaid are files DSLog and Log Event the Viewer, File Log Station Driver the with Files
display. single
and date has log Each .Files Log $\backslash$ FRC $\backslash$ Documents $\backslash$ Public $\backslash$ Users $\backslash C$ : in stored are files Log .dsevents. and dslog. extension with files two has and name file the in timestamp

## UI Viewer Log

Driver the of analysis the in aid to displays and controls of number a contains Viewer Log The files: $\log$ Station
selected currently the in files log available all displays window This - Box Selection File it. select to list the in file log a on Click folder.
log for in looking is viewer the folder current the displays box This - Files Log to Path folder the Click in. files log stores Station Driver the that folder the to defaults This files. location. different a to browse to icon
When Log. Event the from messages all of summary a displays box This - Box Message that for information the display to changes box this graph the on event an over hovering event.
scrolling horizontal for allows bar scroll this in, zoomed is graph the When - Bar Scroll graph. the of

The on). to (defaults off and on Filter Voltage the turns control This - Filter Voltage Battery no when time trip and mode robot \%, CPU as such data out filters Filter Voltage roboRIO). the with communication in no is DS the that (indicating received is Voltage
log. the in data all show to out graph the zooms button This - AutoScale
FRC an of length the approximately to graph the scales button This - Length Match of start the locate automatically not does It shown). seconds 30 and minutes ( 2 match the of beginning the locate to bar scroll the using scroll to have will you match, the
mode. Autonomous
roboRIO time, trip (voltage, file Log DS the from data graph shows display This - Graph on dots as (shown data event overlaid as well as mode) robot and Packets, Lost CPU\%, Hovering graph). entire the across lines vertical as showing events select with graph the

Messages the in event the about information displays graph the on markers event over screen. the of left bottom the in window screen the of top the at displayed Mode Robot the for Key - Key Mode Robot graph the on lines vertical as displayed events, major the for Key - key event Major data graph the for Key - key Graph below) explained modes (filter mode filter the select to downDrop- - Control Filter Event and Time) vs. Events and (Data Graph the between switch to Control - Control Tab displays. List

## Display Graph the Using

information: following the contains Display Graph The
blue as (displayed second per Packets Lost and line) (green ms in Time Trip of Graphs of bottom the at line green flat a is Time Trip images example these In bars). vertical packets lost no are there and graph the
line. yellow a as displayed voltage Battery of Graph
line red a as \% CPU roboRIO of Graph mode the shows display the of set top The mode. DS and mode robot of Graph the by reported mode the shows set bottom The Station. Driver the by commanded and disabled the during mode it's reporting not is robot the example this In code. robot

Teleop. during reported is but modes, autonomous
occurred. event the time the indicating graph the on displayed be will markers Event marker event an over Hovering yellow. in display will warnings red; in display will Errors the of left bottom the at box Messages the in event the about information display will screen.
display. graph the across lines vertical as shown are events Major
You area. viewing desired the around drag and click graph, the of portion a on in zoom To vertically. zoom cannot you axis, time the zoom only can

List Event

Driver the by recorded errors) and (warnings events of list a displays tab List Event The (images filter active currently the by determined are displayed detail and events The Station. active). filter Info" All Events, "All shows

## Filters 19.3.5

Viewer: Log the in available currently are filters Three
Driver the by produced warnings and errors the of many out filters filter This Default:
Robot. the on code the by thrown errors identifying for useful is filter This Station.
occurred they time the and events all shows filter This Time: and Events All the time this At info. recorded all and events all shows filter This Info: All Events, All shows option this that is Time" and Events "All and filter this between difference primary message. particular a of occurrence first the for designator "unique" the

## Matches from Logs Identifying

came logs which identify to is Logs Station Driver the with working when task common A identified be now can match a during taken were which Logs matches. competition from Qualification (Practice, type match the display will which event Connected FMS the using this In server. FMS the to according time current the and number, match Elimination), or computer Station Driver the of time the and time server FMS the that see can you example, apart. seconds 7 approximately close, fairly are

## Viewer Log the with Failures Connection Common Identifying

system the of knowledge thorough for substitute no is there issues, robot diagnosing When connection a diagnosing assistance need you If approach. debugging methodical a and and/or FTA your from assistance seek to recommended strongly is it events your at problem can failures common some how with teams familiarize to is section this of goal The CSA. conditions of variety a on depending that note Please files. Log DS the in themselves manifest file. $\log$ a in differently slightly show failure particular a
using length match to scaled been have section this in shown files log all that Note : Also, mode. autonomous the of beginning the to scrolling then and button Length Match the capture log for used platform the information, voltage battery contain not do logs the of many voltage. battery the reporting for wired properly not was
are more and below show are Viewer Log the in found are that messages error Some : article. Errors/Warnings Station Driver the in detailed
first the in contained warnings and errors The log. match normal a of example an is This observing by confirmed is This ignored. be can and started first DS the when from are box can shown event last The event. Connected:" "FMS the to prior occurred events these that after seconds 3 occurs (it DS the to connecting first robot the from also is it ignored, be also started. match the before seconds 30 roughly occurs and FMS) to connecting

FMS from Disconnected
segment may it match the during robot, the therefore and FMS, from disconnects DS the When $\log$, first the of event last the are failure this to indicators key The pieces. into log the log 2nd the from event second the and "bad" now is FMS to connection the that indicating into transitioning immediately DS the by followed message connected FMS new a is which no with cable ethernet an is failure of type this of cause common most The Enabled. Teleop computer. DS the on port ethernet damaged a or tab latching

Reboot roboRIO

caused failure connection a in indicator primary the is message boot" robot since "Time The 3:01:36 at roboRIO the with connection loses DS the log this In rebooting. roboRIO the by the after initiated ping the that indicates event second The event. first the by indicated as roboRIO the 3:01:47 At roboRIO. the than other devices all to successful was failed connection Driver the 3:02:02 At 3:01:52. at fails ping additional one again, pings to responding begins seconds. 3.682 for up been has it that reports roboRIO the and roboRIO the to connects Station at and load to continues code The rebooted. has roboRIO the that indicator clear a is This reported also is warning A camera. the with communicating error an reports code the 3:02:24 up. starting finishes code the before right running is code robot no that indicating
robot on issue cable Ethernet

| 3:30:57.799 PM | Watch |
| :--- | :--- |
| 3:31:38.800 PM | Warni <br> <time <br> FRC: |
| 3:31:39.801 PM | Warni <br> <time <br> FRC: |
| 3:32:08.449 PM | WARI <br> FRC: |
| 3:32:12.399 PM | WARI <br> FRC: |
| 3:32:59.018 PM | Watch |

roboRIO the to ping the by indicated primarily is robot the on cable ethernet the with issue An "Time The reconnects. roboRIO the when events Seen Radio and Lost Radio and bad to going roboRIO the that indicate also will reconnects roboRIO the when message boot" robot since The 3:31:38. at disconnected was cable Ethernet robot the example, this In rebooted. not has 3:32:08 at reconnects robot the When connected. still is radio the that indicates status ping reboot. not did clearly roboRIO the that indicating seconds 1809 is boot" robot since "Tim the 0.000 returned it and ago seconds 24.505 radio the lost it that indicates robot the 3:32:12 At and lost radio for yellow graph, the on lines vertical as plotted are points These ago. seconds shown as events actual the from offset slightly are times the that Note seen. radio for green what about information additional provide to help but connection, and disconnection the via occurring. is
reboot Radio

for radio the to connection of loss a by characterized typically is radio robot the of reboot A start to it causing 3:22:44, at power lost briefly radio the example, this In seconds. 45~40the $3: 23: 11$, At failed. radio the to ping the that indicates $3: 22: 45$ at event The rebooting. for up been has it indicates roboRIO the and roboRIO the with communication regains DS radio the on switch network the that Note reboot. roboRIO a out ruling seconds, 1272.775 lost"/"radio "radio a in result not may loss power momentary a so quickly very up back comes DS. the by logged being events radio in result may disturbance longer A pair. event seen" status ping the is reboot radio a towards points which factor distinguishing the case, that In a is issue the If unreachable. be will radio the resets, radio the If DS. the from radio the of
"GOOD". remain should ping radio the robot, the on issue connection or cabling

## Errors/Warnings Station Driver

use to information more (FTAs/CSAs/etc.) Volunteers and Teams both provide to effort an In added been have messages Error and Warning of number a problems, robot diagnosing when they when tab diagnostics DS the in displayed are messages These Station. Driver the to Viewer. File Log the with viewed be can that Files Log DS the in included also are and occur WPILib by produced (messages DS the by produced messages the discusses document This

Logs). DS the and box this in appear also can

## Unplugged Joystick 19.4.1

| Station Driver at occurred 44009 ->Code<ERROR |
| ---: |
| I>\#unique PM 54:43:4 2013/5/2>time |
| enabled was robot the while disconnected was joystick A FRC: |

error this text message the to Contrary unplugged. is Joystick a when triggered is error This a see will You DS. the to connected even or enabled, not is robot the if even printed be will Joysticks if even started, is Station Driver the time each occur message this of instance single functioning. and connected properly are

DriverStation. calling by silenced be can warnings Unplugged Joystick : ใर्टा ) C++ ,Java( silenceJoystickConnectionWarning(true)

Communication Lost 19.4.2

| Station Driver at occurred 44004>Code<Warning |
| ---: |
| 2>\#unique $<$ AM $53: 07: 11$ 2013/6/2>time $<$ |
| robot the with communication lost has Station Driver The FRC: |

the with communication loses Station Driver the whenever printed is message Warning This this of instance single A red). to green from changing indicator (Communications robot established. is communication before up, starts DS the when printed is message

Status Ping 19.4.3

the while changes device a to Status Ping the time each generated is warning Status Ping A when established being is communications As roboRIO. the with communication in not is DS then up, comes link Ethernet the as appear will warnings these of few a up, starts DS the If applicable). if in mixed FMS (with roboRIO the then radio, robot the to connection the component which at identify help may change status ping the lost, later are communications broke. chain communication the

# Boot Robot Since Time 19.4.4 

FRC_NetworkCommunications at occurred $44007>$ Code<WARNING
$* * 3.585>$ secondsSinceReboot<**
. boot robot since Time FRC:

The roboRIO. the with communicating begins DS the time each printed is message This determine to used be can and roboRIO the of seconds, in time, up- the indicates message

Reboot. roboRIO a to due was communication of loss a if

Times Detection Radio 19.4.5

FRC_NetworkCommunications at occurred 44008>Code<WARNING 0.000 >radioSeenEvents<19.004 >radioLostEvents< times dectection radio Robot FRC:

FRC_NetworkCommunications at occurred 44008>Code<WARNING 147.005,0.000 >radioSeenEvents<422.008,2.501 >radioLostEvents< .times dectection radio Robot FRC:
and roboRIO the with communicating begins DS the when printed be may message This first the In seen. and lost was radio the time last the since seconds, in time, the indicates was radio the to connection roboRIO's the that indicates message the above image example when right again seen was radio the and printed was message the before seconds 19 lost the since occurred have events radioSeen or radioLost multiple If printed. was message the commas. by separated included, be will type each of events 2 to up booted, roboRIO

## Code Robot No 19.4.6

Station Driver at occurred 44003>Code<Warning 8>\#unique<AM 13:50:9 2013/8/2>time< . running currently is code robot No FRC:
no detects but roboRIO, the with communicating begins DS the when printed is message This is Station Driver the if printed be will message this of instance single A running. code robot the with communication begin will DS the as booting is roboRIO the while running and open loading. finishes code robot the before roboRIO

## Offseason FMS for Radios Programming 19.5

access single a use to is setup networking typical the software, Offseason FMS the using When programmed be all should radios the that means This key. WPA and SSID single a with point the of version Team The team. each for IPs different with but network, this to connect to this do to used be can that mode Offseason FMS an has Utility Configuration Bridge FRC® configuration.

RequisitesPre- 19.5.1
Programming in instructions the per software Utility Configuration Radio FRC® the Install radio your

utility configuration the prevent may it as computer, your on connections WiFi Disable 1. bridge the with communicating properly from
the to closest port ethernet bridge wireless the into computer your from directly Plug 2. If ethernet. via computer your to connected are devices other no sure Make jack. power the of side socket the into PC the from cable Ethernet an plug PoE, via radio the powering configuring issues experience you If in). plug would roboRIO the (where adapter PoE the on port alternate the to PC the connecting try may you adapter, PoE the through radio.

## Configuration Programmed

radio the into settings configuration of number a programs Utility Configuration Radio The include: These events). at (including modes all in radio the to apply settings These run. when

$$
\text { 10.TE.AM. } 1 \text { of IP static a Set • }
$$

programming future for 192.168 .1 .1 of side wired the on IP alternate an Set • interchangeably used be may they so ports wired the Bridge • below. referenced light status the in noted configuration LED The • disabled be (may interface wireless the of side outbound the on limit bandwidth $4 \mathrm{Mb} / \mathrm{s} \cdot$ use) home for
to packets which and buffer internal (affects prioritization packet internal for rules QoS • are: rules These reached). is limit bandwidth if discard
)1150, 1115, 1110 (UDP Status and Control Robot -
)1740, 1735 (TCP NetworkTables \& TCP Robot disabled) is limit BW if (disabled traffic). other (All Bulk out: Serves enabled. server DHCP •
side wired the on 10.TE.AM.111-10.TE.AM. 11 side wireless the on 10.TE.AM.237-10.TE.AM. 138 -
255.255.255.0 of mask Subnet -
10.TE.AM. 255 address Broadcast -
the of part as served are )lan.( suffix domain and IP server DNS enabled. server DNS • DHCP.
lights status radio the of behavior the on details for Reference Light Status the See : Cll configured. when
user the Utility, - Configuration Radio the of version team the with programmed When :only DAPs the for defaults - firmware the to) set (or at left be will accounts

## software the Launch 19.5.2

FRC FMS Rob
FRC Radio Co
봉
program. the launch to shortcut desktop or menu Start the Use

FRC $\backslash(x 86)$ Files Program $\backslash C$ : to installed is it program, the locate to need you If : $\square$ ] FRC\Files Program\C: is path the machines bit32- For .Utility Configuration Radio Utility Configuration Radio
prompted if changes, make to program the Allow 19.5.3

User Accoun

Do yo
unkn

Prograr
Publish
File ori

Show deta
the to changes make to utility configuration the allowing about appear may prompt A appears. prompt the if Yes Click computer.

## Mode Offseason FMS Enter 19.5.4

Mode. LiteFMS- enter to Mode Lite-FMS >- Tools Click

SSID Enter 19.5.5

As FRC Radio Conf
File Tools Help

OK. click and box the in network wireless your of (name) SSID the Enter

## Key WPA Enter 19.5.6

As FRC Radio Conf
File Tools Help
Team Nu
WP

To progr

1) Connect po 2) Make sure 3) Wait for the 4) Enter your 5) Press "Cor
are you if blank box the Leave OK. click and box the in network your for key WPA the Enter network. unsecured an using

## Radios Program 19.5.7

$\triangle$ FRC Radio Conf
File Tools Help

## Team $\mathrm{N}_{1}$

To progr 1) Connect po 2) Make sure 3) Wait for the 4) Enter your 5) Press "Cor
entered. network the to connect to radios of number any program to ready now is Kiosk The and box, the in Number Team the set Kiosk, the to radio the connect radio, each program To

Configure. click
an on work to radios B Rev LinkD- or A Rev LinkD- OpenMesh, program will kiosk The dropdown. "Radio" the from option appropriate the selecting by network FMS offseason
this in radios LinkD- the on configured be not will QoS and limitations Bandwidth : : पार
mode.

## Key or SSID Changing 19.5.8

Tools the to go Key, WPA or SSID the change to need or incorrectly something enter you If again click you When Mode. LiteFMS- of out kiosk the take to Mode LiteFMS- click and menu Key. and SSID the for promptedre- be will you Mode, LiteFMS- in back Kiosk the put to
19.5.9 פתרון בעיות
radio your Programming in steps troubleshooting the See

## Download) Image (Veteran Classmate your Imaging 19.6

classmate their imagere- to required not are teams Veteran : 인

FRC® the restore to drive USB bootable a creating for procedure the describes document This can you then Classmate your imagere- to wish not do you If computer. Classmate a on image only. DS or LabVIEW, C++/Java, for document appropriate the with start
19.6.1 דרישות מקדימות
computer ES1 Acer or computer Classmate E14 or E12, E11, E09, 1. drive USB larger or 16GB 2.
current the document, this of writing the of As ).here (download installed software Zip7-3. 21).02-(2019-19.00 is version released
the select and page the down Scroll ).here (download installed software RMprepUSB 4. stable current the document, this of writing the of As link. download version (Full) stable 2.1.745. is version

## Image Computer the Download 19.6.2

are There .Portal Image System Station Driver FRC FIRST the from image the Download the select site, download the On model. each for one available, images computer several limited the to Due image. the below button the clicking by computer your matches that option not does and only image DS/Utilities a with supported is it E09, the in drive hard the of size base LabVIEW the have images other All installed. C++/Java or LabVIEW for IDEs the have present. already installation
to necessary still is it software, FRC core prerequisite the install only images These : : पारा information. more for step Software Update the See updates. specific FRC the install
using If image. 2018 the is provided image E14 the availability, computer to Due : F the install and Eclipse) or (LabVIEW IDE old the remove to need may teams image, this

IDE. new

## Preparation 19.6.3

$\backslash C$ : (e.g. drive root your on folder a to site the from downloaded file image the Place 1.
).2016_Image
drive. restoration new the as use to PC the to drive Flash USB larger or 16GB Connect 2.

RMPrep 19.6.4


## Size Partition Set

EM RMPrepUSB
File Edit Dri

DRIVE 1

1 Partition Size (l)
MAX

- 3 Bootioader 0
- WinPEv2/W

C MS-DOS bod
$C \times P / B a r t P E b$
$C$ FREEDOS b
$C$ SYSLINUXb

- 4 Filesystem a

C FAT16
C FAT 32

- NTFS

V 5 Copy OS fi
C:Wsers \James

Choose Fol

6 Prepare

MAX to Size Partition Set

## Label Volume Set



Generic to Label Volume Set

## Option Bootloader Set


bootable" v3/Vista/Win7 v2/WinPE "WinPE Option Bootloader Select

## Filesystem Select



Filesystem NTFS Select

## Option Files OS Copy


checked is box Format" after files OS "Copy the Ensure

## Image Locate

RM RMPrepUSB
File Edit Driv

DRIVE 1

1 Parttion Size (1
MAX

- 3 Bootioader 0
(- WinPEv2/w
C MS-DOS boo
C XP/BarPE b
FREEDOS b
C SYSLINUXb
- 4 Fiesystem a
$C$ FAT16
CAT32
- NTFS
C.UsersWames

Choose Fok

6 Prepare
button Folder/File" "Choose the Select

# Dialog Files Copy 


image 7z. your select and "No" Choose

Drive Prepare

process the begin to Drive" "Prepare Select complete. now are settings configuration All

Prompt Command A drive. Flash USB selected the on command the execute to "OK" Click progress the showing open will

## 2 Dialog Confirmation

will you kickoff before downloaded image the of version encrypted an using are you If : : पारा video. Kickoff the of end the at found key decryption the enter to prompted be

## Complete Copy

Copy to H :

USB the to copied and extracted be will files restoration the complete, is formatting Once all When port. 2.0 USB a to connected when minutes $\sim 15$ take should process This drive. continue. to OK press appear, will message this copied, been have files

## Drive Eject

```
EM RMPrepUSB
File Edit Dri
DRIVE 1
1 Partition Size (
MAX
- 3 Bootloader 0
(c WinPEv2/W
\(C\) MS-DOS bod
C XP/BartPE b
\(C\) FREEDOS b
C SYSLINUXb
- 4 Filesystem a
C FAT16
C FAT32
( NTFS
```

- 5 Copy Os fi
$\mathrm{C}: \mathrm{U}^{2}$ sers $\mathrm{V}^{2}$ ames
Choose Fol

6 Prepare
ready now is drive USB The drive. USB the remove safely to button Drive" "Eject the Press PC. the onto image the restore to used be to

## Setup Hardware 19.6.5

in. plugged but off, turned is computer the sure Make 1. computer. Station Driver the on port USB a into Drive Thumb USB the Insert 2.

USB to Boot


## Classmate:

key F11 the Tapping keyboard. the on key F11 the tap and Classmate the on Power 1. menu. boot the up bring will boot during
right the press then menu, the on entry HDD: USB the select to keys up/down the Use 2 .
listing the expand to arrow
called be will (it device USB the select to keyboard the on keys arrow up/down the Use 3 . highlighted. is device USB the when key ENTER the Press Disk"). Flash "Generic

ES1: Acer
during key F12 the Tapping keyboard. the on key F12 the tap and computer the on Power 1. menu. boot the up bring will boot
press then menu, the on entry Generic HDD: USB the select to keys up/down the Use 2 . highlighted. is device USB the when key ENTER the
not is device USB the if or menu boot the up pull not does F12 pressing If ES1: Acer article. this of bottom the at Settings" BIOS "Checking see menu, boot the in listed


ENTER. press and "1" type Classmate, the reimage to want you that confirm To 1. installation The imaging.re- begin will Classmate The ENTER. press and "Y" type Then, 2. minutes. 3015- take will
drive. USB the remove complete, is installation the When 3.
Windows. into boot will Classmate The Classmate. the Restart 4.

Boot Station Driver Initial 19.6.6
that below, listed steps, unique some are there on, turned is Classmate the time first The cycle not do you sure make minutes; several take may boot initial The take. to need you'll process. the during power


Setup Enter
account. Developer the into Log 1.
later". me "Ask Click 2.
minutes. few a take may that Up Set a enters now computer The "OK". Click 3.

Windows Activate
connection. Internet an Establish 1.
and "Computer" click right menu, Start the click connection, Internet an have you Once 2.
"Properties". click
now" Windows "Activate Click and activation", "Windows section, bottom the to Scroll 3. minutes. few a take may activation The now". online Windows "Activate Click 4. windows. the of all close complete, is activation the When 5.

## Essentials Security Microsoft

close complete, is it Once Wizard. Setup Essentials Security Microsoft the through Navigate
windows. the of all
only！PC ES1 Acer
communication intermittent with issues have may image the in driver wireless default The by load to set be not could but image，the in is driver correct The radio．robot the with ＂Device typing start，clicking by Manager Device the open driver，correct the load To default．

Manager．Device clicking and box the in Manager＂

Network Wireless the locate and it expand to Adapters Network to next arrow the on Click Properties. select and adapter the click Right Adapter.

prompts. any at Yes Click button. Uninstall the click then tab, Driver the on Click

## Hardware New for Scan


wireless The changes". hardware for "Scan click and tree the of entry top the on click Right installed. be should driver correct the and detectedre- be automatically should adapter

## Software Update 19.6.7

final the before created are they time, on prepared be to images Classmate the for order In components additional some FRC for software the use To ready. were software the of versions Tools Game FRC the Installing with continue should teams LabVIEW installed. be to need will Development Java and C++ Installing continue should teams Java or C++ Languages). (All FRC. for Tools

## Process Imaging during Errors 19.6.8

C:I Administr:
An error has

Your options

1. Using sas

Reload
Reload
4. Download

See the 201

Note appear. will screen following the process, imaging the during detected is error an If the for image onlyStation- Driver the for screen error the shows below screenshot the that applied. being image the on depending vary will shown filename image specific The E09. device USB the with error an to due is message this of appearance the for reason typical The actions the to as details further with below listed is option Each stored. is image the which on will shown is message error this once key any Pressing solution. a pursuing in take can you Classmate. the Image in shown screen menu the to user the return

## 1 Option

drive Flash USB existing the on image same Using
run will This \#1. select and menu main the to return to key any press option, this try To
again. process imaging the

## 2 Option

RMPrepUSB using drive Flash USB the onto image same the Reload
creation the during caused error an to due displayed was message error the possible It's return to key any Press etc.) corruption, data error, copy file (e.g. drive Flash USB the of steps the follow then Classmate the shutdown safely to \#4 select and menu main the to Flash USB same the using Key Restoration USB new a create to RMPrep with starting
drive.

## 3 Option

RMPrepUSB using drive Flash USB new a onto image same the Reload drive Flash USB the with error an by caused be also may displayed message error The the shutdown safely to \#4 select and menu main the to return to key any Press itself.

RMPrep. with starting steps the follow and drive Flash USB new a Select Classmate.

## 4 Option

image new a Download
any Press imaging. when error an cause also may image downloaded the with issue An Staring Classmate. the shutdown safely to \#4 select and menu main the to return to key stick. imaging the of copy new a create Image Classmate the Download with

## Settings BIOS Checking

correct. are they insure to settings BIOS the check USB, to booting difficulty having are you If this: do To
settings BIOS the enter to booting is computer the while key F2 the tap Repeatedly • the select to keys arrow left and right the use loaded, has screen settings BIOS the Once • not, is it If "Enabled". to set is Menu" Boot "F12 for line the if check then tab, "Main" and "Enabled" select to Up/Down use Enter, press it, highlight to keys Up/Down the use

Mode" "Boot the that sure Make tab. "Boot" the select to keys Left/Right the use Next, • "Legacy" highlight Enter, press UpDown, using it highlight not, is it If "Legacy". to set is see. may you dialogs uppop- any through move to Enter Press again. Enter press and
exit. and changes any save to F10 Press •

## Custom Start to Station Driver the Setting Manually 19.7 Dashboard



Default to Station Driver Set 19.7.1
to setting Dashboard the set and tab Setup the on click software, Station Driver the Open
Station! Driver the close Then Default.

## file Storage Data DS Open 19.7.2

to Storage Data DS FRC on click double and FRC\Documents $\backslash$ Public $\backslash$ Users $\backslash C$ : to Browse it. open

## DashboardCmdLine 19.7.3

to dashboard the to point to it Modify .DashboardCmdLine with beginning line the Locate starts station driver the when launch
is specified path the where DASHBOARD.exe"<br>TO<br>PATH<br>"C: with = after string the Replace file. Storage Data DS FRC the Save file. exe dashboard the to path the

## Dashboard Java

path the where DASHBOARD.jar"<br>TO<br>PATH<br>"C: jar- java with = after string the Replace file. Storage Data DS FRC the Save file. jar dashboard the to path the is specified
11. Java require Smartdashboard and Shuffleboard : 리
installer WPILib from Dashboard
<br>tools<br>YYYY<br>wpilib<br>Public<br>Users<br>\"C: wscript with = after string the Replace or Shuffleboard.vbs either is DASHBOARD.vbs and year the is YYYY where DASHBOARD.vbs" file. Storage Data DS FRC the Save .Smartdashboard.vbs

Station Driver Launch 19.7.4
opened. is it time each dashboard the launch now should Station Driver The


Introduction - RobotBuilder 20.1

## Overview RobotBuilder 20.1.1

RobotBuilder process. development robot the aid to designed application an is RobotBuilder you: help can
code. boilerplate Generating
are. subsystems key its what out figure and robot your Organize
actuators. and sensors your of all for channels enough have you that Check
diagrams. wiring Generate
interface. operator your modify Easily
More...
a following by procedure forward straight very a is RobotBuilder with program a Creating follow. can you that steps the describes lesson This robot. any for same the are that steps few document. the of sections subsequent in steps these of each about details more find can You
details more For Framework. Command new the using code generates RobotBuilder : : पार .Programming Based Command see framework new the on

Subsystems into Robot the Divide
arms, trains, drive the like systems smaller of number a of up made naturally is robot Your your of design the at look should You etc. joints, wrist manipulators, collectors, shooters, example particular this In subsystems. operated separately smaller, into up it break and robot addition In system. camera a and gripper, a device, alignment minibot a elevator, an is there controlled separately are robot the of parts these of Each base. drive the include might one subsystems. for candidates good make and
.Subsystem a Creating see information more For

## Project the to Subsystem each Adding


a given and RobotBuilder the in folder "Subsystems" the to added be will subsystem Each to in filled get that attributes several are there subsystems the of each For name. meaningful subsystems of types two are there addition In subsystems. the about information more specify create: to want might you that
PID a with operation subsystems a control to desirable is it often - PIDSubsystems example for element, subsystem the makes that program your in code is This controller. PIDSubsystems it. reaching when stop then position desired a to quickly more angle, arm it adding then convenient more often are and inbuilt- code Controller PID the have reached has device the when determines that sensor a have PIDSubsystems yourself. setpoint. the to driven is that controller) (motor actuator an and position target the are and controller PID integrated an have don't subsystems these - subsystem Regular more requiring subsystems for or feedback for control PID without subsystems for used controller. PID embedded default the with handled be can than control complex types subsystem the between differences the documentation this of more through look you As apparent. more become will

## Subsystems the of each to Components Adding


to uses it that controllers and sensors actuators, of number a of consists subsystem Each which with subsystem the to added are actuators and sensors These operations. its perform palette RobotBuilder the from comes actuators and sensors the of Each associated. are they properties other usually are there each, For subsystem. appropriate the to dragged is and component. the to specific parameters other and numbers port as such set be must that
(motor potentiometer a and motor a uses that subsystem Elevator an is there example this In subsystem. Elevator the to dragged been have that pot) and

Goals Subsystem Describe That Commands Adding
by added are commands These perform. will robot the that goals distinct are Commands are there command, a creating When folder. "Commands" the under command the dragging picture): the of left the on palette the on (shown choices 7
the of all write to have you command, flexible most the are these - commands Normal goal. the accomplish to necessary actions desired the perform to code ends that command a of version simplified a are commands these - commands Timed timeout a after
runs that command a of version simplified a are commands these - commands Instant ends then and iteration one for
both running commands other of combination a are commands these - groups Command actions complicated more up build to these Use parallel. in and order sequential a in implemented. commands basic of number a have you after or setpoint, fixed a to Subsystem PID a move commands setpoint - commands Setpoint location. desired the regular a with used be to controller PID inbuilt- a have commands these - commands PID subsystem.
time the at run to commands two of one select commands these - commands Conditional initialization. of
.Code Command Writing and Command a Creating see information more For

Command each Testing

testing for useful is This SmartDashboard. or Shuffleboard from run be can command Each as long As group. command a to or interface operator the to them add you before commands
the on created be will button a checked, property SmartDashboard" on "Button the leave you that check can you and run will command the button, the press you When SmartDashboard. action. desired the performs it
work commands the all If individually. tested be can command each buttons, creating By whole. a as work will robot the that sure pretty be can you individually,
.Smartdashboard with Testing see information more For

Components Interface Operator Adding


You devices. input HID other and gamepads joysticks, of consists interface operator The in program your to buttons) joystick (joysticks, components interface operator add can components the of all initialize will that code generate automatically will It RobotBuilder.
commands. to connected be to them allow and
Interface" "Operator the to palette the from dragged are components interface operator The buttons put then program the to Joysticks add (1) First program. RobotBuilder the in folder

ShootButton. like names, meaningful them give and (2) joysticks associated the under

Interface Operator the to Commands the Connecting

is command the pressed is button a when that so buttons with associated be can Commands robot your of part operatedtele- the of most handle part, most the for should, This scheduled. program.
the in object JoystickButton the to command the adding (1) by done simply is This scheduled. is command the which in condition the setting (2) then program, RobotBuilder
.Command a to Interface Operator the Connecting see information more For

Commands Autonomous Developing
which specify simply You programs. autonomous develop to simple it make Commands automatically will it and period autonomous the enters robot the when run should command matter a be simply should this above, discussed as commands tested have you If scheduled. be
run. should command which choosing of
Autonomous the edit then (1), project RobotBuilder the of root the at robot the Select simple! that It's run. to command the choose to (2) property Command
.Commands Autonomous the Setting see information more For

## Code Generating


or C++ a generate RobotBuilder have can you above outlined process the in point any At specifying by done is This created. have you project the represent will that program Java toolbar appropriate the clicking then (1), properties project the in project the of location the
(2). code the generate to button
.Code RobotBuilder Generating see information more For

## RobotBuilder Starting

that platform any on run to able be should such as and program Java a is RobotBuilder : : various and Windows, macOS, on RobotBuilder running been have We Java. by supported is successfully. Linux of versions

## RobotBuilder Getting

see information, more For Installer. Offline WPILib the of part as downloaded is RobotBuilder guides installation Windows/macOS/Linux the

## Code Studio Visual from Starting - 1 Option

the launch to right top the in logo WPILib the click or "WPILib" type and Ctrl+Shift+P Press .Builder Robot select then ,Tool Start Select Palette. Command WPILib

## Shortcuts - 2 Option

the on folder Tools WPILib 2023 the and Menu Start Windows the to installed are Shortcuts desktop.

## Script the from Running-3 Option

~ and year the is YYYY (where ~/wpilib/YYYY/tools to tools the installs process install The Windows). on Public\Users\C: is
use can you that files (macOS/Linux) py. and (Windows) vbs. find will you folder this Inside what are and JDK correct the using tools the launch help scripts These tool. each launch to tools. the launch to use should you

Interface User RobotBuilder 20.1.3


Almost programs. robot of development rapid for designed interface user a has RobotBuilder lists. downdrop- from options selecting or dropand-drag- by performed are operations all

## Description Robot the to Palette the from Items Dragging


palette the on drag the starting by description robot the to palette the from items drag can You example, this In located. be to item the like would you where container the on ending and item
subsystem. Elevator the to potentiometer a dropping

## Menu Context ClickRight- the using Components Adding


container the on clickright- to is description robot the to items adding of method shortcut A identical is This (Potentiometer). added be should that item the select and (Elevator) object people. some for easier be might but drop and drag using to

## Items Description Robot of Properties Editing


can properties The viewer. properties the in appear will item selected a for properties The column. hand right the in value the selecting by edited be

## System Menu the Using


equivalent the or system menu the through selected be either can RobotBuilder for Operations toolbar. the from available) is it (if item

## Project Robot the up Setting

generated the so up set be to need that properties default some has program RobotBuilder The the in stored is information setup This properly. work files generated other and program line). first (the description robot for properties

Properties Project Robot
are: robot the describe that properties The
created is that project robot the of name The - Name
is program the when default by run will that command the - Command Autonomous
mode autonomous in placed
Command Autonomous the for Parameters - Parameters Command Autonomous
robot the locate to used be will which project, the for number team The - Number Team code. deploying when
package default the use will RobotBuilder checked If - Package Java Default Use used. be to name package custom a specify can you Otherwise (frc.robot).
the generating when used package Java generated the of name The - Package Java code project
or Java to Export when into generated is project the that folder The - Directory Export selected is C++
classes Subsystem the export should RobotBuilder if Checked - Subsystems Export project your from
from classes Command the export should RobotBuilder if Checked - Commands Export project your
wiring the contains that generate to file html the of location the location File Wiring robot your for diagram
third this, supports WPILib While simulation. and test unit Enables - Support Desktop may code your then desktop, support not do libraries If not. may libraries software party simulation or testing unit unless unchecked left be should It crash. may or compile not
it. support libraries all and needed is

Project RobotBuilder the with Control Source Using

and computers of number a on used be typically will project the control source using When If another. to computer users one from different be might directory project the to path the user the contain typically will it path, absolute an using stored is file project RobotBuilder the "relative select work, this make To computers. multiple across usable be won't and name example, above the In files. project the from offset directory an as path the specify and path" this In hierarchy. file the in files project the above just folder the in stored is file project the computers. your of all across portable be will it and path the of part not is name user the case,

## Subsystem a Creating

a make that code and data the all contain) (or encapsulate that classes are Subsystems the with program robot a creating in step first The operate. robot your on subsystem of Examples robot. the on subsystems the all create and identify to is RobotBuilder subsystem Each etc. arms, elevators, base, drive the collectors, ball grippers, are subsystems elevator an example, For work. it make to used are that actuators and sensors the all contains robot the of feedback provide to potentiometer a and controller motor SPX Victor a have might
position.

Palette the using Subsystem a Creating

description robot the in folder Subsystems the to palette the from icon subsystem the Drag class. subsystem a create to

## Menu Context the using Subsystem a Creating

Subsystem the Name

described as menu context the using or dragging either by subsystem the creating After multiple be can name The subsystem. the give to like would you name the type simply above, Java proper a make to words the concatenate will RobotBuilder spaces, by separated words
you. for name class C++ or

## Constants Adding



In code. your in numbers magic of amount the reduce to useful very are Constants

## Competition Robotics FIRST

specific for values sensor as such values, certain of track keep to used be can they subsystems, robot. the drive to which at speed the or elevator, an of heights "Constants" to next button the Press subsystem. a in constants no be will there default, By some. create to dialog a open to

## Constants Creating

20. Add constan

Name
one. add to constant" "Add Press first. at empty be will table constants The

## Constants Add

a of example this In descriptive. something to this Change constant. the of name The
"BackAwayDistance". and "PlaceDistance" be might constants good some drivetrain one from choose can you but double, a be likely most will This constant. the of type The byte. or boolean, long, int, double, String, of: constant. the of value The

## Constants Saving

the save to close" and "Save press just values, their setting and constants adding After top the on button exit the press save, to want don't you If dialog. the close and constants window. the of

## Saving After


subsystem the in button "Constants" the in appear will names the constants, saving After properties.

Subsystem the into Actuators/Sensors Dragging

subsystem: a to components adding to steps three are There required. as subsystem the into palette the from sensors or actuators Drag
name meaningful a sensor or actuator the Give the in item each for numbers channel and numbers module as such properties the Edit subsystem.
the on module each for numbers channel incrementing use automatically will RobotBuilder channel unique assign RobotBuilder let just can you robot the wired yet haven't you If robot. wiring generating the to according robot the wire and actuator or sensor each for numbers table.
code skeleton generate subsequently will and RobotBuilder, in subsystem the creates just This a for Code Writing to refer please robot your operate actually it make To subsystem. the for .Subsystem

## Command a Creating

The subsystems. your for actions or behaviors provide that create you classes are Commands the start to MoveElevator like subsystem, the of operation the set should class subsystem commands The setpoint. PID elevator's the set to ElevatorToSetPoint or moving, elevator finished. is it when of track keep and operation subsystem the initiate

## Folder Commands the to Command the Drag


command The description. robot the to palette the from dragged be can commands Simple folder. Commands the under created be will

Menu Context the using Commands Creating

in folder Command the on menu context clickright- the using commands create also can You description. robot the

## Command the Configuring

will command the what describes that meaningful something with command the Name spaces be can there although code, in were they if as named be should Commands do. words. between
it scheduled, is command this When command. this by required is that subsystem the Set command. this requires also that running currently command any stop automatically will and subsystem) claw the (requiring running currently is claw the open to command a If closing. start and opening stop immediately will it scheduled, is command claw close the command. the for SmartDashboard the on buttons create should it if RobotBuilder Tell preset. parameter each for created be will button A the do can parameters with command single A takes. command this parameters the Set "Drive example, For parameters. take not do that commands more or two as thing same into consolidated be can commands Distance" "Drive and Backward", "Drive Forward", distance. and direction for values takes that command single a using when RobotBuilder in elsewhere used be can These parameters. for presets Set for command default the setting or button joystick a to it binding as such command, the subsystem. a

However, disabled. is robot the when run to command the Allows .Disabled When Run actuate. not will disabled while commanded actuators any
Chooser Sendable the to added be should command the Whether .Selection Autonomous autonomous. for selected be can it that so
parameters double); type of (»setpoint«, parameter single a with come commands Setpoint commands. setpoint for deleted or edited, added, be cannot

## Parameters Editing and Adding


parameters: edit or add To
table property the of column Value the in button the Click
parameter a add to button Parameter Add the Press
type the and me] [change to defaults name The added. been just has that parameter A before it change to have will you so invalid, is name default The String. to defaults the click Double name. the changing start to cell Name the click Double exporting. type. the select to cell Type
window. the close and changes all save will button close and Save pressing and them selecting by deleted be can and dragging, by simply reordered be can Rows backspace. or delete

Presets Parameter Editing and Adding
preset. new a add to set parameter Add Click
example this in presets The descriptive. something to preset the of name the Change subsystem. gripper the closing and opening for are
(e.g. in value a type either can You preset. the for parameter(s) the of value the Change requires. command the that subsystem the in defined constants from select or "3.14") can't you - parameter the as type same the be to has constant the of type the that Note example for parameter, typedouble- a to passed be constant typeint- an have press saving, without exit to dialog; the exit and changes save to close and Save Click window. the of bar top the in button exit the

## Commands Autonomous the Setting

makes it performs, robot the that (behaviors) actions more or one simply is command a Since a be could it While command. a as robot a of operation autonomous the describe to sense that commands of group (a group command a be to going likely more is it command, single together). happen
command autonomous the allows which Chooser Sendable a for code generates RobotBuilder dashboard. the from chosen be to run to

selected not is command another if runs that command autonomous default the designate To dashboard: the on
description program robot the in robot the Select
robot the when run should that command the with field command Autonomous the in Fill to option the you give will and field downdrop- a is This mode. autonomous in placed is defined. been has that command any select any. if takes, command the parameters the Set


Autonomous the select Chooser, Sendable the to options as add to commands select To box. check Selection be will command Autonomous chosen the mode, autonomous into put is robot the When

## Command a Test to Shuffleboard Using

trigger to Shuffleboard/SmartDashboard to button a adding by tested easily are Commands and necessary is program robot the of rest the with integration no way, this In command. the commands verify to way easiest the is This tested. independently be easily can commands Shuffleboard on created be can button a program, your in code of line single a with since and subsystems verify to place in left be then can buttons These command. the run will that future. the in operations command
commands. writing each programmers, multiple accommodating of benefit added the has This tested. individually be can commands the project, robot main the into checked is code the As

## Shuffleboard on Button the Creating

the from command the of instance an putting by SmartDashboard the on created is button The to added been has it that operation common a such is This dashboard. the to program robot checked, is box the that sure be commands, your writing When checkbox. a as RobotBuilder you. for generated automatically be will buttons and

## Buttons the Operating



You screen. dashboard the on appear will and automatically generated be will buttons The commands, of number a are there example this In Shuffleboard. on buttons the rearrange can the run will button commands the Pressing testing. for button associated an with each the causing command the interrupt will it again pressing pressed, is it Once command. called. be to method Interrupted()

Java

| AutonomousCommand()); new,"Command Autonomous" (putDataSmartDashboard. OpenClaw(m_claw); new, "Claw Open"(putDataSmartDashboard. <br> CloseClaw(m_claw)); new, "Claw Close"(putDataSmartDashboard. |
| :---: |
| C++ |
| AutonomousCommand()); new, "Command Autonomous"PutData(: SmartDashboard m_claw)); Openclaw( new, "claw Open"PutData(: SmartDashboard m_claw));CloseClaw( new, "Claw Close"PutData(: SmartDashboard |

is This yourself. code the writing by manually Shuffleboard the to added be can Commands that name the with along method PutData the to command the of instances passing by done scheduled are instances These Shuffleboard. the on button the with associated be should generated RobotBuilder as same the exactly is result The pressed. is button the whenever code the all writing than easier much is RobotBuilder in checkbox the clicking although code, hand. by

## Command a to Interface Operator the Connecting

some to subsystem a starts command The robot. your for behaviors the handle Commands setpoint some reaches it until running continues and elevator and raising like mode operating way That finish. to subsystem the for waiting handles then command The timeout. or behaviors. complex more develop to sequence in run can commands
your on button a whenever run to command a schedule to code generate also will RobotBuilder particular a when command a run to code write also can You pressed. is interface operator happened. has condition trigger

## Press Button a with Command a Run


dpad the whenever run to command Claw" "Close the schedule to want we example this In pressed. is 6) (button gamepad logitech a on pressed is button direction right the of claw the close to is function its and Claw" "Close called is run to command The
robot
this that ensure will This subsystem. Claw the requires command the that Notice same the at happening operation another was there if even running starts command interrupted. be would command previous the case this In claw. the used that time you let presets things; multiple do to command one for possible it make Parameters them reuse and command the to pass you values define

Program Robot the to Joystick the Adding

program robot the to joystick the Add
program robot the in folder Interface Operator the to joystick the Drag number port USB the set and joystick the of use the reflects it that so joystick the Name

## Command Elevator" "Move the to Button a Linking


program the to pressed be should that button the Add the under it's that so Controller) (Logitech Joystick the to button joystick the Drag joystick
the when run to command the number, button the button: the for properties the Set to property run to When the and takes, command the parameters pressed, is button pressed. is button joystick the whenever run should command the that indicate to onTrue
in joystick a have must You Joystick. a (under) to dragged be must buttons Joystick : : पारा buttons. adding before folder Interface Operator the

## Code Created RobotBuilder 20.1.10

Project Generated RobotBuilder a of Layout The
$\vee$ src $\backslash$ main
$>$ deploy
$\vee$ java $\backslash$ frc
$\vee$ commar
(J) Autonc
(J) CloseC
(J) Drive.ja
(J) OpenC
(J) Pickup
(J) Prepare.ja
(J) SetEle
(J) SetWri
(J) TankDr
v subsyste
(J) Claw.ja
(J) Drivetr
(J) Elevatc
(J) Wrist.ja
(J) Constan
(J) Main.jav
(J) Robot.ja
(J) RobotCc
for C++) (in folder a or Java) (in package a of consists project generated RobotBuilder A stored is object subsystem or command Each Subsystems. for another and Commands program main robot the find you'll project the of level top the At containers. those under
(RobotContainer.java/C++).
a Structuring see robot, Based Command a of organization the on information more For Project Robot BasedCommand-

## Code Autogenerated

Java

| ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // Autonomous()); new ,"Autonomous" (setDefaultoptionm_chooser. ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END m_chooser); ,"Mode Auto"(putDataSmartDashboard. |
| :---: |
| C++ |
| ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN /O <br> Autonomous()); new ,"Autonomous"m_chooser.SetDefaultOption( |

```
ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END
    m_chooser);& ,"Mode Auto"PutData(: :SmartDashboard: : frc
```

designed is RobotBuilder exportedre- is code and modified is description robot the When makes This code. your preserving thus file, the to made you changes any modify not to RobotBuilder, by modified be to OK is code what know To tool. lifecyclefull- a RobotBuilder special some with delimited rewritten be to have potentially will that sections generates it these within code any add Don't above. example the in shown are comments These comments.

RobotBuilder. from exported is project the time next rewritten be will it blocks, comment
this but removed, be can comments the modified, be must blocks these of one inside code If //BEGIN the if example, above the In later. happening from updates further prevent will in added was subsystem required another later then removed, were comments //END and export. next that on generated be not would it RobotBuilder,

Java

deleted, or modified is this If file. of type the defining comment a has file each Additionally, and inside both added code any deleting file the regenerate completely will RobotBuilder blocks. CODE AUTOGENERATED the outside

Program Robot Main
Java


11
12

## Competition Robotics FIRST



page) next on (continues


(Header) C++
Robot. TYPE: ROBOTBUILDER /1
once pragma\#\#
frc/TimedRobot. $h><$ include\#
frc2/command/Command.h>< include\#
RobotContainer.h" include\#
page) next on (continues
(ㄴำ ำ

(Source) C++
Robot. TYPE: ROBOTBUILDER //
Robot.h"" include\#
12
frc/smartdashboard/SmartDashboard.h>< include\# frc2/command/CommandScheduler.h>< include\#
\}\{ ()Robot: RobotInit void
Use mode. the matter no packet, robot every called is function This */ **/
disabled, during run to want you that diagnostics like items for this *
test. and teleoperated autonomous, *
$*$
*/

You mode. Disabled enters robot the time each once called is function This */
the when clear to want you information subsystem any reset to it use can *
disabled. is robot *
\}\{ ()Robot::DisabledInit void
$\}\left\{()\right.$ Robot::DisabledPeriodic void $\begin{array}{l}3 \\ 3\end{array}$
30
31
@link\{ your by selected command autonomous the runs autonomous This * class. RobotContainer\} * 41
*/
\{ ()Robot::AutonomousInit void


|  | when running stops autonomous the that sure makes This // to autonomous the want you If running. starts teleop // remove command, another by interrupted until continue // out. it comment or line this // \{ ) nullptr =! (m_autonomousCommand if Cancel() ;>-m_autonomousCommand ;nullptr = m_autonomousCommand ```mode. test during periodically called is function This *``` */ \}\{ ()Robot::TestPeriodic void RUNNING_FRC_TESTS ifndef\# \} () ;>Robot<StartRobot::frc return \{ ()main int endif\# |
| :---: | :---: |

this to parts of number a are There RobotBuilder. by generated program main the is This sections): (highlighted program
and autonomousPeriodic() your call will TimedRobot TimedRobot. extends class This 1.
20ms. every methods teleopPeriodic ()
pass. scheduling one make 20 ms , every called is which method robotPeriodic the In 2 . the in autonomous of start the at scheduled is provided command autonomous The 3. in period autonomous the of end the at canceled and method autonomousInit() .teleopInit()

## RobotContainer

Java


| ;edu.wpi.first.wpilibj.smartdashboard.SmartDashboard import ;edu.wpi.first.wpilibj2.command.Command.InterruptionBehavior import $\begin{array}{r} \text { ID=IMPORTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // } \\ \text {;edu.wpi.first.wpilibj2.command.Command import } \\ \text {;edu.wpi.first.wpilibj2.command.InstantCommand import } \\ \text {;edu.wpi.first.wpilibj.Joystick import } \\ \text {;edu.wpi.first.wpilibj2.command.button.JoystickButton import } \\ \text {;frc.robot.subsystems.* import } \end{array}$ <br> ${ }_{u}$ Command-based Since declared. be should robot the of bulk the where is class This * the in handled be actually should logic robot little very paradigm, declarative"" * Robot\} \{@link $\leftrightarrows$ ,the of structure the Instead, calls). scheduler the than (other methods periodic * robot $\rightarrow$ here. declared be should mappings) button and commands, subsystems, (including * \{ RobotContainer class public <br> RobotContainer(); new = m_robotContainer RobotContainer static private |
| :---: |
| Joysticks // |
| 1Joystick( new = joystick1 Joystick final private );0Joystick( new = logitechController Joystick final private <br> ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // <br> commands autonomous for chooser A // () ;><SendableChooser new = m_chooser >Command<SendableChooser <br> commands. and devices, OI subsystems, Contains robot. the for container The * <br> \{ ()RobotContainer private ID=SMARTDASHBOARD SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // <br> Subsystems Smartdashboard // <br> (6) // (m_wrist); putDataSmartDashboard. <br> (m_elevator) ; putDataSmartDashboard. <br> (m_claw) ; putDataSmartDashboard. <br> (m drivetrain); putDataSmartDashboard. |

(ㄴำ


ID=SUBSYSTEM_DEFAULT_COMMAND SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
chooser sendable autonomous Configure // ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
m_ , 0SetElevatorSetpoint( new , "Bottom Setpoint: Elevator Set"(addOptionm_chooser.
elevator)); $\rightarrow$
0.SetElevatorSetpoint( new ,"Platform Setpoint: Elevator Set"(addOptionm_chooser.
m elevator)); , $2 \hookrightarrow$
m_, 0.3SetElevatorSetpoint( new ,"Top Setpoint: Elevator Set"(addOptionm_chooser.
elevator) ) ; $\hookrightarrow$

ID=AUTONOMOUS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
m_chooser) ; ,"Mode Auto" (putDataSmartDashboard.
\{ ()getInstance RobotContainer static public m_robotContainer; return
**/ ${ }_{4}$ created be can Buttons mappings. button->command your define to method this Use * (\{@link subclasses its of one or GenericHID\} @link\{ a instantiating *

page) next on (continues

| uit passing then and XboxController\}), @link\{ or edu.wpi.first.wpilibj.Joystick\} * a to $\hookrightarrow$ edu.wpi.first.wpilibj2.command.button.JoystickButton\}. @link\{ * \{ () configureButtonBindings void private ID=BUTTONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // |  |
| :---: | :---: |
|  |  |
|  |  |

ID=BUTTONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //

ID=FUNCTIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
\{ ()getLogitechController Joystick public
logitechController; return
\}
\{ ()getJoystick1 Joystick public joystick1; return
\}
\{ ()getJoystick2 Joystick public joystick2; return
\}

ID=FUNCTIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
(ำำ ำ

$$
\begin{array}{r}
\text { class. Robot\} @link\{ main the to command autonomous the pass to this Use * } \\
\text { autonomous in run to command the @return * }
\end{array}
$$

once pragma\#
ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
frc/smartdashboard/SendableChooser.h>< include\# frc2/command/Command.h>< include\#
subsystems/Claw.h"" include\# subsystems/Drivetrain.h"" include\# subsystems/Elevator.h"" include\# subsystems/Wrist.h"" include\#
commands/Autonomous.h"" include\# commands/CloseClaw.h"" include\# commands/Drive.h"" include\# commands/OpenClaw.h"" include\# commands/Pickup.h"" include\# commands/Place.h"" include\# commands/PrepareToPickup.h"" include\# commands/SetElevatorSetpoint.h"" include\# commands/SetWristSetpoint.h"" include\# commands/TankDrive.h"" include\# frc/Joystick.h>< include\# frc2/command/button/JoystickButton.h>< include\#

ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
RobotContainer class
:public
GetAutonomousCommand(); *Command::frc2
(); GetInstance *RobotContainer static

ID=PROTOTYPES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
subsystems s'robot The //

Claw
m elevator; Elevator

## Competition Robotics FIRST


RobotContainer. TYPE: ROBOTBUILDER //
RobotContainer.h"" include\#
frc2/command/ParallelRaceGroup. $h><$ include\#
frc/smartdashboard/SmartDashboard.h>e include\#


\{ ConfigureButtonBindings(): :RobotContainer void
ID=BUTTONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
page) next on (continues
(ㄴำ ำ
autonomous in run be will command selected The //
m_chooser. GetSelected(); return
and subsystems the where is which RobotBuilder by generated RobotContainer the is This (highlighted program this to parts of number a are There defined. are interface operator
sections):
any to parameters as passed be can They here. declared is subsystems the of Each 1. them. require that commands
is it properties, robot RobotBuilder in provided command autonomous an is there If 2. dashboard. the on selected be to Chooser Sendable the to added here. generated is components interface operator the all for code The 3. generated also is run should that commands to buttons OI the link to code the addition In 4. here.
defined are running are commands other no when subsystem a on run be to Commands 5 . here.
here. defined are dashboard a via run be to Commands 6 .

# Code the Writing - RobotBuilder 20.2 

## Project a for Code Generating 20.2.1

and code the export to need you'll RobotBuilder, in framework robot your up set you've After so. doing for process the describes article This Code. Studio Visual into it load

## Project the for Code the Generate


(2) C++ or Java click then and (1) want you where to points Directory Export the that Verify code. update or project Code VS a generate to

Code Studio Visual in Project the Open
click and location Export your to Navigate .Folder Open >- File select and Code VS Open .Folder Select

## Subsystem a for Code the Writing 20.2.2

simple For straightforward. very is subsystem working actual an create to code Adding we section this In simple. extremely be to out turns it feedback use don't that subsystems to switch limit a has also subsystem Claw The subsystem. Claw a of example an at look will grip. the in is object an if determine

## Subsystem Claw the of Representation RobotBuilder

: $\$ Joe $\backslash$ Documents $\backslash$ Ro

Verify Java Wiring

- left er
- right
- gyro
- motor
- limit s

ㅂ
Elevator

- motor
- pot

Motor VictorSPX single a by operated subsystem a is arm robot a of end the at claw The and closing, start opening, start do, to motor the want we things three are There Controller. closing and opening for timing The subsystem. the of responsibility the is This moving. stop the if get to method a define also will We tutorial. this in later command a by handled be will object. an gripping is claw

## Capabilities Subsystem Adding

Java


## 


\{ SubsystemBase extends Claw class public ${ }_{31}$ ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // ;0.1 = PlaceDistance double final static public ;0.6 = BackAwayDistance double final static public

ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
motor; PWMVictorSPX private limitswitch; DigitalInput private

ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
${ }_{* *}^{*}$

ID=CONSTRUCTORS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
);4PWMVictorSPX( new = motor motor) ; ,"motor"addChild( ) ; false(setInvertedmotor.
);4DigitalInput( new = limitswitch limitswitch); ,"switch limit"addChild(

ID=CONSTRUCTORS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
@Override
\{ ()periodic void public run scheduler per once called be will method This //
@Override
\{ ()simulationPeriodic void public simulation in when run scheduler per once called be will method This //

page) next on (continues
$\square$
Subsystem. TYPE: ROBOTBUILDER //
ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
subsystems/Claw.h" include\#
frc/smartdashboard/SmartDashboard.h>< include\#
\{ SimulationPeriodic()::Claw void simulation in when run scheduler per once called be will method This //

ID=CMDPIDGETTERS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // ID=CMDPIDGETTERS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //

changes the see to easier it make to file this from removed been have comments The : OCl document. this for
so RobotBuilder by created are limitswitch and motor called variable member that Notice a have will items palette indragged- your of Each subsystem. the throughout used be can it RobotBuilder. in given name the with variable member

Only) (C++ File Header the to Declarations Method the Adding
C++
Subsystem. TYPE: ROBOTBUILDER // once pragma\#

11
12
13
ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
frc2/command/SubsystemBase.h>< include\# frc/DigitalInput.h>< include\#
frc/motorcontrol/PWMVictorSPX.h>< include\#
ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
$* * /$
$*$

ExampleAuthor @author *
*/
\{ SubsystemBase::frc2 public :Claw class :private
except private is possible everything that desirable s'It // capabilities subsystem implement that methods for // ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // ;\}4m_limitswitch\{ DigitalInput::frc
;\}4m motor\{ PWMVictorSPX::frc
ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // : public Claw();
;override ()Periodic void override ()SimulationPeriodic void

page) next on (continues

declarations the , Claw. cpp file, implementation class the to methods the adding to addition In be must that declarations Those .Claw. h file, header the to added be to need methods the for here. shown are added
define to need you closing and opening handle to subsystem claw the to behavior the add To
.commands

## Command a for Code the Writing 20.2.3

right the at stop to it get to but moving, robot your on mechanisms the get classes Subsystem in Previously Commands. write you operations complex more through sequence and time to robot a on subsystem Claw the for code the developed we subsystem a for code the writing command a for code the write will we Now moving. stop to or closing, opening, claw the start Our close. and open to claw the get to time right the for motor claw the run actually will that or it open to second 1 for motor the run we where mechanism simple very a is example claw it. close to tripped is switch limit the until

## RobotBuilder in Command Claw Close

Verify Java Wiring

the requires it that Notice RobotBuilder. in command CloseClaw the of definition the is This step. next the in explained is This subsystem. Claw

Class CloseClaw Generated
Java



Command. TYPE: ROBOTBUILDER //
ID=CONSTRUCTOR SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
commands/CloseClaw.h"" include\#
m_claw) *CloseClaw(Claw: CloseClaw m_claw(m_claw) \{:
dependencies subsystem declare to here AddRequirements() Use //
AddRequirements(m_Subsystem); eg. //
) ;"CloseClaw"SetName(
AddRequirements(\{m_claw\});
ID=CONSTRUCTOR SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
\}
time first the runs Command this before just Called //
\{ Initialize()::CloseClaw void
run to scheduled is Command this when repeatedly Called //
\{ Execute()::CloseClaw void
35
\} $\quad 37$
execute() run to needs longer no Command this when true return this Make //
\{ IsFinished()::CloseClaw bool
true returns isFinished after once Called //
\{ interrupted) boolEnd(::CloseClaw void
page) next on (continues
$\left.\begin{array}{r}\text { \{ const RunsWhenDisabled() : :CloseClaw bool } \\ \text { ID=DISABLED SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // } \\ \text {; false return } \\ \text { ID=DISABLED SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // }\end{array}\right\}$
command The command. CloseClaw the for files class the generate will RobotBuilder very this operate To time. over operation the is that claw, the of behavior the represents Claw The direction, close the in operate to needs motor the mechanism claw simple The it. stop to and direction right the in running motor the start to methods has subsystem are that code of lines The time. correct the for motor the run to is responsibility commands
behavior. this add to added are boxes the in shown
that method Close ( ) the calling by direction closing the in moving motor claw the Start 1. method. Initialize CloseClaw the in subsystem Claw the to added was tripped. is subsystem Claw the in switch limit the when finished is command This 2. In up. clean to place a is and finished is command the when called is method End () The 3. out. run has time the since stopped is motor the case, this

## Joysticks and Drive Tank with Robot the Driving 20.2.4

a of part are that actuators some drive should that joystick a have to is case use common $A$ the and class RobotContainer the in created is joystick the that is problem The subsystem. when that, command a create to is idea The subsystem. the in are controlled be to motors subsystem the on created is that method a calls and joystick the from input reads scheduled, motors. the drives that of pair a using drive tank in operated is that shown is subsystem base drive a example this In joysticks.

## Subsystem Train Drive a Create


the for driving the handle to be will responsibility Its Train. Drive called subsystem a Create base. robot

left a is There drive. motor two a for object Drive Differential a create Train Drive the Inside class. Drive Differential the of part as motor right and motor

Drive, Differential the inside robot, the drive to motors two then more use to want we Since can they so controllers motor multiple group will These Groups. Controller Motor two create Drive. Differential with used be


Group. Controller Motor each in Controllers Motor two create Finally,

## Interface Operator the to Joysticks the Add


right the is other the and stick left the is one Interface, Operator the to joysticks two Add sides. right and left robots the drive to used are joysticks two the on axisy- The stick.
step. next the to continuing before Java or C++ to program your export to sure Be : Clll

Subsystem the on Motors the Write to Method a Create


page) next on (continues
(ㄴำ ำ

|  | rightMotor); DifferentialDrive(leftMotor, new = drive drive) ; ,"Drive"addChild( ); true(setSafetyEnableddrive. ) ;0.1(setExpirationdrive. );1.0(setMax0utputdrive. |
| :---: | :---: |
|  | );k4XEncodingType. ,false , 1 , 0Encoder( new = leftencoder leftencoder); ,"encoder left"addChild( ;1.0(setDistancePerPulseleftencoder. |
|  | );k4XEncodingType. , false , 3,2Encoder( new = rightencoder rightencoder) ; ,"encoder right"addChild( );1.0(setDistancePerPulserightencoder. |
|  | ; 0AnalogGyro( new = gyro) ; ,"gyro"addChild( 0.007 (setSensitivitygyro. |
|  | );1AnalogInput( new = rangefinder rangefinder): "finder range"addChild( |

@Override
@0verride
\{ ()simulationPeriodic void public simulation in when run scheduler per once called be will method This //
subsystem this controlling for methods Put //
Commands. from these Call here. //


|  |  |
| :---: | :---: |
| ID=CMDPIDGETTERS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // <br> ID=CMDPIDGETTERS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // <br> ;0.1 = PlaceDistance double const constexpr static <br> ;0.6 = BackAwayDistance double const constexpr static <br> ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // |  |
|  |  |

15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
(Source) C++
Subsystem. TYPE: ROBOTBUILDER //
ID=INCLUDES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //


$$
\begin{aligned}
& \text { subsystems/Drivetrain.h"" include\# } \\
& \text { frc/smartdashboard/SmartDashboard.h>< include\# } \\
& \text { Drivetrain()\{::Drivetrain } \\
& \text { );"Drivetrain"SetName( } \\
& \text { ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // } \\
& \text { ) ;"Drivetrain"SetSubsystem( } \\
& \text { m_rangefinder) ;\& ,"finder range"AddChild( } \\
& \text { m_gyro) ; \& , "gyro"AddChild( } \\
& \text { );0.007m_gyro.SetSensitivity( } \\
& \text { m_rightencoder);\& ,"encoder right"AddChild( } \\
& \text { );1.0m_rightencoder.SetDistancePerPulse( } \\
& \text { m_leftencoder) ; \& ,"encoder left"AddChild( }
\end{aligned}
$$15 ) ;1.0m_leftencoder.SetDistancePerPulse(

m_drive) ; \& ,"Drive"AddChild( ) ; truem_drive. SetSafetyEnabled(
s) ; 0.1m_drive.SetExpiration( ) ;1.0m_drive.SetMax0utput (
m_rightMotor);\& ,"Motor Right"AddChild(
m_right2) ; \& ,"right2"AddChild(
) ;falsem_right2.SetInverted(
m_right1) ; \& , "right1"AddChild(
) ; falsem_right1.SetInverted(
m_leftMotor) ;\& ,"Motor Left"AddChild(
m_left2) ; \& ,"left2"AddChild(
) ;falsem_left2.SetInverted(
m lefti); \& ,"left1"AddChild(
) ;falsem_left1.SetInverted(
ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
\{ Periodic()::Drivetrain void
loop every run be to here code Put //
\{ SimulationPeriodic()::Drivetrain void simulation in when run scheduler per once called be will method This //
page) next on (continues
(ำ


## Methods Subsystem the Call and Values Joystick Read

FRC RobotBuilder
File Edit View Exp
New Save Open Und

joystick the read to be will purpose Its Drive. Tank called case this in command, a Create the Requires command this that Notice subsystem. Base Drive the to them send and values use to tries else anything whenever running stop to it cause will This subsystem. Train Drive Train. Drive the

for C++) for ><double()std: : function or Java for DoubleSupplier( parameters two Create speeds. right and left the
() enter parameter left the For Java: values. joystick retrieve to preset parameter a Create For C++: .getJoystick2().getY() >- () enter right for and getJoystick1().getY() >enter right the for and $>G \operatorname{Ge} Y() ;\}$-getJoystickl() \{return [this] enter parameter left the $>G e t Y() ;\}-g e t J o y s t i c k 2()$ \{return [this]
step. next the to continuing before Java or C++ to program your export to sure Be : : पार्य

Driving the do to Code the Add
java
Command. TYPE: ROBOTBUILDER //
11
12
;frc.robot.commands package ;edu.wpi.first.wpilibj.Joystick import ;edu.wpi.first.wpilibj2.command.CommandBase import
; frc.robot. RobotContainer import ID=IMPORTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // ;frc.robot.subsystems.Drivetrain import ID=IMPORTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
\{ CommandBase extends TankDrive class public
ID=VARIABLE_DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // m_drivetrain; Drivetrain final private

ID=VARIABLE_DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // ID=CONSTRUCTORS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
subsystem) (DrivetrainTankDrive public

ID=CONSTRUCTORS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // ID=VARIABLE_SETTING SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //

ID=VARIABLE SETTING SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // ID=REQUIRES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
subsystem; = m_drivetrain
addRequirements(m_drivetrain);
ID=REQUIRES SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
scheduled. initially is command the when Called // @0verride
\{ ()initialize void public
scheduled. is command the while runs scheduler the time every Called // @Override
\{ ()execute void public
page) next on (continues

(Header) C++

${ }^{11}$

(Source) C++

page) next on (continues
(
ID=DISABLED SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END // 3
the for the pass is needed is that All driving. actual the do to method execute the to code Add the for them uses just subsystem The subsystem. Train Drive the to parameters right and left steering. tank get we And object. DifferentialDrive its on method steering tank
the stopped, or interrupted is command this when that so method end ( ) the in filled also We precaution. safety a as stopped be will motors

## Command Default Make


the for Command" "Default the be command Drive Tank the make to is step last The Drive the using is command other no whenever that means This subsystem. Train Drive the When behavior. desirable the probably is This control. in be will Joysticks the Train, Drive Tank the interrupt and train drive the require also will it running, is code autonomous will command DriveWithJoysticks the finished, is code autonomous the When command. back be will operators the and command), default the is it (because automatically restart should commands those driving, automatic teleop does that code any write you If control. in have and command Drive Tank the interrupt will too they that so DriveTrain the "require" also control. full

## Advanced - RobotBuilder 20.3

## Actuators Control to PIDSubsystem Using 20.3.1

for results guaranteed get to feedback for sensors use will subsystems advanced More to feedback use PIDSubsystems angles. wrist or heights elevator setting like operations an use we example this In position. particular a to it drive and actuator the control The height. the on feedback give to it to connected potentiometer turn10- a with elevator the to mechanism the control automatically to PIDController inbuilt- a has PIDSubsystem
setpoints. correct

## PIDSubsystem a Create


is mechanism a of speed or position the control to feedback uses that subsystem a Creating easy. very
description robot the in folder Subsystems the to palette the from PIDSubsystem a Drag 1. case this in subsystem, the for name meaningful more a to Subsystem PID the Rename 2.

Elevator
that indicates This red. turned have description robot the of parts the of some that Notice The in. filled be to need and completed been haven't PIDSubsystem) (the components these red. in shown are incorrect or missing either are that properties

PIDSubsystem the to Actuators and Sensors Adding


PIDSubsystem the for components missing the Add the case this in - subsystem particular the to controller) motor (a actuator the in Drag 1. Elevator sensor the case this in subsystem, the to feedback for used be will that sensor the Drag 2.
feedback. height elevator give might that potentiometer a is

## Parameters PID the in Fill


the of stability and sensitivity desired the get to in filled be to need values D and I, P, The I the for 0 and 6.0 of constant proportional a use we elevator our of case the In component. terms. D and

Constants Setpoint Create


## Competition Robotics FIRST

manage to constants create will we setpoints, elevator manage to easier it make to order In dialog. constants the up bring to box constants the on Click setpoints. the

Name
Bottom

Stow

Table_Height

Bottom case: this in constant, the for name a in Fill 1.
double case: this in menu, downdrop- the from constant the for type a Select 2.
4.65 case: this in constant, the for value a Select 3.
constants adding continue to constant add Click 4.
close and Save Click constants, all entering After 5.

## PIDSubsystem a for Code the Writing 20.3.2

the in fill to have we and RobotBuilder the by generated is PIDSubsystem the of skeleton The the of output the with motor the drive and value potentiometer the provide to code the of rest

PIDController. embedded
all it's Once RobotBuilder. the in created been has subsystem PID Elevator the sure Make toolbar Java/C++ the or menu Export the using project the for code Java/C++ generate set, menu.
needed is code additional no that such methods PIDSubsystem the generates RobotBuilder operation. basic for

## Constants PID the Setting

generated. automatically are constants PID and constants height The
Java

```
\{ PIDSubsystem extends Elevator class public
ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
;4.6 = Bottom double final static public ;1.65 = Stow double final static public ;1.58 = Table_Height double final static public
```

ID=CONSTANTS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN // motor; PWMVictorSPX privatepot; AnalogPotentiometer private

Variables D I P//
;6.0 = kP double final static private
;0.0 = kI double final static private
;0.0 = kD double final static private
;0.0 = kF double final static private
ID=DECLARATIONS SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //


## Measurement Potentiometer Get

Java
@Override
\{ ()getMeasurement double public
ID=SOURCE SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
();getpot. return

ID=SOURCE SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //

C++
\{ ()Elevator: :Getmeasurement double
ID=SOURCE SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
m_pot.Get (); return
ID=SOURCE SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
the providing is that sensor the of value the set to used is method getMeasurement () The returns and generated automatically is code the case, this In controller. PID the for feedback method. get ( ) the by returned as voltage potentiometer the

Output PID Calculate
Java

```
                                    @Override
            { setpoint) double output, double(useOutput void public
                                    kF;*setpoint =+ output
ID=OUTPUT SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
(output); setmotor.
        ID=OUTPUT SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
            }
```

C++
\{ setpoint) double output, double(Elevator::UseOutput void kF;*setpoint =+ output
ID=OUTPUT SOURCE=ROBOTBUILDER CODE, AUTOGENERATED BEGIN //
m_motor.Set(output);
ID=OUTPUT SOURCE=ROBOTBUILDER CODE, AUTOGENERATED END //
motor. the to directly output PID calculated the writes method use0utput The
PIDSubsystem. Elevator the create to required is that all That's

## Command Setpoint 20.3.3

a to actuator an drive to PIDSubsystem a with conjunction in works Command Setpoint A happens This encoder. or potentiometer a using measured is that position or angle particular task. this do to RobotBuilder in shortcut a is there that often so

## PIDSubsystem a with Start


angle. the measures that potentiometer a with joint wrist a is there robot a in Suppose the and joint wrist the moves that motor the include that PIDSubsystem a create First constants PID the all have should PIDSubsystem The angle. the measures that potentiometer properly. working and in filled current the off far how controls This parameter. Tolerance the set to important is it the that criteria the is This target. on considered be and setpoint the from be can value command. next the onto move to uses SetpointCommand

## Command Setpoint the Creating


command". Setpoint "Add select and palette the in folder Commands the on clickRight-

## Parameters Command Setpoint


being is that PIDSubsystem the is field Requires The command. new the of name the in Fill subsystem. Elevator the case this in setpoint, a to driven

Preset Add Select 2.
»bottom« case this (in name preset a Enter 3.
box entry setpoint the to next dropdown the Click 4.
subsystem Elevator the in created was that constant, Elevator.Bottom the Select 5. previously
setpoints. other the for 52-steps Repeat 6.
close and Save Click 7.
by created automatically is it command, this for code any in fill to need no is There RobotBuilder.
the to subsystem the drive automatically will it scheduled, is command this Whenever the in specified tolerance the within reached is setpoint the When setpoint. specified specify to important is It starts. command next the and ends command the PIDSubsystem, is tolerance the because end never might command this or PIDSubsystem the in tolerance a achieved. not

Controls Advanced the see please Control, PID about information more For : Clll .Introduction

## Components Custom Adding 20.3.4

motors, for WPILib use just that programs robot creating for well very works RobotBuilder have doesn't RobotBuilder classes, custom use that teams for But sensors. and controllers,

RobotBuilder in them use to taken be to need steps few a so classes, those for support any

## Structure Component Custom

| AndroidStudioProjec |
| :--- |
| Applications |
| Desktop |
| Documents |
| Gownioads |
| Gradle |
| h2oflows |
| jd-gui.cfg |
| jdk-linux-arm-vfp-sfl |
| Movies |
| Music |
| NetBeansProjects |
| opencv |
| Pictures |
| Public |
| releases |
| Robotbuilder |
| SmartDashboard |
| $\square$ sunspotfrcsdk |
| wiring.html |
| wiring.html |
| workspace |
| wpilib |

$\backslash C:$ is ~ where ~/wpilib/YYYY/Robotbuilder/extensions in go all components Custom year. FRC® the is YYYY and Windows on Public\Users
folder The component. custom a for needed are that folder one and files seven are There same the have should It it. export to how and component the describing files the contains a for 6" Drive "Robot controller, drive kiwi a for Drive" (e.g."Kiwi component the as name the as extensions and names same the have should files The etc.). controller, drive motorsixmust seven the but seven, these with along folder the in be can files Other here. shown ones component. custom the recognize to RobotBuilder for present be

## PaletteDescription.yaml

this - palette/tree the in up show will what is This component. the of name The name: • folder containing the of name the as same the be also should
on) later depth in explained be will (these component the of type the type: •
Motor support. can this component of type each of amount the of map a supports: three support can drive kiwi a so PIDOutputs, all are RobotBuilder in controllers motor or sensors as (such anything support doesn't component a If PIDOutputs. out line this leave just controllers),
is components these of one when message helpful a gives that string short a help: • over hovered
there example, drive kiwi this In component. this of properties the of list a properties: • allows ChildSelectionProperty A motor. each for one properties, similar very three are one the of subcomponents the from type given the of component a choose to user the motor a i.e. - PIDOutput a for asking dropdown a show would they here, (so edited being drive) kiwi the to added been has that - controller
sensitive):case- are (these supports RobotBuilder component of types The Command •
Subsystem •
controller) (motor PIDOutput •
encoder) potentiometer, analog e.g. PIDSource implements that (sensor PIDSource • switch) limit e.g. PIDSource implement not does that (sensor Sensor • etc.) controller, PID drive, (robot Controller • servo) solenoid, e.g. motor, a not is that output (an Actuator •

Joystick •
Button Joystick •

Properties
component: custom a for relevant properties The component the of name the e.g. string a needs component a when used StringProperty: • button a putting e.g. value boolean a needs component a when used BooleanProperty: • SmartDashboard the on

PID e.g. value number a needs component a when used DoubleProperty: • constantsChoicesProperty
motor e.g. component child a choose to need you when used ChildSelectionProperty: • RobotDrive a in controllers
type given the of component any choose to need you when used TypeSelectionProperty: • command PID a for output and input e.g. program the in anywhere from
below: described are property each for fields The
A property

- !StringP
name: The
validato
default:
- !Boolean
name: The
validato
default:
- !DoubleP
name: The
validato
default:
- !FileProp
name: The
validato
default:
extensior
folder:
$-\quad$ !Choices
name: The
validato
default:
choices:
- !ChildSe
name: The
validato
default:
type: Typ
$-\quad$ !TypeSele
name: The
validato
default:
type: Typ
motor the of each of entry validators the in "KiwiDriveValidator" noticed have may You defined be to had it so validator, inbuilt- a not It's PaletteDescription.yaml. in properties the of each that sure makes just it - simple very is validator example This Validators.yaml. in others. the than value different a has fields named

Types Validator and Validators inBuilt-

use), port/channel for UniqueValidators the (especially useful very are validators inbuilt- The step previous the in like needed, is validator custom a sometimes but unique are fields given the of each of values the sure Makes DistinctValidator: • validator this using property the for set been has value a that sure Makes ExistsValidator: • the for globally unique is property the for value the that sure Makes UniqueValidator: • fields given
valid are property list a in values the all that sure Makes ListValidator: •

Export.yaml C++
file: the of breakdown lineby-line- A
name the as same the is This exported. being component the of name the Drive: Kiwi • file this containing folder the of name the and PaletteDescription.yaml, in set name the component, this by needed includes for values default some provides Defaults: • an adds default CustomComponent The more. and template, construction a class, the of component the uses that file generated every to Custom/\$\{ClassName\}.h for include
file) the of top the "Custom/KiwiDrive.h \#include have would RobotDrive.h (e.g.
adding. you're class custom the of name the ClassName: •
Variables constructed. be should component the how for instruction an Construction: • "KiwiDrive"), with replaced be will ("\$\{ClassName\}" values their with replaced be will with replaced be may \#variable(\$Name) example, (for evaluated be will macros then ).drivebaseKiwiDrive
constructor the with class KiwiDrive a expects example This

## SpeedController) SpeedController, KiwiDrive(SpeedController,

. 내

Export.yaml Java


This line. Construction the be should difference only the file; export C++ the to similar Very constructor the with class KiwiDrive a expects example

```
SpeedController) SpeedController, KiwiDrive(SpeedController,
```



Variables and Macros Using
be will that text into variables turn to uses RobotBuilder that functions simple are Macros syntax a have and symbol, "\#" the with start always They code. generated into inserted you'll macro only The .)... arg2, arg1, arg0, >(<macro_name functions: to similar ) component_name \#variable( is use to need probably
name the is "Name" (i.e. somewhere defined variable a the usually string, a takes \#variable of name the into it turns and Motor"), "Arm as such RobotBuilder, in component the to given in results Motor") \#variable("Arm example, For code. generated the in defined variable a ArmMotor string the
an which name, variable the of front in ("\$") sign dollar a placing by referenced are Variables in text other from variable the distinguish easily to braces curly inside placed be optionally replaced are braces curly and name, variable sign, dollar the parsed, is file the When file. the ).KiwiDrive with replaced is $\$\{\mathrm{ClassName}\}$ (e.g. variable the of value the with
kiwi the in 3" "Motor 2", "Motor 1", "Motor (e.g. properties component either are Variables following: the of one or example), drive
RobotBuilder in panel editor the in component the to given name the Short_Name: 1. be will this subsystem, $a$ in is component the If component. the of name full the Name: 2. subsystem the of name the to appended name short the
be should This any. if in, created be should component this file the of name The Export: 3. things for "OI" or sensors; and controllers, actuators, like components for "RobotMap" "CustomComponent" the that Note components. OI custom other or gamepads like RobotMap. the to export will default
be to able be to component this for imported or included be to need that Files Import: 4.
used.
this of variable a declare to how for Construction, to similar instruction, an Declaration: 5. "None" default the by of care taken is This type. component
component this of instance new a create to how for instruction an Construction: 6.
LiveWindow the to component this add to how for instruction an LiveWindow: 7.
behave to component this for calls method or functions extra any for instructions Extra: 8. type. encoding the set to needing encoders as such correctly,
the file the in created be to function a for prototype The only): (C++ Prototype 9. class OI the in getter a typically in, declared is component
a typically in, declared is component the file the in created be to function A Function: 10. class OI the in getter
(e.g. one has it if component, the of output PID the get to how for instruction An PID: 11. )>PIDGet() -\#variable(\$Short_Name)
or KiwiDrive (e.g. represents component the that class the of name The ClassName: 12. )Joystick
etc.), Motor", Front "Right 1", "Motor as (such name the in spaces with variables have you If files. export the in them using when underscores with replaced be to need spaces the
help.html

| 41 | help.htr |
| :---: | :---: |
| 1 | <html |
| 2 |  |
| 3 | <head> |
| 4 | <lir |
| 5 | </head> |
| 6 |  |
| 7 | <body> |
| 8 | <h |
| 9 | <c |
| 10 | <h2 |
| 11 | <p> |
| 12 |  |
| 13 |  |
| 14 | </ |
| 15 | <h |
| 16 | <d |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 | </d |
| 24 | <h |
| 25 | < |
| 26 |  |
| 27 |  |
| 28 |  |
| 29 | </u |
| 30 | </body> |
| 31 |  |
| 32 | </html> |
| 33 |  |

as detailed as be this have to better is It component. the on information giving file HTML A with enough familiar are programmer(s) the if necessary isn't certainly it though possible, description. detailed a in point little there's that simple so it's if or component, the

## config.txt

this Currently, component. the about information miscellaneous hold to file configuration A in. component the put to palette the of section the has only sensitive): case are (these palette the of sections The

Controllers •
file. png. $64 \times 64$ a be should This page. help the and palette the in up shows that icon The avoid to in it's section the of style general and scheme color the use should it and icons the of files psd. Photoshop optional. entirely is this but clutter, visual in are backgrounds and icons the of files png and src/main/icons/icons in are backgrounds .src/main/resources/icons


## Simulation Robot to Introduction 21.1

WPILib available. robot actual an having without code their test to want may team a Often gradle simple using features robot various simulate to ability the with teams provides commands.

## Support Desktop Enabling <br> 21.1.1

by done be can This enabled. be to Support Desktop requires Simulator Desktop the of Use by or project robot your creating when Checkbox" Support Desktop "Enable the checking Code Studio Visual the from Setting" Enabled Support Desktop Change "WPILib: running palette. command
located file build.gradle your editing manually by enabled be also can support Desktop to false = includeDesktopSupport change Simply project. robot your of root the at true = includeDesktopSupport

```
true = includeDesktopSupport def
```

 may libraries their uses that code and option, this support will vendors all Not consequences.
"WPILib: the runre- simply Support, Desktop disable to want you time in point any at If palette. command the from Setting" Enabled Support Desktop Change

## Dependency C++ Additional

would this Windows, For installed. be to compiler native a that requires simulation robot C++ (Ubuntu) Linux and, later or 13 Xcode requires macOS Code), VS not( 2022 Studio Visual be package. essential-build the requires installer Studio Visual the in checked is option C++ with Development Desktop the Ensure support. simulation for

## Simulation Robot Running 21.1.2

any using without done be can This Code. VS using run be can simulation robot Basic palette. command Code's VS using by commands
teams However, below. the like look should Code Studio Visual in output console Your can This simulation. the running just versus code their test actually to want will probably .GUI Simulation WPILib's using done be

for simulateJava gradlew/. using Code VS of outside run be also can Simulation : C++. for simulateNative gradlew/. or Java

## Dashboards Robot Running

simulation. WPILib with used be can SmartDashboard and Shuffleboard Both

## Shuffleboard

the from instance NetworkTables a for look to configured automatically is Shuffleboard Shuffleboard open simulation, a to connect To .sources other from not but robotRIO navigation left the on Plugins under NetworkTables select and menu File the from preferences a For host. NetworkTables the of hostname or address IP the in type field, Server the In bar.
.localhost use configuration, simulation standard

App Setting

- Plugins

NetworkT
Tabs
SmartDas
LiveWind
the from instance NetworkTables a for look to configured automatically is SmartDashboard SmartDashboard open simulation, a to connect To .sources other from not but roboRIO, or address IP the enter field, Number Team the in and menu File the under preferences .local host use configuration, simulation standard a For host. NetworkTables the of hostname

Property
Team Number Hide Menu
Automatically Grid Cell Width Grid Cell Heigh
Window X Posi
Window Y Posi
Window Width
Window Height
Save File
Log to CSV
CSV File

## Glass

but roboRIO, the from instance NetworkTables a for look to configured automatically is Glass under Settings NetworkTables open simulation, a to connect To .sources other from not the of hostname or address IP the enter field, Team/IP the in and menu NetworkTables the
.localhost use configuration, simulation standard a For host. NetworkTables

## Elements Interface User Specific Simulation

(GUI) interface user graphical a introduce to simulation robot extended has WPILib outputs. and inputs robot's their visualize easily to teams allows This component.
pages following the of Some .Glass to ways many in similar very is GUI Simulation The : Olll GUIs. both to common elements describe that sections Glass to link will

## GUI the Running 21.2.1

option. palette command Simulation Run the via GUI the launch simply can You

Press default. by selected be will and dialog new a in popup should option GUI Sim the And GUI! Simulation the launch now will This .Ok

| Robot Simulation |  |
| :--- | :--- | :--- |
| View Hardware | NetworkTable |
| $\mathbf{V}$ Robot State |  |
| Disabled |  |
| Autonomous |  |
| Teleoperated |  |
| Test |  |

## GUI the Using

Layout the Learning
default: by GUI simulation the on shown are items following The
to labels the on click can You "mode". or state current robot's the is This - State Robot Station. Driver normal the on would you as mode change manipulated. be to timing the allows and timers Robot's the of values the Shows - Timing currently. system your to connected joysticks of list a is This - Joysticks System systems. FMS common the of many simulating for used is This - FMS NetworkTables. to published been has that data the shows This - NetworkTables from. pull directly can code robot the that joysticks is This - Joysticks categories, other the of any into fall not do that devices includes This - Devices Other that devices party third or Parts of Kit the in included is that gyro ADXRS450 the as such simulation. support
default. by shown not are but menu, Hardware the from added be can items following The
Class. AddressableLED the by controlled LEDs shows This - LEDs Addressable
IN ANALOG the use normally would that devices any includes This - Inputs Analog
gyros. based Analog any as such roboRIO, the on connector on connector DIO the use that devices any includes This Output) Input (Digital - DIO roboRIO. the
class. Encoder the use or extend that devices instantiated any show will This - Encoders object. Panel Distribution Power the shows This - PDPs
many as appear will This devices. PWM instantiated of list a is This - Outputs PWM outputs. their as well as code, robot in instantiate you as devices relays. Spike VEX includes This devices. relay any includes This - Relays object solenoid a create you When solenoids. "connected" of list a is This - Solenoids here. shown are these outputs, push and

## Joysticks to Joystick System a Adding

joystick shown a drag and click simply joysticks, system of list the from joystick a add To menu". "Joysticks" the to menu Joysticks" "System the under
the and connected gamepads to mapping special does Station Driver FRC® The : ${ }^{\circledR}$ pressing by behavior this on turn can You default. by these "map" not does simulator WPILib menu. "Joysticks" the underneath toggle gamepad" "Map the

Joystick a as Keyboard the Using
keyboard the of one dragging and clicking by joysticks system of list the to keyboard a add You to go keyboard the of settings the edit To above. joystick a like just 0) Keyboard (e.g. items control to you allows This .Settings 0 Keyboard choose then bar menu the in item DS the the make to how of example common a is This axis. which control buttons keyboard which 4): \& 1 axis (uses controller Xbox an on drive arcade sticks split a to similar keyboard

| 7 K | Keyboard |
| :---: | :---: |
| F Axes |  |
| 5 | - |
| v Axis 0 Increase Decrease |  |
|  |  |
|  |  |
|  |  |
| 0.050 |  |
| 0.050 |  |
| 1.000 |  |
|  | Axis 1 <br> Increase <br> Decrease |
|  |  |
|  |  |
|  | 0.050 |
|  | 0.050 |
|  | 1.000 |
|  | Axis 2 <br> Increase <br> Decrease |
|  |  |
|  |  |
|  | 0.010 |
|  | 0.000 |
|  | 1.000 |
|  | Axis 3 <br> Increase <br> Decrease |
|  |  |
|  |  |
|  | 0.050 |
|  | 0.050 |
|  | 1.000 |
|  | Axis 4 |
|  | Increase |
|  | Decrease |
|  | 0.050 |
|  | 0.050 |
|  | 1.000 |

## Inputs ADXRS450 Modifying

up show will This outputs. based gyro test to way fantastic a is object ADXRS450 the Using options various shows that exposed then is menu down drop A menu. Devices" "Other the in change, can you that values are values these of All "Rate". and "Angle", "Connected", as such
fly.the-on- use and code robot your that and

## Code Robot from Simulation Determining

can you simulation, robot the running when compile not do libraries vendor where cases In .boolean a returns which RobotBase.isReal () with content their wrap

Java

 be cannot operator assignment copy or move a lack and SIM the support not do both that type. value a of instead used, is pointer a unless allocation conditional with around worked

## Settings View Changing

Zoom The customized. be can that settings Style and Zoom contains item menu View The to you allows option Style the whereas application the in text the of size the dictates option modes. Dark and ,Light, Classic the between select below: is setting style Dark the of example An

## Data Application Clearing

other as well as positions and sizes widget including GUI, Simulation the for data Application of root the in stored is file This file. imgui.ini a in stored is widgets for information custom from. run is simulation the that directory project the a to GUI Simulation the restore to deleted be simply can file configuration imgui.ini The slate". "clean

## WPILib with Simulation Physics

we ,systems of dynamics the represent compactly to us allows notation spacestate- Because of goal The robots. on systems physical simulating for backend a provide to it leverage can existing modifying without mechanisms robot of motion the simulate to is simulators these follows: as is simulators such of flow basic The code. user simulationnon-
code: user normal In
other (or encoder from commands voltage generate algorithms control similar or PID
readings sensor)
set are outputs Motor
code: periodic simulation In
from set motors from voltages usually, inputs using updated is state simulation's The loop PID a
next the in use to code user for set are readings sensor) other (or encoder Simulated timestep

## Classes Simulation WPILib's 21.3.1

WPILib: in available are classes simulation physics following The dynamics linear with systems modeling for LinearSystemSim,

FlywheelSim
DifferentialDrivetrainSim
motion elevator of direction the in gravity models which ElevatorSim, angle arm the to proportional gravity models which SingleJointedArmSim, currents drawn on based sag voltage battery estimates simply which BatterySim, the from inherit simulator) drive differential the of exception the (with classes simulation All $\mathbf{x}_{k+1}=$ dynamics system linear the are dynamics the default, By class. LinearSystemSim nonlinear custom, provide to method dt) u, UpdateX (x, the override Subclasses . $\mathbf{A x}_{k}+\mathbf{B u}_{k}$ gravity. modeling as such dynamics,

For ETA. an provide cannot we but works, the in is simulation for support Swerve : Clll .request pull this follow please progress, on updates

## Code User in Usage 21.3.2

.project example elevatorsimulation WPILib the from available is following The
elevator our instantiate we encoders, and motors as such objects standard to addition In also We reduction. gearing and mass carriage as such constants known using simulator .Encoder our by read rate and distance the sets which ,EncoderSim an instantiate
(in carriage moving the of mass the given elevator an simulate we example, following the In reduction gearing the meters), (in elevator the driving drum the of radius the kilograms), minimum the one), than greater usually (so input over output as drum and motor between position our to add to noise random some and meters), (in elevator the of height maximum and estimate.
exceeding from position simulated the prevent will simulators arm and elevator The : : पार्य with mechanism a simulate to wish you If angles. or heights maximum or minimum given option. better a be may LinearSystemSim motion, or rotation infinite


$$
\begin{array}{r}
\text {,kElevatorDrumRadiusConstants. } \\
\\
\text {, kMinElevatorHeightMetersConstants. } \\
\text {, kMaxElevatorHeightMetersConstants. } \\
\text { EncoderSim(m_encoder) ; new }=\text { m_encoderSim EncoderSim final private }
\end{array}
$$

C+ +

```
    gravity, including on, going s'what simulate us help classes Simulation //
    m_elevatorSim{m_elevatorGearbox, ElevatorSim: :sim: :frc
        kElevatorGearing, : Constants
            kCarriageMass,: :Constants
    kElevatorDrumRadius,: :Constants
    kMinElevatorHeight, : :Constants
    kMaxElevatorHeight, : :Constants
    ;}}0.01{
    m_encoderSim{m_encoder}; EncoderSim: :sim: : frc
```

drive to loop control PID simple a uses (Java/C++) TeleopPeriodic/teleopPeriodic Next, ground. the off inches 30 setpoint a to elevator our

Java


20
21

> \{ goal) meter_t: (unitsElevator: : ReachGoal void m_controller. SetGoal(goal); normal like control PID run we value setpoint the With // $=$ pidOutput double
the to applied voltage the uses (Java/C++) SimulationPeriodic/simulationPeriodic Next, because SimulationPeriodic use We elevator. the of position simulated the update to motor be not will code simulation our that means This robots. simulated for only periodically runs it robot. real a on run
inherited the override can Subsystem based'scommand- from inheriting Classes : methods update simulation their need will classes Other method. simulationPeriodic() .simulationPeriodic 'sRobot from called
elevator's simulated the using set is reading distance encoder's simulated the Finally, the by drawn current estimated the using set is voltage battery robot's the and position, elevator.

Java



20
21
page) next on (continues

# m_encoderSim. SetDistance(m_elevatorSim.GetPosition().value()); voltages battery loaded estimates SimBattery // SetVInVoltage(: RoboRioSim::sim: :frc Calculate(\{m_elevatorSim.GetCurrentDraw()\})) ;: :BatterySim::sim::frc 

## Simulation Device 21.4

API. SimDevice the of form the in data device simulation manage to way a provides WPILib

## Classes Device WPILib Core Simulating 21.4.1

named classes simulation have etc.) ,Ultrasonic ,Encoder (i.e classes device WPILib Core device the with interactions allow classes These on. so and ,UltrasonicSim ,EncoderSim outside them Constructing simulation. of outside valid or possible be wouldn't that data the and functions their calling but code, your with interfere won't likely simulation of might cases worse nothing, do will they case best the in - behavior undefined is like as (such functions onlysimulation- in code simulation functional Place code! your crash RobotBase::IsReal() /RobotBase.isReal() with them wrap or )simulationPeriodic()
$\mathrm{C}++$ ). in constexpr are (which checks
simulation other of Use example. an as class EncoderSim the use will example This : Clll identical. almost be will classes

## objects Device Simulation Creating

ways: two in constructed be can object device Simulation object. hardware regular the accepts that constructor a • the that number port/index/channel the accepts that method factory or constructor a the construct to used was that number same the be would These to. connected is device .testing unit for useful especially is This object. hardware regular

Java


## Data Device Writing and Reading

setter and ) GetXxx()/getXxx()( getter has class simulation Each will functions getter The .Xxx field each for functions )SetXxx(value)/setXxx(value)( class. device regular the of getter the as same the return

Java


## Callbacks Registering

registerXxxCallback() a has also field each setters, and getters the to addition In and changes value field the whenever run be to callback a registers that function name the of parameter string a accept callbacks The object. CallbackStore a returns values retrieving Before value. new the containing object HALValue a and field the of HALValue. are types Possible contained. value of type the check ,HALValue a from HALValue. ,HAL_ENUM/HALValue. kEnum ,HAL_DOUBLE/HALValue.kDouble ,HAL_BOOL/kBoolean .HAL_LONG/HALValue.kLong ,HAL_INT/kInt
to reference a Keep callback. the cancel to object CallbackStore the on close( ) call Java, In GC. by canceled be will callback the otherwise - collectedgarbage- get doesn't it so object the reference. method a use or lambda the in it capture callback, the to data arbitrary provide To when canceled be will callback the - scope right the in object CallbackStore the save C++, In callbacks the to passed be can data Arbitrary destroyed. is and scope of out goes object the
parameter. param the via
different a containing HALValue a from type a of value a retrieve to Attempting : : Inclu behavior. undefined is type


C++

```
u*HALValue const param, *void name, *char const[]( = callback HAL_NotifyCallback
                                    { value) ↔
                            { HAL INT) == type>-(value if
    ;'n\' << data.v_int>-value << " is " << name << " of Value" << outs()::wpi
    simEncoder.RegisterCountCallback(callback); = store CallbackStore::sim::frc
    scope of out goes ``store`` when canceled be will callback the //
```


## Class SimDeviceSim The - Devices Other Simulating 21.4.2

than different slightly API SimDevice the to connection their implement might Vendors : : पारा See class. device their for specific class simulation a provide also might They here. described how. and support they what to as information more for documentation vendor's your
devices for object simulation device general a is class !)SimDevice not( SimDeviceSim The as such - classes simulation specific have don't therefore and devices WPILib core aren't that
.SimGUI the of tab Devices Other the in up show will devices These devices. vendor
used vendor the key the to identical key string a using created is object SimDeviceSim The the that one the is key This class. device their in SimDevice underlying the construct to Prefix:Device form the of typically is and tab, Devices Other the in with up shows device as passed be can they numbers, ports/index/channel contains key the If .Name[index] hidden is that prefix a contains key The constructor. SimDeviceSim the to arguments separate including Not option. prefix Show the selecting by shown be can it SimGUI, the in default by device! the match not will SimDeviceSim to passed key the in prefix this

Java

device's the representing objects SimValue get can we ,SimDeviceSim the have we Once also subclasses SimEnum and ,SimBoolean ,SimLong ,SimInt ,SimDouble specificType- fields. constructed are These class. SimValue unsafetype- the of instead used be should and exist, the define to used vendor the one the to identical key string a using SimDeviceSim the from SimValue a retrieve to Attempting SimGUI. the in as appears field the one the is key This field. return will unmatched are keys field or device the either when or simulation of outside object C++. in behavior undefined or Java in NullPointerException cause can this - null

Java
(fieldKey);getDoubledevice. = field SimDouble
();getfield.
(value);setfield.
C++

## Tutorial Simulation Drivetrain 21.5

the using drivetrain differential your of model simulation a implementing for tutorial a is This agnostic,framework- is tutorial this in cover will we that code the Although classes. simulation framework. each for one - available examples full two are there
basedcommand- the uses )C++ Java( StateSpaceDifferentialDriveSimulation • framework.
to approach traditional more a uses )C++ ,Java( SimpleDifferentialDriveSimulation • flow. data window. Project New Code VS the in available also are examples these of Both

## Overview Simulation Drivetrain 21.5.1

basedcommand- (i.e. framework specific any use not does tutorial this in code The : best to how for areas certain in provided be will guidance however, flow); data simple vs. types. framework specific in code of pieces certain implement
a for capabilities simulation implementing on guidance provide to is tutorial this of goal The to: able be should you tutorial, this of end the By robot. drivetraindifferentialframework. simulation WPILib the behind concepts underlying basic the Understand 1.
parameters. physical robot's your using model simulation drivetrain a Create 2.
voltage specific given move will robot real your how predict to model simulation the Use 3 . inputs.
having before inversion) motor (e.g. bugs common squash and constants feedback Tune 4. hardware. physical to access
field. virtual a on movement robot visualize to GUI Simulation the Use 5.
therefore, - robot the on mechanisms important most the of one is robot a of drivetrain The possible. as robust as is drivetrain your powering software the that ensure to important is it on start head a get can you responds, drivetrain physical a how simulate to able being By simulation the With hardware. physical the to access have you before software quality writing on inversions the that sure making like functionality, basic only not verify can you framework, accuracy verifying as such capabilities advanced also but correct, are encoders and motors following. path of

## Hardware of Instances Simulated Creating :1 Step 21.5.2

represents XXX where classes, XXXSim several contains framework simulation WPILib The to used be can classes simulation These gyroscopes. or encoders as such hardware physical your of model a from gyroscopes) (for angles and encoders) (for velocities and positions set hardware simulation these about info more for article Simulation Device the See drivetrain. devices. vendor of simulation and classes
that in live should subsystem particular a with associated objects Simulation : : पार्य example. )C++, Java( StateSpaceDriveSimulation the in is this of example An subsystem.

Encoder given a on velocities and positions encoder set to users allows class EncoderSim The to sensors real with interacts class Encoder the hardware, real on running When object. so); do to configured if automatically units distance to them convert (and revolutions count can class EncoderSim The make. to measurements such no are there simulation in however,
drivetrain. your of model a from readings simulated these accept
motor CAN to connected directly are that encoders simulate to possible not is It : controller, motor specific your about information more For classes. WPILib using controllers documentation. vendor's your read please
$\longrightarrow$

Java


C++

## frc/Encoder.h>< include\# frc/simulation/EncoderSim.h>< include\#

would we which objects, encoder regular our represent These // robot. real a on use to create //
;\}1 ,0m_leftEncoder\{ Encoder::frc
;\}3 ,2m_ríightEncoder\{ Encoder::frc
in use only will we which objects, EncoderSim our are These // these out comment to need not do you However, simulation. // roboRIO. the to code deploying are you when declarations // m_leftEncoderSim\{m_leftEncoder\}; EncoderSim::sim::frc
m_rightEncoderSim\{m_rightEncoder\}; EncoderSim::sim::frc

## Gyroscopes Simulating

used commonly for exist also classes gyroscope simulated class, EncoderSim the to Similar the in constructed also are These .ADXRS450_GyroSim and AnalogGyroSim - gyros WPILib manner. same
using NavX) and IMU Pigeon (i.e. gyros vendor certain simulate to possible not is It : Flll their on information for documentation vendors« respective the read Please classes. WPILib support. simulation

Java

> robot. real a on would we like object gyro our Create // ); IAnalogGyro( new = m_gyro AnalogGyro private
> gyro the setting for used object, gyro simulated the Create // out commented be to need not does this EncoderSim, Like angle. // roboRIO. the to code deploying when // AnalogGyroSim(m_gyro); new $=m$ gyroSim AnalogGyroSim private

C++
frc/AnalogGyro.h>< include\# frc/simulation/AnalogGyroSim.h>< include\#
robot. real a on would we ike objectl gyro our Create //
;\}1m_gyro\{ AnalogGyro::frc
gyro the setting for used object, gyro simulated the Create // out commented be to need not does this EncoderSim, Like angle. // roboRIO. the to code deploying when //
m_gyroSim\{m_gyro\}; AnalogGyroSim::sim::frc

## Model Drivetrain a Creating :2 Step 21.5.3

motor given to respond will drivetrain physical your how determine accurately to order In usually is model This created. be must drivetrain your of model accurate an inputs, voltage this WPILib, In robot. real your of parameters physical various measuring by created class. DifferentialDrivetrainSim the by represented is model simulation drivetrain

## Measurements Physical from DifferentialDrivetrainSim a Creating

physical using by is instance DifferentialDrivetrainSim a creating to way One real- or software CAD through obtained either - robot and drivetrain the of measurements match closely more will it as results better yield usually will latter (the measurements world parameters: following the takes constructor This reality).
drivetrain. the of side one on motors of number and type The • torque input over torque output as wheels the and motors the between ratio gear The • drivetrains). for 1 than greater usually is number (this your of model CAD a from obtained be can (this drivetrain the of inertia of moment The • ). $\mathrm{kgm}^{2} 8$ and 3 between is this Usually, drivetrain. as itself, robot entire the of mass the use to recommended is (it drivetrain the of mass The • trajectory for robot your of characteristics acceleration the model accurately more will it tracking).
wheels. drive the of radius The • wheels). right and left between (distance width track The • measurement much how represents this noise: measurement of deviations Standard • 7 with array an is noise measurement The sensors. real your from expect you noise
noise measurement of deviation standard the representing element each with elements, respectively. position right and position, left velocity, right velocity, left heading, y , x , in not is noise measurement if Java in null to set or $C++$ in omitted be can option This desirable.
of points data multiple taking by sensors your of noise measurement the calculate can You like tool a using deviation standard the calculating and measure to trying are you state the estimate, velocity encoders« your in deviation standard the calculate to example, For Python. calculate and measurements, multiple take velocity, constant a at robot your move can you used values the tedious, too is process this If mean. known the from deviation standard their encoders. from noise average of representation good a be should below example the in
 $\mathrm{m} / \mathrm{s}$. of units has noise velocity the of deviation standard the example, For measurement.
parameters passing when radians) and meters (i.e. units SI use to important very is It : $\square$ type. unit any specify to used be can library units the $\mathrm{C}++$, In Java. in


C++

page) next on (continues

$$
\begin{array}{rrr} 
& \mathrm{m} / \mathrm{s} & 0.1 \text { velocity: } r \text { and } l / / \\
m & 0.005 \text { position: } r \text { and } l / / \\
;\}\} 0.005,0.005,0.1,0.1,0.001,0.001,0.001\{
\end{array}
$$

## Gains Sysld from DifferentialDrivetrainSim a Creating

performed have may you which ,Identification System by produced gains the use also can You simulation a create to here outlined workflow tracking trajectory the up setting of part as method the than behavior worldreal- to closer results yield often and drivetrain your of model above.
from one - tool identification the from gains Ka and Kv of sets two need must You : of sets two these to refer will We place. in rotating from other the and motion linestraightrespectively. gains angular and linear as gains
parameters: following the takes constructor This identification the using created be can this - drivetrain the representing system linear A • gains. wheels). right and left the between (distance width track The • drivetrain. the of side one on motors of number and type The •
torque input over torque output as wheels the and motors the between ratio gear The • drivetrains). for 1 than greater usually is number (this
wheels. drive the of radius The -
measurement much how represents this noise: measurement of deviations Standard • 7 with array an is noise measurement The sensors. real your from expect you noise noise measurement of deviation standard the representing element each with elements, respectively. position right and position, left velocity, right velocity, left heading, $\mathrm{y}, \mathrm{x}$, in not is noise measurement if Java in null to set or C++ in omitted be can option This desirable.
of points data multiple taking by sensors your of noise measurement the calculate can You like tool a using deviation standard the calculating and measure to trying are you state the estimate, velocity encoders« your in deviation standard the calculate to example, For Python. calculate and measurements, multiple take velocity, constant a at robot your move can you used values the tedious, too is process this If mean. known the from deviation standard their encoders. from noise average of representation good a be should below example the in
that as units same the has measurement a for noise the of deviation standard The : : पार्य $\mathrm{m} / \mathrm{s}$. of units has noise velocity the of deviation standard the example, For measurement.
parameters passing when radians) and meters (i.e. units SI use to important very is It : type. unit any specify to used be can library units the C++, In Java. in

| identification the (from constants gain feedforward our Create // tool) // <br> ;1.98 = KvLinear double final static <br> ;0.2 = KaLinear double final static <br> ;1.5 = KvAngular double final static <br> ;0.3 = KaAngular double final static <br> drivetrain. our of model simulation the Create // <br> DifferentialDrivetrainSim( new = m_driveSim DifferentialDrivetrainSim private <br> gains. identification our from system linear a Create // <br> KaAngular), KvAngular, KaLinear, (KvLinear, identifyDrivetrainSystemLinearSystemId. <br> drivetrain. the of side each on motors NEO 2 // ),2(getNEODCMotor. <br> reduction. gearing 7.29:1 // <br> , 7.29 <br> meters. 0.7112 is width track The // ,0.7112 <br> wheels. radius 3" uses robot The // ),3(inchesToMetersUnits. <br> noise: measurement for deviations standard The // <br> $m 0.001 \quad y$ : and $x / /$ <br> rad 0.001 heading: // <br> m/s 0.1 velocity: $r$ and $l / /$ <br> $m 0.005$ position: $r$ and $l / /$ <br> ));0.005,0.005,0.1,0.1,0.001,0.001,0.001(fillVecBuilder. |
| :---: |

C++
frc/simulation/DifferentialDrivetrainSim.h>< include\# frc/system/plant/LinearSystemId.h>< include\# units/acceleration.h>< include\# units/angular_acceleration.h>< include\# units/angular_velocity.h>< include\# units/voltage.h>< include\# units/velocity.h>< include\#
identification the (from constants gain feedforward our Create // units. correct have to need these that Note tool). //
mps;_1 / V_1.98 = KvLinear auto constexpr static
mps_sq;_1 / V $0.2=$ KaLinear auto constexpr static rad_per_s;_1 / V_1.5 = KvAngular auto constexpr static rad_per_s_sq;_1 / V_0.3 = KaAngular auto constexpr static meters. 0.7112 is width track The //
m; 0.7112 $=$ kTrackwidth auto constexpr static
drivetrain. our of model simulation the Create //
m_driveSim\{ DifferentialDrivetrainSim::sim::frc
gains. identīfication our from system linear a Create //
IdentifyDrivetrainSystem(: :LinearSystemId: :frc
kTrackWidth), KaAngular, KvAngular, KaLinear, KvLinear,
kTrackWidth,
drivetrain. the of side each on motors NEO 2 // ), 2GetNEO(::DCMotor::frc
reduction. gearing 7.29:1 // ,7.29
wheels. radius 3" uses robot The // in,_3
noise: measurement for deviations standard The //
$m 0.001 \quad y$ : and $x / /$
rad 0.001 heading: //
page) next on (continues
(ㄴำ ำ

$$
\begin{array}{rrr} 
& \mathrm{m} / \mathrm{s} 0.1 \text { velocity: } r \text { and } l / / \\
m & 0.005 \text { position: } r \text { and } l / / \\
;\}\} 0.005,0.005,0.1,0.1,0.001,0.001,0.001\{
\end{array}
$$

## Chassis KoP the of DifferentialDrivetrainSim a Creating

createKitbotSim() static a has also class DifferentialDrivetrainSim The the of instance an create can that method (C++) CreateKitbotSim() / (Java) This parameters. Chassis Parts of Kit standard the using DifferentialDrivetrainSim optional: are which of two arguments, 5 takes method
drivetrain the of side one on motors of number and type The •
torque input over torque output as wheels the and motors the between ratio gear The • drivetrains). for 1 than greater usually is number (this
drivetrain. the on installed wheels the of diameter The •
(optional). base drive the of inertia of moment The •
measurement much how represents this noise: measurement of deviations Standard • 7 with array an is noise measurement The sensors. real your from expect you noise noise measurement of deviation standard the representing element each with elements, respectively. position right and position, left velocity, right velocity, left heading, y , x , in not is noise measurement if Java in null to set or $\mathrm{C}++$ in omitted be can option This desirable.
of points data multiple taking by sensors your of noise measurement the calculate can You like tool a using deviation standard the calculating and measure to trying are you state the estimate, velocity encoders« your in deviation standard the calculate to example, For Python. calculate and measurements, multiple take velocity, constant a at robot your move can you used values the tedious, too is process this If mean. known the from deviation standard their encoders. from noise average of representation good a be should below example the in
that as units same the has measurement a for noise the of deviation standard The : $\mathrm{m} / \mathrm{s}$. of units has noise velocity the of deviation standard the example, For measurement.
parameters passing when radians) and meters (i.e. units SI use to important very is It : type. unit any specify to used be can library units the C++, In Java. in

| Java |
| :---: |
| DifferentialDrivetrainSim. = m_driveSim DifferentialDrivetrainSim private (createKitbotSim $\hookrightarrow$ side. per CIMs 2 // ,kDualCIMPerSideKitbotMotor. <br> 10.71:1 // ,k10p71KitbotGearing. <br> wheels. diameter 6" // ,kSixInchKitbotWheelSize. <br> noise. measurement No // null |


/ Java) enum KitbotWheelSize and ,KitbotGearing ,KitbotMotor the use can You : Clll Chassis. Parts of Kit the of configurations used commonly get to ( $\mathrm{C}++$ ) struct
 Using simulation. with running and up quickly teams get to intended is and approximation results. accurate more yield always will robot physical your from measured values empirical

## Model Drivetrain the Updating :3 Step 21.5.4

with periodically updated be to needs it made, been has model drivetrain the that Now separate a in step this do to recommended is It commands. voltage motor latest the call only and subsystem your inside method SimulationPeriodic()/simulationPeriodic() simulation. in method this
extends that subsystem every framework, basedcommand- the using are you If : प्राप be can which SimulationPeriodic() / simulationPeriodic() a has SubsystemBase the using not are you If simulation. during only run automatically is method This overridden. overridden the inside method simulation your call you sure make library, basedcommandperiodic These class. Robot main the of SimulationPeriodic() / simulationPeriodic() simulation. during only called automatically also are methods
model: the updating to steps main three are There sides two the from voltages motor the are These model. drivetrain the of input the Set 1. drivetrain. the of
ms). 20 (Usually timestep periodic nominal the by time in forward model the Advance 2. as velocities) and positions encoder pose, (i.e. states drivetrain's the of all updates This passed. had ms 20 if
other in use to angles and velocities, positions, new with sensors simulated Update 3. places.

Java

page) next on (continues
(ำํำ

> \{ ()Drivetrain public
kEncoderResolution); / kWheelRadius * PIMath. * 2(setDistancePerPulsem_leftEncoder. kEncoderResolution); / kWheelRadius * PIMath. * 2(setDistancePerPulsem_rightEncoder.
\{ ()simulationPeriodic void public convert to need we that Note system. the to inputs the Set // the by it multiplying by voltage to signal PWM 1] [-1, the // voltage. controller robot //
(), getInputVoltageRobotController. * ()get(m_leftMotor.setInputsm_driveSim. ()) ; getInputVoltageRobotController. * ()getm_rightMotor.
this running are you if that Note ms. 20 by model the Advance // timestep nominal the changed have or thread separate a in subsystem // it. match to needs value this TimedRobot, of //
);0.02(updatem_driveSim.
sensors. our of all Update //
()) ; getLeftPositionMeters(m_driveSim.setDistancem_leftEncoderSim.
()) ; getLeftVelocityMetersPerSecond(m_driveSim.setRatem_leftEncoderSim.
()) ; getRightPositionMeters(m_drivēSim.setDistancem_-rightEncoderSim. ()) ; getRightVelocityMetersPerSecoñ(m_driveSim.setRatem_rightEncoderSim. ()) ; getDegrees().getHeadingm_driveSim.-(setAnglem_gyroSim.
;\}0m_leftMotor\{ PWMSparkMax::frc ;\}1m_rightMotor\{ PWMSparkMax::frc
\{ Drivetrain()
ь/ kWheelRadius * pi::numbers::std * 2m_leftEncoder.SetDistancePerPulse( kEncoderResolution) ; $\rightarrow$ u/ kWheelRadius * pi::numbers::std * 2m_rightEncoder.SetDistancePerPulse( kEncoderResolution) ; $\rightarrow$

```
\{ SimulationPeriodic() void convert to need we that Note system. the to inputs the Set // the by it multiplying by voltage to signal PWM 1] [-1, the // voltage. controller robot //
m_driveSim. SetInputs(
GetInputVoltage()),: :RobotController::volt_t(frc::units * m_leftMotor.get()
GetInputVoltage())) ;: RobotController::volt_t(frc::units * m_rightMotor.get()
```

this running are you if that Note ms. 20 by model the Advance // timestep nominal the changed have or thread separate a in subsystem // it. match to needs value this TimedRobot, of // ms) ; 20m_driveSim.Update(
sensors. our of all Update //
m_leftEncoderSim. SetDistance(m_driveSim.GetLeftPosition().value()); m_leftEncoderSim.SetRate(m_driveSim.GetLeftVelocity().value());
page) next on (continues

```
m_rightEncoderSim.SetDistance(m_driveSim.GetRightPosition().value());
    m_rightEncoderSim.SetRate(m_driveSim.GetRightVelocity().value());
                                m driveSim.GetHeading().Degrees());-m gyroSim.SetAngle(
```

in voltage right the negate MUST you inverted, is drivetrain your of side right the If : : Inll movement. forward to correspond voltages positive that ensure to call SetInputs() the
meters in velocities and positions returns model simulator drivetrain the Because : वारा calling when ticks/s and ticks encoder to converted be must these respectively, $\mathrm{m} / \mathrm{s}$ and on SetDistancePerPulse configure can you Alternatively, .SetRate() and SetDistance() approach the is this - automatically this of care take object Encoder the have to encoders the above. example the in taken is that
set, been have angles gyroscope and velocities, positions, encoder simulated the that Now will it and normal as code robot your in etc. , m_leftEncoder. GetDistance() call can you calculations, odometry performing involves This robot. real a on would it like exactly behave etc. tracking, trajectory for loops feedback PID velocity running

## Position Robot Visualizing and Odometry Updating :4 Step 21.5.5

with updated being are angles gyro and velocities, positions, encoder simulated the that Now a in robot the of pose the update to used be can data this periodically, information accurate periodic the simulation, In ).Subsystem a in method periodic() the as (such loop periodic real the on whereas odometry update to readings gyro and encoder simulated use will loop hardware. physical from readings real use will code same the robot,
.document this see odometry, using on information more For : : पार्]

## Visualization Pose Robot

dashboard a on or simulation) (during GUI Simulator the on visualized be can pose robot The Field2d A object. Field2d a over pose odometry the sending by robot) real a (on Glass as such arguments: constructor any without constructed trivially be can

Java

in is this do to place best The NetworkTables. over sent be then must instance Field2d This subsystem. your of constructor the

Java
$\begin{array}{r}\text { \{ ()Drivetrain public } \\ \text { m_field) ; , "Field" (putDataSmartDashboard. } \\ \hline\end{array}$

| frc/smartdashboard/SmartDashboard.h>< include\# |
| ---: |
| \{ Drivetrain() |
| m_field); \& ,"Field"PutData(: :SmartDashboard::frc |

using or API NetworkTables levellower- a using sent be also can instance Field2d The : : पारा
.API Shuffleboard the
object. Field2d the into periodically updated be must odometry your from pose the Finally, during both runs that one i.e. method periodic() general a in be should this that Remember operation. robot real during and simulation

Java

one - method periodic() regular a in placed is code this that important is It : प्राप command- the using are you If operation. of mode of regardless periodically called is that method this calling for responsible are you not, If exists. already method this library, based
class. Robot main the from periodically

You code. your run to required changes code the of all covered have we point this At : : पार्य simulation the run to how on info more for page Interface User Simulation the to head should GUI. the to on run will robot simulated your that field the add to page Widget Field2d the and

## Testing Unit 21.6

possible "units" smallest the into code the dividing by code testing of method a is testing Unit subsystem each for code the testing mean can this code, robot In unit. each testing and projects robot Java languages. most for frameworks testing unit many are There individually. .Test Google have projects robot C++ and default, by available 5 JUnit have

Code Testable Writing 21.6.1

Intake having by paradigm basedcommand- the to adapted easily be can example This : : वार
.SubsystemBase from inherit
motor: a and piston a containing mechanism intake Recharge Infinite an be will subsystem Our don't We inside. Cells Power the pull will motor the and intake, the deploys/retracts piston the anything. do won't it because deployed isn't mechanism intake the if run to motor the want
object the destroy to function a have to need we test, each for slate" "clean a provide To AutoCloseable the implementing by done is this Java, In allocations. hardware all free and member's the calling by object member each destroying method, close(). its and interface closed. be to need doesn't probably method close(). a without object an - method close(). scope of out goes object the when automatically called be will destructor default the C++, In objects. member of destructors call will and

See here. shown way the to identically closing resource support not might Vendors : : वार how. and support they what to as information more for documentation vendor's your

page) next on (continues
(ำำ

> DoubleSolenoid( new
> CTREPCMPneumaticsModuleType. kPistonFwdChannelIntakeConstants.
> ); kPistonRevChannelIntakeConstants.
> \{ ()deploy void public
> );kForward.Value(DoubleSolenoid.setm_piston.
> \{ () retract void public ); kReverse.Value(DoubleSolenoid.setm_piston. motor the off turn // );0(setm_motor.
> \}
> ( speed) double(activate void public
> \{ (isDeployed()) if
> (speed) ; setm_motor.
> nothing do open, t'isn piston if //- \{ else \}
> ) ;0(setm motor.
> ;kForward.ValueDoubleSolenoid. $\begin{gathered}\{() \text { isDeployed boolean public }\end{gathered}$
> @Override
> \{ Exception throws ()close void public () ; closem_piston. () ;closem_motor.
> (Header) C++
(Source) C++


## Tests Writing 21.6.2

src/test/cpp// and src/test/java// set: source test the inside placed are Tests : $\square$ ] the to access have not do root source that outside Files respectively. tests, C++ and Java for references. unresolved to due compilation fail will this - framework test
@org.junit.jupiter. with marked method test one least at contains class test each Java, In resources opening for methods Additional case. test a representing method each , api. Test marked respectively are after them closing and test each before object) Intake our as (such In .@org.junit.jupiter.api.AfterEach and @org.junit.jupiter.api.BeforeEach with and subsystem our contain testing::Test from inheriting classes fixture test $\mathrm{C}++$, TEST_F (testfixture, the using written are methods test and objects, hardware simulation fixture test the in overridden be can methods TearDown () and SetUp () The macro. testname)
test. each after and before respectively run be will and class
in EXPECT_*() or Java in assert* () ( assertion one least at contain should method test Each isn't condition the if test the fail and runtime at condition a verify assertions These C++). crash will assertion failed first the method, test a in assertion one than more is there If met. assertions. later the reach won't execution - test the
equality: is common most the types; assertion multiple have GoogleTest and JUnit Both comparing When .actual) EXPECT_EQ(expected,/actual) assertEquals(expected, (Java), JUnit In given. be can error, acceptable the ,delta - parameter third a numbers, static the adding by qualification without used be can and methods static are assertions these (C++), Test Google In .org.junit.jupiter.api.Assertions.* static import import star header. ><gtest/gtest. h the from macros are assertions
done be should them comparing so accurate, isn't values pointfloating- of Comparison : : पारा ).DELTA( parameter error acceptable an with

Java

```
            ;org.junit.jupiter.api.Assertions.assertEquals static import
;edu.wpi.first.hal.HAL import ;edu.wpi.first.wpilibj.DoubleSolenoid import ;edu.wpi.first.wpilibj.PneumaticsModuleType import ;edu.wpi.first.wpilibj.examples.unittest.Constants.IntakeConstants import ;edu.wpi.first.wpilibj.simulation.DoubleSolenoidSim import ;edu.wpi.first.wpilibj.simulation. PWMSim import ;org.junit.jupiter.api.AfterEach import ;org.junit.jupiter.api.BeforeEach import ;org.junit.jupiter.api.Test import
\{ IntakeTest class range deviation acceptable // ;1e-2 = DELTA double final static
m intake; Intake
m_simMotor; PWMSim
m simPiston; D̄oubleSolenoidSim
test each before run will method this // @BeforeEach \{ () setup void failed if crash HAL, the initialize // );0 ,500(initializeHAL. assert intake our create // Intake(); new = m_intake
= m simMotor
umotor PWM simulation our create // );kMotorPortPWMSim(IntakeConstants. new
controller \(\rightarrow\)
= m simPiston
DoubleSolenoidSim( new
CTREPCMPneumaticsModuleType.
kPistonFwdChannelIntakeConstants.
solenoid simulation our create // );kPistonRevChannelIntakeConstants.
```

)"PMD.SignatureDeclareThrowsException" (@SuppressWarnings test each after run will method this // @AfterEach \{ Exception throws ()shutdown void object intake our destroy // ();closem intake.
test a as method this marks // @Test
()doesntWorkWhenClosed void intake the close // (); retractm intake. motor the activate to try // );0.5(activatem_intake.
assertEquals(
„the to set value the that sure make // DELTA); (), getSpeedm_simMotor. ,0.0
@Test
()worksWhenOpen void
() ;deploym intake.
);0.5(activatem_intake.
DELTA) ; (), getSpeedm_simMotor. 0.5 assertequals(
@Test
\{ () retractTest void
page) next on (continues


\{ WorksWhen0pen) TEST_F(IntakeTest,
intake.Deploy();
);0.5intake.Activate(
simMotor.GetSpeed ()) ; , 0.5EXPECT_DOUBLE_EQ(
\{ Retract) TEST_F(IntakeTest, intake. Retract();
simPiston.Get()); kReverse, : :Value: :DoubleSolenoid: : EXPECT_EQ(frc
\{ Deploy) TEST_F(IntakeTest, intake.Deploy();
simPiston.Get()) ; kForward, : : Value: : DoubleSolenoid: :EXPECT_EQ(frc
docs. framework the see Test, Google and JUnit of usage advanced more For
21. 밈
more and prerequisites For desktop. your on simulation in run be always will Tests : : पारा introduction simulation the see info,
block: following the contains file build.gradle your that sure make run, to tests Java For


[^5]reported be will Results tests. the run to Palette Command the from Code Robot Test Use name test the to next label OK/PASSED or FAILED a have will test each output, terminal the in build/reports/tests/ in document HTML a generate will only) (Java JUnit output. the in link a test failed are there if results; the of overview detailed more a with test/index.html output. terminal the in printed be will browser your in document the render to
will This deploys. including built, is code robot whenever tests the runs Gradle default, By this prevent To fail. to deploy and build the cause will tests failing and time, deploy increase Palette Command the from Setting Deploy On Tests Skip Change use can you happening, from deploying. when tests run to whether configure to


NetworkTables the of contents the to add and modify view, to used utility a is OutlineViewer and NetworkTables the in currently pairs value key all displays It purposes. debugging for OutlineViewer table. the to keys new add or keys existing of value the modify to used be can installations. language $\mathrm{C}++$ and Java the in included is
top the in logo WPILib the click or WPILib type and Ctrl+Shift+P press Code, Studio Visual In .OutlineViewer select then ,Tool Start Select Palette. Command WPILib the launch to right team your be to Location Server the set and OutlineViewer open robot, your to connect To to connecting trouble have you If connect. will OutlineViewer start, click you After number. Steps Troubleshooting Dashboard the see please OutlineViewer
simulated a at OutlineViewer point to number team a of instead localhost use can You : : वार Romi. a or robot
the choose and location a on click right NetworkTables, to pairs key/value additional add To type. data corresponding accomplish to Dashboard LabVIEW the of tab Variables the use can teams LabVIEW : alll OutlineViewer. as functionality same the


Introduction Vision 23.1

## Vision? is What 23.1.1

drive, and score teams help to order in robot the to connected camera a uses FRC® in Vision periods. teleoperated and autonomous the both during

Methods Vision
FRC. in vision for use teams most that method main two are There
and driver the that so Station Driver the to camera the streaming involves method This simple is method This view. of point robot's the from information visual get can manipulator of features need not do you if option good a it making implement, to time little takes and processing. vision
roboRIO the using Streaming

## Processing

the using involves method this Station, Driver the to camera the streaming only of Instead target's or piece's game a as such information, compute to camera the by captured frames and knowledge technical more requires method This camera. the from distance and angle this However, expensive. computationally more being as well as implement, to order in time operations scoring""auto- in assist and performance autonomous improve help can method coprocessor a or roboRIO the using done be can method This period. teleoperated the during

GRIP. as such programs or OpenCV either using Pi Raspberry the as such
Pi Raspberry with Processing Vision •
GRIP with Processing Vision •
roboRIO the with Processing Vision
processing, vision for coprocessor a using of cons and pros the on information additional For .Programming Vision for Strategies page, next the see

## Programming Vision for Strategies

on elements the to responsive be robot your making of way great a is vision computer Using points bonus are there games FRC® in Often autonomous. more much it make and field the on locations to navigating or goals into pieces game other or balls shooting autonomously for have you if And problems. these of many solving of way great a is vision Computer field. the as period teleop the during used be can it then challenge, the do can that code autonomous drivers. human the help to well
the where and processing vision for components the choosing for options many are There and options of number a support tools associated and WPILib run. should program vision some you give to attempt will article This do. to what decide to flexibility of lot a teams give available. are that tradeoffs and choices the of many into insight

## Library Vision Computer OpenCV

academia throughout used widely is that library vision computer source open an is OpenCV accelerated GPU providing manufactures hardware from support has it industry. and It Python. and Java, C++, including languages of number a for bindings has it processing, there so courses training and videos, books, sites, web many with documented well also is of versions Java and C++ The it. use to how learn help to available resources of lots are processing capturing, for library the in support is there libraries, OpenCV the include WPILib information more For algorithms. vision your create you help to tools and video, viewing and
.https://opencv.org see OpenCV about

## Competition Robotics FIRST

since choice good a makes Python choosing. your of language a using program vision own good. very are bindings OpenCV the and implementation NetworkTables native a is there or distance position, target the as such values key the processed, are images the After approach This NetworkTables. with robot the to back sent be can need you else anything the to sent be to needing images the to due added is delay as latency, higher has generally used images the of FPS and resolution maximum the limit also limitations Bandwidth laptop. processing. for

GRIP. in or Shuffleboard on displayed be can stream video The
of number a have Cameras WPILib. by supported options camera of number a are There the affect resolution image and rate frame example, for operation; affect that parameters to sent if and, time processing impact high too set when but images, received the of quality
field. the on bandwidth available the exceed may station, driver the the to connected cameras with interface to used is Java and C++ in class CameraServer The stream the sends and object Source a through processing local for frames retrieve It robot. there. processing or viewing for station driver your to

## Retroreflection and Info Target <br> 23.1 .3

vision in aid to elements field to attached tape retroreflective have games FRC® Many the and game FRC 2016 the from Targets Vision the describes document This processing. targets. the up making material the of properties visual

Official the see please components, field all of drawings and dimensions official For : : पार Drawings. Field

1 ft .8 in .
wide 2 " of made shapeU- tall 1 « wide, $8^{\prime \prime} 1$ « a of consists target vision 2016 Each immediately located are targets The Film). Marking Silver 8830 (3M material retroreflective produces tape retroreflective the lit, properly When goal. high each of bottom the to adjacent marker. saturatedcolor- and/or bright a

Reflectivity vs. Retroreflectivity
back light of majority the return materials reflectiveRetro- however., reflectionretro- exhibit the and surface the between angles of range wide a for this do they and source, light the to using this accomplish materials reflectiveRetro- case. degree 90 the just not source, light with spheres small using by or reflector, roadside or bicycle a on found as such prisms, small nature, In reflections. internal multiple accomplish that refraction of index appropriate the typically effect reflectiveretro- the exhibit also cats, house including animals, some of eyes the shine.night- as to referred

## Retroreflection of Examples

visibility nighttime enhance to used often is it as familiar relatively be should material This pedestrians. and bicycles, signs, road of
when but safety, nighttime for property useful a like seem not may reflectionretro- Initially, eye, the to returns light reflected the above, shown as another, one near are eye and light the the between angle small the to Due distances. large at even brightly shines material the and visibility increase greatly can materials reflectiveretro- headlights, vehicle and eyes driver's
driving. nighttime during objects distant of

## Demonstration

properties: material reflectiveretro- explore further To surface vertical or wall a on material the of piece a Place
material. the at flashlight small a shine and away, feet 2010- Stand
your between is it until slowly it raise and button, belly your at held light the with Start rapidly. increase will light returned the of intensity the eyes, your nears light the As eyes.
bright The repeating. and room the in locations other to moving by angle the Alter light from angle the but angles, viewing of range wide a over occur should reflection small. quite be must and key is eye to source
reflective more times of hundreds is material The sources. light different with Experiment safety bicycle red a example, For fine. work will sources light dim so paint; white than reflected the of color the determines source light the of color the that demonstrate will light own their with each locations, different at members team several position possible, If light. can material the and independent, largely are effects the that show will This source. light that demonstrates also This members. team various to colors different appear simultaneously is viewer the to returning light The lighting. environmental to immune largely is material the Using them. behind directly one or control they source light a by determined entirely almost
clothing, on environment: your in already articles reflectiveretro- other identify flashlight, the etc. shoes, backpacks,

## Lighting

it, at directed is source light a unless shine not will tape reflectiveretro- the that seen have We there While eyes. observer's the or lens camera the near very pass must source light the and is investigate to source light of type useful very a this, accomplish to ways of number a are the around or on directly source light the places It above. shown light, ring or flash, ring the size, small and output bright their of Because lighting. even very provides and lens camera device. of type this constructing for useful particularly are LEDs
of variety a in available are LEDs of arrangements circular inexpensive above, shown As a of off powered be even can some and cameras, to attach to easy are and sizes and colors causing for well quite work they lighting, even diffuse for designed not While Pi. Raspberry Choice. FIRST through available is ring LED green small A shine. to tape reflectiveretroSuperBrightLEDs. as such suppliers from available are rings LED similar Other

## Images Sample

with (packaged language each for examples code the with located are images Sample samples). C++/Java the as location same the in ZIP separate a in and LabVIEW,

Targets the Processing and Identifying
This image. the in Target(s) Vision identify to is step next the captured, is image an Once the that Note targets. 2016 the identifying to approach one through walk will document the underexpose to set intentionally camera the with taken were section this in used images on section the see targets, lit the of exception the with images dark very producing images, details. for Settings Camera

LabVIEW in provided code example the by used approach the through walks document This the of aware be should teams options these to addition In Java. and C++ roboRIO), or PC (for boardon- an or PC Station Driver the on processing vision for allow that alternatives following

PC:
robot any with works Java, in (programmed Extension Camera SmartDashboard language)

## Image Original

was image The here. described example the for image starting the is below shown image The ring additional an with combined Choice ${ }^{\circledR}$ FIRST in available light ring green the using taken examples. code vision the with provided are images sample Additional size. different a of light
contains and wheel color artist's the on seen commonly is color the of tone or Hue The hue The Violet. and Indigo, Blue, Green, Yellow, Orange, Red, rainbow the of colors the only contains typically circle the imaging in but wheel, the on angle radial a using specified is at red to back wrapping and rainbow, the through cycling zero, at red with starting units, 256 to color hue the of ratio the or color, of amount specifies color a of Saturation end. upper the and hue no has saturation Zero gray. less colorful, more means ratio Higher gray. of shade a blended is hue the that gray of shade the indicates Value or Luminance gray. completely is 255. is white and 0 is Black with.
primary The target. the of color the specify to space color HSV the uses code example The of rest the to relative targets the of brightness the using for allows readily it that is reason component. (HSL) Luminance or (HSV) Value the using by criteria filtering a as image the the in used operation thresholding the that is system color HSV the use to reason Another space. color HSV the in done when roboRIO the on efficiently more runs example

## Masking

create to values brightness or color constant to compared are values pixel step, initial this In are that pixels the of most eliminates step single This yellow. in below shown mask binary a color the provided well works masking based Color tape. reflectiveretro- target's a of part not accurate more generally are inequalities Color consistent. and bright, saturated, relatively is Saturation, (Hue, HSV or Luminance) and Saturation, (Hue, HSL the using specified when true especially is This space. Blue) and Green, (Red, RGB the than space color Value) and dimension. more or one in large quite is range color the when tower and light (overhead image the of parts bright other target, the to addition in that Notice step. masking the by caught also are lighting)
bounding area, the examine to used is operation report particle a operation, masking the After several compute to used are These particles. the for rectangle equivalent and rectangle, below described test Each rectangular. most are that shapes the pick help to terms scored the if decide to limits score definedpre- to compared then is which 100)(0-score a generates not. or target a is particle

Area Coverage
the of area the to compared particle the of area the comparing by calculated is score Area The square 80 is strips retroreflective the of area The particle. the around drawn box bounding inches square 240 is target the contains that rectangle the of area The $). \mathrm{cm}^{2}(\sim 516$ inches Area $1 / 3$. is area box bounding and area between ratio ideal the that means This ). $\mathrm{m}^{2}(\sim 0.15$ will score the $1 / 3$ from diverges ratio the as 100 , near score a produce will $1 / 3$ to close ratios 0 . approach

## Ratio Aspect

height and width The Height). Particle / Width (Particle on based is score ratio aspect The The rectangle". "equivalent the called something using determined are particle the of particle the equals $2 x+2 y$ where $y$ and $x$ lengths side with rectangle the is rectangle equivalent aspect the for used is rectangle equivalent The area. particle the equals $x \cdot y$ and perimeter bounding the using than rectangle the of skewing by affected less is it as calculation ratio the skewed is rectangle the as ratio, aspect for rectangle box bounding the using When box.
decreases. width the and increases height
aspect detected The 1.6. of ratio a for tall, mm ) ( 304.812 " by wide mm ) ( 50820 " is target The when 100 return to normalized is score ratio aspect The ratio. ideal this to compared is ratio above. or below varies ratio the as linearly drops and ratio target the matches ratio the

Moment
the of center the from is pixel each out spread how calculates measurement "moment" The It particle. the in distribution pixel the of representation a provides measurement This blob. score ideal The calculation. inertia of moment physics a to analogous as of thought be can
$\sim 0.28$. is test this for

X the both in profile appropriate the matches particle the whether describes score edge The the across averages column and row the using calculated is it shown, As directions. Y and The mask. profile a to that comparing and image original the from extracted box bounding averages column or row the within values of number the on based 100 to 0 from ranges score values. limit lower and upper the between are that

Measurements
some calculate to sense makes it target, a considered be to enough well scores particle a If these includes code example The distance. and position as such measurements worldrealit. understand better to involved math the at look let's so measurements, basic

Position
all but box, bounding the and particle the both by described well is position target The bottom and right the and screen the of left top the at being 0,0 with pixels in are coordinates not but math, pixel for system useful a is This resolution. camera the by determined edges useful. more be may that something to it change let's so robot; a driving for useful as nearly shown formula the use can we system, aiming the to system pixel the from point a convert To below.

This inverted. is axis Y the but want, may you what to close are coordinates resulting The sample the in done not is this (Note: 1][1,- by point the multiplying by corrected be could is scale the and origin centered a has it because useful is system coordinate This code). inputs. Drive and outputs joystick to similar

$$
A_{x, y}=\left(P_{x, y}-\frac{\text { resolution }_{x, y}}{2}\right) / \frac{\text { resolution }_{x, y}}{2}
$$

## View of Field

to plane coordinate the on target the of position the and constants known use can You these, calculate to order in However, target. the from pitch and yaw, distance, your determine field vertical determine empirically to order In view). of (field FOV your determine must you distance the measure and surface, flat an from away distance set a camera your set view, of pixels. of row bottommost and topmost the between

$$
\frac{1}{2} F O V_{\text {vertical }}=\tan \left(\frac{\frac{1}{2} \text { distance }_{y}}{\text { distance }_{z}}\right)
$$

the between distance the using but method, same the using FOV horizontal the find can You pixels. of column last and first

## Yaw and Pitch

your know you once simple is robot your to relative target the of yaw and pitch the Finding system. coordinate aiming the in target your of location the and FOVs

$$
\begin{aligned}
& \text { pitch }=\frac{A_{y}}{2} F O V_{\text {vertical }} \\
& \text { yaw }=\frac{A_{x}}{2} F O V_{\text {horizontal }}
\end{aligned}
$$

Distance
known use can you robot, your than height different significantly a at is target your If angle the as well as camera, your and target the of height physical the as such constants, target. the and camera your between distance the calculate to mounted, is camera your

$$
\text { distance }=\frac{\text { height }_{\text {target }}-\text { height }_{\text {camera }}}{\text { tan }\left(\text { angle }_{\text {camera }}+\text { pitch }\right)}
$$

inverse the estimate to or distance, to area for table lookup a create to is option Another accurate. less is method this However, distance. and area of constant variation
can you distance, and angle estimating of methods above the for results best For : : पार्य affecting be may that distortions any of rid get to OpenCV using camera your calibrate matrix. calibration the using target the of pixels the reprojecting by accuracy

## Class CameraServer Video: Process and Read

$\qquad$
Concepts
Axis the as such cameras Ethernet and USB (commodity FRC® in used typically cameras The single a only provide they general, In operation. of modes limited relatively offer camera) and resolution single a at JPG) as such format compressed RGB an in (typically output image the access may application one only as limited particularly are cameras USB rate. frame time. a at camera
automatically as such details handles It cameras. multiple supports CameraServer camera the from images makes also and disconnected, is camera a when reconnecting connect can dashboard the and code robot your both (e.g. "clients" multiple to available simultaneously). camera the to

## Names Camera

for appears that name the also is This named. uniquely be must CameraServer in camera Each startAutomaticCapture( ) CameraServer the of variants Some Dashboard. the in camera the 0" Camera "USB (e.g. camera the name automatically will functions addAxisCamera() and Cam"). "Intake (e.g. name descriptive more a camera the give can you or Camera"), "Axis or name. unique a have camera each that is requirement only The

Notes Camera USB
Usage CPU
and compression performing only by usage CPU minimize to designed is CameraServer The no when streaming disabling automatically and required when operations decompression connected. are clients the as resolution same the to set be should resolution dashboard the usage, CPU minimize To instead, image, the recompress and decompress not to CameraServer the allows this camera; It's dashboard. the to directly camera the from received image JPEG the forward simply can it
camera the change not does dashboard the on resolution the changing that note to important the on setResolution() calling by done be may resolution camera the changing resolution; object. camera

## Bandwidth USB

interfaces. USB its over time a at data much so receive and transmit only can roboRIO The The limit. this into run to easy relatively is it so and data, of lot a require can images Camera running or mode video JPEGnon- a selecting is error bandwidth USB a of cause common most connected. are cameras multiple when particularly resolution, a of high too

## Architecture

and class CameraServer WPILib level high the layers, two of consists CameraServer The .library cscore level low the

## Class CameraServer

cameras adding for interface level high a provides WPILib) of (part class CameraServer The and cameras the about information publishing for responsible is also It code. robot your to LabVIEW the as such dashboards Station Driver that so NetworkTables to servers camera are streams their where determine and cameras the list can Shuffleboard and Dashboard servers. and cameras created all of database a maintain to pattern singleton a uses It located.
are: CameraServer in functions key Some
a starts and LifeCam) Microsoft (e.g. camera USB a Add :startAutomaticCapture() dashboard. the from viewed be can it so it for server
the from images processing aren't you if Even camera. Axis an Add :addAxisCamera() camera Axis the that so function this use to want may you code, robot your in camera Axis Axis the so server a starts also It cameras. of list down drop Dashboard's the in appears USB via roboRIO the to connected is station driver your when viewed be still can stream the to connected roboRIO and camera Axis the both have you if competition at (useful ports). Ethernet radio robot two
the from images get to you allows This camera. a to access OpenCV Get :getVideo() code). robot your (in roboRIO the on processing image for camera pass to you allows This to. images OpenCV feed can you that server a Start :putVideo() dashboard. the to images annotated and/or processed custom

## Library cscore

to: implementation level lower the provides library cscore The cameras Axis) (e.g. HTTP and USB from images Get
brightness) and contrast (e.g. settings camera Change rate) frame and resolution format, (pixel modes video camera Change stream MJPEG standard a as images serve and server web a as Act processing image for objects Mat OpenCV to/from images Convert
with MJPGStreamer, of that to similar is library cscore the of architecture basic The multiple and sources multiple be can There sinks. and sources between split functionality simultaneously. operating and created sinks
a is images accepts/consumes that object an and source a is images generates that object An sources are cameras Thus library. the of perspective the from is generate/consume The sink. from images accepts it because sink a is server web MJPEG The images). generate (they or browser web a to on images those forwarding be may it though (even program the within one to connected be can sinks but sinks, multiple to connected be may Sources dashboard). of care takes library cscore the source, a to connected is sink a When source. one only and sink. the to source the from image each passing
event an fire and camera) USB a by provided as (such frames individual obtain Sources library the source, particular a to listening are sinks no If available. is frame new a when library The resources. I/O and processor save to source a from disconnect or pause may resuming and pausing simply by disconnects/reconnects camera handles autonomously error). an not frames, new no in results disconnect a (e.g. events of firing
its to it forward and image, latest the grab event, source's particular a to listen Sinks inactive is sink particular a if sources, to Similarly format. appropriate the in destination may library the server), HTTP over MJPEG configured a to connected is client no (e.g. resources. processor save to processing its of parts disable
(providing source a either as act can program) robot FRC a in used that as (such code User via processing) for frame a (receiving sink a as or camera) a were it if as frames processed a from images gets that pipeline processing image an Thus objects. sink and source OpenCV graph: below the like looks out images processed the serves and camera
of out go they if destroyed aren't they so objects created of registry singleton a keeps also scope.
Java


C++


## Counting Reference

increments source a to sink a Connecting counted. reference internally are objects cscore All The scope. in sink the keep to necessary strictly only it's so count, reference source's the so functions, CameraServer with created objects all of registry a keeps class CameraServer explicitly (unless scope of out go never effectively way that in created sinks and sources removed).
the From examples. LabVIEW other the with included is Example Vision LabVIEW 2017 The window, LabVIEW other any from or Examples FRC® ${ }^{\circledR}$ PFindSupport- click screen, Splash The Example. Vision 2017 the find to folder Vision the locate and Examples >FindHelp- click example. the with bundled are images example
C++/Java
images, example the as well as below, description the and project GRIP a provided have We .TeamForge on found be can that ZIP a into bundled generated GRIP integrating about details for Program Robot a in Code Generated Using See program. robot your in code
green for contours OpenCV find will project GRIP included the by generated code The there From ZIP. this of folder Images Vision the in included ones the like images in particles this: do To target. the are they if assess to contours these process further to wish may you contours the around rectangles bounding draw to method boundingRect the Use
these of Each target. the for ratios separate 5 calculates code example LabVIEW The starting then size, by contours the sorts it this, do To 1.0. equal nominally should ratios be may that contours of pair possible every for values these calculates largest, the with found. it pair best the returns or target a finds it if stops and target, the
Height, $=(\mathrm{H}$ rect bounding the of coordinate a to refers letter each below, formulas the In contour the to refers subscript numeric the and Width) $=\mathrm{W}$ Bottom, $=\mathrm{BTop},=\mathrm{T}$ Left, $=\mathrm{L}$ etc). largest, second the is 2 contour, largest the is ( 1 number in): 10 / in ( 4 height total of $40 \%$ be should height Top

$$
\text { Height Group }=\frac{H_{1}}{0.4\left(B_{2}-T_{1}\right)}
$$

in): 10 / in (6 height total of $60 \%$ be should stripe top of top to stripe bottom of Top

$$
d T o p=\frac{T_{2}-T_{1}}{0.6\left(B_{2}-T_{1}\right)}
$$

be should 2 contour of edge left the and 1 contour of edge left the between distance The centered ratio the make to 1 add we then contour; 1st the of width the to relative small

1: on

$$
L E d g e=\frac{L_{1}-L_{2}}{W_{1}}+1
$$

same: the about be should contours both of widths The

$$
\text { ratio Width }=\frac{W_{1}}{W_{2}}
$$

one smaller the as tall as twice be should stripe larger The

$$
\text { ratio Height }=\frac{H_{1}}{2 H_{2}}
$$

calculating: by score 1000- a into turned then is ratios these of Each

$$
100-(100 \cdot \operatorname{abs}(1-\text { Val }))
$$

bottom of bottom to box bounding top of top from pixels measure distance, determine To box: bounding

$$
\text { distance }=\frac{\text { ft. in height Target }(10 / 12) \cdot \text { YRes }}{2 \cdot \text { PixelHeight } \cdot \tan (\text { camera of viewAngle })}
$$

to prone most the are target round the of edges the as height uses example LabVIEW The The green). less looks color the camera the from further points angle the (as detection in noise perspective by affected is image the in target the of height pixel the that is this of downside include: fixes Possible camera. the of angle the from distortion
instead width using Try
regression or table lookup a create and distances various at height measure Empirically function
servo use and image the in vertically target the center servo, a to camera the Mount a find or yourself trig proper the out work to have (you'll calculation distance for angle help!) to teacher math
calibrate to need will you this do To OpenCV. using distortion perspective the for Correct • You matrix. camera and matrix distortion a in result will This .OpenCV with camera your the map to function undistortPoints the with them use and matrices two these take will (this coordinates "correct" the to calculation distance the for measure to want you points image) whole the undistorting than intensive CPU less much is

## WPILibPi with Vision

## Pi Raspberry the with WPILibPi using of Walkthrough Video A

WPILibPi. of name old the is which FRCVision mentions video The : ใ०ा

WPILib the from Johnson Peter 2020, in WPI" by Presented Conference, Spring "RSN the At Pi. Raspberry a with Vision FRC $\circledR^{\circledR}$ on presentation a gave team
.here available is presentation the to link The

## processing vision for Coprocessor a Using

pieces game or targets field recognizing for OpenCV like libraries using processing Vision processing the and significant too isn't load the Often process. intensive CPU a be often can the or streams camera more are there where cases In roboRIO. the by handled be easily can and code the putting by roboRIO the loadoff- to desirable is it complex, is processing image processors of choices of number a are There processor. different a on connection camera the LimeLight the Kangaroo, basedintel- the PI, Raspberry the as such FRC® in popular are that as such accelerator graphics a code vision complex more for or simplicity, in ultimate the for
models. Jetson nVidia the of one

## Strategy

generally that software required the with coprocessor the up set to is idea the Generally includes:
library vision computer source open the - OpenCV
program roboRIO the to processing image the of results the commute to - NetworkTables
can that streams publish and connections camera the handle to - library server Camera dashboard a on viewed be
program vision the for used is language computer whatever for library language The detection object the does that program vision actual The
ethernet extra the into it plugging by network roboRIO the to connected is coprocessor The the to switch network small a adding connections, more for or, router network the on port them, processes images, the acquires it coprocessor, the into plugged are cameras The robot. can is it so NetworkTables to information, location target usually results, the publishes and aiming. and steering for program robot the by consumed be

## dashboard the to data camera Streaming

network. robot the over dashboard the to data camera the stream simply to desirable often is It a on viewed and network the to sent be can connections camera more or one case this In advantage the has Shuffleboard Using browser. web a or Shuffleboard as such dashboard the integrating as well as rate bit and resolution camera the set to controls easy having of robot. the from sent data other with streams camera
lines target as such image, the to annotation add and images process to possible also is It the to forward it send then detected has code processing image the what showing boxes or robot. the around what's of picture clear a see to operators for easier it make to dashboard

## FRC for Pi Raspberry the Using

because: Pi Raspberry the is choices coprocessor popular most the of One

> \$35 around - cost Low
including suppliers, of number a from Pis Raspberry find to easy it's - availability High
Amazon
specifications: following the has 3b+ Pi Raspberry current the - performance good Very
64bit A53 Core QUAD ARMv8 bit 64 BCM2837BO Broadcom - Specifications: Technical WiFi BCM43143-RAM 1GB-1.4GHz at run Computer Board Single powered Processor ports USB2 x 4 - GPIO extended pin 40 - board on (BLE) Energy Low Bluetooth - board on for port camera CSI - HDMI size Full - port video Composite and output Stereo pole 4 Raspberry the connecting for port display DSI - camera Pi - Raspberry the connecting storing and system operating your loading for port MicroSD - display screen touch Pi Amps. 2.5 to up supports (now source power USB Micro switched Upgraded - data

Raspberry provided a is there teams, for possible as easy as Pi Raspberry the using make To By booted. and Pi, the into inserted card, SD micro a to copied be can image The image. Pi supports: it default
functions common most the for it configuring for interface web A on published are that one) to (defaults streams camera number arbitrary an Supports interface network the
and Java, C++, for libraries language and Server, Camera programs custom Python
dashboard) (and network the to cameras more or one stream to is requirement only the If interface. web the through up set completely be can and required is programming no then

Pi. the boot and card flash a onto image the install to how discusses section next The

## running image Pi the get to need you What 23.2.4

following: the need you coprocessor image or video a as Pi Raspberry the using start To
B 4 Pi Raspberry a or B+, 3 Pi Raspberry B, 3 Pi Raspberry A a with software, provided the all hold to GB 8 least at is that card SD micro A (10MB/s) 10 of Class Speed recommended
network roboRIO your to Pi the connect to cable ethernet An
your on (VRM) Module Regulator Voltage the to connect to cable power micro USB A it powering than rather power for connection VRM the use to recommended is It robot. reliability higher for ports USB roboRIO the of one from
SD a or (preferred) dongle USB a using either card, MicroSD the write can that laptop A cards MicroSD most with ships that adapter MicroSD to card. MicroSD the to image FRC® the write will that dongle USB inexpensive an is Shown

# card MicroSD your to image the Installing 23.2.5 

image PI Raspberry FRC the Getting


#### Abstract

.repository WPILibPi the for page release GitHub the on stored is image The page web GitHub the on documentation the see page, this on instructions the to addition In (below). use Always it. downloading when connection internet fast a have so large fairly is image The releases. of list the of top the from release recent most the

\section*{card MicroSD your to image the Copy}


at be to needs card SD micro The card. SD micro the image to cards. SD micro to writing for well works dongle USB to SD micro A GB. 8 least
source, the as file zip the selecting by Etcher using image the with card MicroSD the Flash minutes 3 about take to process the Expect "Flash". click and destination the as card SD your laptop. fast fairly a on

## PI Raspberry the Testing

power. apply and 3 rPi a in card SD micro the Put
http:/ to connect and browser web a Open PC. or LAN a to ethernet 3 rPi the Connect will filesystem the bootup first the On dashboard. web the open to wpilibpi.local// the click to necessary it's so only, read to default will bootups later but writable, be
changes. make to button "writable"
advanced for Sometimes interface. console web the from done be can rPi the with tasks Most default the use in, log To in. log to necessary is it rPi the on development program as such use password: PI Raspberry
$\square$

## PI Raspberry The

## Console FRC

web any in viewed be can that console a includes PI Raspberry the for image FRC® The to: easy it makes that browser status PI Raspberry the at Look camera the running process background the of status the View settings network change or View cameras additional add and rPI the into plugged camera each at Look rPI the onto program vision new a Load
changed. be cannot system file the that means which OnlyRead- to set normally is rPI The isn't system file the rPi the down shutting first without removed is power if that ensures This saved be cannot settings new the sections), (following changed are settings When corrupted. system file the allow that provided are Buttons Only.Read- as set is system file rPI the while other the If made. are changes whenever back and Writable to OnlyRead-from changed be to status OnlyRead- the check press, be cannot rPI the on stored information change that buttons system. the of
rPI the to connection network the of Status
currently is rPi the if indicates that console the of corner right top the in label a is There network a longer no is there if Disconnected to Connected from change will It connected. rPi. the to connection

status System

columns two are There time. any at doing is rPI the on CPU the what shows status system The is: Shown average. second 5 a other the and average second 1 a being on values, status of

PI the on RAM available and free
time. idle as well as processes system and processes user for usage CPU
bandwidth camera used the if determine to one allows which - bandwidth network And year. any for rules robot the in allowed bandwidth maximum the exceeding is
the of one either rPI, the in code camera the running is which task the of monitoring Allows and enable also can You Python. or C++, Java, in program own your or programs default In service. camera background the from coming messages see to output console the view NetworkTables to connect to unable being about messages of number are there case this no with laptop a to connected simply is rPI the example this in because connect()) (NT: roboRIO.) the (usually running server NetworkTables

## Settings Network

PI: the to connect to options have settings network rPI The is name default The roboRIO. the by used usually resolution name default the - DHCP wpilibpi.local. explicitly in filled are settings router and mask, network address, IP fixed a where - Static IP an get to try will PI the - Fallback Static with DHCP - Fallback Static with DHCP IP static provided the use will it server, DHCP a find can't it if but DHCP, via address parameters and address
mDNS The Addressing. IP Static and DHCP both for settings the showing is above picture The above. selected options the of regardless work always should rPi the for name

## Settings Vision

Application
should rPI the whether and camera each for parameters the set to are Settings Vision The the and network the on server one be only can There server. or client NetworkTables a be be always should rPI the roboRIO, a to connected when Therefore server. a always is roboRIO roboRIO no with setup desktop a on testing If in. filled number team the with mode client in off). is switch (Client Server to set be should it then server a as acting anything or
case this In question. in camera the on click settings camera the all manipulate and view To current the reveals name the on clicking and 0" Camera rPi "Camera called is camera the settings. associated the and view camera
the of bottom The view. camera current the in reflected is settings camera the Manipulating rates) frame and Height, Width, of (combinations modes camera possible the all shows page camera. this by supported are that
supported the check then screen Stream Open the on visible not is image camera the If : : पारा the on click and Settings«»Vision to back go Then page. the of bottom the at modes video the in listed are FPS and height, width, format, pixel the that verify and question in camera modes. video supported

## reboots over persist to settings current the Getting

the in configuration camera the Editing startup. on settings camera the all load will rPi The From Config Source "Load the on click persist values the make To temporary. is screen above Then fields. settings camera the on in filled be will settings current the and button Camera" order in Writeable system file the set must you Note: page. the of bottom the at "Save" click page. the of top the at is button Writeable The settings. the save to (above). settings camera the in shown values settings camera used commonly some are There the before camera the into loaded are Exposure and Balance, White Brightness, values These overwrite will they settings those contains file JSON user a if So applied. is file JSON user field. text the from ones the

## Application

rPi. the on running currently is that application the shows tab Application The

## workflows Vision

C++, languages, supported the of each in OpenCV using program vision sample a is There addition, In rPi. the from video stream and capture can program sample Each Python. or Java, replace to extended be to up set all are They OpenCV. minimal some have samples the rPi The application. robot the for needed code the with code sample OpenCV provided the workflows: programming of number a supports tab Application
computer station driver the on consumption for rPi the from cameras more or one Stream ShuffleBoard using displayed and
Python) or C++ Java, language: each for (one programs sample the of one build and Edit toolchains included the using rPi the on
your on it build and edit and language chosen the for program sample a Download rPi the to back program built that upload Then computer. development


Copy Sou

Pixel Format
MJPEG

Brightness 15

Custom Prop
[\{"name":"
("name":"g
"name":"b

园 Save
based (probably scripts and applications custom completely using yourself everything Do samples) the of one on
downdrop- the in choices the of one selecting by changed be can application running The are: choices The menu.
the into plugged are cameras whatever streams which streaming camera multi inBuilt"Vision the on set be can cameras of number including configuration camera The rPi. tab. Settings"
the that assumes and rPi the to anything upload doesn't which application Custom script. and program custom a have to wants developer own your into edited be can that programs sample installedpre- Python or C++ Java, application.
the with file jar. a require programs Java program. uploaded Python or C++, Java, the to uploaded be to executable rPi an require programs $\mathrm{C}++$ and program compiled rPI.
executable jar, the where presented is chooser file a options, Upload the of one selecting When an picture following the In rPi . the to uploaded and selected be can program Python or the on clicking and file a select will button File" "Choose the and chosen is jar Java Uploaded file. selected the upload will button "Save"
using writeable set be to has system file the rPi, the onto file new a Save to order in Note: file the set file, new the saving After page. web the of left top the at button "Writable" the changes. accidental against protected is it that so Only""Read- to back system

## CameraServer Using

23.2 .7

## CameraServer from Frames Grabbing

processing vision own your make to libraries necessary the all with comes image WPILibPi The CameraServer the use can you camera, the from frame current the get to order In system. CameraServer Video: Process and Read the CameraServer, about information For library. .Class

Python

cv2.cvtColor Use reasons. historical for RGB not, BGR as image the in reads OpenCV : RGB. to it change to want you if

CameraServer. from grabbed be might that image an of example an is Below

## CameraServer to frames Sending

instance CameraServer the to back frames video processed send to want may you Sometimes, Shuffleboard. like application dashboard a in viewing or purposes, debugging for

Python

in corners the show and red, in target the outline could code processing the example, an As purposes. debugging for yellow and CameraServer to back sent be would that image processed fully a of example an is Below computer. Station Driver the on displayed

## Image an Thresholding 23.2.8

binary a into camera, your by captured one the as such image, colored a turn to order In hue, the using image the threshold to need we "foreground", the as target the with image, pixel. each of value and saturation,

## Model HSV The

by also but pixels, the of colors the on based filter only not to you allows HSV RGB, Unlike brightness. the and color of intensity the pixel. the of color the Measures Hue: pixel. the of color of intensity the Measures Saturation: pixel. the of brightness the Measures Value:

HSV. to matrix image BGR a convert to OpenCV use can You
Python
COLOR_BGR2HSV) cv2 cvtColor(input_img, cv2 = hsv_img
to order In $360^{\circ}$. to $1^{\circ}$ common the of instead $180^{\circ}$ to $1^{\circ}$ from is range hue OpenCV's : : वारा 2. by divide OpenCV, to value hue common a convert

Thresholding
processing. image of process whole the for example an as image field this use will We
target vision the into image the separate can you HSV, using image the thresholding By code following The (background). sees camera the that things other the and (foreground), values. HSV with thresholding by image binary a into image HSV a converts example

Python
max_ max_sat, (max_hue, min_val), min_sat, (min_hue, inRange(hsv_img, cv2 = binary_img
val) $) ~ \hookrightarrow$
lighting ambient as basis, venueper- an on tuned be to have may values These
: Flll through values these of editing allow to recommended is it venues. across differ may editing. flythe-on- facilitate to order in NetworkTables
this. like look should image your thresholding, After
morphological use can You clean. 100\% be not may process thresholding the see, can you As noise. the with deal to operations

## Operations Morphological 23.2.9

image. binary your in noise unwanted have you image, your thresholding after Sometimes, image. the from noise that remove help can operations Morphological

## Kernel

of 1 value of pixel each on superimposed is origin the where shape simple a is kernel The The number. odd an is N where matrix NxN a to kernel the limits OpenCV image. binary the is kernel common A center. the is kernel the of origin

$$
\text { kernel }=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

vertically. dilating or eroding only as such differently, image the affect can kernels Different created: we image binary our is this reference, For

## Erosion

of borders the from away takes It soil. on erosion to similar is vision computer in Erosion background. the from noise remove can process This objects. foreground

Python
uint8).np ),3 ,3ones((.np = kernel
)1 = iterations kernel, erode(binary_img,.cv2 = binary_img
binary the by completely contained not are pixels kernel's superimposed the if erosion, During deleted. is on superimposed was it that pixel the pixels, image's

## Dilation

This them. to adds it borders, the from away taking of Instead erosion. of opposite is Dilation region. larger a inside holes small remove can process

Python

$$
\text { ) } 1=\text { iterations kernel, dilate(binary_img,.cv2 = binary_img }
$$

dilation. the in included is kernel superimposed every of pixel every dilation, During

## Opening

the affecting without noise removes process This dilation. by followed erosion is Opening features. larger of shape

Python
uint8).np ),3,3ones( (.np = kernel
kernel) MORPH_OPEN, .cv2 morphologyEx(binary_img,.cv2 = binary_img
get to order in opening of iterations more do to appropriate is it case, specific this In : ใी right. top the in pixels the of rid

## Closing

without breaks or holes small removes process This erosion. by followed dilation is Closing features. larger of shape the affecting

Python
uint8).np ),3 ,3ones((.np = kernel
kernel) MORPH_CLOSE,.cv2 morphologyEx(binary_img,.cv2 = binary_img

## Contours with Working 23.2.10

to ready now are you operations, morphological with noise removing and thresholding After on based contours generate to you allows method This method. findContours OpenCV's use image. binary your

Python
CHAIN_APPROX_.cV2 RETR_EXTERNAL,.cv2 findContours(binary_img,.cv2 = _ contours, ,_ SIMPLE) $\hookrightarrow$
and contour largest the take just can you target, vision one only is there where cases In you target, vision one than more is there When for. looking are you target the is that assume out. contours unwanted filter to properties other and fullness, shape, size, use can

Python

|  | $: 0$ (contours)len if |
| :--- | ---: |
|  | ]0contours $=$ largest |
| page) next on (continues | contours: in contour for |

page) next on (continues

this: like something look should it found, just you contour the draw you If


## Contours from Information Extracting

about information get to want now you want, you that contour(s) the found you've that Now rotation. and corners, center, the as such it,

## Center

Python
minAreaRect(contour).cv2 = rect
rect = _ ,_ center,
center = center_y center_x,

## Corners

Python

$$
\text { )True arcLength(contour),.cv2 * } 0.1 \text { approxPolyDP(corners,.cv2 }=\text { corners }
$$

## Rotation

Python

```
fitEllipse(contour).cv2 = rotation ,_,_
```

Measurements see values, these use can you how on information more For

## NetworkTables to Publishing

RoboRIO. the and Station Driver the to properties these send to NetworkTables use can You itself. RoboRIO the or Pi, Raspberry the on done be could processing Additional

Python


## Example Vision Basic 23.2.11

aiming the in location target's the posts that setup vision basic a of example an is This a display to CameraServer uses and NetworkTables, to here described system coordinate the of framerate the display will example This detected. contour the of rectangle bounding

CameraServer. to sent images the on code processing

page) next on (continues



## Introduction AprilTag 23.3

## AprilTags? Are What 23.3.1



Michigan of University the at researchers by developed tags visual of system a are AprilTags applications. different many for localization accuracy high overhead, low provide to website their on found be can creators its and system tag the about information Additional purposes. related robotics FIRST for content the summarize to attempts document This

## FRC to Application

the on at is it where know robot your helping for useful are AprilTags FRC, of context the In position. goal some to itself align can it so field,
to years the over refined been have and 2011, since development in been have AprilTags detection. of speed and robustness the increase each field, the throughout scattered tags, of number a providing is FIRST 2023, in Starting .pose known a at
family. 16 h 5 the from are tags the of All
are which family, 36h11 the from are documentation this in pictures the of Many : $\operatorname{llll}$ are concepts underlying the All FRC. for use in actually 16 h 5 the to identical) not (but similar
same. the
be should tags of sets how on standards defines implementation library AprilTag The .here described are families tag possible the of Some designed. of grid $4 \times 4$ a of made is tags of family This 2023. for family 16 h 5 the chosen has FIRST must border white and black additional An information. of bit one representing each pixels,

## Competition Robotics FIRST

bits. the of outside the around present be are These used. actually are 30 only tags, possible theoretical $2^{16}=65536$ are there While to: chosen identified). incorrectly color its has bit a where issues (IE, flips bit some against robust Be 1 . tags. not are which things on found be to likely patterns geometric "simple" involve Not 2. etc.) stripes, squares, (IE, which out figure always can you that enough asymmetric is pattern geometric the Ensure 3. up. is way
length. in inches 6 is "body" main tag's the that such printed be will tags All

Mount area. practice your around placed and off printed be may files tag usage, home For algorithm processing the as flat, stays tag the ensure to material backing rigid a to them flat. are tags the assumes
.here located is AprilTags decodes and detects that code source the for repository main The include: These FRC. for features new add to repository the forked has WPILib Raspberry and roboRIO the including targets, FRC common for code source the Building 1. Pi.
Java from functionality its invoking allow to support (JNI) Interface Native Java Adding 2. support publishing Maven \& Gradle 3.
in AprilTags identify to code own their implement to have not should teams FRC most While function. libraries underlying the how of basics the know to useful is it image, camera a

Image Original
and color the to corresponding values, of array an simply is camera a from image An pixel. each of brightness

Colors Remove

Color image. only)(brightness- scalegrey- a to image the convert to is step first The tags. whiteand-black- the detect to needed not is information
pixels fewer with Working resolution. lower a to image the convert to is step next The early refine to later used be will image resolutionfull- The faster. work algorithm the helps estimates.
Threshold Adaptive
"definitely light", "definitely as pixel each classify to run is algorithm threshold adaptive An sure". "not or dark", small a to compared brightness, pixel's the at looking by calculated is threshold The it. around pixels of neighborhood

Segmentation
reasonably to small too are which clumps Any together. clumped are pixels known the Next, discarded. are tag a of part meaningful a be

Detection Quad
run: now is clump each to quadrilateral a fitting for algorithm An dimensions. both in outliers are which pixels by candidates "corner" likely Identify • time each fit the evaluating corners, of combinations possible all through Iterate • quadrilateral fitbest- the Pick •
tag. a likely is which quadrilaterals of subset a Identify quadralaterals, all of set the Given good a likely is quadrilateral interior many with quadrilateral exterior large single A candidate. valid a likely is that pixels of region sidedfour- a with left are we far, so well gone has all If tag.

ID Decode
we AprilTag, valid a be to believe we which pixels of regions more or one have we that Now light of pattern the "decoding" by done is This at. looking are we tag which identify to need inside. the on squares dark and be should bit each of center the where coordinates pixel interior expected the Calculate • threshold a to intensity pixel the comparing by "0" or "1" as location each Mark • for allowing image, the in seen was what matches closely most which ID tag the Find • errors. bit two or one decoding the case, this In tag. suspect the matches which ID tag valid no is there possible is It stops. process

Quad External Fit
it. with useful something do to need we pixels, of region the for ID tag a have we that Now the of corners the of location precise the knowing about care we applications, FRC most For the at did we operation loweringresolution- the expect we cases, both In center. its or tag, effects. those undo to want we and image, the distorted have to beginning is: this do to algorithm The resolutionoriginal- the in interest of region a define to location tag detected the Use • image
the where detect to interest of region the in points definedpre- at gradient the Calculate • white to black between transitions sharply most image full at quadrilateral exterior an fitre- rapidly to measurements gradient these Use • resolution
quadrilateral fitre- the of center exact the calculate to geometry Use •
However, processing. image faster for skipped be can and optional, is step this that Note you how on depending behavior, robot's your into errors significant induce can it skipping outputs. tag the using are

## Usage

Alignment 2D
centered is target the until robot the move to is targets using for strategy simple A gamepiece, the that such constructed are robot and field the Assuming image. the in a proved should method this aligned, all are camera and target, vision location, scoring position. scoring the to robot the align automatically to method straightforward apply correct, is ID tag's the If view. in AprilTags the of centroid the identify camera, a Using camera the in centered is tag the until right or left robot the rotate to commands drivetrain
image.
step. homography the performing or camera the calibrating require not does method This

## Alignment 3D

fieldon- perform help to locations corner their use to is AprilTags of usage advanced more A localization.

Using page. this on described algorithm the using AprilTags for searched is image Each pixels of array 2 d the onto world 3d the distorts lense camera's the how about assumptions good A calculated. is tag the to relative position camera's the of estimate an camera, the in accurate. be to behavior lens its about assumptions the for required is calibration camera
on tag the of position the ID, tag's each Given image. the from decoded. also is ID tag's The up. looked be can field the
the to relative camera the of position the and field, the on tag the of position the Knowing field. the on camera the of position the estimate to used be can classes geometry 3D the tag, be also can field the on position robot's the known, is robot the on position camera's the If estimated.
classes. estimation pose WPILib the into incorporated be can estimates These

Ambiguity 3D to 2D
dimensional)(two- image the in target the of corners known four the translating of process The ambiguous. inherently is dimensional)(three- camera the to relative position worldreal- a into ending corners target the in result that positions worldreal- multiple are there say, to is That image. camera the in spot same the in up
in oriented are objects how understand to clues background or lighting use often can Humans lookingsimilar- by tricked be can They benefit. this have not do computers However, space. targets:


FIG. 4. Two object proximation.
ways: different few a in done be can "correct" is position which Resolving expect you where to closest pose the pick to sensors all from history odometry your Use 1. be. to robot the
air) the in up or perimeter, field the outside (ex: unlikely very are which poses Reject 2.
differentiate) to hard (and together close very are which estimates pose Ignore 3. can camera one least at that such target, same the at look to cameras multiple Use 4. estimate pose good a generate
Discard estimates. pose multiple generate to each using once, at targets many at Look 5. together. clustered tightly are which ones the use estimates, outlying the

## Parameters Adjustable

processing. before sampleddown- is image the much how impacts factor Decimation which tags see to able being not of cost the at speed, detection increase will it Increasing away. far are when speed increases which noise, decrease to image input the to smoothing applies Blur at left be may this cameras, good most For precision. of cost the at pixels, to quads fitting zero.
the process to uses algorithm the which threads parallel of number the changes Threads this want you general, In multithreading. allowing by up sped be may steps Certain image. of number the minus CPU, your in cores physical of number the to equal approximately be to tasks. processing other for used be will which cores
.here found be can parameters tunable the about information Detailed

Learning Further

It's papers. academic three in described are AprilTags of versions major three The previous: the upon builds each as order, in them read to recommended

$$
\begin{aligned}
& \text { v1 AprilTags • } \\
& \text { v2 AprilTags • } \\
& \text { v3 AprilTags • } \\
& \text { Ambiguity Pose • }
\end{aligned}
$$

## 23.4 עיבוד תמונה עם GRIP

## GRIP to Introduction 23.4.1

through than rather interactively algorithms vision computer developing for tool a is GRIP mode headless in GRIP run may you algorithm your developing After coding. error and trial robot your to connected coprocessor a on or Laptop, Station Driver a on roboRIO, your on represents that pipeline graphical a create to operations vision choose you Grip With network. algorithm. vision the complete to performed are that operations of sequence the
for used libraries software vision computer popular most the of one OpenCV, on based is GRIP available are that operations The implementations. algorithm vision and robotics, research, the coding hand were you if available operations the with match 1 to 1 a almost are GRIP in
language. programming basedtext- some with algorithm same

## interface user GRIP The

parts: 4 of consists interface user GRIP The
provide can You pipeline. GRIP the into images getting of ways the are Sources Image • of beginning the always almost are Sources files. or cameras attached through images algorithm. processing image the that library OpenCV the from steps processing image the contains Palette Operation • operation an on Clicking algorithm. your form to pipeline the in together chain can you arrows right and left the use then can You pipeline. the of end the to it adds palette the in pipeline. the within operation the move to
in (operation) step Each algorithm. the up make that steps of sequence the is Pipeline to input an to step one of output the from step previous a to connected is pipeline the connections the through right to left from generally from flows data The step. next the create. you that
button preview it's has that step each of result the of previews shows are Preview Image • of outputs the preview to able being by algorithms debug to easy it makes This pressed. step. intermediate each
position. it's display and image the in square yellow the find to try will we application this In at down looking computer the to connected camera web USB a just simple, pretty is setup The locating in interested we're that thing the is square plastic yellow The objects. colorful some
image. the in

## source image the Enable

and button Webcam" "Add the on click source, the use To image. an acquire to is step first The Webcam as appeared that camera USB Logitech the case this In number. camera the select case this in selected is camera web The 1 . Webcam was camera monitor computer the and 0 preview image the select Then setup. the in shown as computer the behind image the grab to
area. preview the in shown be will stream camera the of display timereal- the and button

## image the Resize

image entire the fact in and purposes, our for high too is resolution camera the case this In the from clicked is operation "Resize" The window. preview the in viewed be even cannot operation, Resize the locate help To pipeline. the of end the to it add to Palette Operation are: steps The palette. the of top the at box search the into "Resize" type palette the on box search the into "Resize" Type 1.
pipeline. the in appear will It palette. the from operation Resize the Click 2.
case this In pipeline. the in operation resize the into factor scale resize y and $x$ the Enter 3. both. for chosen was 0.25
socket. mat source image Resize the to socket mat output image Webcam the from Drag 4. resize the to sent being is output camera the that indicating shown be will connection A input.
The pipeline. the in operation "Resize" the on button preview destination the on Click 5. to need might You image. original larger the alongside displayed be will image smaller shown. as both see to horizontally scroll
both at look to reason no is there since button preview source Webcam the click Lastly, 6. time. same the at image smaller the and image large the
image the of parts yellow the only Find
of color yellow the match doesn't that image the from everything remove to is step next The operation Threshold HSV a that do To detected. being object the is that plastic of piece the be should pixels which indicate to values HSV of limits lower and upper set to chosen is everything while white is area target the that Notice image. binary resultant the in included before: as Again, black. in shown are values threshold the within wasn't that
operation. Threshold HSV the find to box search the into HSV Type 1.
pipeline. the of end the at appear will it and palette the in operation the on Click 2.
Threshold. HSV the of input the to operation resize the on socket (output) dst the Connect 3.
is operation the of result the so operation Threshold HSV the of preview the Enable 4. window. preview the in displayed
the in shown is object target the only parameters Value and Saturation, Hue, the Adjust 5. window. preview
hits extraneous and noise the of rid Get
couldn't that things other from noise is there sometimes but far, so good pretty looks This pixels occasional those reduce to technique possible one illustrate To out. filtered be quite of groups small remove will Erosion chosen. is operation Erosion an detected, were that interest. of area the of part not are that pixels

## image original the from area yellow the just Mask

it operation) (and masking and image original the taking by generated is image new a Here image original the in seen as card yellow the just leaves This erosion. the of results the with found being was what exactly visualize to easy it makes it And shown. else nothing with
filters. of series the through

looks operation This Detector. Blob a using card yellow the detecting actually is step last The pixels blacknon- only the case, this In area. minimum some have that pixels of grouping a for around drawn is circle a that see can You done. is filtering the after card yellow the from are updates more for (watch GRIP of version release the In image. the of portion detected the your to blob detected the about parameters send to able be will you kickoff) and now between
.NetworkTables using program robot

GRIP of Status
object simple do to able be to fast and easy very is it example, this from see can you As principles basic the illustrates it example, simple very a is this While GRIP. using recognition will team project the weeks coming the Over general. in extraction feature and GRIP using of (Axis cameras supports it Currently added. are features more as GRIP to updates posting be yet output for provision no is There inputs. image and cameras) web and camera ethernet planned. are System) Operating (Robot ROS and NetworkTables although
page GitHub the from code the of release builtpre- a download either can You the clone can you or )https://github.com/WPIRoboticsProjects/GRIP( section "Releases" page. project the on are GRIP building on Directions yourself. it built and repository source wiki. project the on documentation additional also is There
can you bugs, find you If forum. the on here feedback us give and GRiP with play please So, page. project the on issue project GitHub a as or here them post either

## GRIP from Code Generating 23.4.2

## Generation Code GRIP

Raspberry or roboRIO a as such processor small a on algorithm vision your running When GRIP. of overhead the without processor the on directly OpenCV run to encouraged is it PI you that pipeline the for Python and Java, $\mathrm{C}++$, in code generate can GRIP this, facilitate To directly called and project robot your to added be can code generated This created. have code. robot existing your from
NetworkTables as such steps output and directories image or cameras as such sources Input the roboRIO, the On mats. OpenCV as images supply must code Your generated. not are use just can you results getting For format. that in images supplies class CameraServer values. $y$ and $x$ contour as such values resultant the retrieving for methods getter generated

## Code Generating

lets that dialog save a up bring will This .Code Generate > Tools to go code, generate To pipeline. GRIP the in steps the performs that class Python or Java, $\mathrm{C}++$, a create you
the save to directory relevant a choose project, existingpre- a in used be to code generating If to. pipeline
file implementation and header a into split is class pipeline the :Users C++ •
be should declaration a so declaration, package a lacks class generated the :Users Java • saved. was file the where directory the match to added
statement import the so class, the to identical be will name module the :Users Python • Pipeline import Pipeline from like something be will

Code Generated the of Structure
Pipeline:
pipeline the run will this -- Process //
source) process(Mat
accessors Output //
getFooltput()
getBar0utput()
getBar10utput()
$\cdots$

Pipeline the Running
image camera, IP (webcams, sources the with method process the call Pipeline, the run To with pipeline the in operation every of outputs the expose will This arguments. as etc) file, methods. getFooOutput the

## Results the Getting

operations these of outputs The pipeline. the in step every of outputs the to able are Users example: For accessors. respective their through accessible be would

| Operation | getter Java/C++ | variable Python |
| ---: | ---: | ---: |
| Threshold RGB | getRgbThresholdOutput | rgb_threshold_output |
| Blur | getBlurOutput | blur_output |
| Erode CV | getCvErodeOutput | mCv_erode_output |
| Contours Find | getFindContoursOutput | find_contours_output |
| Contours Filter | getFilterContoursOutput | filter_contours_output |

have operations those for accessors the pipeline, the in times multiple appears operation an If operation: that of number the

| Operation | appearance Which | Accessor |
| ---: | ---: | ---: |
| Blur | First | getBlur00utput |
| Blur | Second | getBlur10utput |
| Blur | Third | getBlur20utput |

## Program Robot a in Code Generated Using 23.4.3

and roboRIO a on runs that program FRC® an to added be can that class a generates GRIP output. the on based robot the drive code, additional of lot a without
robot a drives that pipeline GRIP a uses that program sample complete a is here Included material. retroreflective of piece a towards
necessarily not does and works code vision the how illustrate to designed is program This program own your writing When program. robot your writing for technique best the represent considerations: following the of aware be
camera The .problematic be could robot the steering for output camera the Using 1. that rate slower much a at runs images processes and captures that example this in code more slightly only and better, A robot. the steering for loop control a for desirable is have then rate, processing it's and camera the from headings get to is solution, complex sensor. gyro a using headings those to steering loop control faster much a
writing of way better A .pipeline the wraps that class the in code vision the Keep 2. process and class pipeline generated the instantiate or subclass to is code oriented object robot the example, this In program. robot the in than rather there results OpenCV the By contours. OpenCV resultant the manipulating by drive to direction the extracts code to difficult it makes it program robot the throughout exposed code OpenCV the having one. better a have you should algorithm vision the change
definitions program Iterative
Java

classes WPILib the for statements import the all see can you program the of part first this In program. this for used
pixels. $320 \times 240$ as defined are height and width image The •
a in processing camera your do to easy it makes class WPILib a is VisionThread The • program. robot the of rest the from thread separate
target. detected the of value $X$ center computed the be will value centerX simplified allows and robot this on motors drive the encapsulates DifferentialDrive • driving.
updated simultaneously being data the to access synchronize to variable a is imgLock • and coordinates the processing that's code the and pass acquisition image each with robot. the steering

Java

> @Override
> \{ () robotInit void public
> ();startAutomaticCaptureCameraServer. = camera UsbCamera IMG HEIGHT) ; (IMG WIDTH, setResolutioncamera.
> \{ >- pipeline MyVisionPipeline(), new VisionThread(camera, new = visionThread
> \{ ())isEmpty().filterContoursOutputpipeline.!( if
> ));0(get().filterContoursOutput(pipeline.boundingRectImgproc. = r Rect
> \{ (imgLock) synchronized
> ); 2 / width(r. + xr. = centerX
> ) ; \}
> () ;startvisionThread.
> );0PWMSparkMax( new = left
> );1PWMSparkMax( new = right
> right) ; DifferentialDrive(left, new = drive
creates It up. starts program the when once called is method robotInit() The resolution requested the at images capturing begins that instance CameraServer a IMG_HEIGHT). by (IMG_WIDTH
images capturing begins VisionThread created. is VisionThread class the of instance an Next the image, each processing After thread. separate a in asynchronously camera the from is value $\mathbf{X}$ center it's and retrieved is target the around box bounding computed pipeline the in rectangle the of center the of value pixel x the be will value centerX This computed.
image.
subclass a have we (here, instance VisionPipeline a takes also VisionThread The output the handle to use we that callback a as well as GRIP) by generated MyVisionPipeline an in areas of (outlines contours of list a outputs pipeline the example, this In pipeline. the of the of box bounding the finds callback The kind. some of targets or goals mark that image) Note centerX. variable the in value that saves then center, its find to order in contour first will thread robot main the sure makes this assignment: the around block synchronized the synchronized uses also it as long as variable, the of value dateto-up- most the have always variable. the read to blocks

the of period autonomous the during repeatedly called is program, the of part final the This, to width image the half subtracts and target the of value pixel centerX the gets It match. positive and image the in centered is rectangle the when zero is that value a to it change value That frame. the of side right or left the on is center target the when negative or
target. the towards robot the steer to used is
recent most the of snapshot a takes This beginning. the at block synchronized the Note VisionThread. the by found value centerX

## Computer Kangaroo a with GRIP Using 23.4.4

running for platform great a like looks Kangaroo the called computer available recently A include: processor this for specs the of Some robots. FRC® on GRIP processor Atom 1.4Ghz core Quad •
port HDMI • USB3) 1 and USB2 (1 ports USB $2 \cdot$

RAM 2GB •
Flash 32GB •
slot card Flash •
WiFi •
time running hours 4 with Battery •
supply Power •
10 Windows •
reader fingerprint a and •
and processing image doing from roboRIO the offloads it that is setup this of advantage The Be modification. without work should software our of all so system Windows normal a is it in. jumping before page this of end the at caveats the read to sure
the in found be can GRIP running for Kangaroo a using for instructions detailed More beyond goes explanation His 1735. FRC and Taylor Scott by created document PDF following many and boot on startauto- to program GRIP the get to how detailing here, shown is what details. other
Kangaroo Plus Grip
mouse keyboard, monitor, a in plug to need just you that is setup this about thing nice The the programming with go to good are you and camera web Microsoft the case) this (in and put and monitor and mouse keyboard, the disconnect finished, are you When pipeline. GRIP connect and Kangaroo the on WiFi the disable to need will You robot. your on Kangaroo the
radio. robot the on port ethernet extra the to dongle ethernet USB a with robot the to it
keyboard, (3), hub USB a to connected (1) computer Kangaroo the see can you example this In mouse. and camera the to connected is hub USB The programming. for monitor HDMI an and
program GRIP Sample
little the on heart red the detecting Kangaroo the on running program sample the is Attached color red that get only to threshold HSV a doing is It panel). (left image the in robot foam end the At solidity. and size the using contours the filtering then and contours, finding then

NetworkTables. to published being are values the pipeline, the of


## NetworkTables in Report Contours Viewing

(<username>/WPILib/tools/OutlineViewer.jar), OutlineViewer the from output the is This in network the on roboRIO no is there (since server a as computer different a on running program the that contour single the for back reported being values the and example) this operation. Contours Filter the of requirements the met that detected

## Considerations

running keep will GRIP sure make to taken be to must care so 10, Windows runs Kangaroo The Windows a do to try not should it example, For testing. or match a during robot the on being of advantage the has it configured, Once etc. sleep, to go refresh, scan Virus Update, only running is it since performance predictable give should and Architecture Intel normal a
application. one

## RoboRIO the on Vision 23.5

roboRIO the on CameraServer the Using 23.5.1
Program CameraServer Simple
LifeCam Microsoft the like camera USB a of capture automatic starts program following The send and frames capture will camera the mode, this In roboRIO. the to connected is that widget Viewer Stream CameraServer a create images, the view To dashboard. the to them just and unprocessed are images The dashboard. the in menu "Add" then "View", the using dashboard. the to camera the from forwarded

## Competition Robotics FIRST



Program Server Camera Advanced

instance. Server Camera the gets robotInit() in created thread a example following the In the on rectangle a drawing case this in processed, individually is video the of frame Each the to passed then are images resultant The method. rectangle() OpenCV the using image with operation rectangle the replace can You dashboard. the to sent and stream output the annotate even can You application. your for necessary is that code processing image any the to sent being image the onto information targeting write to methods OpenCV using image
dashboard.
Java

| edu.wpi.first.cameraserver.CameraServer import ;edu.wpi.first.cscore.CvSink import ;edu.wpi.first.cscore.CvSource import ;edu.wpi.first.cscore.UsbCamera import ;edu.wpi.first.wpilibj.TimedRobot import ;org.opencv.core.Mat import ;org.opencv.core.Point import ;org.opencv.core.Scalar import ;org.opencv.imgproc.Imgproc import <br> ${ }_{\iota}$ The processing. vision do to OpenCV of use the showing program demo a is This * acquired is image $\hookrightarrow$ ${ }_{\iota}$ the to sent and image the on put is rectangle a then camera, USB the from * has OpenCV dashboard. $\rightarrow$ processing. of types different for methods many <br> camera the from Mats capture will This CvSink. a Get // (); getVideoCameraServer. = cvSink CvSink Dashboard the to back images send will This CvSource. a Setup // ; 480 , 640 ,"Rectangle" (putVideoCameraServer. = outputStream CvSource <br> Mat. this reuse Lets expensive. memory very are Mats // Mat(); new = mat Mat <br> This is. it if exit never will program The .'true' be cannot This // or code robot restarting when thread this stop robot the lets // deploying. // \{ ())interruptedThread.!( while it put and camera the from frame a grab to CvSink the Tell // output. the notify error an is there If mat. source the in // \{ ) $0==$ (mat)grabFrame(cvSink. if |
| :---: |

page) next on (continues
 image the on put is rectangle a then camera, USB the from acquired is image * of types different for methods many has OpenCV dashboard. the to sent and * processing. *
\{ TimedRobot::frc public : Robot class :private

CameraServer from camera USB the Get //
StartAutomaticCapture();::CameraServer::frc = camera UsbCamera::cs
resolution the Set //

Camera the from Mats capture will This CvSink. a Get //
GetVideo();::CameraServer::frc = cvSink CvSink::cs

- outputstream CuSource: ics
);480,640,"Rectangle"PutVideo(::CameraServer::frc
Mat. this reuse Lets expensive. memory very are Mats //
mat; Mat::cv
)true( while
and camera the from frame a grab to CvSink the Tell // it put //
page) next on (continues


stream. named a to video the writes method PutVideo () the examples, these in that Notice this In stream. named that select Shuffleboard, or SmartDashboard on stream that view To
"Rectangle". is that case


## Cameras Multiple Using 23.5.2

## Views Driver the Switching

the SmartDashboard, using are and sees, driver the what switching just in interested you're If that Path") Camera ("Selected option an has Viewer Stream CameraServer SmartDashboard (displaying value that to Choice" "Camera the changes and key NetworkTables given the reads correct the to key NetworkTables the set to needs just then code robot The camera). that following the "CameraSelection", to set is Path" Camera "Selected Assuming name. camera camera2. and camera1 show to state button trigger 1 joystick the uses code

Java

| camera1; UsbCameracamera2; UsbCamera);0Joystick( new = joy1 JoystickcameraSelection; NetworkTableEntry |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

page) next on (continues

## Competition Robotics FIRST


server camera the by used camera the change can you dashboard, other some using you're If change will code robot the camera1, to nominally viewer stream a open you If dynamically.
trigger. joystick the on based camera2 or camera1 either to contents stream the

page) next on (continues


|  | $\begin{array}{r} \text { );1(startAutomaticCaptureCameraServer. = camera2 } \\ \text { (); getServerCameraServer. = server } \end{array}$ |
| :---: | :---: |
|  | \{ ()teleopPeriodic void public \{ ()) getTriggerPressed(joy1. if );"2 camera Setting"(println.outSystem. <br> (camera2) ; setSourceserver. <br> ()) getTriggerReleased(joy1. if else \} <br> );"1 camera Setting"(println.outSystem. <br> (cameral) ; setSourceserver. |



## Open Streams Keeping

What use. in not cameras off turning in aggressive pretty is library cscore the default, By use, in not camera the from disconnect may it cameras, switch you when that is means this camera both keep To camera. the to reconnects it as delay some have will back switching so the keep to library the tell to method SetConnectionStrategy () the use open, connections
them. using aren't you if even open, streams
Java
camera1; UsbCamera
camera2; UsbCamera
server; VideoSink
new
page) next on (continues

## Competition Robotics FIRST

> @0verride \{ ()robotInit void public
> @Override
> \{ ()teleopPeriodic void public
> \{ ()) getTriggerPressed(joy1. if
> );"2 camera Setting"(println.outSystem.
> (camera2) ; setSourceserver.
> \{ ()) getTriggerReleased(joy1. if else \}
> );"1 camera Setting"(println.outSystem.
> (cameral); setSourceserver.
\}

C++

\}

> \{ override ()TeleopPeriodic void
> \{ prevTrigger)! \&\& (joyl.GetTrigger() if
> endl;::std << "2 Camera Setting" << cout::std
> server. SetSource(camera2);
> \{ prevTrigger) \&\& joy1.GetTrigger()!( if else \} endl;::std $\ll$ "1 Camera Setting" << cout::std
> server. SetSource(cameral) ;
joy1.GetTrigger(); = prevTrigger
higher with limitations bandwidth USB into run may you USB, are cameras both If : : Int both from data streaming be to going is roboRIO the cases these of all in as resolutions, continuously and 2, and 1 options in period short a (for simultaneously roboRIO the to cameras option the in simultaneity this avoid to library the for possible theoretically is It 3). option in implemented. currently not is this but (only), case 2
hitting you're if you tell will library The differently. usage bandwidth report cameras Different
message: error this get you'll limit; the

> limitations; bandwidth USB to due streaming start not could format pixel different a or resolution lower a try device) on left space No (VIDIOC_STREAMON:
just should you Thus .RobotInit() during error this you give will it 3 Option using you're If and error that get don't both you until necessary as adjusting and resolution desired your try limitations. bandwidth radio the exceed don't

## Interface Web CameraServer 23.5.3

the view to use can you that webpage a creates it camera, a opens CameraServer When web the to connect To settings. camera various of effects the view and stream camera There .frc.local:1181-TEAM-http://roboRIO to navigate to browser web a use interface, .Program CameraServer Simple then other needed code additional no is
camera, additional for increments port The camera. first the for used is 1181 port The : : वारा .1182 with above 1181 replace the cameras, two have you if so

## Settings Camera

serve_us
Settings JSC
connect_verb
brightness
contrast
saturation
hue
white_balanc
camera various adjust to sliders has and image camera live a show will server web The adjust can You options. other many and sharpness contrast, brightness, as such settings, your in those set to class VideoCamera the use then and live, results the see and values the code. robot

## Modes Video Camera

| Supported Vi |
| :--- |
| Pixel Forma |
| YUYV |
| MJPEG |
| MJPEG |
| MJPEG |

This page. web the of bottom the at modes video supported of list the is feature useful One that one the choose to you enable to supports camera the that modes supported the all shows requirements. your for rate frame and resolution of combination best the is

migrate should Users 2023. in available longer no is basedcommand-2020)(pre- Old : : पार्य is basedcommand- old for Documentation below. framework basedcommand- new the to .here available
command- WPILib the for reference and to introduction an as serves articles of sequence This framework. based

Command- see framework, basedcommand- the using projects example of collection a For
.Examples Based

## מהו ״תכנות מבוסס פקודות״?

programming. based""command- called methodology programming robot a supports WPILib the to and paradigm, programming general the both refer can based""command- general, In
it. facilitate to included resources library WPILib of set
not is It software. robot for pattern design possible one is programming based""Commandrobot basedCommand- one. effective very a is it but program, robot a write to way only the year. to year from usere- to easy tricks) some (with and extensible, clean, be to tends code command- The .programming declarative of example an also is paradigm basedcommand- The of amount the minimizing while behaviors robot desired define to users allow library based basedcommand- the in example, For write. must they that logic robot iterationby-iterationis condition a when action an perform should robot "the that specify can user a program, ):lambda a of use the (note true"

Java
(DoubleSolenoid.setpiston. >- (()runOnce(Commands.onTrueTrigger(condition::get). new )) ); kForward.Value $\rightarrow$

[^6]
## Competition Robotics FIRST

state button the check to need would user the based,command- using without contrast, In button. the of state the on based action appropriate the perform and iteration, every

Java



Run Are Commands How 24.1.2
.Scheduler Command The see explanation, detailed more a For : : Inll
triggers polls which singleton, )C++, Java( CommandScheduler the by run are Commands executing and conflicts, resource preventing schedule, to commands for buttons) as (such generally is it called; be must method run() scheduler's The commands. scheduled at run is which class, Robot the of method robotPeriodic() the from it call to recommended 20 ms ). every (once 50 Hz of frequency default a
resources same the require not do they as long as concurrently, run can commands Multiple specify commands basis: subsystemper- a on handled is management Resource robot. the on than more more no that ensure will scheduler the and with, interact they subsystems which for that, ensures This time. a at scheduled is subsystem given a requiring command one same the set to attempting code of pieces different two with up end not will users example, values. output different to controller motor

## Compositions Command 24.1.3

by achievable is This pieces. simple from commands complex build to desirable often is It types several provides library basedcommand- The commands. of composition a creating command As own. their write may users and use, to teams for compositions command of That .composition recursive a in used be may they themselves, commands are compositions compositions. command multiple from compositions command a create can one - say to is simple from actions robot complex building of way powerful extremely an provides This components.

## Commands 24.2

they until scheduled, when run Commands take. can robot the actions represent Commands command- the in represented are Commands met. is condition end their or interrupted are
).C++ ,Java( interface Command the by library based

Command a of Structure The 24.2.1
by done is This states. possible its of each in do will command the what specify Commands must command a Additionally, methods. end() and ,execute(), initialize() the overriding overriding by done is this - execution finished has it ever) (if when scheduler the tell to able be code: user in clutter reduce to defaulted are methods these of All method. isFinished() the isFinished() while nothing, do simply to defaulted are end() and ,execute(), initialize() run will and naturally, finishes never that command a in (resulting false return to defaulted is interrupted). until

Initialization

once exactly called is and start, command the marks )C++, Java( method initialize() The the place to used be should method initialize() The scheduled. is command a time per and reused be may objects Command execution. for state starting known a in command functionality command's the for needed resources or state any so times, multiple scheduled use) each of start the at called be will (which initialize in opened or initialized be should useful also is It allocation). object on once only invoked is (which constructor the than rather setting as such scheduled, time per once performed be to need only that tasks performing for actuator. solenoid a of state the setting or speed constant a at run to motors

## Execution

scheduled; is command the while repeatedly called is )C++, Java( method execute() The robot main the in done generally is (this called is method run() scheduler's the when is this for used be should block execute The default). by 20 ms every runs which method, periodic updating as such scheduled, is command the while continually done be to needs that task any loop. control a of output the using or inputs, joystick match to outputs motor

## Ending

ends, command the when once called is )C++, Java( method interrupted) end(bool The (either interrupted was it or true) returned isFinished() (i.e. normally finishes it whether the specifies argument method The canceled). explicitly being by or command another by their of behavior the differentiate to this use can users ended; command the which in manner a in state command up" "wrap to used be should block end The accordingly. end command "default" a to actuator solenoid a reverting or zero to back motors setting as such way, neat .end () in closed be should initialize() in initialized resources or state Any state.

## conditions end Specifying

scheduled, is command the while repeatedly called is )C++, Java( method isFinished() The command's the true, returns it as soon As called. is method run() scheduler's the whenever execute() the after called is method isFinished() The ends. it and called is method end() ends. it that iteration same the on once execute will command the so method,

Properties Command 24.2.2
three has also Command each above, described methods lifecycle four the to addition In side no with value same the return always should that methods getter by defined properties,
affects.
getRequirements
the backs This requirements. as controls it subsystems any declare should command Each command one than more no that ensuring mechanism, management resource scheduler's different two as such situations prevents This time. same the at subsystem given a requires values. output different to controller motor same the set to attempting code of pieces relevant the in method getRequirements() the overriding by done is requirements Declaring / (Java) vararg requirements the using by or , addRequirements() calling by class, command constructors command most of list parameter the of end the at parameter ( $\mathrm{C}++$ ) list initializer library: the in factories and

Java

| intake); (intake::activate, runCommands. |
| ---: |
| C++ |
| intake\});\&\{,\} intake.Activate(); \{ intake]\&Run([::cmd::frc2 |

require. components their subsystems all require compositions command rule, a As
runsWhenDisabled
whether specifying bool/boolean a returns )C++ Java( method runsWhenDisabled() The the, false returning of default the With disabled. is robot the when run may command the do will it schedule to attempts and disabled is robot the when canceled be will command is robot the when scheduled be and run to command the allow will true Returning nothing. disabled.
may controllers motor CAN and disabled are outputs PWM disabled, is robot the When : : पार्य ! runsWhenDisabled of regardless voltage, apply not
relevant the in method runsWhenDisabled () the overriding by either set be can property This ):C++ ,Java( decorator ignoringDisable the using by or class, command

Java

| updateTelemetry()). >- (()runCommands. = mayRunDuringDisabled CommandBase |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C++ |  |  |  |  |  |  |  |
| ```).} UpdateTelemetry(); { Run([]::cmd::frc2 = mayRunDuringDisabled CommandPtr::frc2 );trueIgnoringDisable(``` |  |  |  |  |  |  |  |

commands component their all if disabled when run may compositions command rule, a As .true as runsWhenDisabled set

## getInterruptionBehavior

another if happens what defines )C++ ,Java( method getInterruptionBehavior() The the In running. is one this while scheduled is requirement a sharing command incoming the and canceled be will command current the ,kCancelSelf behavior, default incoming the returned, is kCancelIncoming If successfully. scheduled be will command that Note running. continue will command this and aborted be will scheduling command's commands all conflicts: requirement of resolution affects only getInterruptionBehavior .getInterruptionBehavior of regardless canceled, be can
when passed parameter interruptible the by controlled previously was This : : पार्य object. command the of property a now is and command, a scheduling
the in method getInterruptionBehavior the overriding by either set be can property This ):C++ ,Java( decorator withInterruptBehavior() the using by or class, command relevant Java


C++
intake.Activate(); \{ intake]\&Run([::cmd::frc2 = noninterruptible CommandPtr::frc2 kCancelIncoming) ;::InterruptBehavior::intake\}).WithInterruptBehavior(Command\&\{ $\rightarrow$
are components their all if kCancelIncoming are compositions command rule, a As well. as kCancelIncoming

## Types Command Included 24.2.3

of use the Through types. command writtenpre- many includes library basedcommand- The to need rarely should teams and cases use all almost cover can commands these ,lambdas factory static via provided are commands these of Many classes. command custom write the in defined namespace frc2::cmd the in or (Java) class utility Commands the in functions methods instance have also Subsystem from inheriting Classes (C++). header Commands.h .this require implicitly that

## Actions Running

changing motor, a to voltage setting takes: robot the actions are commands basic most The or call method a of consist typically which commands, these For etc. direction, solenoid's a with inline commands construct be to factories several offers library basedcommand- the two, executed. be to lambdas more or one command a creates class, )C++ Java( InstantCommand the by backed factory, runOnce The finishes. then and once, lambda a calls that

Java

| */ hatch. the Grabs **/ <br> \{ ()grabHatchCommand CommandBase public this` require implicitly // (kForward));setm_hatchSolenoid. >- (()runOnce.this return \\ */ hatch. the Releases **/ \\ \{ ()releaseHatchCommand CommandBase public this` require implicitly // (kReverse));setm_hatchSolenoid. >- (()runOnce.this return |
| :---: |
| (Header) C++ |
|  |
| (Source) C++ |
| ```{ ()HatchSubsystem::GrabHatchCommand CommandPtr::frc2 `this` require implicitly // RunOnce(>-this return );} kForward);::DoubleSolenoid::m_hatchSolenoid.Set(frc { ]this[ { ()HatchSubsystem::ReleaseHatchCommand CommandPtr::frc2 this` require implicitly // RunOnce(>-this return );} kReverse);::DoubleSolenoid::m_hatchSolenoid.Set(frc { ]this[``` |

calls that command a creates class, )C++ ,Java( RunCommand the by backed factory, run The interrupted. until repeatedly, lambda a Java
left the by controlled forward/backward with command, arcade split-stick A // right. the by controlled turning and hand, // (arcadeDrivem_robotDrive. >- RunCommand(() new
(), getLeftYdriverController.-
()), getRightXdriverController.
m_robotDrive)
C++
left the by controlled forward/backward with command, arcade split-stick A // right. the by controlled turning and hand, // RunCommand (: :frc2
\{ ]this[
m_drive.ArcadeDrive(
page) next on (continues


$$
\begin{aligned}
& \text { m_driverController.GetLeftY(), - } \\
& \text { m_driverController.GetRightX()); } \\
& \text { m_drive\})) \&\{ }
\end{aligned}
$$

lambda one calls class, )C++ Java( StartEndCommand the by backed factory, startEnd The interrupted. when lambda second a then and scheduled, when

Java

command four the constitute that lambdas four accepts ) C++, Java( FunctionalCommand initialize() of each for ><void()std::function/Runnable a methods: lifecycle a and ,end() for ><void(bool)std::function/BooleanConsumer a ,execute() and .isFinished() for ><bool()std: :function/BooleanSupplier

Java
FunctionalCommand( new
start command on encoders Reset //
m_robotDrive: resetEncoders,
command the of start the at forward driving Start //
), 0 (kAutoDriveSpeed, arcadeDrivem_robotDrive. >- ()

C++
FunctionalCommand(: :frc2
start command on encoders Reset //
,\} m drive. ResetEncoders(); \{ ]this [
page) next on (continues

command the of end the at driving Stop //
,\} ) ;0 ,0m_drive.ArcadeDrive( \{ interrupted) bool( ]this[
value desired the exceeds distance driven s'robot the when command the End //
,\} kAutoDriveDistanceInches; => m_drive. GetAverageEncoderDistance() return \{ ]this[ subsystem drive the Requires //
m_drive\}\&\{

Commands. the offers library the immediately, ending and string a print To the by backed factory, frc2::cmd::Print(std::string_view)/print(String) .InstantCommand of subclass )C++, Java( PrintCommand

## Waiting

synchronize to useful be can delay a adding or happen to condition certain a for Waiting actions. robot other between or composition command a in commands different between
the offers library the elapses, time of period specified a after end and wait To by backed factory, frc2::cmd: :Wait(units::second_t)/Commands.waitSeconds(double) class. ) C + + ,Java( WaitCommand the

Java
scheduled being after seconds 5 Ends // )5.0WaitCommand( new

C++
scheduled being after seconds 5 Ends // s)_5.0WaitCommand (: :frc2

Commands. the offers library the , true becomes condition certain a until wait To factory, >)<bool()frc2::cmd: :WaitUntil(std::function/waitUntil(BooleanSupplier) ).C++ ,Java( class WaitUntilCommand the by backed

Java

|  | true returns m_limitSwitch.get() after Ends // WaitUntilCommand(m_limitSwitch::get) new |  |
| :---: | :---: | :---: |
|  |  | C++ |
| $\text { )\} m_limitSwitch.Get(); }$ | true <br> turn | returns m_limitSwitch.Get() after Ends // \{ m_limitSwitch]\&WaitUntilCommand([::frc2 |

## Commands Algorithm Control

setups: control various for commands are There .PIDCommand see info, more For controller. PID a uses PIDCommand • see info, more For profile. motion trapezoid a tracks TrapezoidProfileCommand • .TrapezoidProfileCommand
more For profiles. motion trapezoid with control PID combines ProfiledPIDCommand • .ProfiledPIDCommand see info, drivetrains. mecanum controlling for useful is )C++ ,Java( MecanumControllerCommand • for project example )C++ ,Java( MecanumControllerCommand the and docs API See info. more

See drivetrains. swerve controlling for useful is )C++,Java(SwerveControllerCommand • more for project example )C++ ,Java( SwerveControllerCommand the and docs API
info.
drivetrains differential with following path for useful is )C++ ,Java( RamseteCommand • info. more for Tutorial Trajectory the and docs API See drive"). ("tank

## Classes Command Custom <br> 24.2.4

it's verbose, more significantly is this As classes. command custom write also may Users above. mentioned factories concise more the use to recommended
the with work to methods Command certain allow to used is CRTP a API, C++ the In : : Illl defining when class CommandHelper the extend always should Users model. ownership object below. shown is as classes, command own their
as ),C++ ,Java( class CommandBase abstract the subclass class, command custom a write To ):C++, Java( template basedcommand- the in seen

Java
;edu.wpi.first.wpilibj.templates.commandbased.subsystems.ExampleSubsystem import
;edu.wpi.first.wpilibj2.command.CommandBase import
*/ subsystem. example an uses that command example An **/
\{ CommandBase extends ExampleCommand class public
)\}"PMD.SingularField" , "PMD.UnusedPrivateField"(\{@SuppressWarnings
m_subsystem; ExampleSubsystem final private
ExampleCommand. new a Creates **
command. this by used subsystem The subsystem @param *
*/
\{ subsystem) (ExampleSubsystemExampleCommand public
subsystem; = m_subsystem dependencies. subsystem declare to here addRequirements() Use // addRequirements(subsystem);

features. convenience several provides Command than rather CommandBase from Inheriting of list a returning users, for method getRequirements() the overrides automatically It addRequirements() the with to added be can but default, by empty is that requirements - dashboard the to sent be can so and interface, Sendable the implements also It method. dashboard) the on button a (via testing for commands scheduling for way handy a provides this
controller. a on buttons to them bind to needing without

## Example Command Simple 24.2.5

command simple a is below before, As practice? in like look command functional a might What :HatchSubsystem the uses that )C++, Java( project example HatchBot the from

Java
;edu.wpi.first.wpilibj.examples.hatchbottraditional. commands package
;edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems.HatchSubsystem import
;edu.wpi.first.wpilibj2.command. CommandBase import
page) next on (continues

## Competition Robotics FIRST



frc2/command/CommandBase.h>< include\# frc2/command/CommandHelper.h>< include\# subsystems/HatchSubsystem.h"" include\#

Written HatchSubsystem. the with hatch a grabs that command simple A * command a inline should code Actual purposes. pedagogical for explicitly * InstantCommand. with simple this *

InstantCommand @see *
*/
\{ >GrabHatch CommandBase, ::frc2<CommandHelper::frc2 public : GrabHatch class
subsystem); *GrabHatch(HatchSubsystem explicit
override ()Initialize void
override ()IsFinished bool
:private
m_hatch; *HatchSubsystem
(Source) C++

(continues
24. 니

| ( |  |
| :---: | :---: |
|  | \} |
|  | \{ IsFinished()::GrabHatch bool ;true return |
|  | \} |

through command the into passed is command the by used subsystem hatch the that Notice users allows and ,injection dependency called pattern a is This constructor. command's the best- a as accepted widely is This variables. global as subsystems their declaring avoid to .section later a in discussed is this behind reasoning the - practice
then and initialize, from once method subsystem the calls command above the that also Notice that commands for typical is This true). returns simply isFinished () (as ends immediately command this write to succinct more be would it such as and subsystems, of states the toggle above. described factories the using
example same the from command, drive a is Below case? complicated more a about What project:

Java

page) next on (continues
(ำำ

$\square$| 3 |
| :--- |
| $\}$ |

(Header) C++
frc2/command/CommandBase.h>< include\#
fragma\#
fr2/command/CommandHelper.h>< include\#
subsystems/DriveSubsystem.h" include\#
lambdas. through in passed input joystick with robot the drive to command $A{ }^{* *}$ a inline should code actual - purposes pedagogical for explicitly Written *

RunCommand. with simple this command *
RunCommand @see *
DefaultDrive class \{ >DefaultDrive CommandBase,::frc2<CommandHelper::frc2 public : :public **/
DefaultDrive. new a Creates *
on. run wil command this subsystem drive The subsystem @param * forwards/backwards driving for input control The forward @param *
turning for input control The rotation @param *
*/
forward, >()double<function::std subsystem, *DefaultDrive(DriveSubsystem
rotation); >()double<function::std
;override ()Execute void
:private
m_drive; *DriveSubsystem
m forward; >()double<function: :std
m_rotation; >()double<function::std
(Source) C++

|  | ```commands/DefaultDrive.h"" include# utility>< include# subsystem, *DefaultDrive(DriveSubsystem::DefaultDrive forward, >()double<function::std rotation) >()double<function::std m_drive{subsystem}, : move(forward)},::m_forward{std { move(rotation)}::m_rotation{std AddRequiremeñts({subsystem}); { Execute()::DefaultDrive void``` |
| :---: | :---: |
| ge) next on (contin |  |

(ำ

| m_rotation()); ArcadeDrive(m_forward(), >-m_drive |  |
| :---: | :---: |
| usage: then And |  |
|  | Java |
| left the by | commands default Configure // drive arcade split-stick to command drive default the Set // (setDefaultCommandm_robotDrive. <br> led forward/backward with command, arcade split-stīck A // right. the by controlled turning and hand, // DefaultDrive( new m_robotDrive, <br> (), getLeftYm_driverController.- >- () <br> ()) ) ; getRightXm_driverController.- >- () |
| C++ |  |
|  | command drive default up Set // m_drive.SetDefaultCommand (DefaultDrive( <br>  <br> )) ; \} m_driverController.GetRightX();- return \{ ]this[ |

is this end; never will thus and ,isFinished () override not does command this that Notice this more, Once commands. default as used be to intended are that commands for norm the such, as and place, one from only method subsystem the calls and simple rather is command factories: using written concisely more be could

Java
commands default Configure //
drive arcade split-stick to command drive default the Set //
(setDefaultCommandm_robotDrive.
left the by controlled forward/backward with command, arcade split-stīck A // right. the by controlled turning and hand, //
(runCommands.
>- ()
(arcadeDrivem_robotDrive.
()), getRightXm_driverController.- (), getLeftYm_driverController.-
m_robotDrive));
command drive default up Set //
Run(: :cmd::m_drive.SetDefaultCommand(frc2
\{ ] this [
m_driverController.GetLeftY(),-m_drive.ArcadeDrive(
m_driverController.GetRightX()) ;-
m drive\}) ) ; \& $\}$

$$
\text { Compositions Command } 24.3
$$

the but tasks, robot of variety large a accomplishing of capable are commands Individual functionality advanced more when cumbersome become quickly can format statethree- simple is subsystems robot multiple of coordination or tasks robot of sequences extended requiring command powerful the use to encouraged are users this, accomplish to order In required.
library. basedcommand- the in included functionality composition
commands. more or one of composition a is composition command a suggests, name the As commands component individual the as simpler, and cleaner much kept be to code allows This amount the reducing greatly them, combines that code the of independently written be may process. the of step given any at complexity of
they - commands themselves are compositions command however, importantly, Most composed further be to compositions command allows This interface. Command the implement command other contain may composition command a is, that - composition recursive a as expressions: inline concise and powerful very allows This components. as compositions

> Java

| bazCommand and barCommand between race a then and fooCommand, run Will // (bazCommand))); raceWith(barCommand.andThen(fooCommand.onTruebutton. |
| :---: |
| C++ |
| bazCommand and barCommand between race a then and fooCommand, run Will // move(barCommand).::move(fooCommand).AndThen(std::button.OnTrue(std move(bazCommand))));: :RaceWith(std $\hookrightarrow$ |

require, components their subsystems all require compositions command rule, a As are and , true as runsWhenDisabled set component their all if disabled when run may well. as kCancelIncoming are components their all if kCancelIncoming
be cannot composition command a to passed been have that instances Command so do to Attempting composition. command second a to passed or scheduled independently members composition because is This program. user the crash and exception an throw will those if occur could errors and composition, command encapsulating their through run are - group the as time same the at scheduled independently were instances command same with up end could thus and once, at places multiple from run being be would command the C++ The behavior. diagnoseto-hard- and unexpected causing state, internal inconsistent of type this so semantics, onlymove- with class a ,CommandPtr uses library basedcommandavoid. to easier is mistake

## Types Composition 24.3.1

be can them of All types. composition various includes library basedcommand- The be also can some and commands, member the accept that factories using constructed is which object, command a on called be can that methods decorators: using constructed returned. is that object new a into transformed
cannot object command the composition, a to passed being or decorator a calling After : : पारा decorator. the from returned object command the only Use reused! be
)C++ ,Java( class RepeatCommand the by backed ),C++ ,Java( decorator repeatedly() The interrupted. until runs it that so ends, it time each command the restarts

Java
command. time every restarting interrupted, externally unless forever run Will //
true returns isFinished() $\rightarrow$
(); repeatedlycommand. = repeats Command

C++
command. time every restarting interrupted, externally unless forever run Will // true returns IsFinished() $\rightarrow$ move(command).Repeatedly();::std = repeats CommandPtr::frc2

## Sequence

),C++,Java( class SequentialCommandGroup the by backed ),C++,Java( factory Sequence The second, the then executed, be will command first the sequence: in commands of list a runs last the after finishes group sequential The finishes. list the until on so and third, the then each that ensure to important usually therefore is It finishes. sequence the in command next the finish, not does command given a (if finish actually does sequence the in command start!). never will command
to used be can decorators )C++ ,Java( beforeStarting() and )C++, Java( andThen() The syntax. infix with composition sequence a construct

Java

| (barCommand) andThenfooCommand. |
| ---: |
| C++ |
| move(barCommand)) : :move(fooCommand).AndThen(std::std |

## Sequence Repeating

a creates )C++, Java( factory RepeatingSequence the combination, common fairly a it's As time each command first the from restarting interrupted, until runs that Sequence Repeating finishes. command last the

Parallel
composition the when on based differing compositions, parallel of types three are There finishes:
,Java( class ParallelCommandGroup the by backed ),C++ ,Java( factory Parallel The • The finish. members all when finishes that composition parallel a constructs ),C++ notation. infix in same the does )C++, Java( decorator alongWith
),C++ ,Java( class ParallelRaceGroup the by backed ),C++, Java( factory Race The • other all finishes; member any as soon as finishes that composition parallel a constructs the does )C++ Java( decorator raceWith The point. that at interrupted are members notation. infix in same
a when finishes )C++,Java( ParallelDeadlineGroup ),C++,Java( factory Deadline The • are point that at running still members other all ends; "deadline") (the command specific notation; infix in same the does )C++, Java( decorator deadlineWith The interrupted. deadline. the is on called was decorator the comand the

Java

```
            uthree all with seconds three after ends that group command parallel a be Will //
                        duration. full their running commands }
            threeSecCommand)); oneSecCommand, (twoSecCommand,parallel(Commands.onTruebutton.
            uthree and two the with second one after ends that group race parallel a be Will //
                        interrupted. getting commands second}
            threeSecCommand)); oneSecCommand, (twoSecCommand,race(Commands.onTruebutton.
    wwith deadline) (the seconds two after ends that group deadline parallel a be Will //
finished). already command second (one interrupted getting command second three the }
        threeSecCommand)); oneSecCommand, (twoSecCommand,deadline(Commands.onTruebutton.
```

```
    _three all with seconds three after ends that group command parallel a be Will //
    duration. full their running commands }
umove(oneSecCommand),::std move(twoSecCommand),::Parallel(std::cmd::button.OnTrue(frc2
                            move(threeSecCommand)));::std }
        sthree and two the with second one after ends that group race parallel a be Will //
                        interrupted. getting commands second }
    umove(oneSecCommand),::std move(twoSecCommand),::Race(std::cmd::button.OnTrue(frc2
                            move(threeSecCommand)));::std ↔
    uwith deadline) (the seconds two after ends that group deadline parallel a be Will //
    finished). already command second (one interrupted getting command second three the }
\iotamove(oneSecCommand),::std move(twoSecCommand),::Deadline(std::cmd::button.OnTrue(frc2
                                    move(threeSecCommand)));::std }
```


## Conditions End Command Adding

condition. end additional an with command the composes decorator )C++, Java( until() The an as condition end this see will on called was decorator the command the that Note interruption.

Java
true returns m_limitSwitch.get() if interrupted be Will // (m_limitSwitch::get)); until(command.onTruebutton.

C++
));\} m_limitSwitch.Get(); returns m_limitSwitch.get() if interrupted be Will //
as timeout a uses that until of specialization a is )C++ ,Java( decorator withTimeout () The condition. end additional the

Java
interrupted be and scheduled, being after seconds 5 out time Will // ));5(withTimeout(command.onTruebutton.

C++
interrupted be and scheduled, being after seconds 5 out time Will // s)); _5.0button.OnTrue (command.WithTimeout (

## Behavior End Adding

will that lambda a an with command the composes decorator )C++, Java( finallyDo() The indicating parameter boolean same the with method, end() command's the after called be interrupted. was or finished command the whether
lambda a an with command the composes decorator )C++, Java( handleInterrupt() The interrupted. is command the when only called be will that

## Compositions Selecting

or feedback sensor on based options few a of out command a run to desired it's Sometimes or routine, auto an determining for useful be can This runtime. at only known data other
on. so and not, or present is piece game a whether on based command different a running executes ),C++,Java( class SelectCommand the by backed ),C++ ,Java( factory Select The scheduled. when called function selector a on based map, a from command one

Java


## Competition Robotics FIRST


(Header) $\mathrm{C}++$
run. to command the selecting for keys as used enum The //
;\} THREE TWO, ONE, \{ CommandSelector enum
selector the Returns selectcommand. the for method selector example An // logical on choice this base Can run. to command which select will that // runtime. at evaluated conditions //
\} ONE; return \{ ()Select CommandSelector
here... defined are commands and subsystems s'robot The //
the on based commands three the from select Will selectcommand. example An // selectcommand that Note runtime. at method selector the by returned value // could it enum; an be to have not does selector the so type, generic a takes //
double...) boolean, integer, (string, type desired any be //
(>CommandSelector<Select::cmd::frc2 = m_exampleSelectCommand CommandPtr::frc2
,\} Select(); return \{ ]this[ commands to values selector Maps //
)\},"selected! was one Command"Print(::cmd::frc2 pair\{ONE,::std
)\},"selected! was two Command"Print(::cmd::frc2 pair\{TW0,::std
)\});"selected! was three Command"Print(::cmd::frc2 pair\{THREE,::std
a is ),C++ ,Java( class ConditionalCommand the by backed ),C++ ,Java( factory Either The function. selector boolean a and commands two accepting specialization

> | $m_{-}$of value the on depending commandOnFalse or commandOnTrue either Runs // |
| :---: |
| limitSwitch.get() |
| m_limitSwitch::get) commandOnFalse, ConditionalCommand(commandOnTrue, new |

## C++

$m_{\text {_ }}$ of value the on depending commandOnFalse or commandOnTrue either Runs // limitSwitch.get() $\rightarrow$
m_ return \{ m_limitSwitch]\&[ commandOnFalse, ConditionalCommand(commandOnTrue,::frc2
)\} ZimitSwitch.Get(); $\rightarrow$
prevent will that condition a with command a composes )C++, Java( decorator unless() The running. from it

Java
24. 밈

```
uwhile deployed gets intake the If deployed. is intake the if run only will Command //
    running stop not will command the running, is command the }
    ()));isDeployedintake.! >- (()unless(command.onTruebutton.
```

    C++
    uwhile deployed gets intake the If deployed. is intake the if run only will Command //
running stop not will command the running, is command the $\hookrightarrow$
));\} intake.IsDeployed();! return \{ intake]\&button.OnTrue(command.Unless([
a calls that ) C++ Java( overload constructor a has also below described ProxyCommand proxy. by command returned the runs and timeschedule- at lambda returningcommand-

## Commands Other Scheduling

never are and composition, command the through run are members composition default, By group's the to added are requirements their Accordingly, scheduler. the by seen themselves command entire the for undesirable is it sometimes fine, usually is this While requirements. off" "fork to is solution good A command. single a of requirements the gain to group requires this However, separately. command that schedule and group command the from command. scheduledindividually- the and composition the between synchronization
),C++ ,Java( decorator asProxy(). the using creatable also ),C++,Java( ProxyCommand scheduled, is proxy the when scheduled is command the proxy": "by command a schedules a from off" "forking of case the In finishes. command the when finishes proxy the and it without progress command's the track to group the allows this composition, command composition. the in being

> Java
ends command proxied the after only continues sequence The // ()asProxy).5.0(waitSecondsCommands. udelay 5-second the after printed be only will This"(print(Commands.andThen.
) )"elapses! $\rightarrow$

> C++
ends command proxied the after only continues sequence The // s).AsProxy()_5.0Wait (: :cmd::frc2
_delay 5-second the after printed be only will This"Print(::cmd: :AndThen(frc2.
) )"elapses! $\hookrightarrow$
)C++ ,Java( ScheduleCommand command, proxied the track to need don't that cases For instantly. ends and command specified a schedules

Java
continues sequence the so immediately, ends ScheduleCommand // ))5.0(waitSecondsScheduleCommand(Commands. new ))"immediately! printed be will This"(print(Commands.andThen.
continues sequence the so immediately, ends ScheduleCommand //
s))_5.0Wait(::cmd::ScheduleCommand(frc2::frc2
))"immediately! printed be will This"Print(::cmd::AndThen(frc2.
exterior most the of subclass onlyconstructor- a as written be also can compositions Command Consider constructor. superclass the to members composition the passing type, composition
):C++ Java( project example Bot Hatch the from following the



5

(Source) C++

$$
\begin{array}{r}
\text { commands/ComplexAuto.h"" include\# } \\
\text {;AutoConstants namespace using } \\
\text { \{ hatch) *HatchSubsystem drive, *ComplexAuto(DriveSubsystem: :ComplexAuto } \\
\text { AddCommands( } \\
\text { distance specified the forward Drive // } \\
\text { drive), kAutoDriveSpeed, } \begin{array}{r}
\text { DriveDistance(kAutoDriveDistanceInches, } \\
\text { hatch the Release // } \\
\text { ReleaseHatch(hatch), } \\
\text { drive)); kAutoDriveSpeed, - DriveDistance(kAutoBackupDistanceInches, }
\end{array} \\
\begin{array}{r}
\text { distance specified the backward Drive // }
\end{array} \\
\hline
\end{array}
$$

are others to comparison in approach subclassing this of disadvantages and advantages The .Groups Command Subclassing in discussed

## 24.4 מערכות

A paradigm. basedcommand- the in organization robot of unit basic the are Subsystems .unit a as together operates that hardware robot of collection a for abstraction an is subsystem robot the of rest the from it "hiding" hardware, this for encapsulation an form Subsystems Restricting methods. public subsystem's the through except it to access restricting and code be otherwise might that code for place convenient single a provides way this in access the the if switches) limit checking or outputs motor scaling as (such places multiple in duplicated the how of details specific the to changes allows also It exposed. were internals subsystem it making code, robot of rest the from isolated be to "implementation") (the works subsystem
change. constraints design the if/when changes substantial make to easier far
management resource 'sCommandScheduler the of backbone the as serve also Subsystems they subsystems which specifying by requirements resource declare may Commands system. that command one than more schedule concurrently never will scheduler the with; interact subsystem a requires that command a schedule to attempt An subsystem. given a requires ignored, be or command runningcurrently- the interrupt either will usein-already- is that .Behavior Interruption command's running the on based
scheduled automatically be will that commands" "default with associated be can Subsystems "background" for useful is This subsystem. the using currently is command other no when stopping or setpoint, a at held arm an keeping drive, robot the controlling as such actions the in achieved be can functionality Similar used. isn't subsystem the when motors try should teams scheduler; the of run per once run is which method, periodic() subsystem's of either through achieved is functionality which about codebase their within consistent be to

Subsystem the by library basedcommand- the in represented are Subsystems methods. these ).C++ ,Java( interface

## Subsystem a Creating 24.4.1

abstract the subclass to is users most for subsystem a create to method recommended The ):C++,Java( template basedcommand- the in seen as ),C++, Java( class SubsystemBase

Java


|  |
| :---: |

5 6
a example, (for subsystem the of state boolean a querying method example An *
it interface: Subsystem basic the of top on features convenience few a contains class This with subsystem the register to constructor its in method register() the calls automatically scheduler the when called be to method periodic() the for necessary is (this scheduler the to dashboard the to sent be can it that so interface Sendable the implements also and runs), information. status relevant display/log
the implements that class a create simply may flexibility more seeking users Advanced interface. Subsystem

Example Sulbsystem Simple 24.4.2
pneumatically- simple a is Below practice? in like look subsystem functional a might What ):C++ ,Java( project example HatchBotTraditional the from mechanism hatch actuated

Java


[^7](Header) C++

|  | once pragma\# |
| :---: | :---: |
|  | frc/DoubleSolenoid.h>< include\# frc/PneumaticsControlModule.h>< include\# frc2/command/SubsystemBase.h>< include\# |
|  | Constants.h"" include\# |
|  | \{ SubsystemBase::frc2 public : HatchSubsystem class :public HatchSubsystem(); |

page) next on (continues
(ำำ

(Source) C++

is (it code outside from DoubleSolenoid the of presence the hides subsystem the that Notice actions: robot descriptive level,higher- two exposes publicly instead and ),private declared details" "implementation that important extremely is It .releaseHatch() and grabHatch() the outside code that ensures this manner; this in "hidden" be solenoid double the as such user the allows also It state. unexpected an in be to solenoid the cause never will subsystem pneumatic) a of instead used be could motor a instance, (for implementation the change to

## Competition Robotics FIRST

it. with change to having subsystem the of outside code the of any without can we commands, from called are that methods public void writing of instead Alternatively, from following the Consider command. a return that factories as methods public the define :C++ ,Java( project example HatchBotInlined the

Java

(Header) C++

> once pragma\#
> frc/DoubleSolenoid.h>< include\# frc/PneumaticsControlModule.h>< include\# frc2/command/CommandPtr.h>< include\# frc2/command/SubsystemBase. $h><$ include\#

(Source) C++

page) next on (continues
(ำํำ

$$
\text { ,\} kForward;::DoubleSolenoid::frc == m_hatchSolenoid.Get() return \{]this[ }
$$

in factory static the isn't this here: used factory RunOnce the of qualification the Note this requiring commands return that factories instance similar have Subsystems !Commands used. is ) C++, Java( factory Subsystem. run0nce (Runnable) the Here, subsystem.
.Methods Factory Command Instance see options, these between comparison a For

## Periodic 24.4.3

(usually, iteration scheduler every once called is that method periodic a have Subsystems that actions periodic other and telemetry for used typically is method This ms). 20 every once subsystem. the requiring is command whatever with interfere not do

(Header) $\mathrm{C}++$

| ;override ()Periodic void |
| :---: |
| (Source) C++ |
| \{ ()DriveSubsystem::Periodic void here. goes method periodic subsystem of Implementation // m_odometry.Update(m_gyro.GetRotation2d(), meter_t\{m_leftEncoder.GetDistance()\}, : :units meter_t\{m_rightEncoder.GetDistance()\});::units m_fieldSim.SetRobotPose(m_odometry.GetPose()); |

is it that except periodic() to similar is that method simulationPeriodic() a also is There robot. the of state the update to used be can and Simulation during run only

Commands Default 24.4.4
default the owns CommandScheduler the library, basedcommand- C++ the In : : पार्य object. command
being not is subsystem a whenever automatically run that commands are commands" "Default controlling as such actions "background" for useful be can This command. another by used setpoint. a at held arm an keeping or drive, robot the
CommandScheduler. calls simply one easy; very is subsystem a for command default a Setting method setDefaultCommand() the simply, more or, getInstance().setDefaultCommand() interface: Subsystem the of

Java
exampleCommand); (exampleSubsystem, setDefaultCommand().getInstanceCommandScheduler.
C++

| uCommandScheduler. GetInstance(). SetDefaultCommand (exampleSubsystem, |
| ---: |
| move(exampleCommand)) ;: :std |

Java

| (exampleCommand); setDefaultCommandexampleSubsystem. |
| ---: |
| C++ |
| move(exampleCommand));: :exampleSubsystem.SetDefaultCommand(std |

require must subsystem a for command default the as assigned is that command A : : पार subsystem. that

## 24.5 קישור Commands ל-Triggers

ำ
 ต

Accordingly, paradigm. programming declarative a is basedcommand- earlier, mentioned As command a and button a of association the declaratively; done is commands to buttons binding of work hard the all does then library The initialization. robot during once, "declared" is behind- needed, as command the canceling) (or scheduling and state button the checking about not - setup UI desired their designing about worry to need only Users scenes.the-
it! implementing
).C++, Java( class Trigger the through done is binding Command

## Instance Trigger a Getting 24.5.1

a get to ways three are There object. Trigger a need we conditions, to commands bind To object: Trigger

## Factories HID

given a for Trigger a returning methods factory contain classes HID basedcommand- The its and ),C++, Java( factory button(int) basedindex- an has CommandGenericHID button. and ),C++ ,Java( CommandPS4Controller ),C++ ,Java( CommandXboxController subclasses button. each for methods factory named have )C++ ,Java( CommandJoystick

Java


## JoystickButton

of instance an create to passed and used be can classes HID regular the Alternatively, :Trigger of subclass onlyconstructor- a ),C++ ,Java( JoystickButton

Java
uan Creates // );2XboxController( new = exampleController XboxController 2. port on XboxController $\rightarrow$ .kY.ButtonXboxController. JoystickButton(exampleController, new = yButton Trigger uon button ' $Y$ ' the for object JoystickButton new a Creates // );value $\hookrightarrow$ exampleController $\rightarrow$

C++
2 port on XboxController an Creates // \}2exampleController\{ XboxController::frc
u// kY);::Button::XboxController::frc exampleStick, \&yButton( JoystickButton::frc2 exampleController on button ' $Y$ ' the for object JoystickButton new a Creates $\rightarrow$
bind to want may users case, use common most the far by is buttons HID to binding While the to lambda a passing by inline done be can This events. triggering arbitrary to commands
:Trigger of constructor
Java
3 DIO on switch Limit // );3DigitalInput( new = limitSwitch DigitalInput
C++

```
3 DIO on switch Limit // ;\}3limitSwitch\{ DigitalInput::frc );\} limitSwitch.Get(); return \{ limitSwitch]\&([exampleTrigger Trigger::frc2
```


## Bindings Trigger 24.5.2

binding button each of overloads two offers library basedcommand- C++ The : : प्रा raw a takes that one and ),CommandPtr\&\&( reference rvalue an takes that one - method raw the while scheduler, the to ownership moves overload rvalue The ).Command*( pointer is It object. command the of lifespan the for responsible user the leaves overload pointer a is there unless overload reference rvalue the use preferentially users that recommended code. calling the in command the to handle a retain to need specific
will bindings these of All class. Trigger the for available bindings of number a are There however, - occurs event activation trigger certain a when command a schedule automatically behavior. specific different has binding each
binding the so ,method binding a to call the past survive to need not do objects Trigger :declarative is binding button that Remember temp. a on called simply be may methods The initialization. robot during time some ideally once, declared be to need only bindings else. everything handles library
be should methods binding its of usage and deprecated, is subclass Button The : docs. API the in messages deprecation respective the to according replaced

## onTrue

(or, true to false from changes trigger a when command a schedules binding This scheduled be will command The pressed). initially is changes button a when accordingly, trigger the unless again scheduled be not will and changes, state the when iteration the on pressed).re- then and released is button the (or again true then and false becomes

Java
pressed. is button 'A' the when horizontal above radians 2 to arm the Move // ));2(setArmGoalCommand(m_robotArm.onTrue().am_driverController.

## Competition Robotics FIRST

C++
pressed. is button 'A' the when horizontal above radians 2 to arm the Move // rad));_2m_driverController.A().OnTrue(m_arm.SetArmGoalCommand(
.true on of instead false on schedules it that only identical, is binding onFalse The

## whileTrue

(or, true to false from changes trigger a when command a schedules binding This false becomes trigger the when it cancels and pressed) initially is button a when accordingly, while finishes it if scheduledre- be not will command The released). is button the (or again , true is trigger the while finishes it if restart to command the For .true still is trigger the .InstantCommand an of instead RunCommand a use or ,RepeatCommand a in command the wrap

Java

| speed half at drive button, shoulder the holding While // |
| :---: |
| )value.kRightBumperButton. JoystickButton(m_driverController, new |
| HalveDriveSpeed (m_robotDrive)) ; new(whileTrue. |

> C++ speed half at drive button, shoulder the holding While // m_driverController,\&JoystickButton(::frc2
.true on cancels and false on schedules it that only identical, is binding whileFalse The

## toggleOnTrue

true to false from changes trigger a when it scheduling command, a toggles binding This command the if condition same the under it canceling and pressed), initially is button a (or highly- a not are toggles supported, is functionality this while that Note running. currently is robot the of track keep to driver the require they as control, user for option recommended off. turn to another and on turn to one buttons; two use to is method preferred The state. commands the specify to way good a is ConditionalCommand a or StartEndCommand a Using between. toggled be to want be to want you that

Java

(mySubsystem: :onMethod, startEnd(Commands.toggleOnTruemyButton. | mySubsystem: : offMethod, |
| :---: |
| mySubsystem) $) ;$ |

C++
,\} mySubsystem.OnMethod(); \{ ]\&StartEnd([::cmd::myButton.ToggleOnTrue(frc2
,\} mySubsystem.OffMethod(); \{ ]\&[ mySubsystem\}));\&\{
.true on of instead false on toggles it that only identical, is binding toggle0nFalse The
were they that trigger the return all methods binding command the that note to useful is It same the of states different to commands multiple bind to chained be can thus and on, called example: For trigger.

Java
pressed is button the when scheduled be to FooCommand a Binds $/$ FooCommand()) new(onTrue.
released is button same that when scheduled be to BarCommand a Binds //
BarCommand()); new(onFalse.

C++

> pressed is button the when scheduled be to FooCommand a Binds // OnTrue(FooCommand ().ToPtr()).

## Triggers Composing 24.5.4

,or() , and () the through triggers composite create to composed be can class Trigger The example: For operators). ! and ,|| ,\&\& the C++, in (or, methods negate() and

Java

| ${ }^{\text {uthe }}$ th buttons ' $Y$ ' and ' $X$ ' the both when scheduled be to ExampleCommand an Binds // pressed are gamepad driver - <br> () xexampleCommandController. <br> () ) y (exampleCommandController. and. <br> ExampleCommand()); new(onTrue. |  |
| :---: | :---: |
|  |  |
|  |  |

C++


## Triggers Debouncing 24.5.5

inputs) digital from originating those (especially triggers activation, repeated rapid avoid To method: debounce the using class Debouncer WPILib the with debounced be can

Java

| only edges rising time, debounce 0.1 s a with exampleButton debounces // |
| :--- |
| ExampleCommand()); new(onTrue).0.1(debounceexampleButton. |
| edges falling and rising both time, debounce $0.1 s$ a with exampleButton debounces // |

page) next on (continues
(ำा

| «new(onTrue).kBoth. DebounceTypeDebouncer. , 0.1(debounceexampleButton. ExampleCommand()); $\rightarrow$ |  |
| :---: | :---: |
|  | C++ |
| only edges rising time, debounce 100ms a with exampleButton debounces // ms).OnTrue(ExampleCommand().ToPtr());_100exampleButton. Debounce( |  |
| edges falli Both). OnTrue( | ng and rising both time, debounce 100ms a with exampleButton debounces // ExampleCommand().::DebounceType::Debouncer ms,_100exampleButton.Debounce( ToPtr()); $\rightarrow$ |

## Project Robot BasedCommand- a Structuring 24.6

advanced (and like they however libraries basedcommand- the use to free are users While a structure to how on guidance some want may users new so), do to encouraged are users project. robot basedcommand- basic examples WPILib the in included is project robot basedcommand- a for template standard A template. this of structure the through users walk will section This ).C++, Java( repository
classes: four contain will generally package/directory root The
class. this touch not should users New only). (Java application robot main the is which ,Main ,RobotContainer code. robot the of flow control main the for responsible is which ,Robot robot declarative the of most where is and commands, and subsystems robot holds which accessibleglobally- holds which ,Constants performed. is bindings) button (e.g. setup robot. the throughout used be to constants
contains Subsystems directories:packages/sub-sub- two contain also will directory root The classes. command defineduser- all contains Commands classes. subsystem defineduser- all

Robot 24.6.1
flow, control program's the for responsible is )(Source) C++,(Header) C++, Java( Robot As attention of amount the minimize to designed paradigm declarative an is basedcommand- and basedcommand- a of class Robot the flow, control program explicit to pay to has user the be must that things important few a are there However, empty. mostly be should project included

Java

| ${ }_{\llcorner }$for used be should and up started first is robot the when run is function This * code. initialization * */ @Override \{ () robotInit void public ubindings, button our all perform will This RobotContainer. our Instantiate // our put and $\hookrightarrow$ dashboard. the on chooser autonomous // |
| :---: |
|  |  |

page) next on (continues
(ำำ ำ
RobotContainer(); new = m_robotContainer \} $\}$
robotInit() the during constructed be should RobotContainer of instance an Java, In the from called be will setup robot declarative the of most as important, is this - method constructor. RobotContainer
constructed be will and member value a is RobotContainer as needed not is this $\mathrm{C}++$, In .Robot of construction the during

Java
$\left.\begin{array}{r}\text { ulike items for this Use mode. the matter no ms, } 20 \text { every called is function This */ } \\ \text { test. and teleoperated autonomous, disabled, during ran want you that * }\end{array}\right\}$
(Source) C++

robotPeriodic() the in call CommandScheduler.getInstance(). run() the of inclusion The commands. scheduled any execute not will scheduler the call, this without essential; is method with frequency the is this 50 Hz , of frequency loop main default a with runs TimedRobot Since for recommended not is It called. be will methods subsystem and command periodic which code. their in else anywhere from method this call to users new

Java

| ц@link\{ your by selected command autonomous the runs autonomous This **/ <br> $* /$ class. RobotContainer\}$\rightarrow$ |
| :--- |
| page) next on (continues |

## Competition Robotics FIRST


(Source) C++

@link\{ your by selected command autonomous the runs autonomous This *
\{ (m_autonomousCommand) if \}
the by returned command autonomous an schedules method autonomousInit() The can run to command autonomous which selecting for logic The instance. RobotContainer RobotContainer of inside handled be

Java

(Source) C++

generally is This commands. autonomous runningstill- any cancels method teleopInit() The practice. good
as methods periodic and init various the to code additional add to free are users Advanced robot imperative of amounts large including that noted be should it however, fit; see they
basedcommand- the of philosophy design declarative the to contrary is Robot.java in code code. structured/disorganizedconfusingly- in result can and paradigm,
command- your for setup the of most where is )(Source) C++,(Header) C++,Java( class This and subsystems robot's your define will you class, this In place. take will robot based which specify and buttons), as (such events triggering to commands those bind commands, new class this of aspects few a are There routine. autonomous your in run will you command for: explanations want may users

Java
ExampleSubsystem(); new = m_exampleSubsystem ExampleSubsystem final private
(Header) C++
m_subsystem; ExampleSubsystem
stark in is This .RobotContainer in fields private as declared are subsystems that Notice more- much is but framework, basedcommand- the of incarnation previous the to contrast global as declared are subsystems If practices.best- orientedobject- uponagreed- with aligned make can this While code. the in anywhere from them access to user the allows it variables, commands to subsystems pass to need no be would there example, (for easier things certain much program the of flow control the makes it them), access to commands those for order in or change can code the of parts which obvious immediately not is it as of track keep to harder resource- the of ability the circumvents also This code. the of parts other which by changed be accidentally to users for easy it makes accessof-ease- as job, its do to system management
commands. managedresource- the of outside methods subsystem to calls conflicting make
Java

| (m_exampleSubsystem); exampleAutoAutos. return |
| ---: |
| (Source) $\mathrm{C}++$ |
| m_subsystem); \&ExampleAuto(: : autos return |

to passed explicitly be must they members, private as declared are subsystems Since call to commands those for order in injection") "dependency called pattern (a commands an to pointer a passed is which ,ExampleCommand with here done is This them. on methods .ExampleSubsystem


## Competition Robotics FIRST


(Source) C++

| $\begin{array}{r} \begin{array}{r} \text { \{ ()RobotContainer: : ConfigureBindings voi } \\ \text { here bindings trigger your Configure // } \end{array} \\ \text { {fc3a5e09b-fda9-44b7-951b-7df6fbea960c} to changes {f9bbe1c6b-8ac3-4b93-8dd8-f88ec8ec6ba6} when {f5334590c-4032-4e2c-8cdb-296cc314890a} Schedule // } \\ \text { \{ ]nisTrigger([::frc2 } \\ \text { m_subsystem. ExampleCondition(); return } \end{array}$ |
| :---: |

declarative the of most where is constructor RobotContainer() the before, mentioned As autonomous configuring bindings, button including place, take should robot the for setup into code migrate to encouraged are users "busy," too gets constructor the If etc. selectors, which default) by included method configureBindings () the as (such subroutines separate constructor. the from called are

(Source) C++
$\left.\begin{array}{r}\{\text { ()RobotContainer: :GetAutonomousCommand CommandPtr: :frc2 } \\ \text { autonomous in run be will command example An } / / \\ \text { m_subsystem) ; \&ExampleAuto(: :autos return }\end{array}\right\}$
send to users for way convenient a provides method getAutonomousCommand () the Finally, to it to access needs (which class Robot main the to command autonomous selected their starts). autonomous when it schedule
file header a simply but class, a not is this C++ (in )(Header) C++, Java( class Constants The (such constants robot accessibleglobally- where is defined) are namespaces several which in is It stored. be can ports) sensor/motor and gains, PID factors, conversion unit speeds, as corresponding classes inner individual into constants these separate users that recommended shorter. names variable keep to modes, robot or subsystems to
globally are they that so final static public declared be should constants all Java, In .constexpr be should constants all C++, In changed. be cannot and accessible see practice, in like look should class constants a what of examples illustrative more For projects: example basedcommand- various the of those

$$
\begin{array}{r}
\text { )C++, Java( FrisbeeBot } \bullet \\
\text { )C++, Java( GyroDriveCommands } \bullet \\
\text { )C++, Java( Hatchbot } \bullet \\
\text { )C++, Java( RapidReactCommandBot } \bullet
\end{array}
$$

statically by classes other from used be constants the that recommended is it Java, In static the imports statement static import An class. inner necessary the importing constants static any that so working, are you which in class the into class a of namespace effect same the C++, In class. that in defined been had they if as directly referenced be can :namespace using with attained be can Java ;edu.wpi.first.wpilibj.templates.commandbased.Constants.OIConstants.* static import
24.6 .4 מערכות
package/directory. this in go should subsystems definedUser-

Commands 24.6.5
package/directory. this in go should commands definedUser-

## Projects Robot BasedCommand- Organizing 24.7

the maintaining and understanding, navigating, complicated, more becomes code robot As becomes often code the to changes Making energy. and time more and more up takes code complexity actual the with do to little very have that reasons for sometimes difficult, more robot unrelated many for logic the putting example: simplified a For logic. underlying the of within code of piece specific a find to difficult it makes file line1000- single a into functions logic related closely out spreading But competition. a at stress under particularly file, that navigate. to difficult as just often is files tiny of dozens across
more becomes only organization good fact, in and FRC, to unique problem a not is This organization "best" The bigger. and bigger become projects software as critical more and the in but language, programming "best" the like much debate, of topic perennial a is system programmer the and hand at task specific the to down comes cases) both (in choice the end, robot FRC of space small relatively the in Even task. said implementing programmers) (or the on depend will team given a for choice best The answer. right no is there programming, preference. personal pure and structure, team code, robot specific the of nature
advanced that design program robot basedcommand- of facets various discusses article This prescriptive a not is It code. writing when of aware be to want may programmers FRC seems choice of level this If practices. best recommended some presents it though tutorial, WPILib's to closely sticking while successful highly been have teams many however, daunting, and intermediate to interest of be may discussion this However, guidelines. and code example easily flexible, but effective, only not code their make to want who programmers advanced beautiful. even sometimes and changeable,

## Organization? About Care Why 24.7.1

does it ability-but competitive team's a break or make rarely will organization code Good programmers. happier and code, lookingnicer- modifications, faster debugging, easier mean the from like looks code the what of way by organization "good" define to impossible it's While outside. the from like looks software robot's the what of terms in define to easier it's inside,

## Like Looks Organization Good What

intuitive is structure internal code's the organized,well- and designedwell- is code When robot new that meaning minimized, is boilerplate Cumbersome comprehensible. easily and (such value constant a When code. of lines few a just with added be often can functionality place. one in change to needs only it changed, be to needs intake) robot's the of speed the as others« each understand easily can they together, working are programmers multiple If (such behavior unintended introduce accidentally to difficult is it since rare, are Bugs work. more Implementing subsystems). necessary require not does that command a creating as physical the from away abstracted is code the since easier, is tests unit like functions advanced
time). the of (most happy are Programmers hardware.

## Like Looks Organization Bad What

to even sense, no to little makes that structure internal has often code organized Poorly unrelated breaks often it changed, or added be to has functionality When it. wrote whoever climbing the in bug a introduce might control shooter automatic adding robot: the of parts strict so be might framework organizational the Alternatively, reasons. unclear for sequence workarounds. or hacks nasty requiring behavior, necessary implement to impossible it's that scattered are Constants logic. robot simple for needed are code boilerplate of lines Many to change same the making requires often behavior basic changing and codebase, the across
impossible. or difficult is programmers multiple among Collaboration files. different many

## Commands Defining 24.7.2

many in used be to need command same the of copies multiple codebases, robot larger In teleop, in used be might intake robot's a runs that command a instance, For places. different autonomous an for group command complicated a of part as button; certain a to bound sequence. testself- a of part as and routine;
the runs simply that command simple a define to ways some at look let's example, an As canceled. until power full at forward intake robot's

## Commands Inline

:StartEndCommand a with is this do to way expressive most and easiest The
Java

that this like command a for However, once. used only are that commands for sufficient is This commands inline bindings, button and routines autonomous different many in used get might code: repetitive of lot a means everywhere


C++

| 1.0intake.Set( \{ intake]\&StartEnd([::cmd::frc2 = intakeAndShoot CommandPtr::frc2 intake\})\&\{ ,\} );0intake.Set( \{ intake]\&[ shooter). ToPtr());\&AlongWith(RunShooter(. |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

page) next on (continues
(

since here, work won't variable a in it putting and instance StartEndCommand one Creating that by "owned" effectively is it group command a to added is command a of instance an once context. other any in used be cannot and group command

## Methods Factory Command Instance

function a pattern: design method" "factory the using is quandary this solve to way One command Using specification. some to according invocation, every object new a returns that few a merely with object command complex a construct can method factory a ,composition code. of lines exactly to related conceptually is command runningintake- the like command a example, For as method runIntakeCommand a put to sense makes it such, As .Intake the subsystem: one class: Intake the of method instance an
teams but, lowerCamelCaseCommand as methods factory name will we document this In : $\square$ [0] with name method the end to recommended is it general, In conventions. other on decide may might intake. run (e.g. method ordinary an with confused be otherwise might it if Command intake). the on turns simply that method a of name the be

use we instead, ;intake to refer longer no we class, Intake the in are we since how Notice instance. current the to refer to keyword this the
and variables private access can we technically class, Intake the inside are we Since intermediary needing not thus method, runIntakeCommand the within from directly methods motor the with interface directly can method runIntakeCommand the example, (For methods. methods intermediary these hand, other the On .) set ( ) calling of instead objects controller
in outlined choices other many Like encapsulation. increase and duplication code reduce can basis. caseby-case- a on preference personal of matter a is tradeoff this document, this expressive: highly is bindings button and groups command in method factory new this Using

Java
()) ; runIntakeCommand(intake.whileTrueintakeButton.
RunShooter(shooter)); new(alongWith().runIntakeCommandintake. = intakeAndShoot Command
(sequenceCommands. = autonomousCommand Command
), 5.0 (withTimeout ().runIntakeCommandintake.
), 3.0(waitSecondsCommands.
)5.0(withTimeout().runIntakeCommandintake.

C++
intakeButton. WhileTrue(intake.RunIntakeCommand());
\&intake.RunIntakeCommand().AlongWith(RunShooter( = intakeAndShoot CommandPtr::frc2 shooter).ToPtr()); $\hookrightarrow$

Sequence(::cmd::frc2 = autonomousCommand CommandPtr::frc2
s),_5.0intake.RunIntakeCommand().WithTimeout (
s), 3.0Wait(::cmd::frc2
s) 5.0intake.RunIntakeCommand().WithTimeout(
run to percentage exact the provide to method runIntakeCommand the to parameter a Adding flexibility. more even for allows and easy is intake the

Java
$\left.\begin{array}{|r|r|}\hline \text { \{ percent) double(runIntakeCommand Command public } \\ \text { ); this }), 0.0(\text { set.this }>-() \quad(\text { percent }), \text { set.this >-StartEndCommand ( () new return }\end{array}\right\}$
C++

two for forwards intake the runs that group command a creates code this instance, For seconds. five for backwards intake the runs then and seconds, two for waits seconds,

Java
)2.0(withTimeout).1.0(runIntakeCommandintake. = intakeRunSequence Command
)) $2.0($ waitSeconds (Commands.andThen.
)) $5.0($ withTimeout $) .1 .0-($ runIntakeCommand (intake.andThen.
C++
s) 2.0). WithTimeout(1.0intake.RunIntakeCommand ( = intakeRunSequence CommandPtr::frc2
s))_2.0Wait (: :cmd: : AndThen(frc2.
s)) ; 5.0).WithTimeout(1.0-AndThen(intake.RunIntakeCommand(.
single a only to related conceptually are that commands for recommended is approach This more to related commands with well fare doesn't it However, concise. very is and subsystem, race cause can and unintuitive is objects subsystem other in passing subsystem: one than approach this Therefore, avoided. be should thus and dependencies, circular and conditions
cases. those for only used be should and commands, subsystemsingle- for suited best is

## Factories Command Static

complicated However, commands. subsystemsingle- for great work methods factory Instance to need typically period) autonomous the during required often ones the (like actions robot that command inline an define to want we When once. at subsystems multiple coordinate single any in live to factory command the for sense make doesn't it subsystems, multiple uses methods factory command the define to cleaner be can it Instead, subsystems. those of one class: external some in statically
parallel and sequential construct factories static parallel and sequence The : be can but decorators, alongWith and andThen the to equivalent is this groups: command preference. personal of matter a is use Their readable. more


C++
TODO //

## Factories Command StaticNon-

factory our to parameters as subsystems required adding of verbosity the avoid to want we If our inject and class AutoRoutines our of instance an construct instead can we methods, constructor: the through subsystems

Java


C++
TODO //
to it use and class this of instance single an instantiate can we code, our in elsewhere Then, commands: several produce

Java

page) next on (continues
$\square$

## Commands Inline in State Capturing

support explicit offer not do but expressive, and concise extremely are commands Inline following trajectory drivetrain a as (such state internal own their have that commands for instead by accomplished often is This controller). entire an encapsulate may which command, article. this in later covered be will which class, Command a writing using composition command stateful a write ergonomically to possible still is it However, state the declare we so, do To method. factory a within working are we as long so syntax, inline following the consider example, For definition. inline our in it "capture" and local method a as controller: PID a with angle specific a to drivetrain a turn to factory command instance
a of creation the sugar methods factory Subsystem. runOnce and Subsystem. run The : Tllll subsystem. this requiring InstantCommand an and RunCommand

```
Java
```


is it i.e., - final" "effectively is state captured the as long so Java in well very works pattern This (e.g. types primitive capture and define directly cannot we that means This reassigned. never mutable a in primitives state any wrap to need we this, circumvent to - )boolean ,double ,int values). $k D$ and , $k I, k P$ internal its wraps PIDController way same (the type container
represents that class a write to is commands reusable define to way possible Another the of one or CommandBase either subclassing by done typically is This command. the classes. CommandGroup

## CommandBase Subclassing

new a creating by this do could we earlier, from command intake simple our to Returning methods. end and initialize necessary the implements that CommandBase of subclass

Java
\{ CommandBase extends RunIntakeCommand class public m_intake; Intake private
\{ intake) (IntakeRunIntakeCommand public
intake; = m_intake.this
addRequirements(intake);
@Override
\{ ()initialize void public );1.0(setm_intake.
@Override
\{ interrupted) boolean(end void public
);0.0(setm_intake.
nothing do to defaults execute() //
false return to defaults isFinished() //

C++
TODO //
The verbose. more not if code, repetitive original the as cumbersome as just is however, This, there yet, intake.set () to calls two the are file entire this in matter really that lines two only actions robot of lot a for this doing mention, to Not code! boilerplate of lines 20 over are feel might this Nevertheless, files. small of dozens with project robot a up clutters quickly orientedobject- an to closely stick to prefer who programmers for particularly "natural," more model.
state!), subsystem (not state internal with commands for used be should approach This write to intuitive more be also may It state. said manage to fields have can class the as command with experienced less those for especially classes, as logic complex with commands the and class subsystem specific any from detached is command the As composition. well deals approach this constructor, the through injected are objects subsystem required subsystems. multiple involving commands with
constructor- a write may we classes, own their as commands composite write to wish we If sequence outtakethen-intake- an example, For type. group exterior most the of subclass only this: like look can methods) factory instance as defined commands subsystemsingle- (with

Java
\{ SequentialCommandGroup extends IntakeThenOuttake class public \{ intake) (IntakeIntakeThenOuttake public super
), 2.0(withTimeout).1.0(runIntakeCommandintake.
, 2.0WaitCommand( new
)5.0(withTimeout).1-(runIntakeCommandintake.
purely a in use to comfortable also is It boilerplate. minimizes and short relatively is This However, programmers. novice to acceptable more be may and paradigm orientedobjectcommand of type what exactly clear immediately not is it one, For downsides. some has it and inline more a in this define to better is it definition: constructor the from is this group it Additionally, up. showing start groups command nested when particularly way, expressive conceptually are groups the when even group, command single every for file new a requires related.
group command the within captured and defined be can state methods, factory with As necessary. if constructor, subclass

## Summary

| Approach | Use Primary Case | Singlesubsystem Commands | Multisubsystem Commands | Stateful Commands | Logic $\begin{array}{r}\text { Complex } \\ \text { Commands }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Instance Factory Methods | Singlesubsystem commands | at $\begin{gathered}\text { Excels } \\ \text { them }\end{gathered}$ | No | but Yes, obey must capture rules | Yes |
| Subclassing CommandBase | Stateful commands | Very verbose | Relatively verbose | at $\begin{gathered}\text { Excels } \\ \text { them }\end{gathered}$ | more be may Yes; than natural approaches other |
| and Static <br> Instance <br> Command <br> Factories | Multisubsystem commands | Yes | Yes | $\begin{array}{lr}\text { but } & \text { Yes, } \\ \text { obey } & \text { must }\end{array}$ capture rules | Yes |
| Subclassing Command Groups | Multisubsystem command groups | Yes | Yes | $\begin{array}{lr}\text { but } & \text { Yes, } \\ \text { obey } & \text { must }\end{array}$ capture rules | Yes |

## Scheduler Command The 24.8

commands. running actually for responsible class the is )C++, Java( CommandScheduler The buttons, registered all polls scheduler the 20ms), per once (ordinarily iteration Each scheduled all of bodies command the runs accordingly, execution for commands schedules interrupted. are or finished have that commands those ends and commands, .Subsystem registered each of method periodic() the runs also CommandScheduler The

## Scheduler Command the Using 24.8.1

with class accessibleglobally- a is it that meaning ,singleton a is CommandScheduler The the call must users scheduler, the access to order in Accordingly, instance. one only command. CommandScheduler.getInstance()
important all almost - directly methods scheduler call to have not do users part, most the For Subsystem and Command the in (e.g. elsewhere wrappers convenience have methods scheduler interfaces).
CommandScheduler.getInstance().run() call must users exception: one is there However, will scheduler the done, not is this If class. Robot their of method robotPeriodic() the from project basedcommand- provided The work. not will framework command the and run, never included. already call this has template

## Method schedule() The 24.8.2

a takes method This ).C++ ,Java( method schedule() the call users command, a schedule To it whether pending commands, runningcurrently- of list to it add to attempts and command, initialize() its added, is it If available. are requirements its whether or running already is called. is method
steps: following the through walks method This composition. a in isn't command the that Verifies 1.
and disabled is robot or scheduled, already is command disabled, is scheduler if opNo- 2. [commands:runsWhenDisabled](commands:runsWhenDisabled). doesn't command
them. cancel interruptible, are commands conflicting all If * use: in are requirements if 3. command. new the schedule don't not, If *

$$
\text { .initialize() Call } 4 .
$$

Java

page) next on (continues

## Competition Robotics FIRST


(Source) C++

| ```{ command) *(CommandCommandScheduler::Schedule void { inRunLoop)>-(m_impl if toSchedule.emplace_back(command) ;>-m_impl ;return``` |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

page) next on (continues
(ำ


## Sequence Run Scheduller The 24.8.3

scheduled, is command the when called is Command each of method initialize() The : : प्रा button). a to bound is command that (unless runs scheduler the when necessarily not is which

The do? actually )C++, Java( method run() scheduler's the of iteration single a does What implementation, full the For iteration. scheduler a of logic the through walks section following
).C++ ,Java( code source the see

Methods Periodic Subsystem Run :1 Step
simulation, In .Subsystem registered each of method periodic () the runs scheduler the First, well. as called is method simulationPeriodic() subsystem's each

Java

(Source) C++


## Triggers Scheduling Command Poll :2 Step


commands new any if see to triggers registered all of state the polls scheduler the Secondly, scheduling for conditions the If scheduled. be should triggers those to bound been have that run. is method Initialize() its and scheduled is command the met, are command bound a


## Commands Scheduled Run/Finish :3 Step

and command, scheduledcurrently- each of method execute () the calls scheduler the Thirdly, the If method. isFinished () the calling by finished has command the whether checks then scheduledde- is command the and called, also is method end ( ) the finished, has command freed. are subsystems required its and
may command one thus, - command each for order in done is calls of sequence this that Note Commands called. method execute() its has another before called method end() its have scheduled. were they order the in handled are

Java

(Source) C++

| \{ scheduledCommands)>-m_impl : command *(Command for <br> \{ IsDisabled())::RobotState::frc \&\& RunsWhenDisabled()>-command!( if Cancel(command); <br> continue |
| :---: |
| executeActions)>-m_impl : action \&\&auto( for |
| \} |

page) next on (continues

|  | );"Execute()." + GetName()>-m_watchdog.AddEpoch(command |
| :---: | :---: |
|  | $\left.\begin{array}{l} \text { finishActions)>-m_impl : action \&\&auto( for } \\ \text { command);*action( } \end{array}\right\}$ |

## Commands Default Schedule :4 Step

Note one). has it (if scheduled command default its has Subsystem registered any Finally, time. this at called be will command default the of method initialize() the that

Java

| subsystems. registered un-required for commands default Add // \{ ())entrySetm_subsystems. : subsystemCommand >Command Subsystem, <Entry(Map. for ()) getKey(subsystemCommand.containsKeym_requirements.!( if \{ ) null =! () getValuesubsystemCommand. \&\& ()) ; getValueschedule(subsystemCommand. |
| :---: |
|  |  |

(Source) C++

| subsystems. registered un-required for commands default Add // \{ subsystems)>-m_impl : subsystem \&\&auto( for requirements.find(subsystem.getFirst());>-m_impl = s auto \{ subsystem. getSecond()) \&\& requirements.end()>-m_impl == (s if Schedule(\{subsystem.getSecond().get()\}); |
| :---: |
| $\text { \} }$ <br> \} |

## Scheduler the Disabling 24.8.4

.CommandScheduler.getInstance().disable() calling by disabled be can scheduler The anything. do not will commands run() and schedule() scheduler's the disabled, When .CommandScheduler.getInstance().enable() calling by enabledre- be may scheduler The

## Methods Event Command 24.8.5

certain a whenever action custom a execute scheduler the have to desirable is it Occasionally, the with done be can This occurs. ending) or execution, (initialization, event command methods: following
is command a whenever action specified a runs )C++, Java( onCommandInitialize • initialized.
executed. is command a whenever action specified a runs ) C ++ , Java( onCommandExecute • finishes command a whenever action specified a runs )C++, Java( onCommandFinish • true). returned method isFinished() the (i.e. normally
is command a whenever action specified a runs ) C++ ,Java( onCommandInterrupt • one shares that command another by or canceled explicitly being by (i.e. interrupted requirements). its of command a whenever log event an in markers adding is methods these for caseuse-typical A HatchbotInlined the from code following the in demonstrated as place, takes event scheduling ):C++ ,Java( project example

Java

```
interrupt, initialize, command for events Shuffleboard log to scheduler the Set //
                                    finish ↔
    ()getInstanceCommandScheduler.
        (onCommandInitialize.
                                    >- command
                                (addEventMarkerShuffleboard.
        EventImportance. (),getNamecommand. ,"initialized Command"
                            )) ; kNormal ↔
                            ()getInstanceCommandScheduler.
                                    (onCommandInterrupt.
                                    >- command
                                (addEventMarkerShuffleboard.
    EventImportance. (),getNamecommand. ,"interrupted Command"
                            )) ; kNormal ↔
                            ()getInstanceCommandScheduler.
                                    (onCommandFinish.
                                    >- command
                            (addEventMarkerShuffleboard.
));kNormalEventImportance. (),getNamecommand. ,"finished Command"
,kNormaleventImportance. (),getNamecommand. ,"finished Command"
```

(Source) C++
interrupt finish, execute, initialize, command for events Shuffleboard Log //
GetInstance().OnCommandInitialize(: :CommandScheduler::frc2
\{ command) \&Command::frc2 const[](
AddEventMarker(: Shuffleboard::frc
L command) \&Command::frc2 const []
AddEventMarker(: Shuffleboard::frc command.GetName(), ,"initialized Command" command.GetName(), ,"initialized Command"
kNormal);:ShuffleboardEventImportance::frc

GetInstance().0nCommandExecute(: :CommandScheduler::frc2
\{ command) \&Command::frc2 const[]( AddEventMarker(: :Shuffleboard::frc
command.GetName(), ,"executed Command"
kNormal);::ShuffleboardEventImportance::frc
) ; \}
page) next on (continues

|  | GetInstance().OnCommandFinish(::CommandScheduler::frc2 <br> ( command) \&Command::frc2 const[]( <br> AddEventMarker(::Shuffleboard::frc <br> command.GetName(), ,"finished Command" <br> kNormal);::ShuffleboardEventImportance::frc <br> GetInstance().OnCommandInterrupt(::CommandScheduler::frc2 <br> \{ command) \&Command::frc2 const[]( <br> AddEventMarker(::Shuffleboard::frc <br> command.GetName(), ,"interrupted Command" <br> kNormal) ;::ShuffleboardEventImportance::frc |
| :---: | :---: |
|  | ); |

## Commands $C++$ on Discussion Technicall A 24.9

concepts, C++ advanced of understanding fair a have you that assumes article This : : पार्य move semantics, copy references, rvalue inheritance, pointers, smart templates, including use to article this within information the understand to need not do You CRTP. and semantics, code. robot your in framework basedcommand- the
the in made decisions the of some behind reasoning the understand you help will article This of form the in CRTP ,std: : unique_ptr of use the as (such framework basedcommand- 2020 within information the understand to need not do You etc.). ,>Derived <Base, CommandHelper code. robot your in framework basedcommand- the use to article this
.below described as 2023, in changed further was model The : : प्रा

## Model Ownership 24.9.1

users that meaning pointers, raw of use the employed framework basedcommand- old The no was there Since code. robot their in allocations) heap manual in (resulting new use to had the or groups, command the scheduler, (the commands the owned who on indication clear memory. the freeing of care take to supposed was who apparent not was it themselves), user
this: like code involved framework basedcommand- old the in examples Several

| PlaceSoda.h"" include\# <br> Elevator.h"" include\# <br> Wrist.h"" include\# <br> \{ PlaceSoda()::PlaceSoda <br> IGHT)) ;::SetElevatorSetpoint(Elevator newAddSequential( <br> PICKUP) ) ;: SetWristSetpoint(Wrist newAddSequential( OpenClaw()); newAddSequential( |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

being were group command the of commands component the above, groupcommand- the In had user that meant This line. same the in all AddSequential into passed and allocated heap
allocated the freeing of means no had therefore and memory in object that to reference no memory the freed never itself group command The ended. group command the once memory (i.e. programs robot in leaks memory to led This scheduler. command the did neither and freed). never but heap the on allocated was memory
A framework. the of rewrite the for reasons the of one was problem glaring This of usage the with along rewrite, this with introduced was model ownership comprehensive scope. of out go they when memory free automatically will which pointers smart commands component whereas scheduler command the by owned are commands Default are commands Other composition. command the by owned are compositions command of or instance subsystem a (e.g. by owned be should they decides user the whatever by owned any by allocated memory the of ownership the that means This instance). RobotContainer a defined. clearly is compositions command or commands

std::shared_ptr vs. std::unique_ptr

object. the owns who determine clearly to us allows std::unique_ptr Using than more be never will there copied, be cannot std::unique_ptr an Because on memory of block same the to points that std::unique_ptr a of instance one a in takes SequentialCommandGroup for constructor a example, For heap. the rvalue an requires it that means This .>\&\&><Command<std::unique_ptrstd::vector code example some through go Let's .><Commandstd: :unique_ptr of vector a to reference better: this understand to stepby-step-

| sequentially. run to want we that commands our store to vector a create s'Let // commands; >>Command<unique ptr::std<vector::std |  |  |
| :---: | :---: | :---: |
| console. the to prints that command instant an Add // InstantCommand<make unique::commands.emplace back(std |  |  |
| created. has user a that something be can this command: other some Add // this ,for needed, (args,>MyCommand<make_unique::commands.emplace_back(std |  |  |
| ${ }_{4}$ vector the when state, current its In commands. these of all owns"" vector the Now // <br> (i.e. destroyed is $\hookrightarrow$ added. just we commands the of all destroy will it scope), of out goes it // ${ }_{4}$ commands two these run will that SequentialCommandGroup a create s'Let // sequentially. $\hookrightarrow$ move(commands));::SequentialCommandGroup(std = group auto |  |  |
|  |  |  |
| ugroup, command sequential the into commands of vector the MOVED we that Note // the that meaning $\rightarrow$ sthe on std::move call we When commands. our of ownership has now group command // its of all vector, $\hookrightarrow$ group. command the into moved are instances) unique_ptr the (i.e. contents // |  |  |
| ${ }_{\iota}$ running, was group command the while destroyed be to were vector the if Even // OK be would everything $\rightarrow$ anymore. commands our own not does vector the since // |  |  |

multiple be can there because model ownership clear no is there ,std::shared_ptr With commands If memory. of block same the to point that std::shared_ptr a of instances cannot scheduler command the or group command a instances, std::shared_ptr in were
the because executing finished has command the once memory the free and ownership take of block that to pointing instance std: : shared_ptr a have still unknowingly still might user scope. in somewhere memory

## CRTP of Use 24.9.2

extend must you command, new a create to order in that noticed have may You you that class the and )frc2: : CommandBase (usually class base the providing ,CommandHelper this: behind reasoning the at look a take Let's created. just

Decorators Command
decorators", "command as known feature a includes framework basedcommand- new The this: like something to user the allows which
ucommand my after printed This" << cout: :std \{ MyCommand(). AndThen ([] $=$ task auto
, $\} ; " e n d e d . ~$
finished has command that once and MyCommand ( ) execute first will it scheduled, is task When by is internally achieved is this way The console. the to message the print will it executing, group. command sequential a using
we group, command sequential a construct to order in that section previous the from Recall print the for pointer unique the Creating command. each to pointers unique of vector a need trivial: pretty is function
requirements)); move(toRun), : : (std>InstantCommand<make_unique: :std
the into pass to need we that commands of vector the storing is temp Here need we ,InstantCommand that add we before But constructor. SequentialCommandGroup that? do we do How .SequentialCommandGroup the to MyCommand ( ) add to

```
this*move(::(std>MyCommand<make_unique::temp.emplace_back(std
```

this Because case. the not is that but straightforward, this be would it think might You that subclass the in Command the to refers *this interface, Command the in is code decorator trying be will you Effectively, .Command of type the has and from decorator the calling are you and MyCommand* a to pointer this the cast could We .MyCommand of instead Command a move to time.compile- at to cast to subclass the about information no have we but it dereference then

## Problem the to Solutions

called Command in method virtual $a$ create to was this to solution initial Our override an Such override. to had Command of subclass every that TransferOwnership() this: like looked have would

[^8]desired the to point actually would *this subclass, derived the in be would code the Because unique the make to class derived the of info type the has user the and instance subclass pointer.
derived intermediary an Here, proposed. was method CRTP a deliberation, of days few a After template two have would CommandHelper exist. would CommandHelper called Command of class a at look a take Let's subclass. derived desired the and class base original the arguments, this: understand to CommandHelper of implementation basic

```
            a actually is Base that check to SFINAE use we implementation, real the In //
                    Command. of subclass a or Command //
                            >Derived typename ,Base typename<template
                            { Base public : CommandHelper class
    constructors. class) (base superclass the of all inheriting just are we Here, //
                                    Base;::Base using
            above. mentioned method TransferOwnership() the override will we Here, //
                override && TransferOwnership() >Command<unique_ptr::std
    class derived the about information no had we that mentioned we Previously, //
template our of one s'It do! we CRTP of because but compile-time, at to cast to //
                                    arguments! //
            )));}\mathrm{ this(>*Derived<static_cast*move(::(std>Derived<make_unique::std return
```

will Command of instead CommandHelper extend commands custom your making Thus, teams asking behind reasoning the is this and you for boilerplate this implement automatically things. doing of way obscure rather a be to seem may what use to
following: the do now can we example, AndThen ( ) our to back Going

> TransferOwnership() the call will we works, inheritance how of Because // only can TransferOwnership() because *this moving are We subclass. the of // references. rvalue on called be //
> ).TransferOwnership());this*move(::temp.emplace_back(std

## Decorators Advanced of Lack 24.9.3

commands actual of instead ><void()std::function in take decorators C++ the of Most ,AndThen() as such decorators in commands actual in taking of idea The themselves. reasons. of variety a to due abandoned then but considered was etc., BeforeStarting()

## Decorators Templating

group command a to adding are we that commands the of types the know to need we Because However, commands). multiple for (variadic templates use to need will we time,compile- at anyway: this do groups command for constructors The deal. big a like seem not might this

> Types, ...class< template
> <conjunction v::std<enable if t::std = typename
> >>>...>>Types<remove_reference_̄::std Command,<is̄_base_of::std
> \{ commands's) ...\&\&SequentialCōmman̄̄Group(Types explicit (commands)...) ;>Types<forward::AddCommands(std
page) next on (continues

This inline. declared be must definition its function, templated a make we when However, header, Command.h the in SequentialCommandGroup the instantiate to need will we that means include we If .Command.h includes SequentialCommandGroup.h problem. a poses which do How dependency. circular a have we ,Command.h of inside SequentialCommandGroup.h then? now it do we
:Command.h of top the at declaration forward a use We

| ;SequentialCommandGroup class |
| ---: | ---: |
| ;\} $\ldots$ \{ Command class |

decorator these If .Command.cpp in SequentialCommandGroup.h include we then And resulting files, cpp. the in definitions write cannot we however, templated were functions dependency. circular a in
Syntax C++ vs Java
calls) new raw requires Java (because Java in verbosity more save usually decorators These you if C++ in difference syntanctic a of much make not does it general, in so C++, in than code. user in manually group command the create

## Updates 202324.9 .4

create to way recommended the framework, basedcommand- new the in years few a After methods. factory and decorators, commands, inline towards shifted increasingly commands 2020 in introduced model commands C++ the that evident became it shift, paradigm this With recommendations. new the to according used when points pain some has above described and a in value by passed being commands was points pain most of cause root significant A in changes and easy, rather mistakes slicing object made This way. polymorphicnonif example, for codebase: the throughout changes type propagate could structure composition would changes type those ,ParallelDeadlineGroup a to changed were ParallelRaceGroup a Java) in done (as Command a as object the around Passing codebase. the through propagate slicing. object in result would
.above described reasons to due C++ in supported weren't decorators various Additionally, was Java (where verbosity reduce to mainly were and used rarely were decorators as long As was decorators of usage heavy Once problem. a of less was this C++), than verbose more issue. an of more became this recommended,

## CommandPtr

move only with type value a above: far std::unique_ptr of mention the recall Let's want! we model ownership the is This semantics.

Primarily, drawbacks. some had ><Commandstd::unique_ptr using plainly However, library standard the in defined is unique_ptr impossible: be would decorators implementing access have wouldn't Command on defined methods any and it, on methods define can't we so .unique_ptr owning the to
define can we that, unique_ptr wrapping class value onlymove- a :CommandPtr is solution The on. methods
decorators, All .std::move using ,CommandPtr as around passed be should Commands this.rvalue- with CommandPtr on defined are before, C++ in supported not those including avoid to easy very it makes ownership clear and semantics, onlymove- rvalues, of use The .composition command one than more to instance command same the adding as such mistakes
as such methods utility define also instances CommandPtr decorators, to addition In way every almost nearly in used be can instances CommandPtr .IsScheduled() ,Schedule() default bindings, trigger into moved be can they Java: in used be can objects command trigger owningnon- as (such Command* a require that things few the For on. so and commands, .get () using retrieved be can command owned the to pointer raw a bindings),
instance: CommandPtr a get to ways multiple are There
the in namespace frc2::cmd the in present are factories returning-CommandPtr • compositions, commandmulti- For types. command all almost for header Commands.h multiple for overload templatedvariadic- a as well as overload takingvector- a is there instances. CommandPtr
allowed has This .CommandPtr return ,Command on defined those including decorators, All • .Command a from start can chain decorator a so ,Command on decorators all almost defining
is This .TransferOwnership to akin CRTP, the to added been has method ToPtr() A • classes command other as well as classes, command defineduser- for especially useful factories. have don't that
project example HatchbotInlined the from following the consider instance, For :<https://github.com/wpilibsuite/allwpilib/blob/v2023.2.1/wpilibcExamples/src/main/cpp/examples/Hatchb

| drive, *(DriveSubsystemautos::ComplexAuto CommandPtr::frc2 <br> \{ hatch) *HatchSubsystem <br> Sequence(::cmd::frc2 return <br> distance specified the forward Drive // <br> FunctionalCommand (: :frc2 <br> start command on encoders Reset // <br> ,\} ResetEncoders();>-drive \{ [drive] <br> executing is command the while forward Drive // <br> ,\} );0 ArcadeDrive(kAutoDriveSpeed,>-drive \{ [drive] command the of end the at driving Stop // <br> the exceeds distance driven s'robot the when command the End // |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

page) next on (continues
(ำำ ำ


CommandPtr so ,><Commandunique_ptr use still compositions command breakage, avoid To thisrvalue- Unwrap() the using ><Commandunique_ptr a into destructured be can instances function >) <CommandPtrCommandPtr: :UnwrapVector(vector static the vectors, For method. exists.
and PIDSulbsystems through Control PID 24.10
PIDCommands
basedcommand- these by used features control PID WPILib the of description a For : : पारा


WPILib controller. PID the is FRC® in used algorithms control common most the of One their on functionality this implement teams help to class PIDController own its offers project, robot basedcommand- a into control PID integrate teams help further To robots. class: PIDController the for wrappers convenience two includes library basedcommand- the which ,PIDCommand and subsystem, a into controller PID the integrates which ,PIDSubsystem command. a into controller PID the integrates
a with subsystem a create conveniently to users allows )C++, Java( class PIDSubsystem The subclass a create must users class, PIDSubsystem the use to order In .PIDController inbuiltit. of

PIDSubsystem a Creating
 properly. work not will functionality PID Otherwise, !super. periodic()
provide to methods abstract two override must users ,PIDSubsystem subclassing When operation: ordinary its in use will class the that functionality
getMeasurement()
Java

| ()$;$ getMeasurement double abstract protected |
| :---: |
| $; 0=()$ GetMeasurement double virtual |

The variable. process the of measurement current the returns method getMeasurement The its pass and block, periodic() its from method this call automatically will PIDSubsystem loop. control the to value their as use to wish they reading sensor whatever return to method this override should Users measurement. variable process

| useOutput() |
| ---: |
| setpoint); double output, double(useOutput void abstract protected |
| C + + setpoint) double output, double(UseOutput void virtual |

setpoint current the and controller, PID the of output the consumes method useOutput () The automatically will PIDSubsystem The feedforward). a computing for useful often is (which control the of output computed the it pass and block, periodic() its from method this call
loop.
their to output control computed final the pass to method this override should Users motors. subsystem's
the through class base PIDSubsystem the to PIDController a in pass also must Users well as gains, PID the specify to serves This subclass. their of call constructor superclass period). loop robot main standardnon- a using is user the (if period the as the in controller the to made be can input) continuous enabling (e.g. modifications Additional .getController() calling by body constructor

## PIDSubsystem a Using

commands by used be can it created, been has subclass PIDSubsystem a of instance an Once methods: following the through

The .PIDSubsystem the of setpoint the set to used be can method setSetpoint() The output: defined the using setpoint the to track automatically will subsystem

Java
5. of setpoint a to track will subsystem The // );5(setSetpointexamplePIDSubsystem.

C++
5. of setpoint a to track will subsystem The // );5examplePIDSubsystem.SetSetpoint(

## disable() and enable()

the of control PID the disable and enable methods disable() and enable() The loop control the run automatically will it enabled, is subsystem the When .PIDSubsystem performed. is control no disabled, is it When setpoint. the track and
disable() the and ,PIDController internal the resets method enable() the Additionally, .0 to set setpoint and output both with method useOutput() defineduser- the calls method

## Example PIDSubsystem Full

taken are examples following The practice? in used when like look PIDSubsystem a does What ):C++, Java( project example FrisbeeBot the from

Java

| ;edu.wpi.first.wpilibj.examples.frisbeebot.subsystems package |
| :--- |
| ;edu.wpi.first.math.controller.PIDController import |
| ;edu.wpi.first.math.controller.SimpleMotorFeedforward import |
| ;edu.wpi.first.wpilibj.Encoder import |
| ;edu.wpi.first.wpilibj.examples.frisbeebot.Constants.ShooterConstants import |
| page) next on (continues |




## (Header) $\mathrm{C}++$

|  | once pragma\# |
| :--- | ---: |
| frc/Encoder. $h><$ |  |
| include\# |  |
| frc/controller/SimpleMotorFeedforward. $h><$ |  |
| include\# |  |
| frc/motorcontrol/PWMSparkMax. $h><$ |  |
| include\# |  |

## Competition Robotics FIRST



| ( |
| :---: |
| ```{ RunFeeder()::ShooterSubsystem void m_feederMotor.Set(kFeederSpeed); { StopFeeder()::ShooterSubsystem void );0m_feederMotor.Set(``` |
| simple: very be can commands with PIDSubsystem a Using Java |
| m_ (m_shooter::enable, runOnceCommands. = m_spinUpShooter Command final private shooter); $\hookrightarrow$ <br> m_ (m_shooter::disable, runOnceCommands. = m_stopShooter Command final private <br> shooter) ; $\hookrightarrow$ <br> RobotContainer in them to references retaining while commands bind can We // <br> pressed is button 'A' the when shooter the up Spin // (m_spinUpShooter); onTrue().am_driverController. <br> pressed is button 'B' the when shooter the off Turn // (m_stopShooter); onTrue().bm_driverController. |

(Header) $\mathrm{C}++$
= m spinUpShooter CommandPtr::frc2
= m spinUpShooter CommandPtr::frc2
m_shooter});\&{ ,} m_shooter.Enable(); { ]thisRunOnce([::cmd::frc2
m_shooter});\&{ ,} m_shooter.Enable(); { ]thisRunOnce([::cmd::frc2
= m_stopShooter CommandPtr::frc2
= m_stopShooter CommandPtr::frc2
m_shooter});\&{ ,} m_shooter.Disable(); { ]thisRunOnce([::cmd::frc2
m_shooter});\&{ ,} m_shooter.Disable(); { ]thisRunOnce([::cmd::frc2
(Source) C++
RobotContainer in ownership their keeping while commands bind can We // pressed is button 'A' the when shooter the up Spin // m_driverController.A().OnTrue(m_spinUpShooter.get());
pressed is button 'B' the when shooter the off Turn // m_driverController.B().OnTrue(m_stopShooter.get());

## PIDCommand 24.10.2

PIDController. inbuilt- a with commands create easily to users allows class PIDCommand The

PIDCommand a Creating
defining by or class, PIDCommand the subclassing by - ways two created be can PIDCommand A of choice the ultimately and similar, extremely ultimately methods Both .inline command the located. be code relevant the that desires user the where to down comes use to which
super the call to sure make methods, any overriding and PIDCommand subclassing If : : पार properly. work not will functionality PID Otherwise, methods! those of version
constructor its to parameters necessary the passing by created is PIDCommand a case, either In call): super() a with done be can this subclass, a defining (if

Java


pul
variable process the of measurement the measurementSource @param *
setpoint) (aka reference s'controller the setpointSource @param *
output s'controller the useOutput @param *
command this by required subsystems the requirements @param *
controller, PIDCommand(PIDController
measurementSource, >()double<function::std
setpointSource, >()double<function::std use0utput, >)double(void<function::std requirements); >*Subsystem<initializer_list::std
controller
command. the by used be will that object PIDController the is parameter controller The the (if controller the for period the and gains PID the specify can users in, this passing By period). loop robot main nonstandard a using is user
can input) continuous enabling (e.g. modifications additional ,PIDCommand subclassing When .getController() calling by body constructor the in controller the to made be
measurementSource
returns that )lambda a as passed (usually function a is parameter measurementSource The function measurementSource the in Passing variable. process the of measurement the in function getMeasurement() the overriding to analogous functionally is PIDCommand in
.PIDSubsystem
supplier measurement the modify further may users advanced ,PIDCommand subclassing When field. m_measurement class's the modifying by

## setpointSource

the returns that )lambda a as passed (usually function a is parameter setpointSource The exists overload an needed, is setpoint constant a only If loop. control the for setpoint current supplier. a than rather setpoint constant a takes that
by supplier setpoint the modify further may users advanced ,PIDCommand subclassing When field. m_setpoint class's the modifying
useOutput
the consumes that )lambda a as passed (usually function a is parameter useOutput The PIDCommand in function useOutput the in Passing loop. control the of setpoint and output .PIDSubsystem in function useOutput() the overriding to analogous functionally is by consumer output the modify further may users advanced ,PIDCommand subclassing When field. m_useOutput class's the modifying

דרישות
subsystem its specify to user the allows PIDCommand commands, inlineable all Like parameter. constructor a as requirements

Example PIDCommand Full
from are examples following The practice? in used when like look PIDCommand a does What ):C++ ,Java( project example GyroDriveCommands the

Java


[^9] 6
(Header) C++

|  | once pragma\# <br> frc2/command/CommandHelper. $h><$ include\# <br> frc2/command/PIDCommand. $h><$ include\# |
| :--- | ---: |


\{ >TurnToAngle PIDCommand,::frc2<CommandHelper::frc2 public : TurnToAngle class
(Source) C++

example: inlined an for And,
Java

| held is bumper left when gyro with straight drive to robot Stabilize // |  |
| ---: | :--- |
|  | )value. $\mathrm{kL1Button}. \mathrm{JoystickButton(m} \mathrm{\_driverController} new$, |


| ```PIDCommand( new PIDController( new ,kStabilizationPDriveConstants. ,kStabilizationIDriveConstants. ), kStabilizationDDriveConstants. rate turn the on loop the Close // m_robotDrive::getTurnRate, 0 is Setpoint // ,0 controls turning the to output the Pipe // u(),getLeftYm_driverController.-(arcadeDrivem_robotDrive. >- output drive robot the Require // m_robotDrive));``` |  |
| :---: | :---: |

## C++

held is L1 when gyro with straight drive to robot Stabilize // kL1)::Button::PS4Controller::frc m_driverController,\&JoystickButton(::frc2

WhileTrue(.
PIDCommand (: :frc2
kStabilizationI,::dc kStabilizationP,::PIDController\{dc::frc2
kStabilizationD\},::dc
rate turn the on loop the Close //
,\} m_drive.GetTurnRate(); return \{ ]this[
0 is Setpoint //
, 0
controls turning the to output the Pipe //
\{ output) double](this[
output); m_drive.ArcadeDrive(m_driverController.GetLeftY(),
, \}
drive robot the Require //
m_drive\}) \&\{

## Trapezoid ProfileSulbsystems through Profiling Motion 24.11 TrapezoidProfileCommands and

command- these by used features profiling motion WPILib the of description a For : : पार .WPILib in Profiles Motion Trapezoidal see wrappers, based
composition for intended generally are wrappers command TrapezoidProfile The : Clll WPILib's with profiling motion trapezoidal combining For controllers. external or custom with .BasedCommand- in PID and Profiling Motion Combining see ,PIDController
positions, two between smoothly it move to desirable often is mechanism, a controlling When supported is and profiling,""motion- called is This setpoint. its change abruptly to than rather ).C++ ,Java( class TrapezoidProfile the through WPILib in robot basedcommand- their into profiling motion integrate teams help further To
class: TrapezoidProfile the for wrappers convenience two includes WPILib projects, profiles motion executes and generates automatically which ,TrapezoidProfileSubsystem user- single a executes which ,TrapezoidProfileCommand the and method, periodic() its in .TrapezoidProfile provided

## TrapezoidProfileSubsystem 24.11.1

used type unit the on templated is class TrapezoidProfileSubsystem the C++, In : : प्रा have must values inpassed- The linear. or angular be may which measurements, distance for more For thrown. be will error timecompile- a or units, distance the with consistent units
.Library Units C++ The see units, C++ on information
execute and create automatically will )C++ ,Java( class TrapezoidProfileSubsystem The the use To state. goal provideduser- the reach to profiles motion trapezoidal it. of subclass a create must users class, TrapezoidProfileSubsystem

## TrapezoidProfileSubsystem a Creating

make ,TrapezoidProfileSubsystem from inheriting when overridden is periodic If : : प्रा work not will functionality profiling motion Otherwise, !super.periodic() call to sure properly.
abstract single a override must users ,TrapezoidProfileSubsystem subclassing When operation: ordinary its in use will class the that functionality provide to method

| useState() |  |
| ---: | ---: |
| state); State(TrapezoidProfile. useState void abstract protected |  |
| $; 0=$ State) | (StateUseState void virtual |

The profile. motion the of state current the consumes method useState() The block, periodic() its from method this call automatically will TrapezoidProfileSubsystem progress current subsystem's the to corresponding state profile motion the it pass and profile. motion the through
Full the in shown (as case use typical a state; this with want they whatever do may Users feedforward a and setpoint a obtain to state the use to is )Example TrapezoidProfileSubsystem controller. motor "smart" external an for

## Parameters Constructor

the to TrapezoidProfile.Constraints of set a in pass must Users their of call constructor superclass the through class base TrapezoidProfileSubsystem maximum given a to profiles generatedautomatically- the constrain to serves This subclass. acceleration. and velocity
mechanism. the for position initial an in pass also must Users main standardnon- a if period, loop the for value alternate an in pass may users Advanced used. being is period loop

## TrapezoidProfileSubsystem a Using

used be can it created, been has subclass TrapezoidProfileSubsystem a of instance an Once methods: following the through commands by

```
setGoal()
```

 motion full a than rather value, distance single a takes that exists setGoal() of overload an state. profile
.TrapezoidProfileSubsystem the of state goal the set to used be can method setGoal() The at state current the passing goal, the to profile a execute automatically will subsystem The method. useState() provided the to iteration each

Java
3. of velocity a and 5 of position a to profile a execute will subsystem The // );3 ,5(StateTrapezoidProfile. new(setGoalexamplePIDSubsystem.

C++

```
4 of velocity a and meters 5 of position a to profile a execute will subsystem The //
mps. \(\rightarrow\) mps\});_3 m, 5examplePIDSubsyste.SetGoal(\{
```

disable() and enable()
the of control profiling motion the disable and enable methods disable() and enable() The the run automatically will it enabled, is subsystem the When .TrapezoidProfileSubsystem performed. is control no disabled, is it When periodically. useState() call and loop control

## Example TrapezoidProfileSubsystem Full

following The practice? in used when like look TrapezoidProfileSubsystem a does What ):C++ ,Java( project example ArmbotOffobard the from taking are examples

Java

(Header) C++

| frc/controller/ArmFeedforward.h>< include\# |  |
| :--- | ---: |
| frc2/command/Commands.h>< include\# |  |
| page) next on (continues |  |


(Source) C++

> subsystems/ArmSubsystem.h"" include\# Constants.h"" include\#
> ;ArmConstants namespace using
> State;::>radians::units<TrapezoidProfile::frc = State using
> ArmSubsystem(): :ArmSubsystem
> (>radians::units<TrapezoidProfileSubsystem::frc2 :
> kArmOffset), kMaxAcceleration\}, kMaxVelocity,\{
> m_motor(kMotorPort),
> \{ kA) kV, kG ${ }^{-}$, m_feedforward(kS,
> );0 , 0 m_motor.SetPID (kP,
\{ setpoint) UseState(State::ArmSubsystem void sepoint the from feedforward the Calculate //
= feedforward volt_t::units setpoint.velocity); m_feedforward.Calculate(setpoint.position, output motor the get to output PID the to feedforward the Add // kPosition,::PIDMode::m motor.SetSetpoint(ExampleSmartMotorController V); 12 / feedforward setpoint.position.value(),
\{ goal) radian_t::SetArmGoalCommand(units::ArmSubsystem CommandPtr::frc2 ) ;\}this\{ ,\} SetGoal(goal);>-this \{ goal] ,thisRunOnce([::cmd::frc2 return
simple: quite be can commands with TrapezoidProfileSubsystem a Using
Java
24. 1 리


TrapezoidProfileCommand 24.11.2
for used type unit the on templated is class TrapezoidProfileCommand the C++, In : : In ll have must values inpassed- The linear. or angular be may which measurements, distance more For thrown. be will error timecompile- a or units, distance the with consistent units .Library Units C++ The see units, C++ on information
will that command a create to users allows )C++, Java( class TrapezoidProfileCommand The user- a to iteration each at state current its passing, TrapezoidProfile single a execute function. defined

## TrapezoidProfileCommand a Creating

the subclassing by - ways two created be can TrapezoidProfileCommand A methods Both .inline command the defining by or class, TrapezoidProfileCommand where to down comes use to which of choice the ultimately and similar, extremely ultimately located. be code relevant the that desires user the
to sure make methods, any overriding and TrapezoidProfileCommand subclassing If : : प्रा not will functionality profiling motion Otherwise, methods! those of version super the call properly. work
parameters necessary the passing by created is TrapezoidProfileCommand a case, either In call): super() a with done be can this subclass, a defining (if constructor its to



C++

| ```:public **/ given the execute will that TrapezoidProfileCommand new a Creates * function. consumer provided the to piped be will Output TrapezoidalProfile. execute. to profile motion The profile @param * output. profile the for consumer The output @param * requirements. of list The requirements @param * */ profile, >Distance<TrapezoidProfile::TrapezoidProfileCommand(frc output, >(State)void<function::std``` |
| :---: |

profile
the by executed be will that object TrapezoidProfile the is parameter profile The constraints motion and state, end state, start the specify users in, this passing By command. use. will command the that profile the of

## output

and output the consumes that )lambda a as passed (usually function a is parameter output The functionally is PIDCommand in function useOutput the in Passing loop. control the of setpoint
.PIDSubsystem in function useState() the overriding to analogous

דרישות
its specify to user the allows TrapezoidProfileCommand commands, inlineable all Like parameter. constructor a as requirements subsystem

## Example TrapezoidProfileCommand Full

following The practice? in used when like look TrapezoidProfileSubsystem a does What ):C++ Java( project example DriveDistanceOffboard the from taking are examples

Java

| ;edu.wpi.first.wpilibj.examples.drivedistanceoffboard.commands package |
| :--- |
| ;edu.wpi.first.math.trajectory.TrapezoidProfile import |
| ;edu.wpi.first.wpilibj.examples.drivedistanceoffboard.Constants.DriveConstants import |
| ;edu.wpi.first.wpilibj.examples.drivedistanceoffboard.subsystems.DriveSubsystem import |
| page) next on (continues |

24. 민



(Source) C++
distance, meter t::DriveDistanceProfiled(units::DriveDistanceProfiled drive) *DriveSubsystem

CommandHelper\{ :
\{>meters::units<TrapezoidProfile::frc

## Competition Robotics FIRST



Java


TrapezoidProfileCommand( new
TrapezoidProfile( new
velocity and acceleration max the Limit //
(ConstraintsTrapezoidProfile. new
), kMaxAccelerationMetersPerSecondSquaredDriveConstants.
0 at starts implicitly meters; in position desired at End // )), 0 ,3(StateTrapezoidProfile. new drive the to state profile the Pipe //
setpointState), $\hookrightarrow$
drive the Require //
m_robotDrive)
)) ;10(withTimeout.
defined but pressed, is button ' $B$ ' the when above as thing same the Do //
m_driverController.B().OnTrue(
(>meters::units<TrapezoidProfileCommand::frc2
(>meters::units<TrapezoidProfile::frc
velocity and acceleration max the Limit //
kMaxAcceleration\},::DriveConstants kMaxSpeed,::DriveConstants\{
0 at starts implicitly meters; in position desired at End //
mps\}), $0 \mathrm{~m}, 3\{$
drive the to state profile the Pipe //
\{ setpointState) auto](this[
setpointState); m_drive.SetDriveStates(setpointState,

> drive the Require $/$ //
> m drive\}) $\&\{$
> CommandPtr to Convert //

ToPtr().
page) next on (continues

# BeforeStarting(. <br> )) \}\{ ,\} m_drive.ResetEncoders(); \{ ]()thisRunOnce([::cmd::frc2 <br> s) ) ; 10WithTimeout(. 

## Command- in PID and Profiling Motion Combining 24.12 <br> Based

basedcommand- these by used features control PID WPILib the of description a For : : पारा

setpoint for profile motion trapezoidal a pair to is solution controls FRC® common A includes WPILib this, facilitate To tracking. setpoint for controller PID a with generation functionality this integrating in teams aid further To class. ProfiledPIDController own its the for wrappers convenience two contains framework basedcommand- the robots, their into into controller the integrates which ,ProfiledPIDSubsystem class: ProfiledPIDController command. a into controller the integrates which ,ProfiledPIDCommand and subsystem, a

ProfiledPIDSubsystem 24.12.1
for used type unit the on templated is class ProfiledPIDSubsystem the C++, In : : have must values inpassed- The linear. or angular be may which measurements, distance more For thrown. be will error timecompile- a or units, distance the with consistent units .Library Units C++ The see units, C++ on information
a create conveniently to users allows )C++ Java( class ProfiledPIDSubsystem The class, ProfiledPIDSubsystem the use to order In PIDController. inbuilt- a with subsystem it. of subclass a create must users

ProfiledPIDSubsystem a Creating
to sure make ,ProfiledPIDSubsystem from inheriting when overridden is periodic If : : प्रा properly. work not will functionality control Otherwise, !super.periodic() call
to methods abstract two override must users ,ProfiledPIDSubsystem subclassing When operation: ordinary its in use will class the that functionality provide


#### Abstract

getMeasurement() Java

> ();getMeasurement double abstract protected

C++ ;0 = ()GetMeasurement Distance_t virtual


The variable. process the of measurement current the returns method getMeasurement The its pass and block, periodic() its from method this call automatically will PIDSubsystem loop. control the to value
their as use to wish they reading sensor whatever return to method this override should Users measurement. variable process

## useOutput()

Java

```
setpoint); State output, double(useOutput void abstract protected
```

> C++

```
;0 = setpoint) State output, double(UseOutput void virtual
```

current the and controller, PID Profiled the of output the consumes method useOutput () The will PIDSubsystem The feedforward). a computing for useful often is (which state setpoint of output computed the it pass and block, periodic() its from method this call automatically loop. control the
their to output control computed final the pass to method this override should Users motors. subsystem's

## Controller the In Passing

class base ProfiledPIDSubsystem the to ProfiledPIDController a in pass also must Users gains, PID the specify to serves This subclass. their of call constructor superclass the through robot main standardnon- a using is user the (if period the and constraints, profile motion the period). loop
the in controller the to made be can input) continuous enabling (e.g. modifications Additional .getController() calling by body constructor

## ProfiledPIDSubsystem a Using

commands by used be can it created, been has subclass PIDSubsystem a of instance an Once methods: following the through

setGoal()

zero, of velocity target implicit an with distance simple a to goal the set to wish you If : : पार motion full a than rather value, distance single a takes that exists setGoal() of overload an state. profile
subsystem The .PIDSubsystem the of setpoint the set to used be can method setGoal() The output: defined the using setpoint the to track automatically will

Java
second. per meters 3 of velocity and meters 5 of goal a to track will subsystem The // );3 ,5(setGoalexamplePIDSubsystem.

C++

```
second. per meters 3 of velocity and meters 5 of goal a to track will subsystem The //
```

    mps\});_3 m, 5examplePIDSubsystem.SetGoal(\{
    
## disable() and enable()

the of control automatic the disable and enable methods disable() and enable() The motion the run automatically will it enabled, is subsystem the When .ProfiledPIDSubsystem performed. is control no disabled, is it When goal. the to track and loop control the and profile the and ,ProfiledPIDController internal the resets method enable() the Additionally, setpoint and output both with method useOutput() defineduser- the calls method disable()
. 0 to set

## Example ProfiledPIDSubsystem Full

taken are examples following The practice? in used when like look PIDSubsystem a does What ):C++ ,Java( project example ArmBot the from

Java

|  | $\begin{array}{r} \text {;edu.wpi.first.wpilibj.examples.armbot.subsystems package } \\ \text {;edu.wpi.first.math.controller.ArmFeedforward import } \\ \text {;edu.wpi.first.math.controller.ProfiledPIDController import } \\ \text {;edu.wpi.first.math.trajectory.TrapezoidProfile import } \\ \text {;edu.wpi.first.wpilibj.Encoder import } \\ \text {;edu.wpi.first.wpilibj.examples.armbot.Constants.ArmConstants import } \\ \text {;edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax import } \\ \text {;edu.wpi.first.wpilibj2.command.ProfiledPIDSubsystem import } \end{array}$ |
| :---: | :---: |
| page) next on (continues |  |


(Header) C++


(Source) C++ subsystems/ArmSubsystem.h"" include\#

Constants.h"" include\#
;ArmConstants namespace using
State;::>radians::units<TrapezoidProfile::frc = State using
ArmSubsystem()::ArmSubsystem
${ }^{11}$
(>radians::units<ProfiledPIDSubsystem::frc2 :
(>radians::units<ProfiledPIDController::frc
kMaxAcceleration\})), kMaxVelocity,\{ ,0 ,0 kP,
m motor(kMotorPort),
]),1kEncoderPorts[ ],0m_encōder(kEncoderPorts[
\{ kA) kV, kG, m_feedforward(kS, m_encoder. SetDistancePerPulse(kEncoderDistancePerPulse.value()) ; position neutral in arm Start //
rad_per_s\}); 0 SetGoal(State\{kArm0ffset,
\{ setpoint) State output, doubleUseOutput(::ArmSubsystem void sepoint the from feedforward the Calculate //
= feedforward volt t::units
setpoint.velocity); m_feedforward.Calculate(setpoint.position, output motor the get to output PID the to feedforward the Add // feedforward); + volt_t\{output\}::m_motor.SetVoltage(units
\{ GetMeasurement():ArmSubsystem radian_t::units kArmOffset; + radian_t\{m_encoder.GetDistance()\}::units return
simple: very be can commands with ProfiledPIDSubsystem a Using
Java
pressed. is button 'A' the when horizontal above radians 2 to arm the Move // m_driverController () a.
(onTrue.
(runOnceCommands.
\{ >- ()
page) next on (continues


ProfiledPIDCommand
24.12 .2
for used type unit the on templated is class ProfiledPIDCommand the C++, In : Clll have must values inpassed- The linear. or angular be may which measurements, distance more For thrown. be will error timecompile- a or units, distance the with consistent units .Library Units C++ The see units, C++ on information
a with commands create easily to users allows )C++ ,Java( class ProfiledPIDCommand The ProfiledPIDController. inbuilt-

PIDCommand a Creating
ProfiledPIDCommand the subclassing by - ways two created be can ProfiledPIDCommand A and similar, extremely ultimately methods Both .inline command the defining by or class, relevant the that desires user the where to down comes use to which of choice the ultimately
located. be code
the call to sure make methods, any overriding and ProfiledPIDCommand subclassing If : : पार properly. work not will functionality control Otherwise, methods! those of version super
its to parameters necessary the passing by created is ProfiledPIDCommand a case, either In call): super() a with done be can this subclass, a defining (if constructor

Java

page) next on (continues


37
38
39
40
41
42
43
44
$C++$
a with output given the controls which PIDCommand, new a Creates *
ProfiledPIDController. *
*
controller
the by used be will that object ProfiledPIDController the is parameter controller The constraints, profile motion the gains, PID the specify can users in, this passing By command. period). loop robot main nonstandard a using is user the (if controller the for period the and continuous enabling (e.g. modifications additional ,ProfiledPIDCommand subclassing When .getController() calling by body constructor the in controller the to made be can input)
measurementSource
returns that )lambda a as passed (usually function a is parameter measurementSource The in function measurementSource the in Passing variable. process the of measurement the function getMeasurement() the overriding to analogous functionally is ProfiledPIDCommand
.ProfiledPIDSubsystem in
the modify further may users advanced ,ProfiledPIDCommand subclassing When field. m_measurement class's the modifying by supplier measurement
goalSource
current the returns that )lambda a as passed (usually function a is parameter goalSource The takes that exists overload an needed, is goal constant a only If mechanism. the for state goal zero, be to desired are velocities goal if Additionally, supplier. a than rather goal constant a state. profile full a than rather distance constant a take that exist overloads setpoint the modify further may users advanced ,ProfiledPIDCommand subclassing When field. m_goal class's the modifying by supplier

## useOutput

the consumes that )lambda a as passed (usually function a is parameter useOutput The in function useOutput the in Passing loop. control the of state setpoint and output in function useOutput() the overriding to analogous functionally is ProfiledPIDCommand .ProfiledPIDSubsystem output the modify further may users advanced ,ProfiledPIDCommand subclassing When field. m_useOutput class's the modifying by consumer

דרישות
subsystem its specify to user the allows ProfiledPIDCommand commands, inlineable all Like parameter. constructor a as requirements

## Example ProfiledPIDCommand Full

examples following The practice? in used when like look ProfiledPIDCommand a does What ):C++ ,Java( project example GyroDriveCommands the from are

Java

| ;edu.wpi.first.wpilibj.examples.gyrodrivecommands.commands package ;edu.wpi.first.math.controller.ProfiledPIDController import ;edu.wpi.first.math.trajectory.TrapezoidProfile import ;edu.wpi.first.wpilibj.examples.gyrodrivecommands.Constants.DriveConstants import ;edu.wpi.first.wpilibj.examples.gyrodrivecommands.subsystems.DriveSubsystem import ;edu.wpi.first.wpilibj2.command.ProfiledPIDCommand import <br> ${ }_{u} p r o f i l e . ~ m o t i o n ~ a ~ u s i n g ~ a n g l e ~ s p e c i f i e d ~ t h e ~ t o ~ r o b o t ~ t h e ~ t u r n ~ w i l l ~ t h a t ~ c o m m a n d ~ A ~ * * / ~$ |
| :---: |

page) next on (continues



[^10]6

TurnToAngleProfiled class ,>radians::units<ProfiledPIDCommand::frc2<CommandHelper::frc2 public :
\{ >TurnToAngleProfiled
:public
**/
profile. motion a using angle specified the to robot to Turns *
to turn to angle The targetAngleDegrees @param *
use to subsystem drive The drive @param *
*/
targetAngleDegrees, degree_t::TurnToAngleProfiled(units
drive); *DriveSubsystem

$\square$



### 24.13 כתיבה מחדש של תכנות מבוסס פקודות 2020: מה השתנה?

framework basedcommand- original the from changes of summary a provides article This rigorous for - comprehensive necessarily not is summary This rewrite. 2020 the to ).C++, Java( docs API the to refer always, as documentation,

Location Package 24.13.1
in and Java, for package wpilibj2 the in located is framework basedcommand- new The instructions: the using installed be must framework new The C++. for namespace frc2 the
.Libraries Command WPILib

## Changes Architectural Major 24.13.2

same. the largely remained has framework basedcommand- the of structure overall The aware be should users that changes architectural major few a still some are there However, of:

Interfaces as Subsystems and Commands
to opposed as interfaces now both are )C++ Java( Subsystem and )C++ ,Java( Command and CommandBase flexibility. potential more users advanced allowing classes, abstract required. not are but convenience, for provided still are classes base abstract SubsystemBase


## Classes Group Command Multiple

narrower of number a by replaced been has and exists, longer no class CommandGroup The For structures. group complicatedmore- create to composed recursively be can that classes
.Compositions Command see information more

## Definitions Command Inline

a where cases all almost in Command of subclass a write to required were users Previously, definition inline allow to designed are commands new the of Many needed. was command For subclass. explicit an for need the without used be can so and functionality, command of
.Types Command Included see information, more

Dependencies Command of Injection
the for pattern use recommended the library, the of coding the to change actual an not While commands, into dependencies subsystem of injection utilizes framework basedcommand- new and maintainable, more cleaner, a is This globals. as declared not are subsystems that so more For previously. promoted pattern subsystem global the than pattern reusable more .Project Robot BasedCommand- a Structuring see information,

## Only) (C++ Ownership Command

commands, all for pointers raw use to users required framework command previous The well as projects, basedcommand- C++ all in leaks memory unavoidablenearly- in resulting command- within commands allocatingdouble- as such errors common for room leaving as groups.
Default commands. all for management ownership offers framework command new The and scheduler, the by owned typically are buttons to bound commands and commands users result, a As groups. command encapsulating their by owned are commands component reason good very a is there unless new with command a allocateheap- never generally should
so. do to
and moved be will rvalues meaning ,forwarding perfect using done is ownership of Transfer ).explanation rvalue/lvalue( copied be will lvalues

## Scheduler the to Changes 24.13.3

).C++, Java( CommandScheduler to renamed been has Scheduler •
the not scheduler, the of responsibility the now is commands of Interruptibility • .schedule to call the during specified be can and commands,
is command a whenever taken are which scheduler the to actions pass now can Users • event as such cases for useful highly is This normally. ends or interrupted, scheduled,
logging.

## Subsystem to Changes 24.13.4

equivalent closest the );C++ ,Java( interface an now is Subsystem earlier, noted As • relatedSendable- the of Many class. SubsystemBase new the is Subsystem old the of setters the call can users clutter; reduce to removed been have overloads constructor needed. if constructor, own their from directly
"know to need longer no subsystems removed; been has initDefaultCommand • the with directly registered instead are which commands, default their about" the wraps simply method setDefaultCommand new The .CommandScheduler call. CommandScheduler
this them; requiring currently commands the about" "know longer no Subsystems • the on wrapper convenience A .CommandScheduler the by exclusively handled is however. provided, is method CommandScheduler

Command to Changes 24.13.5
.Commands see commands, on information more For : : पार
the of equivalent closest the );C++, Java( interface an now is Command earlier, noted As • constructor relatedSendable- the of Many class. CommandBase new the is Command old from directly setters the call can users clutter; reduce to removed been have overloads needed. if constructor, own their
of responsibility the now is this state; scheduling own their handle longer no Commands • scheduler. the
takes now which method, end() the into rolled been has method interrupted() The • ended it if false( interrupted was command the whether specifying parameter a normally).
.addRequirement() to renamed been has method requires() The • overridable an by replaced been has disabled) setRunsWhenDisabled(boolean void • method. runsWhenDisabled overridable an by replaced been has interruptible) setInterruptible(boolean void • method. getInterruptionBehavior of modification inline easy allow to added been have methods "decorator" Several • timeout). a adding (e.g. commands model, ownership command the with work to decorators the allow to order In only) (C++ • Foo subclass Command defineduser- Any .class CommandHelper the via used is CRTP a class. base desired the is Base where >Base <Foo, CommandHelper extend must

> PIDSubsystem/PIDCommand to Changes 24.13.6
,PIDCommands and PIDSubsystems through Control PID see information, more For : $\square$ III

the from synchronously run now classes these PIDController, to changes the Following • loop. robot main
the of many removing constructor, the through injected now is PIDController The • .getController() with construction after modified be can It methods. forwarding GyroDriveCommands the in shown as use, inline for largely intended is PIDCommand • ).C++ ,Java( example
protected the overriding "traditionally," more PIDCommand use to wish users If • by replaced been has methods output) usePIDOutput(double and returnPIDInput() than rather Similarly, fields. m_useOutput and m_measurement protected the modifying field. m_setpoint protected the modify can users, setSetpoint calling

## Parameters As Functions Passing 24.14

functions accepts often library basedcommand- the syntax, inline concise a provide to order In C++ and Java both Fortunately, decorators. and factories, constructors, of parameters as :objects as functions pass to ability the users offer

## (Java) References Method 24.14.1

method a called is parameter a as passed be can that function a to reference a Java, In no that Note .object::method is reference method a for syntax general The reference. being not is method The passed. is itself method the since included, are parameters method that that so command) a case, this (in code of piece another to passed being is it - called Method see references, method on information further For needed. when it call can code
.References

## (Java) Expressions Lambda 24.14.2

often written, been already has that function a passing for well work references method While method a as sending of purpose the for solely function a write to inconvenient/wasteful is it a supports also Java this, avoid To elsewhere. used be never will function that if reference, it - definition method inline an is expression lambda A expressions." "lambda called feature Java write to how on specifics For .list parameter a of inside defined be to function a allows .Java in Expressions Lambda see expressions, lambda

## (C++) Expressions Lambda 24.14.3

 command a of command component a from done if exception pointer null a cause can members command relevant capture should users C++ possible, Whenever composition. .here see details, more For value. by and explicitly
functions member to pointers - references method Java to equivalent close a lacks C++ this implicit the of presence the to due parameters as usable directly not generally are lambda the addition, in - expressions lambda offer does C++ However, parameter. specifics For Java. in those than powerful more ways many in are C++ by offered expressions .C++ in Expressions Lambda see expressions, lambda C++ write to how on


## Speeds Chassis The and Kinematics to Introduction 25.1

## Class

kinematics? is What 25.1.1
and drive, swerve drive, differential for classes contains suite kinematics new brand The a between convert help classes kinematics The odometry and kinematics drive mecanum usable to robot a for velocities angular and linear containing object, ChassisSpeeds universal differential a for speeds wheel right and left i.e. drivetrain of type individual each for speeds angle) and (speed states module individual or drive, mecanum a for speeds wheel four drive,
drive. swerve a for

## odometry? is What 25.1.2

the of position the of estimate an create to robot the on sensors using involves Odometry number exact (the encoders several typically are sensors these FRC, In field. the on robot classes odometry The angle. robot measure to gyroscope a and type) drive the on depends the in angles (and speeds about inputs user periodic with along classes kinematics the utilize field. the on location robot's the of estimate an create to swerve) of case

## Class Speeds Chassis The 25.1.3

suite. odometry and kinematics WPILib new the to essential is object ChassisSpeeds The three has struct This chassis. robot a of speeds the represents object ChassisSpeeds The components:
direction. (forward) $x$ the in robot the of velocity The :vx the mean values (Positive direction. (sideways) y the in robot the of velocity The :vy left). the to moving is robot second. per radians in robot the of velocity angular The :omega
a ex: sideways, move cannot that drivetrain a (i.e. drivetrain holonomicnon- A : ใ०ार sideways. move to inability its of because zero of component vy a have will drive) differential

## object ChassisSpeeds a Constructing

three accepting straightforward, very is object ChassisSpeeds the for constructor The $C++$, In second. per meters in be must vy and vx Java, In .omega and ,vy ,vx for arguments unit. velocity linear any using velocity linear a provide to used be may library units the

Java

| meters 2 forward, second per meters 3 at moving is robot The per rotation a half at rotating and right, the to second per <br> ChassisSpeeds( <br> new = speeds var |
| :---: |
| C++ |
| meters 2 forward, second per meters 3 at moving is robot The // per rotation a half at rotating and right, the to second per // counterclockwise. second // mps,_2.0- mps, 3.0speeds\{ ChassisSpeeds: frc pi)\};::numbers: :radians_per_second_t(std::units |

## Speeds RelativeField- from Object ChassisSpeeds a Creating 25.1.5

robot the when speeds relativefield- of set a from created be also can object ChassisSpeeds A example, (for field the to relative velocities desired of set a converts This given. is angle ChassisSpeeds a to boundary) field right the toward and station alliance opposite the toward for useful is This frame. robot the to relative are that speeds represents which object robot. drive mecanum or swerve a for controls orientedfield- implementing / (Java) ChassisSpeeds.fromFieldRelativeSpeeds static The generate to used be can method (C++) ChassisSpeeds::FromFieldRelativeSpeeds to (relative vx the accepts method This speeds. relativefield- from object ChassisSpeeds the angle. robot the and ,omega field), the to (relative vy field), the

Java


[^11]
the because field" the to "relative be to stated explicitly not is velocity angular The : : पारा perspective. robot a or perspective field a from measured as same the is velocity angular

## Kinematics Drive Differential 25.2

a between converts that tool useful a is class DifferentialDriveKinematics The contains which object, DifferentialDriveWheelSpeeds a and object ChassisSpeeds robot. drive differential a of sides right and left the for velocities

## Object Kinematics the Constructing 25.2.1

the is which argument, constructor one accepts object DifferentialDriveKinematics The a on wheels of sets two the between distance the represents This robot. the of width track drive. differential
to used be can library units the C++, In meters. in be must width track the Java, In : : पारा unit. length any using width track the in pass

## Speeds Wheel to Speeds Chassis Converting 25.2.2

ToWheelSpeeds(ChassisSpeeds / (Java) speeds) toWheelSpeeds(ChassisSpeeds The a to object ChassisSpeeds a convert to used be should method (C++) speeds) to have you where situations in useful is This object. DifferentialDriveWheelSpeeds velocities. wheel right and left to )omega( velocity angular an and )vx( velocity linear a convert

Java

page) next on (continues

velocity Right //
; rightMetersPerSecondwheelSpeeds. = rightVelocity double
C++
inches 27 of width track object: kinematics my Creating // in\};_27kinematics\{ DifferentialdriveKinematics::frc
velocity, linear second per meters 2 speeds: chassis Example // velocity. angular second per radian 1 // rad_per_s\};_1 mps,_0 mps,_2chassisSpeeds\{ ChassisSpeeds::frc bindings structured s'C++17 use can we Here, speeds. wheel to Convert // DifferentialDriveWheelSpeeds the split automatically to feature // velocities. right and left into struct // kinematics.ToWheelSpeeds(chassisSpeeds); = right] [left, auto

## Speeds Chassis to Speeds Wheel Converting 25.2.3

to right) and (left speeds wheel individual convert to object kinematics the use also can One toChassisSpeeds(DifferentialDriveWheelSpeeds The object. ChassisSpeeds singular a method (C++) speeds) ToChassisSpeeds (DifferentialDriveWheelSpeeds / (Java) speeds) this. achieve to used be should

Java

|  | $\begin{array}{r} \text { inches } 27 \text { of width track object: kinematics my Creating // } \\ =\text { kinematics DifferentialDriveKinematics } \\ \text { )) ;27.0(inchesToMetersDifferentialDriveKinematics(Units. new } \end{array}$ |
| :---: | :---: |

C++
inches 27 of width track object: kinematics my Creating // in\};_27kinematics\{ DifferentialdriveKinematics::frc
second per meters 2 speeds: wheel drive differential Example // side. right the for second per meters 3 side, left the for // mps\};_3 mps, 2wheelSpeeds\{ DifferentialDriveWheelSpeeds::frc
bindings structured s'C++17 use can we Here speeds. chassis to Convert // page) next on (continues
components. 3 its into struct ChassisSpeeds the split automatically to feature // variable vy the non-holonomic, is drive differential a because that Note // zero. to equal be will //
kinematics.ToChassisSpeeds(wheelSpeeds); = angularvelocity] vy, [linearvelocity, auto

## Odometry Drive Differential 25.3

WPILib .odometry perform to order in classes kinematics drive differential the use can user A a of position the track to used be can that class DifferentialDriveOdometry a contains field. the on robot drive differential
position robot's the of estimate the gyro, a and encoders uses only method this Because : : पारा robots other with contact into comes robot your as especially time, over drift will field the on period. autonomous the during accurate very usually is odometry However, gameplay. during

## Object Odometry the Creating 25.3.1

and arguments mandatory three requires constructor class DifferentialDriveOdometry The are: arguments mandatory The argument. optional one )Rotation2d a (as gyroscope your by reported angle The • must and ,double a each are these Java, In readings. encoder right and left initial The • must library units the C++, In meters. in side each by traveled distance the represent positions. wheel your represent to used be
default, By ).Pose2d a (as field the on robot your of pose starting the is argument optional The $.0=$ theta $0,=y 0,=x$ at start will robot the
toward directly facing is robot the when angle robot the represents radians / degrees 0 : ใ०ार should angle gyroscope your left, the to turns robot your As station. alliance opponent's your this for use can you that GetRotation2d/getRotation2d supplies interface Gyro The increase.
system. coordinate the about information more for System Coordinate Field See purpose.
Java
Here, object. odometry my Creating //
the in and field the of end long the along meters 5 is pose starting our //
forward. facing end, short the along field the of center //
DifferentialDriveOdometry( new $=$ m_odometry DifferentialdriveOdometry
() , getRotation2dm_gyro.

C++
Here, object. odometry my Creating //
the in and field the of end long the along meters 5 is pose starting our //
page) next on (continues
(ำ

$$
\begin{array}{r}
\text { forward. facing end, short the along field the of center // } \\
\text { m_odometry\{ DifferentialDrive0dometry::frc } \\
\text { m_gyro.GetRotation2d(), } \\
\text { meter_t\{m_leftEncoder.GetDistance()\}, :: units } \\
\text { meter_t\{m_rightEncoder.GetDistance()\},::units } \\
\text { rad\}\}; } 0 \mathrm{~m}, 13.5 \mathrm{~m}, \quad 5 \mathrm{Pose} 2 \mathrm{~d}\{:: \mathrm{frc}
\end{array}
$$

## Pose Robot the Updating 25.3.2

must method This field. the on position robot's the update to used be can method update The update The .Subsystem a of method periodic() the in preferably periodically, called be of angle gyro the in takes method This robot. the of pose updated new the returns method distance. encoder right and distance encoder left the with along robot, the
must right) and (left distances both line, straight a in forward moving is robot the If : Clll positive. be must change of rate the - positively increasing be

|  | Java |
| :---: | :---: |
|  | gyro. the from robot the of rotation the Get // <br> (); getRotation2dm_gyro. = gyroAngle var <br> pose the Update // (gyroAngle, updatem_odometry. = m_pose (), getDistancem_leftEncoder. <br> ()) ; getDistancem_rightEncoder. |

C++

> \{ override ()Periodic void
> gyro. the from robot the of rotation the Get // m_gyro.GetRotation2d(); = gyroAngle Rotation2d: :frc
> pose the Update //
> m_odometry. Update(gyroAngle, $=\mathrm{m}$. pose
> meter_t\{m_ZeftEncoder. GetDistance ()\}, ::units meter_t\{m_rightEncoder. GetDistance()\});::units
four accepts method This method. resetPosition the via reset be can pose robot The field- new the and positions, wheel right and left the angle, gyro current the arguments: pose. relative
resetPosition the encoders, or gyroscope your reset to decide you time, any at If : वारा distances. wheel and angle gyro new the with called be MUST method
.Java / C++ here: available is odometry with robot drive differential a of example full A : :
the retrieve to used be can methods (Java) getPoseMeters / (C++) GetPose the addition, In update. an without pose robot current

## Kinematics Drive Swerve 25.4

ChassisSpeeds a between converts that tool useful a is class SwerveDriveKinematics The each for angles and velocities contains which objects, SwerveModuleState several and object robot. drive swerve a of module swerve
class state module swerve The 25.4.1
singular a of angle and velocity the about information contains class SwerveModuleState The arguments, two in takes SwerveModuleState a for constructor The drive. swerve a of module module. the of angle the and module, the on wheel the of velocity the
units the C++, In second. per meters in be must wheel the of velocity the Java, In : : पारा unit. velocity linear any using velocity the provide to used be can library
forward. facing modules the to corresponds 0 of angle An : ใ०ा

## object kinematics the Constructing 25.4.2

with arguments, constructor of number variable a accepts class SwerveDriveKinematics The a (as center robot the to relative module swerve a of location the being argument each swerve of number the to corresponds arguments constructor of number The .Translation2d modules.
modules. more or 2 have must drive swerve A : ใ०ा
when Therefore, modules. of number the on templated is class the C++, In : Clll number the class, a of variable member a as object SwerveDriveKinematics a constructing
typical a for example, For argument. template a as in passed be must modules of follows: as constructed be must object kinematics the modules, four with drive swerve .m_kinematics\{...\} ><4frc::SwerveDriveKinematics
values x Positive robot. the of center the to relative be must modules the for locations The moving represent values y positive whereas robot the of front the toward moving represent robot. the of left the toward

Java


## C++

center. robot the to relative modules drive swerve the for Locations // $\mathrm{m}\} ;$ _0.381 m, 0.381m_frontLeftLocation\{ Translation2d::frc m\}; 0.381-m,_0.381m_frontRightLocation\{ Translation2d::frc $\mathrm{m}\} ; 0.381 \mathrm{~m}, 0.381-\mathrm{m}$ _backLeftLocation\{ Translation2d::frc m\};_0.381-m, 0.381-m_backRightLocation\{ Translation2d::frc
locations. module the using object kinematics my Creating // m_kinematics $\{>4<$ SwerveDriveKinematics: :frc m_backLeftLocation, m_frontRightLocation, m_frontLeftLocation, m_backRightLocation\};

## states module to speeds chassis Converting 25.4.3

/ (Java) speeds) toSwerveModuleStates(ChassisSpeeds The convert to used be should method (C++) speeds) ToSwerveModuleStates(ChassisSpeeds in useful is This objects. SwerveModuleState of array an a to object ChassisSpeeds a angular an and velocity, sideways velocity, forward a convert to have you where situations states. module individual into velocity
the which in order same the are method this by returned is that array the in elements The constructed was object kinematics the if example, For constructed. was object kinematics location, module left back location, module right front location, module left front the with front the be would array the in elements the order, that in location module right back the and module right back and state, module left back state, module right front state, module left order. that in state

Java
meters 3 forward, second per meter 1 speeds: chassis Example // second per radians 1.5 at rotation and left, the to second per // counterclockwise. //
);1.5 , 3.0 , 1.0ChassisSpeeds( new $=$ speeds ChassisSpeeds
page) next on (continues

states module to Convert //
(speeds);toSwerveModuleStateskinematics. = moduleStates ][SwerveModuleState
state module left Front // ;]0[moduleStates = frontLeft SwerveModuleState
state module right Front //
;]1[moduleStates = frontRight SwerveModuleState
state module left Back //
;]2[moduleStates = backLeft SwerveModuleState
state module right Back //
;]3[moduleStates = backRight SwerveModuleState

> C++
meters 3 forward, second per meter 1 speeds: chassis Example // second per radians 1.5 at rotation and left, the to second per // counterclockwise. //
rad_per_s\};_1.5 mps,_3 mps,_1speeds\{ ChassisSpeeds::frc
structured s'C++17 use can we Here, states. module to Convert // its into array the up split automatically to feature bindings // components. SwerveModuleState individual //
kinematics.ToSwerveModuleStates(speeds); = br] bl, fr, [fl, auto

## optimization angle Module

(C++) Optimize() / (Java) optimize() static a contains class SwerveModuleState The SwerveModuleState given a of setpoint angle and speed the "optimize" to used is that method module certain a of setpoint angular the if example, For heading. in change the minimize to method this degrees, 89- is angle current your but degrees, 90 is kinematics inverse from 90 - setpoint angular the make and setpoint module the of speed the negate automatically will travel. to has module the distance the reduce to degrees the from (usually state desired the parameters: two takes method This optimized new the return will It angle. current the and method) toSwerveModuleStates loop. control feedback your in setpoint the as use can you which state

Optimize(fl,::SwerveModuleState::frc = floptimized auto radian_t(m_turningEncoder.GetDistance()));::units
speeds. orientedfield- desired of set a from created be can object ChassisSpeeds a that Recall speeds. orientedfield- desired of set a from states module get to used be can feature This

Java


C++


## rotation of centers custom Using

evasive certain for desirable be might corner specific one around rotating Sometimes, same The classes. WPILib the by supported also is behavior of type This maneuvers. (as rotation of center the for parameter second a accepts method ToSwerveModuleStates() center the representing Translation2d the locations, wheel the like Just ).Translation2d a center. robot the to relative be should rotation of
the from velocities vy and vx provided the frame, rigid a are robots all Because : $\square$ from omega the However, robot. the of entirety the for apply still will object ChassisSpeeds rotation. of center the from measured be will object ChassisSpeeds the
provided the if and module certain a on rotation of center the set can one example, For to appear will robot the ,omega zeronon- a and zero of vy and vx a has object ChassisSpeeds module. swerve particular that around rotate

## speeds chassis to states module Converting 25.4 .4

to objects SwerveModuleState of array an convert to object kinematics the use also can One states) toChassisSpeeds(SwerveModuleState... The object. ChassisSpeeds singular a to used be can method (C++) states) ToChassisSpeeds(SwerveModuleState... / (Java)
this. achieve
Java
states module Example //
));140.19-(fromDegreesRotation2d. ,23.43SwerveModuleState( new = frontLeftState var ));39.81-(fromDegreesRotation2d. ,23.43SwerveModuleState( new = frontRightState var ));109.44-(fromDegreesRotation2d. ,54.08SwerveModuleState( new = backLeftState var ));70.56-(fromDegreesRotation2d. ,54.08SwerveModuleState( new = backRightState var
speeds chassis to Convert //
(toChassisSpeedskinematics. = chassisSpeeds ChassisSpeeds backRightState); backLeftState, frontRightState, frontLeftState,
speeds individual Getting //
; vxMetersPerSecondchassisSpeeds. = forward double
;vyMetersPerSecondchassisSpeeds. = sideways double ;omegaRadiansPerSecondchassisSpeeds. = angular double

C++
States module Example //
deg) \}; 140.19-Rotation2d( mps, 23.43frontLeftState\{ SwerveModuleState::frc deg)\};_39.81-Rotation2d( mps, 23.43frontRightState\{ SwerveModuleState::frc deg) \}; 109.44-Rotation2d( mps, 54.08backLeftState\{ SwerveModuleState::frc deg) \}; 70.56-Rotation2d( mps, 54.08backRightState\{ SwerveModuleState::frc
bindings structured s'C++17 use can we Here, speeds. chassis to Convert // its into struct ChassisSpeeds the up break automatically to feature // components. three //
kinematics.ToChassisSpeeds( = angular] sideways, [forward, auto backRightState); backLeftState, frontRightState, frontLeftState,

## Odometry Drive Swerve $\mathbf{2 5 . 5}$

WPILib .odometry perform to order in classes kinematics drive swerve the use can user A drive swerve a of position the track to used be can that class SwerveDriveOdometry a contains field. the on robot
position robot's the of estimate the gyro, a and encoders uses only method this Because : : पार्य robots other with contact into comes robot your as especially time, over drift will field the on period. autonomous the during accurate very usually is odometry However, gameplay. during

## object odometry the Creating 25.5.1

template one requires constructor class >NumModules <intSwerveDriveOdometry The template The argument. optional one and arguments, mandatory three C++), (only argument modules. swerve of number the representing integer an is $\mathrm{C}++$ ) (only argument
are: arguments mandatory The
SwerveDriveKinematics a (as drive swerve your represents that object kinematics The • instance)
)Rotation2d a (as gyroscope your by reported angle The •
In ).SwerveModulePosition of array an (as modules swerve the of positions initial The • units the C++, In meters. in position wheel each with constructed be must this Java, order the that important is It positions. wheel your represent to used be must library which in order the as same the is objects SwerveModulePosition the pass you which in object. kinematics the created you
By ).Pose2d a (as field the on robot your of pose starting the is argument optional fourth The $.0=$ theta $0,=y 0,=x$ at start will robot the default,
toward directly facing is robot the when angle robot the represents radians / degrees 0 : ใी०ा should angle gyroscope your left, the to turns robot your As station. alliance opponent's your this for use can you that GetRotation2d/getRotation2d supplies interface Gyro The increase.
system. coordinate the about information more for System Coordinate Field See purpose.

Java
center. robot the to relative modules drive swerve the for Locations // );0.381 ,0.381Translation2d( new = m_frontLeftLocation Translation2d );0.381- ,0.381Translation2d( new $=$ m_frontRightLocation Translation2d );0.381, 0.381-Translation2d( new = m backLeftLocation Translation2d );0.381- , 0.381-Translation2d( new = m_backRightLocation Translation2d
locations module the using object kinematics my Creating // SwerveDriveKinematics( new = m kinematics SwerveDrivekinematics m_backRightLocation m_backLeftLocation, m_frontRightLocation, m_frontLeftLocation,
uwheel initial the and object kinematics the from object odometry my Creating // positions. $\rightarrow$ the in and field the of end long the along meters 5 is pose starting our Here, // wall. alliance opposing the facing end, short the along field the of center //

SwerveDriveOdometry( new = m_odometry SwerveDriveOdometry
(), getRotation2dm_gyro. m_kinematics,
\{ ][SwerveModulePosition new
), getPositionm_frontLeftModule.
, getPositionm_frontRightModule.
(), getPositionm_backLeftModule.
() getPositionm_backRightModule.

Rotation2d())); new , 13.5 , 5.0Pose2d( new
center. robot the to relative modules drive swerve the for Locations // $\mathrm{m}\} ;$ _0.381 m,_0.381m_frontLeftLocation\{ Translation2d::frc page) next on (continues

$\mathrm{m}\} ; 0.381-\mathrm{m}, 0.381 \mathrm{~m}$ frontRightLocation\{ Translation2d: frc
$\mathrm{m}\} ; 0.381 \mathrm{~m}, 0.381-\mathrm{m}$ _backLeftLocation\{ Translation2d::frc
$\mathrm{m}\} ; 0.381-\mathrm{m}, 0.381-\mathrm{m}$ backRightLocation\{ Translation2d::frc
locations. module the using object kinematics my Creating //
m_kinematics\{ $>4<$ SwerveDriveKinematics: :frc
m_frontRightLocation, m_frontLeftLocation,
m_backRightLocation m_backLeftLocation,

Here, object. kinematics the from object odometry my Creating // the in and field the of end long the along meters 5 is pose starting our //
forward. facing end, short the along field the of center // m_gyro.GetRotation2d(), m_odometry\{m_kinematics, >4<SwerveDrive0dometry: :frc m_frontRight. GetPosition(), m_frontLeft.GetPosition(), \{
m_backRight.GetPosition()\}, m_backLeft.GetPosition(), rad\}\}; $0 \mathrm{~m}, \quad 13.5 \mathrm{~m}, ~ 5 P o s e 2 d\{:: f r c$

## pose robot the Updating 25.5.2

update The field. the on position robot the updates class odometry the of method update The SwerveModulePosition of array an with along robot, the of angle gyro the in takes method objects SwerveModulePosition the pass you which in order the that important is It objects. object. kinematics the created you which in order the as same the is a of method periodic() the in preferably periodically, called be must method update This robot. the of pose updated new the returns method update The .Subsystem

Java


C++

page) next on (continues
three accepts method This method. resetPosition the via reset be can pose robot The the in (as positions module current the of array an angle, gyro current the arguments: pose. relativefield- new the and method), update and constructor
the encoders, wheel or gyroscope your reset to decide you time, any at If : प्राप positions. encoder wheel and angle gyro new the with called be MUST method resetPosition

The user. the to left is above GetPosition() / getPosition() of implementation The : : प्रा example, full a For module. each from angle) and (distance position module the get to is idea .Java / C++ here: see
the retrieve to used be can methods (Java) getPoseMeters / (C++) GetPose the addition, In update. an without pose robot current

## Kinematics Drive Mecanum 25.6

ChassisSpeeds a between converts that tool useful a is class MecanumDriveKinematics The four the of each for velocities contains which object, MecanumDriveWheelSpeeds a and object drive. mecanum a on wheels

## Object Kinematics the Constructing 25.6.1

argument each with arguments, constructor four accepts class MecanumDriveKinematics The for order The ).Translation2d a (as center robot the to relative wheel a of location the being wheels the for locations The right. back and left, back right, front left, front is arguments the the toward moving represent values x Positive robot. the of center the to relative be must robot. the of left the toward moving represent values y positive whereas robot the of front

Java

```
    center. robot the to relative wheels the of Locations //
    );0.381 ,0.381Translation2d( new = m_frontLeftLocation Translation2d
    );0.381- 0.381Translation2d( new = m frontRightLocation Translation2d
    );0.381 ,0.381-Translation2d( new = m backLeftLocation Translation2d
    );0.381- ,0.381-Translation2d( new = m_backRightLocation Translation2d
    locations. wheel the using object kinematics my Creating //
    MecanumDriveKinematics( new = m_kinematics MecanumDriveKinematics
    m_backRightLocation m_backLeftLocation, m_frontRightLocation, m_frontLeftLocation,
```

center. robot the to relative wheels the of Locations // $\mathrm{m}\} ; 0.381 \mathrm{~m}, 0.381 \mathrm{~m}$ frontLeftLocation\{ Translation2d::frc m\}; 0.381- m, 0.381m_frontRightLocation\{ Translation2d::frc m\}; 0.381 m, 0.381-m_backLeftLocation\{ Translation2d::frc m\};_0.381-m,_0.381-m_backRightLocation\{ Translation2d::frc
locations. wheel the using object kinematics my Creating // m_kinematics\{ MecanumDriveKinematics::frc m_backLeftLocation, m_frontRightLocation, m_frontLeftLocation,
m_b̄ackRightLocation\};

## Speeds Wheel to Speeds Chassis Converting 25.6.2

ToWheelSpeeds(ChassisSpeeds / (Java) speeds) toWheelSpeeds(ChassisSpeeds The a to object ChassisSpeeds a convert to used be should method (C++) speeds) convert to have you where situations in useful is This object. MecanumDriveWheelSpeeds speeds. wheel individual into velocity angular an and velocity, sideways velocity, forward a

Java


> C++

[^12]speeds. orientedfield- desired of set a from created be can object ChassisSpeeds a that Recall speeds. orientedfield- desired of set a from speeds wheel get to used be can feature This

Java

```
    second per meters 2 is here speed relative field desired The //
            per meters 2 and wall, station alliance s'opponent the toward //
                    rotation desired The boundary. field left the toward second //
current The counterclockwise. second per rotation a of quarter a is //
                            degrees. 45 is angle robot //
            (fromFieldRelativeSpeedsChassisSpeeds. = speeds ChassisSpeeds
                ));45.0(fromDegreesRotation2d. ,2.0 / PIMath. ,2.0, 2.0
                            kinematics our in this use Now //
(speeds);toWheelSpeedskinematics. = whee\Speeds MecanumDriveWhee\Speeds
```

C++

```
            second per meters 2 is here speed relative field desired The //
            per meters 2 and wall, station alliance s'opponent the toward //
                        rotation desired The boundary. field left the toward second //
            current The counterclockwise. second per rotation a of quarter a is //
                                    degrees. 45 is angle robot //
            FromFieldRelativeSpeeds(::ChassisSpeeds::frc = speeds ChassisSpeeds::frc
    45Rotation2d( ),2.0 / pi::numbers::radians_per_second_t(std::units mps, 2 mps, 2
                                    deg)); ↔
                                    kinematics our in this use Now //
kinematics.ToWheelSpeeds(speeds); = br] bl, fr, [fl, auto
```


## rotation of centers custom Using

evasive certain for desirable be might corner specific one around rotating Sometimes, same The classes. WPILib the by supported also is behavior of type This maneuvers. a (as rotation of center the for parameter second a accepts method ToWheelSpeeds() of center the representing Translation2d the locations, wheel the like Just ).Translation2d center. robot the to relative be should rotation
the from velocities vy and vx provided the frame, rigid a are robots all Because : from omega the However, robot. the of entirety the for apply still will object ChassisSpeeds rotation. of center the from measured be will object ChassisSpeeds the
provided the if and wheel certain a on rotation of center the set can one example, For to appear will robot the ,omega zeronon- a and zero of vy and vx a has object ChassisSpeeds wheel. particular that around rotate

## speeds chassis to speeds wheel Converting 25.6.3

a to object MecanumDriveWheelSpeeds a convert to object kinematics the use also can One speeds) toChassisSpeeds(MecanumDriveWheelSpeeds The object. ChassisSpeeds singular used be can method (C++) speeds) ToChassisSpeeds(MecanumDriveWheelSpeeds / (Java) this. achieve to

Java


C++
speeds wheel Example // mps\}_16. $26 \mathrm{mps}, 13.44-\mathrm{mps}, 20.51 \mathrm{mps}, 17.67$-wheelSpeeds\{ MecanumDriveWheelSpeeds::frc ; $\rightarrow$
bindings structured s'C++17 use can we Here, speeds. chassis to Convert // its into struct ChassisSpeeds the up break automatically to feature // components. three //
kinematics.ToChassisSpeeds(wheelSpeeds); = angular] sideways, [forward, auto

## Odometry Drive Mecanum 25.7

WPILib .odometry perform to order in classes kinematics drive mecanum the use can user A mecanum a of position the track to used be can that class MecanumDriveOdometry a contains field. the on robot drive
position robot's the of estimate the gyro, a and encoders uses only method this Because : : पार्य robots other with contact into comes robot your as especially time, over drift will field the on period. autonomous the during accurate very usually is odometry However, gameplay. during

## object odometry the Creating 25.7.1

one and arguments mandatory three requires constructor class MecanumDrive0dometry The argument. optional
are: arguments mandatory The
a (as drive mecanum your represents that object kinematics The • instance) MecanumDriveKinematics
)Rotation2d a (as gyroscope your by reported angle The •
must this Java, In ).MecanumDriveWheelPositions (as wheels the of positions initial The • be must library units the C++, In meters. in position wheel each with constructed be positions. wheel your represent to used
By ).Pose2d a (as field the on robot your of pose starting the is argument optional fourth The $.0=$ theta $0,=y 0,=x$ at start will robot the default,
toward directly facing is robot the when angle robot the represents radians / degrees 0 : : पारा should angle gyroscope your left, the to turns robot your As station. alliance opponent's your this for use can you that GetRotation2d/getRotation2d supplies interface Gyro The increase.
system. coordinate the about information more for System Coordinate Field See purpose.

Java

| center. robot the to relative wheels the of Locations // );0.381 , 0.381Translation2d( new = m_frontLeftLocation Translation2d <br> );0.381- , 0.381Translation2d( new = m_frontRightLocation Translation 2 d );0.381 ,0.381-Translation2d( new = m_backLeftLocation Translation2d <br> );0.381- ,0.381-Translation2d( new = m_backRightLocation Translation2d <br> locations. wheel the using object kinematics my Creating // MecanumDriveKinematics( new = m kinematics MecanumDriveKinematics m_backRightLocation m_backLeftLocation, m_frontRigh̄tLocation, m_frontLeftLocation, <br> uwheel initial the and object kinematics the from object odometry my Creating // positions. $\rightarrow$ the in and field the of end long the along meters 5 is pose starting our Here, // wall. alliance opposing the facing end, short the along field the of center // MecanumDriveOdometry( new = m_odometry MecanumDriveOdometry m_kinematics, <br> (), getRotation2dm_gyro. MecanumDriveWheelPositions( new <br> (), getDistancem_frontRightEncoder. (), getDistancem_frontLeftEncoder. ()getDistancem_backRightEncoder. (), getDistancem_backLeftEncoder. |
| :---: |

C++
center. robot the to relative wheels the of Locations // $\mathrm{m}\} ; 0.381 \mathrm{~m}, 0.381 \mathrm{~m}$ frontLeftLocation\{ Translation2d::frc m\}; 0.381-m,_0.381m_frontRightLocation\{ Translation2d::frc m\}; 0.381 m, 0.381-m_backLeftLocation\{ Translation2d::frc m\}; 0.381- m, 0.381-m_backRightLocation\{ Translation2d::frc
locations. wheel the using object kinematics my Creating // m_kinematics\{ MecanumDriveKinematics::frc m_frōntRightLocation, m_frontLeftLocation,
m_backRightLocation $\bar{m}$ _backLeftLocation,

Here, object. kinematics the from object odometry my Creating // the in and field the of end long the along meters 5 is pose starting our // forward. facing end, short the along field the of center //
page) next on (continues
(ำำ ำ
m_odometry\{ MecanumDriveOdometry::frc
m_kinematics,
m_gyro.GetRotation2d(),
MecanumDriveWheelPositions\{::frc
meter_t\{m_frontLeftEncoder.GetDistance()\}, ::units
meter_t\{m_frontRightEncoder.GetDistance()\},::units
metēr_t $\left\{\begin{array}{c}\text { m_backLeftEncoder.GetDistance( }) \text {, , : : units }\end{array}\right.$
meter_t t\{m_backRightEncoder. GetDistance() $\}$ : : units ,\}
rad\}\}; 0 m,_13.5 m,_5Pose2d\{::frc

## pose robot the Updating

25.7 .2
update The field. the on position robot the updates class odometry the of method update The MecanumDriveWheelPositions a with along robot, the of angle gyro the in takes method method update This robot. the on wheels 4 the of each of position the representing object update The .Subsystem a of method periodic () the in preferably periodically, called be must robot. the of pose updated new the returns method

Java
@Override
\{ ()periodic void public positions wheel my Get //
MecanumDriveWheelPositions( new = wheelPositions var
(), getDistancem_frontRightEncoder. (), getDistancem_frontLeftEncoder.
()) ; getDistancēm_backRightEncoder. (), getDistancem_backLeftEncoder.
gyro. the from robot the of rotation the Get //
(); getRotation2dm_gyro. = gyroAngle var
pose the Update //
wheelPositions); (gyroAngle,updatem_odometry. = m_pose

C++

> \{ override ()Periodic void positions wheel my Get //
three accepts method This method. resetPosition the via reset be can pose robot The relativefield- new the and positions, wheel current the angle, gyro current the arguments:
pose.
resetPosition the encoders, or gyroscope your reset to decide you time, any at If : वारा positions. wheel and angle gyro new the with called be MUST method
.Java / C++ here: available is odometry with robot drive mecanum a of example full A : :
the retrieve to used be can methods (Java) getPoseMeters / (C++) GetPose the addition, In update. an without pose robot current

communicate to API (v4) NetworkTables the using of details the outlines section This network. robot the across information

Ensure paste.copy- to user the for intended not are section this in examples code The : : पार्य is ) Python , $\mathrm{C}++$, Java( API the and read thoroughly is documentation following the that necessary. when consulted

## NetworkTables is What 26.1

are Values .system messaging subscribepublish- a of implementation an is NetworkTables attached an potentially or station, driver robot, the on either "topics" named to published For topic. the to subscribers all to distributed automatically are values the and coprocessor, perform network, the over images camera receive might laptop station driver a example, robot. the to back sent to values some with up come and algorithm, processing vision some topics NetworkTables to results these writing By Distance. and Y, X, an be might values The Then written. being after shortly robot the by read be can they "Distance" and "Y", "X", called topics to values sensor write can program robot the Similarly, them. upon act can robot the application. dashboard a on time real in plotted and read be can those and built is and LabVIEW, or C++, Java, in robot the on programs by used be can NetworkTables WPILib. of version each into

Concepts NetworkTables 26.1.1
terms: some define let's First,
topic) the of lifetime the (for type data fixed a have Topics channel. data named a :Topic properties. mutable and values. data timestamped sends and creates and topic the defines :Publisher topics. more or one to updates value data timestamped receives :Subscriber
the but active, always is subscriber The subscriber. and publisher combined a :Entry "set", is value a (e.g. performed is operation publish a until created not is publisher separate a maintaining than convenient more be may This entry). the on published, aka subscriber. and publisher
separately updated and stored topic a about (metadata) information named :Property value property's A properties. of number any have may topic A data. topic's the from

JSON. in represented be can that type data any be can
arrays and string, numeric, ,boolean including types, data of range a supports NetworkTables ,point floating precision double or single are types data numeric Supported types. those of which bytes), of array (an data raw storing of option the also is There integer. bit64- or as represented are Types data. structured encoded binary representing for used be can the in types common most the for enumeration an also is There reasons. efficiency for strings

API. NetworkTables
the when removed are and topic the announces publisher first the when created are Topics been yet not has that topic a to subscribe to possible It's publishing. stops publisher last created/published.
changed be may but publisher, first the by set initially are Properties properties. have Topics subscribers all to propagated are topic a to changes property values, to Similarly time. any at key/value a simply are level top the at but (JSON), data structured are Properties topic. that to by set be can ones arbitrary but behavior, defined have properties Some map). JSON (a store
application. the
single a to publishers multiple be can there while type; data topic's the specify Publishers NetworkTables the by enforced is This type. data same the publishing be all must they topic, data what specify also subscribers topicsingle- Typically "wins"). publisher first (the server other of updates value receive won't thus and topic a on receive to expecting they're type types.

## Topics Persistent and Retained 26.1.2

publishing, stops publisher last the after disappear and transitory are topics default by While prevent to true) to property "retained" the setting (via retained as marked be can topics the of publisher implicit an as acts server the topics, retained For disappearing. from them for useful primarily is This running. is server the as long as so doing keep will and value, last should dashboard a by published selection mode autonomous an e.g. values; configuration disconnects. dashboard the case in preserved is value its so retained as topic the set
to property "persistent" the setting via persistent as marked be can topics Additionally, are values topic persistent addition, in but topics, retained to similarly operate These true. is topic the again, up starts server the when and server the on file a to saved automatically server. the by published is value last its and created

## Propagation Value 26.1.3

initially subscriber a When topic. every for value published last the of copy a keeps server The new value, initial that After value. published last the sends server the topic, a to subscribes value. new a sends publisher the time each subscribers to communicated are updates value
rather but other, each to directly talk not do clients system; client/server a is NetworkTables pieces other and server, the is program robot the Typically, server. the via communicate that clients are coprocessor) a or station driver the (e.g. computers other on software of from first sent is value the value, a publishes (client) coprocessor a when Thus, it. to connect distributes program robot the then and (server), program robot the to (client) coprocessor the as such clients other or program, local program robot the (e.g. subscribers any to value that dashboards).
subscribed not have that clients to updates value or changes topic send not does server The topic. the to
the limit help to data the batching periodically, updates value sends NetworkTables default, By recent most the only default, by Also, network. the over sent being packets small of number transmissions network between made changes value intermediate any transmitted; is value and options-publishers publish/subscribe via changed be can behavior This discarded. are via communicated and preserved be should updates value all that indicate can subscribers current all "flush" to NetworkTables force to possible is it addition, In option. all" "send the latency. minimizing for useful is this network; the to updates

## Timestamps 26.1.4

Timestamps published. are they time the at timestamped are updates value NetworkTable All microseconds. integer in measured are NetworkTables in

Each clients. and server the between time synchronizes automatically NetworkTables a when so time, server the and time local client the between offset an maintains client equivalent the calculates and time local in timestamp a stores it value, a publishes client any to network the over communicated is what is timestamp server The timestamp. server estimation reasonable a get to program robot a for e.g. possible it makes This subscribers.
time. current the to relative coprocessor a on published was value a when time the of
indicating timestamp server a API: the through visible are timestamps two this, of Because client. the on time the indicating timestamp local a and server, the on (estimated) time the the as same the is timestamp server the server, NetworkTables the is RoboRIO the When different: are units the (except Timer.getFPGATimestamp() by returned timestamp FPGA seconds). returns getFPGATimestamp() while microseconds, uses NetworkTables

## Organization NetworkTables 26.1.5

files. and folders filesystem's a like much hierarchy a in NetworkTables in organized is Data whatever in nested be may that (files) topics and (folders) subtables multiple be can There ,C++ Java :NetworkTableInstance( level top the At desired. organization data the fits way are subtables filesystem: a in paths absolute to similar handled are names topic ),Python and subtable nested the separating ("/") slashes with name topic long a as represented subtable single a represents object )Python , C++ ,Java( NetworkTable A names. value table root a for e.g. path: base NetworkTable's the to relative are names topic so (folder), via accessed be can topic same the "xValue", named topic a with "SmartDashboard" called a unlike However, "/SmartDashboard/xValue". named topic a as NetworkTableInstance
to way no is there as do, folders way same the in exist really don't subtables filesystem, are there as long as only "appears" subtable network-a the on subtable empty an represent
it. within published topics
show can and NetworkTables, in stored values the exploring for utility a is OutlineViewer topics). and (subtables view nested a or paths) absolute with (topics view flat a either up: starts program robot a when automatically created are that tables default some are There

| Table name | השתמשו ב: |
| :---: | :---: |
| /SmartDash | btheerdsing Shuffleboard or SmartDashboard the to written values store to Used methods. of set SmartDashboard.put() |
| /LiveWind | these Typically values. Station) Driver the on (Test mode Test store to Used actuators. and sensors associated the and Subsystems are |
| /FMSInfo | Driver the from comes that match running currently the about Information System Management Field the and Station |

## Variants API NetworkTables 26.1.6

(C++ API orientedobject- The API. NetworkTables the of variants major two are There that classes provides and use, team general and code robot for recommended is Java) and orientedobject- writing as such cases use advanced For API. the of use correct ensure help

API. basedhandle- C/C++ a also there's languages, programming other for wrappers

## Management Lifetime 26.1.7

exist. objects the as long as exist only entries and subscribers, Publishers, by it release properly not and publisher or subscriber a create to is bug common a Java, In of period unknown an for around lingering object the in result will this as ,close() calling programs, robot in issue an of common less is This properly. resources releasing not and time for persists that variable instance an in stored is object subscriber or publisher the as long as program. the of life the
automatically are they means which ,RAII are entries and subscribers, publishers, $\mathrm{C}++$, In is it this; to exception an is NetworkTableInstance scope. of out go they when destroyed it. of instance global a maintain to necessary not it's so destroyed, explicitly be to designed are they when released are publishers or subscribers that except Java, to similar is Python collected. garbage

## Topics and Tables NetworkTables 26.2

## Class NetworkTable the Using 26.2.1

single a represents that abstraction API an is class )Python, $\mathrm{C}++$, Java( NetworkTable The NetworkTable The .Organization NetworkTables in described as topics of "table") (or "folder" table, the within topics get to functions provides and table the to path base the stores class path. table the prepending automatically

1:1 a has This .topic a represents handle) NT_Topic (or object )Python ,C++ ,Java( Topic A exists. instance the as long as change not will and name, topic's the with correspondence object. Topic a store to necessary not is it subscribers, and publishers Unlike
For type. correct the of is or exists topic the mean not does handle or object Topic a Having classes Topic specifictype- are there subscribers, and publishers creating when convenience ensure to level Topic the at check no is there but ), Python , C++ Java :BooleanTopic (e.g. to topic specifictype- a get to method preferred The matches. actually type topic's the that generic a convert directly to possible also it's but getter, specifictype- appropriate the call of concept a have not does API basedhandle- the Note: class. Topic specifictype- a into Topic classes. specifictype-

Java


C+ +

|  | ```GetDefault();::NetworkTableInstance::nt = inst NetworkTableInstance::nt );"datatable"inst.GetTable( = table >NetworkTable::nt<shared_ptr: std NetworkTableInstance a from topic a get // name full the is case this in name topic the // );"datatable/X/"inst.GetDoubleTopic( = dblTopic DoubleTopic::nt \\ NetworkTable a from topic a get // table; the within name the is case this in name topic the // topic same the reference above one the and line this // );"X"GetDoubleTopic(>-table = dblTopic DoubleTopic: :nt \\ Topic generic a from topic type-specific a get // );"datatable/X/"inst.GetTopic( = genericTopic Topic: :nt dblTopic\{genericTopic\}; DoubleTopic: :nt``` |
| :---: | :---: |
|  | based)(handle- C++ |
|  | ```GetDefaultInstance(); : nt = inst NT Instance NetworkTableInstance a from topic a get // );"datatable/X/" GetTopic(inst,::nt = topic NT_Topic``` |



# Topic a to Subscribing and Publishing 26.3 

## Topic a to Publishing 26.3.1

.publisher a create to necessary it's it, to values publish and topic a create to order In
(e.g. objects Publisher specifictype- as represented are publishers NetworkTable Publisher the as long as active only are Publishers ).Python ,C++ ,Java :BooleanPublisher function, a of scope local the than longer publishing keep to want you Typically exists. object instance an in e.g. term, longer somewhere object Publisher the store to necessary it's so is this C++ in publishing; stop to called be needs method close() the Java, In variable. the Python In copyable.non- and moveable are publishers C++ destructor. the by handled object the when closed be also will it but publishing, stop to called be should method close() collected. garbage is
is user the handle; NT_Publisher specifictype-non- the only is there APIs, basedhandle- the In specifictype- correct the using and publisher the of type the of track keeping for responsible methods. set
current the uses operation this default, By operation. set () a via done is values Publishing when useful be can timestamp a Specifying specified. be optionally may timestamp a but time, integer are units timestamp The timestamp. update same the have should values multiple with consistent is that timestamp current a get to how for code example (see microseconds library). the

Java
 page) next on (continues

(ำกำ

> variable) instance an // dblTopic.Publish(); $=$ dblpub PubSubOptions using specified be may options publish // ) ; \} true = dblTopic. Publish(\{.keepDuplicates = dblPub
;\}
based)(handle- C++
\{ Example class
s'it handle, a s'it since but variable, instance an is publisher the // destructor a need we so released, automatically not // dblPub; NT_Publisher
:public
\{ dblTopic) Example(NT Topic explicit standard be string type the that recommended s'It publishing. start // raw. and string except types all for //
) ;"double" NT_DOUBLE, Publish(dblTopic,::nt = dblPub
PubSubOptions using specified be may options publish //
"double" NT_DOUBLE, Publish(dblTopic,::nt = dblPub
) ;\}true $=$ keepDuplicates.\{
The properties. initial setting allows PublishEx // map. JSON a be must properties //
) ;\}\}5 , "myprop"\{\{ ,"double" NT_DOUBLE, PublishEx(dblTopic,: : nt = dblpub
\{ Periodic() void
value default a publish //
);0.0 SetDefaultDouble(dblPub, ::nt
timestamp current with value a publish //
);1.0 SetDouble(dblPub,::nt
page) next on (continues


> time current use $=0$ // );0,2.0 SetDouble(dblPub,: :nt can nt: Now() timestamp; specific a with value a publish // time. current the get to used be //
> Now();::nt = time int64_t
> time); 3.0 SetDouble(dblPub,: $\begin{array}{r}\text { nt }\end{array}$
\{ Example()~ publishing stop //
Unpublish(dblPub) ;::nt


Python

DoubleTopic): .ntcore dblTopic: , self(init__ | Example class |
| ---: |
| def |

via case, this (in retained be must value return the publishing; start \#
variable) instance an \#
page) next on (continues


> publish().dblTopic = dblPub.self

PubSubOption using specified be may options publish \#
)) True=PubSubOptions(keepDuplicates.publish(ntcore.dblTopic = dblPub.self
initial setting as such options additional provides publishEx \# for string type custom a Using string. type custom a using and properties \# string properties The recommended. not is string and raw than other types \# map. JSON a be must \#
)'5\} :"myprop"\{' ,"double"publishEx(.dblTopic = dblPub.self
):self(periodic def
value default a publish \#
)0.0setDefault(.dblPub.self
timestamp current with value a publish \#
)1.0set (.dblPub.self
time current use $=0$ \# )0 ,2.0set(.dblPub.self
resolution. microsecond with timestamp specific a with value a publish \# (e.g. timestamp FPGA the as same the is this roboRIO, the On \# RobotController.getFPGATime()) \# now())_.ntcore ,3.0set(.dblPub.self
for exist t'doesn class this unless code, robot in required not often \# be to needs close() case which in program, robot entire the of lifetime the \# publishing stop to called \# ) :self(close def
publishing stop \#
close().dblPub.self

## Topic a to Subscribing 26.3.2

NetworkTable publishers, to Similar topic. a to made updates value receives subscriber A :BooleanSubscriber (e.g. classes Subscriber specifictype- as represented are subscribers subscribing. continue to somewhere stored be must that )Python ,C++, Java read just to possible It's values. received read to ways different of range a have Subscribers timestamp, its with along value, recent most the read, get () using value recent most the readQueue() using call last the since changes value all of array an get or, getAtomic() using .readQueueValues() or

Java
\{ Example class public
class the of that matches lifetime its so variable instance an is subscriber the //
dblSub; DoubleSubscriber final
page) next on (continues
(ำ
$=\mathrm{dblSub}$
PubSub0ption. ), true(keepDuplicatesPubSubOption. , 0.0(subscribedblTopic.
)) ; 10(pollStorage $\hookrightarrow$
string. type custom a using of options the provides subscribeEx // unot is string and raw than other types for string type custom a Using //
recommended. $\hookrightarrow$
);0.0 ,"double"(subscribeExdblTopic. = dblSub
\{ ()periodic void public
published, been has value no if value; recent most of get simple // function subscribe() the to passed value default the returns // () ; getdblSub. = val double
returns published, been has value no if value; recent most the get // value default passed-in the // );1.0-(getdblSub. = val double

цe.g. interface, Supplier appropriate the implement also subscribers // DoubleSupplier $\rightarrow$
();getAsDoubledblSub. = val double
timestamp its with along value, recent most the get //
(); getAtomicdblSub. = tsVal TimestampedDouble
readQueue/readQueueValues to call last the since changes value all read // not. does readQueueValues() timestamps; returns readQueue() //
();readQueuedblSub. = tsUpdates ][TimestampedDouble
() ; readQueueValuesdblSub. = valUpdates ][double
for exist t'doesn class this unless code, robot in required not often // be to needs close() case which in program, robot entire the of lifetime the // subscribing stop to called // \{ ()close void public subscribing stop //
() ;closedblSub.

```
                    Example class
    class the of that matches lifetime its so variable instance an is subscriber the //
        uclass the by destroyed is dblSub when stopped automatically is subscribing //
                                    destructor }
                        dblSub; DoubleSubscriber::nt
                            :public
                            { dblTopic) DoubleTopic::Example(nt explicit
        retained. be must value return the subscribing; start //
        uis get() when available is value no if value default the is parameter the //
                                    called}
);0.0dblTopic.Subscribe( = db\Sub
```

page) next on (continues

based)(handle- C++

page) next on (continues



Python
DoubleTopic):.ntcore dblTopic: , self(init_E_ defample class
page) next on (continues


```
retained. be must value return the subscribing; start \# uis get() when available is value no if value default the is parameter the \#
)0.0subscribe(.dblTopic = dblSub.self
PubSubOption using specified be may options subscribe \# subscribe(.dblTopic = dblSub.self
)10=pollStorage , True=PubSubOptions(keepDuplicates.ntcore ,0.0
)
string. type custom a using of options the provides subscribeEx \# unot is string and raw than other types for string type custom a Using \# recommended. \(\rightarrow\)
)0.0 ,"double"subscribeEx(.dblTopic = dblSub
): self(periodic def
published, been has value no if value; recent most of get simple \# function subscribe() the to passed value default the returns \# get().dblSub.self = val
returns published, been has value no if value; recent most the get \# value default passed-in the \# )1.0-get(.dblSub.self = val
timestamp its with along value, recent most the get \# getAtomic().dblSub.self = tsVal
readQueue to call last the since changes value all read \# timestamps returns readQueue() \# readQueue().dblSub.self = tsUpdates
for exist t'doesn class this unless code, robot in required not often \# be to needs close() case which in program, robot entire the of lifetime the \# subscribing stop to called \# ): self(close def subscribing stop \#
close().dblSub.self
```


## Publish and Subscribe Both to Entry Using 26.3.3

the but active, always is subscriber The subscriber. and publisher combined a is entry An aka "set", is value a (e.g. performed is operation publish a until created not is publisher publisher separate a maintaining than convenient more be may This entry). the on published, represented are entries NetworkTable subscribers, and publishers to Similar subscriber. and retained be must that )Python , C++ ,Java :BooleanEntry (e.g. classes Entry specifictype- as publishing). (and subscribing continue to

Java
\{ Example class public
class the of that matches lifetime its so variable instance an is entry the //
dblEntry; DoubleEntry final
page) next on (continues

retained. be must value return the subscribing; start //
uis get() when available is value no if value default the is parameter the //
called $\leftrightarrows$
);0.0(getEntrydblTopic. = dblEntry
PubSubOption using specified be may options subscribe and publish //
= dblEntry
PubSub0ption. ), true(keepDuplicatesPubSub0ption. , 0.0(getEntrydblTopic.
)) ;10(pollStorage $\hookrightarrow$
string. type custom a using of options the provides getEntryEx // unot is string and raw than other types for string type custom a Using // recommended. $\rightarrow$
);0.0, "double"(getEntryExdblTopic. = dblEntry
\{ ()periodic void public
subscribers: as methods same the all support entries //
() ; getdblEntry. = val double
);1.0-(getdblEntry. = val double
() ; getAsDoubledblEntry. = val double
() ; getAtomicdblEntry. = tsVal TimestampedDouble
() ; readQueuedblEntry. = tsUpdates ][TimestampedDouble
() ; readQueueValuesdblEntry. = valUpdates ][double
time first the publishers; as methods same the all support also entries // created automatically is publisher internal an called, is these of one // );0.0(setDefaultdblEntry.
);1.0(setdblEntry.
time current use = $0 / /$ );0,2.0(setdblEntry.
() ; nowNetworkTablesJNI. = time long
time); 3.0(setdblEntry.
myFunc (dblEntry) ;
\{ ()unpublish void public alive subscriber the keeping while publishing stop can you //
() ; unpublishdblEntry.
for exist t'doesn class this unless code, robot in required not often // be to needs close() case which in program, robot entire the of lifetime the // subscribing stop to called //
()close void public subscribing/publishing stop //
() ; closedblEntry.

## C++

class the of that matches lifetime its so variable instance an is entry the // by destroyed is dblEntry when stopped automatically is subscribing/publishing // destructor class the //
dblEntry; DoubleEntry::nt
page) next on (continues

based)(handle- C++

page) next on (continues
(ำำ ำ
PubSubOptions using specified be may options subscribe and publish // = dblEntry ,"double" NT DOUBLE, GetEntry(dblTopic, : : nt ) ;\}true $=$ keep $\bar{D} u p l i c a t e s ., 10=$ pollStorage. $\{$
\{ Periodic() void subscribers: as methods same the all support entries // );0.0 GetDouble(dblEntry,::nt = val double
);0.0 GetAtomic(dblEntry, ::nt = tsVal TimestampedDouble::nt
ReadQueueDouble(dblEntry);::nt = tsUpdates >TimestampedDouble::nt<vector::std
ReadQueueValuesDouble(dblEntry);::nt = valUpdates >double<vector::std
time first the publishers; as methods same the all support also entries // created automatically is publisher internal an called, is these of one // );0.0 SetDefaultDouble(dblPub,::nt
);1.0 SetDouble(dblPub,::nt
time current use = 0 // );0 ,2.0 SetDouble(dblPub,::nt
Now() ;::nt = time int64_t
time); ,3.0 SetDouble(dblPub,:: $\bar{n} t$
\{ Unpublish() void alive subscriber the keeping while publishing stop can you // Unpublish(dblEntry) ;::nt
\{ Example()~ subscribing and publishing stop //

ReleaseEntry(dblEntry);::nt
exists already variable dblTopic NT_Topic a that assumes code This //
subscribing start //
recommended. not is string and raw than other types for string type custom a Using //
);0 ,NULL ,"double" NT_DOUBLE, NT_GetEntryEx(dblTopic, = dblEntry NT_Entry
NT_PubSubOptions using specified be may options subscribe and publish // options; NT_PubSubOptions struct (options)) ;sizeof , 0 options, \&memset ( (options);sizeof = options.structSize true // ;1 = options.keepDuplicates ;10 = options.pollStorage options) ;\&, "double" NT_DOUBLE, NT_GetEntryEx(dblTopic, = dblEntry NT Entry
subscribers: as methods same the all support entries // );0.0 NT_GetDouble(dblEntry, = val double
tsVal; NT_TimestampedDouble struct tsVal);\& ,0.0 NT GetAtomic(dblEntry, tsVal);\&NT_DisposeTimestamped(
tsUpdatesLen; size_t
page) next on (continues
(ำा


Python

| DoubleTopic):.ntcore dblTopic: ,self(init $\qquad$ def <br> retained. be must value return the subscribing; start \# uis get() when available is value no if value default the is parameter the \# )0.0getEntry(.dblTopic = dblEntry.self <br> PubSubOption using specified be may options subscribe and publish \# getEntry(.dblTopic = dblEntry.self )10=pollStorage , True=PubSubOptions(keepDuplicates.ntcore ,0.0 <br> string. type custom a using of options the provides getEntryEx \# unot is string and raw than other types for string type custom a Using \# recommended. $\hookrightarrow$ )0.0 ,"double"getEntryEx(.dblTopic = dblEntry.self ):self(periodic def <br> subscribers: as methods same the all support entries \# get().dblEntry.self = val )1.0-get(.dblEntry.self = val getAsDouble().dblEntry.self = val getAtomic().dblEntry.self = tsVal readQueue().dblEntry.self = tsUpdates <br> time first the publishers; as methods same the all support also entries \# created automatically is publisher internal an called, is these of one \# )0.0setDefault (.dblEntry.self )1.0set(.dblEntry.self time current use $=0$ \# )0 ,2.0set(.dblEntry.self now()_.ntcore = time |
| :---: |

page) next on (continues


```
            time) ,3.0set(.dblEntry.self
                            ):self(unpublish def
        alive subscriber the keeping while publishing stop can you #
        unpublish().dblEntry.self
    for exist t'doesn class this unless code, robot in required not often #
    be to needs close() case which in program, robot entire the of lifetime the #
        subscribing stop to called #
                            ):self(close def
subscribing/publishing stop #
        close().dblEntry.self
```


## GenericSubscriber and GenericPublisher, GenericEntry, Using 26.3.4

is classes Entry and Subscriber, Publisher, specifictype- the using code, robust most the For and get specifictype- uses that code write to easier be may it cases some in but recommended, (object) class the via exposed be type NetworkTables the having of instead calls function set ),Python , C++ ,Java( GenericSubscriber ),Python ,C++ ,Java( GenericPublisher The type. approach. this enable classes )Python ,C++, Java( GenericEntry and Java

(ㄴำ ำ
properties. initial setting of option the provides genericPublishEx //
,"true\} :"\retained"<br>{" ,"double"(genericPublishExtopic. = pub }
)) ; 10(pollStoragePubSub0ption. ), true(keepDuplicatesPubSub0ption.
\{ ()periodic void public
ube must default a operations; get typed have entries and subscribers generic // provided $\hookrightarrow$
);1.0-(getDoublesub. = val double
);1.0-(getDoubleentry. = val double
${ }_{\text {LSupplier<NetworkTableValue> meets (also get untyped an support also they // }}$ interface) $\hookrightarrow$
();getsub. $=$ val NetworkTableValue
()$;$ getentry. $=$ val NetworkTableValue
readQueue support also they //
(); readQueuesub. = updates ][NetworkTableValue
() ; readQueueentry. = updates ][NetworkTableValue
the if false return these operations; set typed have entries and publishers // type mismatched a with exists already topic // );1.0(setDefaultDoublepub. = success boolean
); true(setBooleanpub. = success boolean
interface Consumer<NetworkTableValue> and set generic a implement also they // (...)); makeDouble(NetworkTableValue.setentry. = success boolean (...) ) ; makeDouble(NetworkTableValue.acceptentry. = success boolean
\{ () unpublish void public alive subscriber the keeping while entry an publishing stop can you //
() ; unpublishentry.
for exist t'doesn class this unless code, robot in required not often // be to needs close() case which in program, robot entire the of lifetime the // subscribing/publishing stop to called //
\{ ()close void public
() ;closepub.
() ; closesub.
() ; closeentry.
class the of that matches lifetime its so variable instance an is entry the // by destroyed is dblEntry when stopped automatically is subscribing/publishing // destructor class the //
pub; GenericPublisher::nt sub; GenericSubscriber::nt
entry; GenericEntry::nt
:public
page) next on (continues
( x )

\{ Unpublish() void
alive subscriber the keeping while entry an publishing stop can you // entry.Unpublish();

Python

page) next on (continues


```
    set generic a implement also they #
        ))...makeDouble(.Value.set(ntcore.entry.self = success
    ):self(unpublish def
        alive subscriber the keeping while entry an publishing stop can you #
                                    unpublish().entry.self
    for exist t'doesn class this unless code, robot in required not often #
        be to needs close() case which in program, robot entire the of lifetime the #
            subscribing/publishing stop to called #
                        ):self(close def
    close().pub.self
    close().sub.self
    close().entry.self
```


## Topics Multiple to Subscribing 26.3.5

sometimes is it topics, individual to subscribe to necessary only it's cases most in While to changes for updates value get and subscribe to applications) dashboard in (e.g. useful a creating but directly, used be can )Changes for Listening (see Listeners topics. multiple same the reusing and options subscription specifying allows )C ++ , Java( MultiSubscriber listeners. multiple for subscriber

Java

\{ ()periodic void public events value read //
();readQueuepoller. = events ][NetworkTableEvent
\{ events) : event (NetworkTableEvent for ;value.valueDataevent. = value NetworkTableValue
(ำกำ
for exist t'doesn class this unless code, robot in required not often // be to needs close() case which in program, robot entire the of lifetime the // subscribing stop to called // \{ ()close void public
listener close //
() ; closepoller. subscribing stop //
() ; closemultiSub.
\{ Example class
class the of that matches lifetime its so variable instance an is subscriber the //
${ }^{4}$ class the by destroyed is multiSub when stopped automatically is subscribing //
destructor $\rightarrow$
:public
\{ inst) NetworkTableInstance::Example(nt explicit
retained. be must value return the subscribing; start //
prefixes name topic of array an provide //
;\}\}\}"table2//" ,"tablel//"\{\{ MultiSubscriber\{inst,::nt = multiSub
PubSubOption using specified be may options subscribe // ,\}\}"table2//" ,"table1//"\{\{ MultiSubscriber\{inst,: :nt = multiSub
;\}\}true $=$ keepDuplicates.\{
${ }_{u}$ a create to necessary s'it MultiSubscriber, a from updates value get to // listener $\leftrightarrows$
details) more for documentation listener the (see // NetworkTableListenerPoller\{inst\};::nt = poller
kValueAll);::EventFlags::nt poller.AddListener(multiSub,

Periodic() void
events value read //
poller.ReadQueue(); = events >Event::nt<vector::std
\{ events) : event \&\&auto( for value;>-event.GetValueEventData() = value NetworkTableValue::nt
based)(handle- C++
s'it handle, a s'it since but variable, instance an is subscriber the l/ //
destructor a need we so released, automatically not //
multisub; NT Multisubscriber
poller; NT ListenerPoller
page) next on (continues
(ㄴำ ำ

> \{ inst) Example(NT Inst explicit retained. be must value return the subscribing; start // prefixes name topic of array an provide // ); \}\}"table2//" "tablel//"\{\{ SubscribeMultiple(inst, : int = multiSub

```
            exists already variable inst NT_Inst a that assumes code This //
                            subscribing start //
                        prefixes name topic of array an provide //
                        ];2prefixes[ NT_String struct
                        ;"table1//" = ].str0prefixes[
                            ;8 = ].len0prefixes[
                            ;"table2//" = ].str1prefixes[
                            ;8 = ].len1prefixes[
        );0 ,NULL ,2 prefixes, NT SubscribeMultiple(inst, = multiSub NT_MultiSubscriber
NT_PubSubOptions using specified be may options subscribe // options; NT_PubSubOptions struct (options));sizeof , 0 options, \&memset( (options);sizeof = options.structSize true // ;1 = options.keepDuplicates
options) ;\& , 2 prefixes, NT_SubscribeMultiple(inst, = multiSub NT_MultiSubscriber
listener a create to necessary s'it MultiSubscriber, a from updates value get to // details) more for documentation listener the (see //
NT_CreateListenerPoller(inst); = poller NT_ListenerPoller
```

page) next on (continues
(
NT_EVENT_VALUE_ALL) ; multiSub, NT_AddPolledListener(poller,
events value read //
eventsLen; size_t
eventsLen);\& NT_ReadListenerQueue(poller, = events *NT_Event struct
\{ )++i eventsLen; < i ;0 = i size_t( for
events[i].data.valueData.value; \& = value *NT_Value
eventsLen); NT_DisposeEventArray(events,
listener close //
NT_DestroyListenerPoller(poller);
subscribing stop //
NT_UnsubscribeMultiple(multiSub);

Python


## Options Publish/Subscribe 26.3.6

only can Options behavior. their affect that options various have subscribers and Publishers both affect entry an on set Options entry. or subscriber, publisher, the of creation the at set be can options how show examples above The entry. the of portions subscriber and publisher the subscriber. or publisher a creating when set be options: Subscriber
number maximum the Specifies subscription. a for size storage Polling :pollStorage • readQueue() subscriber's the to calls between store should NetworkTables updates of true. is sendAll if 20 false, is sendAll if 1 to defaults zero, If function.

As false. to Defaults announcements. topic only changes, value send Don't :topicsOnly • option this to, subscribed not is it topics for announcements topic get doesn't client a topic particular a for announcements topic get to MultiSubscriber with used be may changes. value all getting also without prefix, name
to queued being from updates publisher's single a exclude to Used :excludePublisher • you where scenarios in useful primarily is This function. readQueue() subscriber's the of Regardless subscriber. local a to back" "echoed be to updates value local want don't subscriber. this on readQueue() affects only updated-this is value topic the setting, this
Defaults .readQueue() for queued not are updates value remote true, If :disableRemote • affects only updated-this is value topic the setting, this of Regardless false. to subscriber. this on readQueue()
to Defaults .readQueue() for queued not are updates value local true, If :disableLocal • readQueue( ) affects only updated-this is value topic the setting, this of Regardless false. subscriber. this on
options: publisher and Subscriber
seconds. in network, the over sent be will changes frequently How :periodic • minimum combined a use (e.g. this than frequently more send may NetworkTables seconds. 0.1 is default The value. this to range restricted a apply or values) all for period network; the over sent be should changes local frequently how specifies it publishers, For rate. requested the at changes server send to server the to request a is it subscribers, for the unless sent, are changes value only option, this of setting the of regardless that Note
set. is option keepDuplicates
with As false. to Defaults network. the over changes value all send true, If :sendAll • for change behavior a and subscribers for server the to request a is this , periodic publishers.
them). ignoring than (rather changes value duplicate preserves true, If :keepDuplicates • a and subscribers for server the to request a is this, periodic with As false. to Defaults publishers. for change behavior
options: Entry
internal entry's the for excludePublisher as behavior same the Provides :excludeSelf • false. to Defaults publisher.
compatibility. backwards for exists that class a is )Python ,C++ ,Java( NetworkTableEntry GenericEntry or classes, Subscriber and Publisher specifictype- using prefer should code New needed. is access specifictype-non- if
a in subscribing and publishing both supports it that in GenericEntry to similar is It (e.g. released not is NetworkTableEntry ,GenericEntry unlike However, object. single C++); (in destroyed is object the or Java) (in called is close() if unsubscribes/unpublishes) each for exists NetworkTableEntry single a only that in ,Topic to similar operates it instead, instance. the of lifetime the for lasts it and topic

## Instances NetworkTables 26.4

"instances." multiple of operation simultaneous supports implementation NetworkTables The and subscribers, publishers, topics, of set independent completely a has instance Each program single a allows It testing. unit for useful mainly is feature This state. client/server sets unrelated) (and different contain that "networks" NetworkTables two of member a be to program. single a in instances server and client both running or topics, of
dashboard current all as instance, "default" the use should you usage, general most For default the Normally time. a at server NetworkTables single a to connect only can programs dashboard the with communication for used and server, a as robot the on up set is instance and SmartDashboard the what is This computer. station driver your on running program use. classes LiveWindow

NetworkTables program's robot your of testing unit do to wanted you if However, client separate a create they that such tests unit your up set could you communications, the that instance server the to connect it have and program) same the within (still instance running. is code robot main
for abstraction API the provides class )Python ,C++ ,Java( NetworkTableInstance The 16 to limited is created simultaneously be can that instances of number The instances. testing unit as such cases in instances multiple using when so instance), default the (including needed. longer no are that instances destroy to important it's code,
or classes All instance. the to related resources all frees NetworkTableInstance a Destroying invalidated are Subscribers) and Publishers, Topics, (e.g. instance the reference that handles particular, destroyed-in is instance the after used if behavior unexpected in result may and previously a from over" "left handle a for possible it's so reused are handles instance instance. created newly a in resource unexpected an to refer to instance destroyed

Java


C++

| ```instance NetworkTable default the get //None``` |
| :---: |
| based)(handle- C++ |
| ```instance NetworkTable default the get // GetDefaultInstance();::nt = defaultInst NT Instance instance NetworkTable a create // CreateInstance();::nt = inst NT Instance instance NetworkTable a destroy // DestroyInstance(inst);::nt``` |



## Networking NetworkTables 26.5

name network known a at it's that is server the being program robot the of advantage The possible it's why is This number. team the on based is that address) known a at typically (and team the provide simply to dashboards most in and API client NetworkTables the both in means this note server, the is program robot the As address. server a than rather number, simulation. in running when computer local the on running is server NetworkTables the

## Server NetworkTables a Starting 26.5.1

Java

| ();getDefaultNetworkTableInstance. = inst NetworkTableInstance ();startServerinst. |
| :---: |
| C++ |
| GetDefault();::NetworkTableInstance::nt = inst NetworkTableInstance::nt <br> inst.StartServer(); |
| based)(handle- C++ |
| NT_DEFAULT_PORT4); NT_DEFAULT_PORT3, ,"" ,"networktables.json" StartServer(inst,: : : nt |
| C |
| NT_DEFAULT_PORT4) ; NT_DEFAULT_PORT3, ,"" NT_GetDefaultInstance(); = inst NT_Inst |
| Python |
| $\begin{array}{r} \text { ntcore import } \\ \text { getDefault().NetworkTableInstance. } \mathrm{ntcore}=\text { inst } \\ \text { startServer().inst } \end{array}$ |

## Client NetworkTables a Starting 26.5.2

Java

| ```();getDefaultNetworkTableInstance. = inst NetworkTableInstance client NT4 a start // );"client example"(startClient4inst. TEAM number team with roboRIO a to connect // (TEAM); setServerTeaminst. application DS the from address roboRIO the get to try will client DS a starting // ();startDSClientinst. host/port specific a to connect // )kDefaultPort4NetworkTableInstance.,"host"(setServerinst.``` |
| :---: |
| C++ |
| GetDefault();::NetworkTableInstance::nt = inst NetworkTableInstance::nt <br> client NT4 a start // <br> );"client example"inst.StartClient4( <br> TEAM number team with roboRIO a to connect // |

(ㄴำ ำ
inst.SetServerTeam(TEAM);
application DS the from address roboRIO the get to try will client DS a starting // inst.StartDSClient();
host/port specific a to connect // NT_DEFAULT_PORT4) , "host"inst.SetServer(
based)(handle- C++
GetDefaultInstance();::nt = inst NT Inst
client NT4 a start //
);"client example" StartClient4(inst,::nt
TEAM number team with roboRIO a to connect // TEAM) ; SetServerTeam(inst,::nt
application DS the from address roboRIO the get to try will client DS a starting // StartDSClient(inst);: nt
host/port specific a to connect //
NT_DEFAULT_PORT4) , "host" SetServer(inst,: :nt
C
NT_GetDefaultInstance(); = inst NT_Inst
client NT4 a start //
) ;"client example" NT_StartClient4(inst,
TEAM number team with roboRIO a to connect // TEAM) ; NT SetServerTeam(inst,
application DS the from address roboRIO the get to try will client DS a starting // NT_StartDSClient(inst);
host/port specific a to connect //
NT_DEFAULT_PORT4) , "host" NT_SetServer(inst,
Python
ntcore import
getDefault().NetworkTableInstance.ntcore = inst
client NT4 a start \#
)"client example"startClient4(.inst
TEAM number team with roboRIO a to connect \# setServerTeam(TEAM).inst
application DS the from address roboRIO the get to try will client DS a starting \# startDSClient().inst
host/port specific a to connect \# kDefaultPort4).NetworkTableInstance.ntcore ,"host"setServer(.inst

## Changes for Listening 26.6

to need that values generates coprocessor a where is NetworkTables for case use common A a on running code processing image some that imagine example, For robot. the to sent be robot. the to values those sends and goal a to distance and heading the computes coprocessor arrive. values new when notified be to program robot the for desirable be might it case this In
is way easiest the changed; has value topic's a that detect to ways different few a are There from function readQueueValues() or ,readQueue(), get() subscriber's a call periodically to below: shown as loop, periodic robot's the

Java

## \{ Example class public <br> ySub; DoubleSubscriber final prev; double

\{ ()Example public
NetworkTables of instance default the get //
(); getDefaultNetworkTableInstance. = inst NetworkTableInstance
datatable"" called subtable the get //
) ; "datatable" (getTableinst. = datatable NetworkTable
Y"" called datatable"" in topic the to subscribe // );0.0(subscribe)."Y"(getDoubleTopicdatatable. = ySub
\{ ()periodic void public value previous the to detection change simple with used be can get() // () ; getySub. = value double \{ prev) =! (value if
value previous save // value; = prev value); + " value: changed X"(println.outSystem.
call; last the since changes value all provides readQueueValues() // slowly too polling by change a miss to possible not s'it way this //
\{ ()) readQueueValuesySub. : iterVal double( for iterVal); + " value: changed X"(println.outSystem.
timestamps provides but readQueueValues(), to similar is readQueue() // well as change each for //
\{ ()) readQueueySub. : tsValue (TimestampedDouble for $\mathrm{u}^{+}$" time local at " + valuetsValue. + " value: changed X"(println.outSystem.
);timestamptsValue. $\hookrightarrow$
\}
for lives class this if programs robot for necessary be not may // program the of length the // \{ ()close void public () ; closeySub.

based)(handle- C++

page) next on (continues
(ำำ ำ


Python

$$
\begin{aligned}
& \text { Example class } \\
& \text { :None >- ) self(init } \\
& \text { def } \\
& \text { NetworkTables of instance default the get \# } \\
& \text { getDefault().NetworkTableInstance.ntcore = inst } \\
& \text { datatable" " called subtable the get \# } \\
& \text { )"datatable"getTable(.inst = datatable } \\
& \text { Y"" called datatable"" in topic the to subscribe \# } \\
& \text { )0.0subscribe(.)"Y"getDoubleTopic(.datatable = ySub.self } \\
& 0 \text { = prev.self } \\
& \text { ):self(periodic def } \\
& \text { value previous the to detection change simple with used be can get() \# } \\
& \text { get().ySub.self = value } \\
& \text { prev:.self =! value if } \\
& \text { value = prev.self } \\
& \text { value previous save \# } \\
& \text { value) + " value: changed X"(print } \\
& \text { call; last the since changes value all provides readQueue() \# } \\
& \text { slowly too polling by change a miss to possible not s'it way this \# } \\
& \text { readQueue():.ySub.self in tsValue for } \\
& \text { )"\}time.tsValue\{ time local at \}value.tsValue\{ value: changed X"f(print } \\
& \text { for lives class this if programs robot for necessary be not may \# } \\
& \text { program the of length the \# } \\
& \text { ): self(close def } \\
& \text { close().ySub.self }
\end{aligned}
$$

boolean link to NetworkBooleanEvent use to possible also it's robot, basedcommand- a With commands). running (e.g. actions callback to changes topic
insight provide not do they topic, single a on changes value for suffice functions these While properties topic's a when or unpublished, or published is topic a (when topics to changes into They disconnects). or connects client a when (e.g. changes connection network or change) For topics. multiple across changes value for updates orderin- get to way a provide don't also facility. listener event an provides NetworkTables needs, these automatic more For .NetworkTableInstance via is listeners use to way easiest The
background a without operate to and C++), in (particularly lifetime listener over control listeners polled both for classes separate provides also NetworkTables thread, be must that queue internal an into events store which ),NetworkTableListenerPoller( ),NetworkTableListener( listeners threaded and events, queued the get to read periodically thread. background a from function callback a call which

## NetworkTableEvent 26.6.1

reading similarly, and parameter, NetworkTableEvent single a take callbacks listener All information contains event The .NetworkTableEvent of array an returns poller listener a the disconnect), network a topic, new a update, value a (e.g. is it event of kind what including information detailed more and generated, be to event the caused that listener the of handle topic events, connection for information (connection event the of type the on depends that for message log the and updates, value for data value events, relatedtopic- for information events). message log

## Changes for Listen to NetworkTableInstance Using 26.6.2

The .NetworkTableInstance using events of kinds various to listens example below The asynchronously called be will functions addListener the of any to provided callback listener occurs. event matching a when thread background a from
it's thread, background separate a from called is callback listener the Because : : पाराप to atomics or mutexes as such approaches synchronization safethread- use to important function. callback listener the and code main the to/from data pass
be can This handle. listener a return NetworkTableInstance in functions addListener The later. listener the remove to used

Java

page) next on (continues
(ำำ
datatable"" called subtable the get //
);"datatable" (getTableinst. = datatable NetworkTable
Y"" called datatable"" in topic the to subscribe //
);0.0(subscribe)."Y"(getDoubleTopicdatatable. = ySub
subscriber $Y$ the on changes value only to listener a add // (addListenerinst. = valueListenerHandle ySub,
), KValueAll.Kind(NetworkTableEvent.ofEnumSet.
\{ >- event
but DoubleSubscriber, a s'it because doubles get only can //
too here value.isDouble() check could //
()) ; getDouble.value.valueData(event.setyValue.
);\}
datatable within published are topics new when see to listener a add //
prefixes. name topic of array an is array string the // (addListenerinst. = topicListenerHandle
,\} "/" + ()getPathdatatable. \{ ][String new
), kTopic.Kind(NetworkTableEvent.ofEnumSet.
\{ >- event
\{ ) )kPublish.Kind(NetworkTableEvent.is(event. if
datatable/X"/" e.g. name, topic full the is topicInfo.name // );name.topicInfoevent. + " published newly"(println.outSystem.
()periodic void public null to it set AtomicReference; the reading by value latest the get // changes value get only we ensure to read we when // ); null(getAndSetyValue. = value Double \{ ) null =! (value if value); + " value new got"(println.outSystem.
the for exists class this if programs robot for needed be not may // program the of lifetime // \{ ()close void public
(); getDefaultNetworkTableInstance. = inst NetworkTableInstance (topicListenerHandle) ; removeListenerinst. (valueListenerHandle); removeListenerinst. (connListenerHandle); removeListenerinst.
() ;closeySub.
ySub; DoubleSubscriber::nt
thread-safe flag and value the updating make to mutex a use //
page) next on (continues
( ำ

> mutex; mutex: :wpi
> yValue; double
> ;false $=$ yValueUpdated bool
> removal later for handles listener retain // connListenerHandle; NT_Listener valueListenerHandle; NT_Listener topicListenerHandle; NT_Listener
$\quad:$ public
\{ Example()
NetworkTables of instance default the get // GetDefault();::NetworkTableInstance: :nt = inst NetworkTableInstance::nt
the cause will parameter first the listener; connection a add // connections current any for immediately called be to callback //
event) \&Event::nt const( [] ,trueinst.AddConnectionListener( = connListenerHandle
\{ kConnected))::EventFlags::(event.Is(nt if
remote_id) ;>-event. GetConnectionInfo(), "n<br>$\{to Connected"print(::fmt }$
\{ kDisconnected))::EventFlags::(event.Is(nt if else \} remote_id) ;>-event.GetConnectionInfo() , "n<br>$\{from Disconnected"print(::fmt }$
datatable"" called subtable the get //
);"datatable"inst.GetTable( = datatable auto
Y"" called datatable"" in topic the to subscribe // );0.0).Subscribe("Y"datatable.GetDoubleTopic( = ySub
subscriber $Y$ the on changes value only to listener a add //
inst.AddListener( = valueListenerHandle
ySub,
kValueAll,::EventFlags::nt
\{ event) \&Event::nt const( ]this[
but DoubleSubscriber, a s'it because doubles get only can //
too here value.IsDouble() check could //
lock\{mutex\}; scoped_lock::std
value.GetDouble();>-event.GetValueData() = yValue
;true = yValueUpdated
); \}
datatable within published are topics new when see to listener a add // prefixes. name topic of array an is array string the // inst.AddListener( = topicListenerHandle
GetPath())\}\},>-datatable ,"/\}\{"format(: :fmt\{\{ kTopic,::EventFlags::nt
\{ event) \&Event::nt const( []
\{ kPublish)): :EventFlags::(event.Is(nt if
datatable/X"/" e.g. name, topic full the is name //
name) ;>-event.GetTopicInfo(), "n<br>$\{published newly"print(::fmt }$
\}
) ;\}
\{ Periodic() void
page) next on (continues


## Python

| ntcore import |
| ---: |
| threading import |

NetworkTables of instance default the get \#
page) next on (continues


> on_ysub_ kValueAll, .EventFlags.ntcore ySub, .self datatable within published are topics new when see to listener a add \# prefixes. name topic of array an is array string the \# Event):.ntcore (event:on_pub def kPublish):.EventFlags.is_(ntcore.event if

## Program Robot NetworkTables Simple a Writing 26.7

instance. default the on started automatically is server NetworkTables a program, robot a In have and subscribing or publishing start to instance default the get to necessary only it's So network. the over visible it named table a to values Y and X incrementing publishes below program robot example The program OutlineViewer the using viewed easily be can Y and X for values The .datatable topic. each with associated values the all and hierarchy NetworkTables the shows that

Java
;edu.wpi.first.wpilibj.templates package
;edu.wpi.first.wpilibj.TimedRobot import ;edu.wpi.first.networktables.DoublePublisher import ;edu.wpi.first.networktables.NetworkTable import ;edu.wpi.first.networktables.NetworkTableInstance import
\{ TimedRobot extends EasyNetworkTableExample class public
xPub; DoublePublisher
yPub; DoublePublisher
page) next on (continues
(ำำ
\{ () robotInit void public automatically created was that NetworkTables of instance default the Get // starts program robot the when //
(); getDefaultNetworkTableInstance. = inst NetworkTableInstance
can There data. the contains that instance that within table the Get // organize to easier it make to exist and like you as tables many as be // datatable. called table a s'it case, this In data. your // ) ; "datatable"(getTableinst. = table NetworkTable
values $Y$ and $X$ the to correspond that table that within topics publishing Start // program. your in operation some for // datatable/y"./" and datatable/x"/" actually are names topic The //
() ;publish)."x"(getDoubleTopictable. = xpub
() ; publish)."y"(getDoubleTopictable. = yPub

$$
\begin{aligned}
; & =x \text { double } \\
; 0 & =y \text { double }
\end{aligned}
$$

\{ ()teleopPeriodic void public increasing. constantly are that values Publish //
(x) ; setxPub.
(y) ; setyPub.
;0.05 =+ $x$
; $1.0=+\mathrm{y}$

| frc/TimedRobot.h>< include\# |
| ---: |
| networktables/DoubleTopic.h>< |
| include\# |
| networktables/NetworkTable.h>< include\# |

include\#
page) next on (continues


> ).Publish();"y"GetDoubleTopic(>-table = yPub
> ; $0=\times$ double
> ;0 = y double
> \{ ()TeleopPeriodic void
> increasing. constantly are that values Publish //
> xPub.Set(x);
> yPub.Set(y);
> ; $0.05=+x$
> ; $0.05=+y$
> \}

START_ROBOT_CLASS (EasyNetworkExample)
Python
python3 usr/bin/env/!\#
ntcore import
wpilib import

TimedRobot):.(wpilibEasyNetworkTableExample class :None >- ) self(robotInit def automatically created was that NetworkTables of instance default the Get \# starts program robot the when \# getDefault().NetworkTableInstance.ntcore = inst
can There data. the contains that instance that within table the Get \# organize to easier it make to exist and like you as tables many as be \# datatable. called table a s'it case, this In data. your \# )"datatable"getTable(.inst = table
${ }_{\Delta} Y$ and $X$ the to correspond that table that within topics publishing Start \# values $\hookrightarrow$
program. your in operation some for \# datatable/y"./" and datatable/x"/" actually are names topic The \# publish().)"x"getDoubleTopic(.table = xPub.self publish().)"y"getDoubleTopic(.table = yPub.self

$$
\begin{aligned}
& 0=x \cdot s e l f \\
& 0=y \cdot s e l f
\end{aligned}
$$

:None >- )self(teleopPeriodic def
increasing. constantly are that values Publish \# x). selfset(.xPub.self y).selfset (.yPub.self
0.05 =+ x.self
$1.0=+\mathrm{y} . \mathrm{self}$
:"main___" == name if run(EasyNetworkTabl $\overline{e E x a m p l e) . w p i l i b ~}$

## Program sideClient- a Creating 26.8

a or coprocessor COTS a with communicate program robot your have is do to need you all If robot writing of examples previous the then laptop, Station Driver the on running dashboard run would that code client custom some write to like would you if But sufficient. are programs NetworkTables build to how know to need you then coprocessor a on or station drivers the on platforms. roboRIO)(non- those for programs example. following the like looks program client basic A

Java

page) next on (continues
(ำำ
based)(handle- C++

page) next on (continues

## Competition Robotics FIRST



\}

```
stdio.h>< include\# threads.h>< include\#
time.h>< include\#
networktables/ntcore.h>< include\#
\{ ()main int
NT_GetDefaultInstance(); = inst NT_Instance
= xSub NT_Subscriber
);0 ,NULL ,"double" NT_DOUBLE, ),"datatable/x/" NT_Subscribe(NT_GetTopic(inst,
= ySub NT Subscriber
);0 ,NULL ,"double" NT_DOUBLE, ),"datatable/y/" NT_Subscribe(NT_GetTopic(inst,
) ;"client example" NT StartClient4(inst,
inst.setServer( use or etc, 294, TEAM=190, where // TEAM); NT_SetServerTeam(inst,
similar or "hostname") \(\rightarrow\)
цthe gets this computer; DS on running if recommended // NT_StartDSClient(inst);
DS the from IP robot \(\rightarrow\)
\{ )true( while
);NULL ,\}1=)\{.tv_sectimespec struct(\&thrd_sleep(
);0.0 NT GetDouble(xSub, = x double
) ;0.0 NT GetDouble(ySub, = y double y) ; X, , "n\f\% Y: f\% X:"printf(
```

Python

to created are subscribers and created is NetworkTables of instance an example this In
"datatable". called table a from "y" and "x" of values the reference
roboRIO (the number team the with client NetworkTables a as started is instance this Then computer, Station Driver the on running is program the if Additionally, server). the always is the from address IP robot the get will NetworkTables method, startDSClient() the using by

Station. Driver
and $y$ and $x$ for values the gets and second a once loops simply program sample this Then or processing be might client the program, realistic more a In console. the on them prints consume. to robot the for values generating

## Gradle using Building 26.8.1

the Update Repository StandaloneAppSamples the in provided are files build.gradle Example version. WPILib desired the to correspond to version GradleRIO

Java



$$
C++
$$

highlighted. as platform appropriate the Uncomment

page) next on (continues
(ㄴำ
)it(wpilibStatic.deps.cpp.wpi
\}
\}
\}
\{ wrapper
'7.5.1' = gradleVersion

## Python Building 26.8.2

.documentation install pyntcore RobotPy the to refer Python, For

# NetworkTables to 3.0 NetworkTables from Migrating 26.9 <br> 4.0 

from changes breaking API significant of number a has 2023) for (new 4.0 NetworkTables 2022.2016- from used NetworkTables of version the 3.0, NetworkTables

NetworkTableEntry 26.9.1
are users compatibility), backwards (for used be still can NetworkTableEntry While as classes Publisher/Subscriber/Entry specifictype- of use to migrate to encouraged It's .Topic a to Subscribing and Publishing (see GenericEntry necessary, if or appropriate, appropriate have to need classes these ,NetworkTableEntry unlike that note to important Topic to moved also has settings) persistent (e.g. functionality Some management. lifetime ).Topics and Tables NetworkTables (see properties
(was): code NT3
Java

page) next on (continues
(
2 by multiplied value that to Out set and $Y$, from value double a read // 0 to default // );0.0(getDoubleyEntry. = value double ) ;2 * (valuesetDoubleoutEntry.

C++


Python

be): (should equivalent NT4 Recommended
Java


page) next on (continues

## Competition Robotics FIRST



## Shuffleboard 26.9.2

use with replaced been has NetworkTableEntry of usage classes, Shuffleboard WPILib's In a return now values return copyable, non- is GenericEntry since C++, In .GenericEntry of value. a than rather reference

## Operations Set Force 26.9.3

type topic's a change to possible longer no it's as removed, been have operations set Force but, set with replaced be simply can forceSet to calls cases most In published. been it's once different into splitting (e.g. approach design different a require may scenarios complex more topics).

## Listeners 26.9.4

single a into unified been have listeners/events log and value, connection, separate The in Listeners removed. been also have listeners levelNetworkTable- The listener/event. still are listeners if but calls, readQueue() subscriber with replaced be can cases many more for Changes for Listening (see NetworkTableInstance via used be can they required, information).

## Operations Client/Server 26.9.5

port. NT4 the and port NT3 the both specifying requires now server NetworkTable a Starting
0 . as specified be can port NT3 the server, onlyNT4- a For
no is (there both not mode, NT4 or mode NT3 in operate only can client NetworkTable A by replaced been has call startClient() the such, As fallback). automatic for provision itself- for name unique a specify also must client The .startClient4() and startClient3() names. duplicate with attempts connection reject will server the

## Changes C++ 26.9.6

shared of instead )nt::Value (plain objects value as returned/used now are values C++ ).><nt::Valuestd::shared_ptr( them to pointers

## NetworkTables by Published Values Array Reading 26.10

program a using NetworkTables by published values read to how describes article This are images the where vision computer using when useful is This robot. the on running possibly NetworkTables into stored results the and laptop station driver your on processed a or GRIP, like robot the on tool a or pi, raspberry a like processor vision separate a using processing. image the do to program python
and pieces game or goals as such interest of areas more or one for are values the often Very areas and height, width, $\mathrm{y}, \mathrm{x}$, several below, example the In returned. are instances multiple returned the of which out sort can program robot the and processor image the by returned are processing. further through interesting are values

## Published Being Topics NetworkTables the Verify 26.10.1

by values the publishing for used topics NetworkTables the of names the verify can You the in directory user your in program $C++$ a is It application. Viewer Outline the using in menu "WPILib" the selecting by started is application The folder. wpilib/<YEAR $>/$ tools image the with example, this In "OutlineViewer". then Tool Start then Code Studio Visual

NetworkTables. into put being values the see can you (GRIP) running program processing called tablesub- $a$ and GRIP called table $a$ in stored are values the case this In in values 2 are there and brackets in are values the that see can You myContoursReport. height area, centerY, centerX, are names topic NetworkTables The topic. each for case this width. and
use the illustrate just that programs simplified extremely are examples following the of Both program the when run only it's so method robotInit() the in is code the All NetworkTables. of evaluating is that code in values the get likely more would you programs, your In up. starts or autonomous the during loop control a or command a in robot the aim to direction which periods. teleop

# Topics the Access to Program a Writing 26.10.2 



Python

| )"GRIP/mycontoursReport"getTable(.getDefault(). NetworkTableInstance.ntcore = table subscribe([]).)"area"getDoubleArrayTopic(.table = areasSub.self <br> ):self(teleopPeriodic def get().areasSub.self = areas areas) ,"Areas:"(print |  |
| :---: | :---: |
|  |  |
|  |  |

are: them printing program, this in and, values the getting to steps The values. the have that subtable the of instance the hold will that variable table the Declare 1.
values. the retrieving for later used be can it that so instance subtable the Initialize 2.
programs, communicating a of case the In NetworkTables. from values of array the Read 3. be yet not might here read being output the producing program the that possible it's being not data the of issues avoid To up. starts program robot the when available the if returned be will value default This supplied. is values of array default a ready, of value the over loop will code This published. been yet hasn't topic NetworkTables

20 ms . every areas

## Output Program 26.10.3

P Riolog
areas: 40
areas: 408
areas: 408
areas: 40
areas: 408
areas: 408
areas: 408
areas: 40
areas: 408
areas: 408
areas: 408
areas: 408
areas: 408
areas: 40

Pause
the all example real a in but areas, of array the at looking only is program the case this In you log Station Driver the or Code VS in Riolog the Using used. be likely more would values they so image static sample a using is program This retrieved. are they as values the see can be would values the robot, your on camera a with imagine can you but change, don't areas constantly. changing

the use paths These trajectories. following and creating of process the is Planning Path
section This following, for Controller Ramsete a and generation for APIs trajectory WPILib trajectory identification, system for robot your characterizing of process the highlights trajectory generic the read to want also may Users PathWeaver. of usage and following usage. commandbasednon- and API the about information additional for documents following

## Support Swerve on Notice 27.1

of: aware be to need teams that limitations of couple a has following path in support Swerve
request. pull this see please simulation, in swerve support not does currently WPILib
and project Mechanism General a using heading swerve the tuning supports only SysID module's the lock to is workaround A data. velocity module support regularly not does like something using rotation module blocking via done be can This place. into heading wood. of block a
heading. independent incorporate not do currently following Trajectory and Pathweaver a as same the be will swerve on framework trajectory WPILib the using following Path robot. DifferentialDrive
inconvenience. the for sorry are We

## Identification System 27.1.1

## Identification System to Introduction

 Identification?" "System is Whatmodel mathematical a determining of process the is identification system Theory, Control In outputs. and inputs its of analysis statistical through system a of behavior the for
(typically measurements our way the affects voltage input how describing rule a is model This a and model a such takes routine identification" "system A time. in evolve data) encoder matchclosely- most model your make would which parameters fit to attempts and dataset
both by polluted are data worldreal- the - perfect not is model the Generally, dataset. the noise system and limitations) resolution encoder errors, timing (e.g. noise measurement model imperfect an even However, vibrations). like system, the on acting forces (unmodeled even and mechanism, the of control feedforward accurate us give to enough" "good usually is .control feedback for gains optimal estimate to

Model Behavioral Assumed
WPILib the by used equations feedforward the of explanation full the read yet, haven't you If .Equation Feedforward Motor DC MagnetPermanent- The in toolsuite
in coefficients the for values concrete determine to is Identification System of process The system. worldreal- particular your of behavior the reflectbest- that model the
(such technique fittingcurve- a model, our in coefficient each for values numeric determine To mechanism. real the from taken measurements to applied is )regression squaresleast- as curve- the of accuracy the improve helps experiments producingdata- the of selection Careful fitting.
and velocity desired given a take then can we determined, been have coefficients these Once This it. achieve to applied be should that voltage the calculate and motor the for acceleration mechanisms making for also but profiles, motion following say, for, only not - useful very is match closely more will inputs joystick your because control, loopopen- in controllable more motion. mechanism actual the
to equation above the into terms additional introduce toolsuite this in tools the of Some tool each for details - above described case simple the from differences known for account below: found be can

## (SysId) Tool Identification System WPILib The

PC user's the on runs that application an of consists tool identification system WPILib The control send will application PC The robot. user's the on runs that code robot matching and application. the to back data sends robot the while NetworkTables, over robot the to signals robot user's the for parameters model determines and data the processes then application The for format) JSON (in saved be can Data plots. diagnostic producing as well as mechanism, desired. if use, future

Tools Included
surprisingly a characterize accurately to used be can tools these ingenuity, of bit a With : : पार्य match obviously to seem not does mechanism your if Even mechanisms. robot of variety large the of one that reveals often equations system the of understanding an tools, the of any do. will routines included
supports: currently toolsuite Identification System The
Setups Motor Simple
Drivetrains
Elevators

Arms
routine analysis the in only differ and code, siderobot- identical use options these of Several data. the interpret to used

## Identification Motor Simple

equation: the for parameters fitbest- the determines tool identification motor simple The

$$
V=k S \cdot \operatorname{sgn}(\dot{d})+k V \cdot \dot{d}+k A \cdot \ddot{d}
$$

velocity, its is $\dot{d}$ drive, the of (position) displacement the is $d$ voltage, applied the is $V$ where loading no with motor dc magnetpermanent- a for model the is This acceleration. its is $\ddot{d}$ and flywheels, for model accurate an is and above, mentioned as inertia, and friction than other sliders. linear horizontal and turrets,

## Identification Drivetrain

equation: the for parameters fitbest- the determines tool identification drivetrain The

$$
V=k S \cdot \operatorname{sgn}(\dot{d})+k V \cdot \dot{d}+k A \cdot \ddot{d}
$$

velocity, its is $\dot{d}$ drive, the of (position) displacement the is $d$ voltage, applied the is $V$ where motor simple the in used is as equation modeling same the is This acceleration. its is $\ddot{d}$ and on run to up set specifically is tool identification drivetrain the however, - identification
desired. if independently drive the of side each characterize will and drives, differential
robot your of trackwidth effective the determine also can tool identification drivetrain The width track the in available is identification the run to how on information More gyro. a using article. identification

Identification Elevator
equation: the for parameters fitbest- the determines tool identification elevator The

$$
V=k G+k S \cdot \operatorname{sgn}(\dot{d})+k V \cdot \dot{d}+k A \cdot \ddot{d}
$$

velocity, its is $\dot{d}$ elevator, the of (position) displacement the is $d$ voltage, applied the is $V$ where effect the for account correctly to added is ) $k G$ ( term constant The acceleration. its is $\ddot{d}$ and gravity. of

## Identification Arm

equation: the for parameters fitbest- the determines tool identification arm The

$$
V=k G \cdot \cos (\theta)+k S \cdot \operatorname{sgn}(\dot{\theta})+k V \cdot \dot{\theta}+k A \cdot \ddot{\theta}
$$

its is $\dot{\theta}$ arm, the of (position) displacement angular the is $\theta$ voltage, applied the is $V$ where correctly to added is ) $k G$ (term cosine The acceleration. angular its is $\ddot{\theta}$ and velocity, angular gravity. of effect the for account

## Tool Identification System the Installing

Installer. WPILib the with included is )sysid as to referred (also tool identification system The supported. longer no is years previous from tool characterization Python old The : Clll

## Tool Identification System the Launching

by or Code VS in option Tool Start the from opened be can tool identification system The (Windows). folder desktop Tools WPILib the inside shortcut the using

## Project a Configuring

mechanism. specific your for settings the configure to need first we toolsuite, the use To

## Parameters Project Configure

is robot your how about parameters some know must tool the robot, your on run to order In up. set
General config. project appropriate the select to field Type Analysis the use to need you First, Drivetrain Elevator), Arm, Motor, Simple (e.g. mechanisms drivetrainnon- for is Mechanism the out fill to you allows This robots. Romi the for is Romi and mechanisms, Drivetrain for is
using. are you system of type the to specific parameters
analysis the of off based settings proper the on focused is widget Generator the of rest The type:
$\qquad$
that controller motor each for ports add to you allows Selection Controller Motor / Motor The respectively. ports remove and add you let buttons - and + The used. be will
motor the that sure make controllers motor into encoders your in plugging are you If : : पारा specify. you ones first the are port(s) and type controller
parts: following the contains port motor Each controller specific a for number port the add you where is Port Motor inverted be should motorcontroller the if checked be should Inverted used. be will that controller motor of type the is Controller Motor

Selection Encoder

of types The used. be will that encoders the configure to you allows Selection Encoder The ). above note (see specified type controller motor first the with vary will use can you encoder

Types Encoder

corresponds roboRIO selections): controller motor all across (consistent Types General CTRE the to corresponds CANCoder roboRIO, the into plugged are that encoders any to CANCoder.
encoder the into plugged encoder quadrature any to corresponds in-Built :TalonSRX port. encoder the into plugged Tachometer CTRE the to corresponds Tachometer port, motor. TalonFX the on encoder integrated the to corresponds in-Built :TalonFX Data, port encoder the into plugged encoder an to refers Port Encoder :MAX Spark . port data the into plugged encoder an to refers Port port. encoder Venom's the into plugged encoder an to refers in-Built :Venom
visible are that settings the (although configured be can that settings following the are Here type): encoder selected previously the by vary will

Port CANCoder or B and A (either Ports
a to correspond doesn't power motor positive a if checked be should Inverted Encoder values encoder in increase positive
measurement. velocity per averaged be will samples many how is Average Per Samples for recommended is 105 - and noise encoder reduce help can one than greater value A resulted SysId of run previous a if setting this with mess Only CPR. high with encoders data. noisy extremely in
Mag CTRE (e.g. encoders resolution high using if checked be should Encoding Reduce uses This roboRIO. the into plugged are that Encoder) Bore Through REV or Encoders have will you checked, is this If noise. velocity reduce to decoding $1 x$ class Encoder the encoders. the on decoding $1 x$ use also to code robot team's your update to
velocity the that milliseconds in time of period the is Window Measurement Time cost the at lag measurement reduce can setting This across. taken be will measurement accurate impeding is lag data if this modify Only noise. more introducing possibly of collection. data and control

## Parameters Encoder

generally is which encoder your for revolution per counts encoder the is Revolution Per Counts include: values Common datasheet. a on specified

4096 Encoder: Magnetic CTRE
2048 Integrated: 500 Falcon
8192 Throughbore: REV
1 value): this handles already (REV Encoders Integrated 550) NEO (and NEO
magnetic an example, For shaft. output and encoder the between gearing the is Gearing output the with ratio 1:1 a on is it as one of gearing a have would chassis kit a on encoder the gearbox, the in was that motor a in encoder integrated an was is if However, shaft. and encoder the between gearing now is there since Andymark) (per 10.71 be would gearing shaft. output the

## Only) (Drivetrain Parameters Gyro

additional configure you lets Parameter Gyro gyro. supported of type the select you lets Gyro gyro. specified previously the configure to needed settings


## Configurations Saving and Loading

with choice your of location/name a to it save may you set, is configuration robot your Once button: Save the

button: Config Load the with file config existing an load also can you Accordingly,


Project Deploying
the run to project robot the deploy to time it's configured, been has project your Once routine. identification

the with code the deploy then can You IP. or number team your set you where is Team/IP
label. Deploy

## Routine Identification the Running

and routine, identification system the run now can we deployed, been has code the Once analysis. for data resulting the record
identification any running before robot the around space sufficient have you EnsureThe 20 «. to closer ideally space, of 10 « least at requires identification drive The routine! blocks. on while characterized accurately be not can drive robot

## Robot the to Connect

enter and window Logger the of top the at "Client" Select robot. the to connect must we Next, .localhost in type can you program, robot simulated a characterize To number. team your next visible be will indicator connection NetworkTables The button. Apply the press Finally, button. Apply the to

Eventually, robot. the rebooting try connecting, successfully be to seem not does tool the If communicating successfully is tool the indicating, Connected NT to change should status the robot. the with

Parameters Project

analysis. the affect to expected is gravity how and sampled is data what controls Mechanism
in. gains the export will SysID that units the and using are you units the is Type Unit shaft output the of rotations from change the affects that anything defines Rotation Per Units of units and chassis KOP a using are you say example an As above. selected units the to account into take to have We generator. the in for accounted already is gearing The meters. chassis standard The rotation. per traveled have we distance the change will wheel our how by multiply to need we circumference the get to so wheels, diameter meters) ( $0.15246^{\prime \prime}$ has like: looks calculation The Pi.

$$
\text { UnitsPerRotation }=0.1524 \cdot \pi
$$

quasistatic the during up ramp will voltage the quickly how controls Rate Ramp Quasistatic the If emerges. trend a that enough up ramped voltage the get to is here goal The tests. this increase slightly to need might you small is robot the run to have you space of amount rate. ramp
determine to start on immediately applied be will that voltage the is Voltage Step Dynamic the reduce slightly should you space on short is robot your If accelerates. robot your how voltage.

## Tests Running

tests: of types two of consists routine identification motor standard A
voltage the that such upsped- gradually is mechanism the test, this In Quasistatic:
static"). if "as (hence, negligible is acceleration to corresponding
the that so mechanism, the to given is voltage« »step constant a test, this In Dynamic: determined. be can accelerating while behavior to corresponding total, in tests four for backwards, and forwards both run is type test Each buttons. four the
"forwards" a after directly test "backwards" a running but order, any in run be can tests The position). original its to mechanism the reset less or more will it (as advisable generally is test
button. test each pressing after windows uppop- the in instructions the Follow

## Width Track

This test. (Angular) Drivetrain the selecting by robot the of width track the determine can You parameters. Ka and Kv angular provide also will
far how compares It trackwidth. empirical an determine to robot your spin will test This best the get To gyroscope. the from rotation reported the against drove encoders wheel the ground. the with contact maintain should wheels your results
by calculated trackwidth empirical the tires), pneumatic (like wheels frictionhigh- For : : Inll The 2). of factor a by off (e.g., trackwidth real the from different significantly be may sysid code. robot in one real the over preferred be should value empirical
this: like something look should routine entire The file save the for location folder the select can you completed, been have tests four all After .Save click and
timestamp A location/name. specified the with file JSON a as data the save will This file the of name the Additionally, filename. chosen the to appended be will ) $\% \mathrm{H} \% \mathrm{M}-\% \mathrm{Y} \% \mathrm{~m} \% \mathrm{~d}($
.Log Program the in shown be will saved

Log. Program the in displayed be will test each for collected samples of number The :

## Data Analyzing

to set is option Units the that recommended its so units, SI on standardizes WPILib : $\operatorname{lllll}$ .Meters
and Analyzer the using it analyze can we routine, identification an from data have we Once widgets. Plots Diagnostic


File Data your Loading
.Select on Click tool. logger the from saved we file data the load to time it's Now

be to appears file the If analyze. to want you file JSON the select dialog, file resulting the In shown. be will error an malformed,

## Analysis Feedforward Running

Permanent- The see mean, gains feedback calculated the what on information For : feedback calculated the using on information For .Equation Feedforward Motor DC Magnet .control feedforward see code, in gains

Section. Feedforward the on arrow dropdown the Click
and button Units Override the press to have will you units, change to like would you If : : पार्य popup. the on information the out fill
displayed. be then will parameters system mechanism computed The


Metrics Fitof-Goodness-
acceleration tool: this with computed are that metrics accuracy numerical three are There .RMSE velocity simulated the and squared,r- velocity simulated,

as (used acceleration measured in variance the of fraction the is squaredr- acceleration The be can This model. linear the by explained regression) SysId the in variable independent the other the Assuming noise. system to susceptible very is acceleration because variable, quite disturbances, few with mechanism "ideal" an indicate 1 near values acceptable, are metrics fit vibrations/losses. physical substantial with mechanism noisy a indicate 0 near values while explained velocity measured in variance the of fraction the is squaredr- velocity simulated The constants the with forward stepped movement motor the of simulation noiseless a by fit. good a indicates 9 . of north value A regression. the from determined simulated the from error velocity the of deviation standard the is RMSE velocity simulated The test the during present noise process of amount the of estimation good a is This model. .control spacestate- in term noise model the for estimate endlow- a as used be can and routine,

## Plots Diagnostic

model their of quality the evaluate users help to plots diagnostic several produces also SysId fit.


Plots DomainTime-
 troubleshooting! when plots backward and forward the both view
the of course the over time versus velocity display plots Diagnostics DomainTime- The this: like something look should These tests. analyzed
and Data, Filtered Data, Raw data: of sets three contain plots domain time velocity The the is Data Filtered the robot, your from data recorded the is Data Raw The Simulation. the represents Simulation the and data, the to applied been has filter median a after data are (these tool the from gains feedforward the of off based model a of predictions velocity above). mentioned metrics error "sim" the calculate to used graph dynamic successful a while linear, nearly very be will graph quasistatic successful A speed.steady- the of approach exponential approximately an be will
settings, analysis setup, robot your in either, error an of sign a is behavior this from Deviation procedure. test your or

Plot VelocityAcceleration-
of portion the versus velocity mechanism the displays plot velocityversus-acceleration- The back- only leave would this (ideally, friction than other factors to corresponding acceleration tests. the of all across voltage applied and EMF)
intermixed data quasistatic noiseless relatively of patches with linear, quite be should plot This reduced be may plot the of sections dynamic the on noise The data. dynamic noisyquite- with setting. Size Window the increasing by
may this power, motor the to compared mass low has mechanism or robot your if However, towards tend will kA cases these In have. you data acceleration meaningful little what "eat" accurately be cannot kA if However, purposes. feedforward for ignored be can and zero may tuning manual and inaccurate, be to likely are gains feedback calculated the measured, required. be

## Modes Failure Common

output console and plots diagnostic identification, the with wrong gone has something When failures common some describes section This wrong. gone has what to as clues crucial provide their of features identifying the tool, identification system the running while encountered
them. fix to taken be can that steps the and plots, diagnostic

Threshold Motion Set Improperly
threshold. motion the for value inappropriate an is errors commonmost- the of One


## Low Too Threshold Velocity

time- quasistatic the in circle) red added by (emphasized tail" "leading a of presence The from points data thus and low, too is setting Threshold Velocity the that indicates plot domain included. being are move to begins robot the before data. the analyzere- and threshold velocity the increase this, solve To

## High Too Threshold Motion

|  |
| :---: |

high too is that threshold velocity a threshold, lowtoo- a as problematic as nearly not While plot. velocityversus-acceleration- the in "gap" large a in result will data. the analyzere- and threshold velocity the decrease this, solve To

Signals Velocity Noisy
system and noise signal - systems mechanical affect that noise of types two are There : Flll to corresponds noise system while error, measurement to corresponds noise Signal noise. SysId If vibration). (e.g. model your by forunaccounted- is that motion physical actual is noise of types two the of which out figure must you noisy, is system your that suggests noise. system than eliminate to easier often is noise signal - play at
(for concentricity shaft in errors - encoders installedpoorly- from suffer setups FRC Many
noisy to contribute both can encoders) magnetic (For location magnet and encoders) optical immediately be will noise Encoder settings. filtering inappropriate can as signals, velocity on common especially is noise Encoder above. seen be can as plots, diagnostic your in visible parts. of kit the in provided gearboxes mini toughbox the
by polluted data from even determined accurately be sometimes can parameters System is noise encoder of sort this However, setting. size window the increasing by noise encoder identification system the for problematic is it way same the much code robot for problematic encoder different a try to recommended is it known, not is noise the of cause root the As tool. them replacing shaft, different a to encoders the moving by either observed, is this if setup generation project in average per sample the increasing or encoder, of type different a with filtering). of layer additional an (adds

## Analysis Feedback

perfect, be to guaranteed not are they - guesses" "educated effect, in are, gains These : : पार्य tuning. further for point" "starting a as viewed be should and
section. Feedback the on arrow dropdown the on click constants, feedback the view To

your for controller P or PD a for gains feedback optimal calculate to used be can view This ). $L Q R$ (via mechanism

Parameters Controller Enter

operate to controller the configured has user the that assumes preset Max" "Spark The : : प्रा feature. factor scaling position/velocity API's MAX SPARK the with analysis of units the in
much not Unfortunately, .quantities dimensioned are gains feedforward calculated The typical various the so and controls, FRC® in gains PID of units the to paid often is attention often are (which conventions unit their in differ implementations controller PID for options user). the to clear made not
options. following the use controller, PID your for settings correct the specify To
with fields remaining the populateauto- will menu downdrop- This Preset Settings Gain some that Note setups. controller FRC common of number a of one for settings likely must motor follower a of presence the and PPR, gearing, encoderpost- as such settings, user without these knowing of way no has analyzer the (as specified manually be still setup. user on depending defaults given the from vary may others that and input), default The seconds. in loop, control the of period execution the is This Period Controller
on controllers onboard The 0.02 s . of period a to corresponding 50 Hz , is rate loop RIO 0.001 s . of period a or 1 Khz , at run controllers" "smart most respect with output, controller the of value maximum the is This Output Controller Max 1 , of value maximum a with outputs calculate controllers Most calculation. PID the to 1023. of output maximum a have controllers Talon but
to normalized is calculation PID the whether specifies This Controller NormalizedTimegain. D the of scaling the affects which execution, of period the
is or loop, RIO onboard an is controller the whether specifies This Type Controller MAX. SPARK a or Talon a as such controller motor smart a on running
the and encoder the between gearing the specifies This Gearing EncoderPostunit specifieduser- allow not do that loops control for necessary is This itself. mechanism if disabled be will This Talons). on running those (e.g. computations PID their in scaling relevant. not
the of revolution) per cycles (not revolutionper-edges- the specifies This EPR Encoder Gearing. EncoderPost- as cases same the in needed is which used, encoder
the running controller the following controller motor a is there Whether Follower Has the changes This device. peripheral a on run being is loop control the if loop, control period. loop effective
default, By updated. is present) (if follower the which at rate The Period Update Follower be can but MAX, SPARK the and FX, Talon SRX, Talon the for 0.01 s ) (every 100 Hz is this changed.

MAX, SPARK TalonSRX, (e.g. preset the as controller motor smart a select you If : will tool the means This checked. automatically be will checkbox Gains Convert the etc.) methods. PID controller's motor smart the through used be can they that so gains your convert box. that uncheck must you Loops, PID WPILib's use to like would you if Therefore,

## Delays Measurement

without Control PID WPILib or settings controller motor smart default using are you If : ใी०ा you. for this handles SysId filtering, additional

SPARK and ,FX Talon ,Venom ,SRX Talon the as (such controllers" motor "smart Many can which measurements, velocity encoder their to filtering passlow- substantial apply )MAX velocity for gains calculated the cause can This lag. phase of amount significant a introduce box. Delay Measurement the with for accounted be can This unstable. be to loops
of settings default the for calculated been already have delays measurement the However, the selecting by handled is this users most for so controllers motor mentioned previously the .Preset Settings Gain in preset right
settings filtering custom own their implement to decides user the if applies only following The motorcontroller smart changing or loop PID WPILib a to filter average moving a adding (e.g. be must delay measurement the as size) window measurement and/or period measurement windows moving with filters for used be can that formula general the is Here recalculated.
filter): average moving + filter median (e.g.

$$
d=\frac{T(n-1)}{2}
$$

the is n and ms) 20 is default (RIO sampled are measurements which at period the is T Where used. window moving the of size

## Criteria Optimality Specify

takes This controller. "optimal" an considered be will what specify must user the Finally, not is it that note - effort control and error system the for tolerances desired of form the times. all at tolerances these obey will system the that guaranteed

Max the for values larger and Error Acceptable Max the for values smaller rule, a As efforts, control larger in result will this - gains larger in result will Effort Control Acceptable greater and behavior violent more cause may but trackingsetpoint- better grant can which components. on wear full to corresponds that as 12 V , exceed never should Effort Control Acceptable Max The this. than lower somewhat be should ideally and voltage, battery

## Type Loop Select

on depending PIDs, velocity and position both with mechanisms control to typical is It menu. Type Loop downdrop- the using selected be can Either application.


Tools and Utilities Additional
tool this that functionality additional about information useful covers mainly page This provides.

## Converters JSON

CharFRC- tab: Converters JSON the in used be can that tools Utility JSON two a are There Converter. CSV to JSON and Converter
that JSON SysId a into it converts and JSON CharFRC- an in reads Converter CharFRC- The read. can tool the
had JSON the If file. CSV a outputs and JSON SysId a takes Converter CSV to JSON The Right, (V) Volts Left, Test,(s) Timestamp are: columns the data, Mechanism Drivetrain (\{units\}/ Velocity Left, (\{units\}) Position Right, (\{0\}) Position Left,(V) Volts JSON the If.(deg/s) Rate Gyro,(deg) Position Gyro,(\{units\}/s) Velocity Right,s) ,Test, (s) Timestamp columns: following the has CSV the data, Mechanism General had .(\{units\}/s) Velocity, Position(\{units\}),(V) Volts

## Tips ImGui

SysId that framework ImGui the with come that features handy essentially are following The uses:

## Data Plot Hiding and Showing

would you that data the of color the on click plots, the from data certain remove or add To remove. or hide to like box. color green the click can we data, sim hide to want we if example, For

## Plots Sizing Auto

click double just plots, sized normally the to back revert to want and plots to in zoom you If it. resize automatically will it and plot the on in: zoomed is that plot a is Here

resized: automatically is it clicking, double After

## Values Slider Setting

Click + CTRL can you widget, the sliding than rather number a as slider a of value the set To number. a input to you allow will it and slider the slider: regular a is Here

slider: the clicking double after input the is Here

## Tutorial Trajectory

differential- a on following and generation trajectory implementing for tutorial full is This example RamseteCommand the in found be can tutorial this in used code full The robot. drive ). C++ , Java( project

## Overview Tutorial Trajectory

baseline a have to necessary) strictly not (but helpful is it tutorial, this following Before : : पार्य features. trajectory and, feedforward, control PID WPILib's with familiarity
command- The framework. basedcommand- the uses tutorial this in code robot The : : Itll teams. intermediate and beginning for recommended strongly is framework based
trajectory- a implementing on instruction end"to-"end- provide to is tutorial this of goal The readers tutorial, this following By robot. drivedifferential- a for routine autonomous following to: how learn will
feedforward accurate obtain to drivetrain robot's their characterize Accurately gains. feedback approximate and calculations
library. odometry WPILib's using pose robot's the track to subsystem drive a Configure WPILib's using waypoints of set a through trajectory simple a Generate class. TrajectoryGenerator

WPILib's using routine autonomous an in trajectory generated the Follow pose. and gains feedforward/feedback calculated the with class RamseteCommand
programming of deal great a without teams for approachable be to intended is tutorial This its which in manner the in flexibility significant offers library WPILib the While expertise. outlined implementation the following closely implemented, are features followingtrajectorysolution repeatable and clean, simple,relatively- a with teams provide should tutorial this in movement. autonomous for

Project Example RamseteCommand the in found be can tutorial this for code robot full The
). $\mathrm{C}++$, Java(

Following? Trajectory Why
accurately and effectively to robot a require that tasks autonomous feature often games FRC® most the Historically, location. scoring known a to location starting known a from move that - approach drive"turn-"drive- a been has FRC in task of sort this for solution common another by forward drive and angle, known a by turn distance, known a by forward drive is, distance. known
have teams years recent in functional, certainly is approach drive"turn-"drive- the While time. same the at turn and drive to robot the require which trajectories smooth tracking begun in benefits: significant offers it task, technical complicatedmore-fundamentally a is this While driven be can paths the directions, change to stop to has longer no robot the since particular, period. autonomous the during pieces game more score to robot a allowing faster, much
for solutions code advanced working, with teams supplies now WPILib 2020, in Beginning kind this for entry"to-"barrier- the lowering significantly tracking, and generation trajectory motion. autonomous effective and advanced of

## Equipment Required

materials: following the to access ready need will you tutorial, this follow To with: equipped ),AM14U5 AndyMark the as (such robot drivedifferential- A drive. the of side each of rotation wheel the measuring for encoders Quadrature heading. robot measuring for gyroscope A with: configured computer stationdriver- A
.Station Driver FRC 。
.Toolsuite Identification System The 。

## Drive Robot Your Characterizing :1 Step

dedicated its see tool, Identification System the using on instructions detailed For : : It .documentation
sure Be drive. to robot the for space ample requires process identification drive The : : पार्टा the during drive can robot the which in 20 «) to closer (ideally stretch 10 « a least at have to routine. identification

5190, Team by provided generously been has tutorial this for data identification The : : Incl Carolina North 2019 the at functionality this of demonstration a of part as it generated who Workshop. P2P University State
for model accurate an have to important is it robot, a with path a following accurately Before process a is model a such Determining inputs. control its to response in moves robot the how determine accurately can tool Identification System WPILib's identification." "system called model. a such

## Data the Gathering

data. identification drive our gathering by begin We
.project robot a Deploy and Configure 1.
.Routine identification the Run 2.
to time is it saved, been has file data the and run been has routine identification the Once
look data our that ensure to diagnostics the view first we, guide identification system the Per reasonable:

we parameters, acceptable within are metrics fit the and linear, reasonably look data our As step. next the to proceed
gains the use not Do robots. across transfer general, in , not do gains Feedforward : : पारा robot. own your for tutorial this from
tool: the by calculated gains feedforward the record now We

V Analyze
Select
Combined
Units:
Units Per
Type:
following the in are gains feedforward our meters, in specified was diameter wheel our Since units:

> Volts :kS
> Meters / Seconds * Volts :kV
> Meters / Seconds^2 $*$ Volts :kA
an within be likely will gains feedforward your correctly, units your specified have you If may which ,kA for exists exception possible (a here reported ones the of magnitude of order one specified you possible is it not, are they If light). is robot your if small vanishingly be for test good A project. robot your generating when incorrectly parameters drive your of theoretical the by divided volts 12 is which , kV of value "theoretical" the calculate to is this wheel the times motor the of speed free the turn, in is, (which drivetrain your of speed free the with closely very agree should value This reduction). gear the by divided circumference somewhere. error an made likely have you not, does it if - tool the by measured kV
from gains the use not Do robots. across transfer general, in ,not do gains Feedback : : प्रा robot. own your for tutorial this
path. the follow to use will we that control PID the for gains feedback the calculate now We so control, loopclosed- velocity uses controller RAMSETE WPILib's with following Trajectory tool: identification the in mode Velocity select first we

$\nabla$ Feedforw
0.52269
2.4021
0.43354
0.99985
0.074073
$\nabla$ Feedback
WPILib (202
12.0 Ma>
$1.0 \quad \mathrm{Vel}$
0.0200

Time-Nor

Convert
Velocity
3.3847

0
select furthermore we loop, velocity our for PIDController WPILib the using be will we Since as important, very is This menu. "presets" downdrop- the from option ) - (2020 WPILib the preset: correct the select not do we if units correct the in be not will gains feedback the
velocity a is it Since loop. control our for gains feedback the record and calculate we Finally, required: is gain P a only controller,

* Volts of units in be will gain proportional our correctly, everything done have we Assuming velocity of second per meter each for that, means gain calculated our Thus, Meters. / Seconds volts. 3.38 additional an output will controller the error,


## Constants Calculated the Entering :2 Step

unit correct the as entered be constants feedforward the that important is it C++, In : : प्रा .Library Units C++ The see units, C++ on information more For type.

The code. our in them place to time is it constants, system our have we that Now project basedcommand- standard the of file Constants the is this for place recommended .structure

[^13]
## Gains Feedforward/Feedback

the from obtained we which gains feedback and feedforward the enter must we Firstly, tool. identification
use not Do robots. across transfer general, in ,not do gains feedback and Feedforward : : पार्य robot. own your for tutorial this from gains the

| Java |
| :---: |
| ```ROBOT! OWN YOUR FOR THESE USE NOT DO - only values example are These // xperimentally either determined be MUST values characterization These // theoretically \(\rightarrow\) drive. s'robot *your* for // цobtaining for tool convenient a provides Toolsuite Characterization Robot The // these \(\varsigma\) robot. your for values // 0.22 = ksVolts double final static public ;1.98 = kvVoltSecondsPerMeter double final static public ;0.2 = kaVoltSecondsSquaredPerMeter double final static public drive! your for tuned be must this above, as - only value Example // ;8.5 = kPDriveVel double final static public``` |

(Header) C++

> ROBOT! OWN YOUR FOR THESE USE NOT DO - only values example are These // or experimentally either determined be MUST values characterization These //
> Characterization Robot The drive. s'robot *your* for theoretically // your for values these obtaining for tool convenient a provides Toolsuite // robot. //
> V;_0.22 = ks auto constexpr m; 1 / s 1 * V 1 * 1.98 = kv auto constexpr $\mathrm{m} ; \_1 / \mathrm{s} \_1 * \overline{\mathrm{~s}} 1$ * $\overline{\mathrm{V}} 1 * 0.2=$ ka auto constexpr
> drive! your for tuned be must this above, as - only value Example // ;8.5 = kPDriveVel double constexpr

## DifferentialDriveKinematics

which class, DifferentialDriveKinematics the of instance an create must we Additionally, to robot the of wheels) the between distance horizontal (i.e. trackwidth the use to us allows meters. in units our keep we elsewhere, As speeds. wheel to speeds chassis from convert

Java

| $\begin{aligned} & ; 0.69=\text { kTrackwidthMeters double final static public } \\ & =\text { kDriveKinematics DifferentialDriveKinematics final static public } \\ & \text { DifferentialDriveKinematics(kTrackwidthMeters); new } \end{aligned}$ |
| :---: |
| (Header) C++ |
| m; 0.69 = kTrackwidth auto constexpr <br> kDriveKinematics; DifferentialdriveKinematics::frc const extern |

Velocity/Acceleration Trajectory Max

during robot the for velocity max and acceleration max nominal a on decide also must We free- nominal the below somewhat set be should value velocity maximum The following.paththe ,DifferentialDriveVoltageConstraint the of use later the to Due robot. the of speed crucial. extremely not is value acceleration maximum

Java

```
    ;3 = kMaxSpeedMetersPerSecond double final static public
;1 = kMaxAccelerationMetersPerSecondSquared double final static public
```

(Header) C++
mps_sq;_1 $\begin{array}{r}\text { mps; } 3=\text { kMaxAcceleration auto constexpr }\end{array}$

## Parameters Ramsete

shown values The controller. RAMSETE the for parameters of pair a include must we Finally, in measured correctly been have distances provided robots, most for well work should below the Constructing see required), is it (if values these tuning on information more for - meters
.Object Controller Ramsete
Java

(Header) C++
and meters of units in follower RAMSETE a for values baseline Reasonable // seconds //
$\mathrm{m}) ; 1 * \mathrm{~m} 1(/ \mathrm{rad} 1 * \mathrm{rad} 1 * 2.0=$ kRamseteB auto constexpr
rad;_1/ 0.7 = kRamseteZeta auto constexpr

64
65
66
67

## Subsystem Drive a Creating :3 Step

.proper code robot our writing start to time is it characterized, is drive our that Now code. robot our for framework basedcommand- the use will we before, mentioned As class. subsystem drive suitable a write to is step first our Accordingly,
seen be can )C++, Java( Project Example RamseteCommand the from class drive full The class. this writing in involved steps the describe will article the of rest The below.

Java

|  | ```;edu.wpi.first.wpilibj.examples.ramsetecommand.subsystems package ;edu.wpi.first.math.geometry.Pose2d import ;edu.wpi.first.math.kinematics.DifferentialDriveOdometry import ;edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds import``` |
| :---: | :---: |
| ge) next on (continues |  |

(ำ

> ;edu.wpi.first.wpilibj.ADXRS450_Gyro import ;edu.wpi.first.wpilibj.Encoder import ;edu.wpi.first.wpilibj.drive.DifferentialDrive import ;edu.wpi.first.wpilibj.examples.ramsetecommand.Constants.DriveConstants import ;edu.wpi.first.wpilibj.interfaces.Gyro import ;edu.wpi.first.wpilibj.motorcontrol.MotorControllerGroup import ;edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax import ;edu.wpi.first.wpilibj2.command.SubsystemBase import
> \{ SubsystemBase extends DriveSubsystem class public drive. the of side left the on motors The //
> = m_leftMotors MotorControllerGroup final private
> MotorControllerGroup ( new
> ), kLeftMotor1PortPWMSparkMax(DriveConstants. new )) ;kLeftMotor2PortPWMSparkMax(DriveConstants. new
> drive. the of side right the on motors The // = m_rightMotors MotorControllerGroup final private
> MotorControllerGroup( new
> ), kRightMotor1PortPWMSparkMax(DriveConstants. new
> )) ;kRightMotor2PortPWMSparkMax(DriveConstants. new
> drive s'robot The //
> m_ DifferentialDrive(m_leftMotors, new = m_drive DifferentialDrive final private
rightMotors) ; $\rightarrow$
encoder drive left-side The //
= m_leftEncoder Encoder final private
Encoder( new
,]0[kLeftEncoderPortsDriveConstants.
]1[kLeftEncoderPortsDriveConstants.
);kLeftEncoderReversedDriveConstants.
encoder drive right-side The //
= m rightEncoder Encoder final private
Encoder( new
]0[kRightEncoderPortsDriveConstants.
, ]1[kRightEncoderPortsDriveConstants.
) ;kRightEncoderReversedDriveConstants.
sensor gyro The //
ADXRS450_Gyro(); new = m_gyro Gyro final private
pose robot tracking for class Odometry //
m_odometry; DifferentialdriveOdometry final private
*/ DriveSubsystem. new a Creates **/
\{ ()DriveSubsystem public
voltages positive that so drivetrain the of side one invert to need We //
s'robot your how on Depending forward. moving sides both in result // instead. side left the invert to have might you constructed, is gearbox //
); true(setInvertedm rightMotors.
encoders the for pulse per distance the Sets // ); kEncoderDistancePerPulse(DriveConstants.setDistancePerPulsem_leftEncoder. ) ; KEncoderDistancePerPulse(DriveConstants.setDistancePerPulsem_rightEncoder.
(ㄴำ

page) next on (continues

## Competition Robotics FIRST





(ำํำ

(Source) C++

page) next on (continues


## Encoders Drive the Configuring

properly To drive. the of side each on wheels the of rotation the measure encoders drive The plugged are encoders the ports the things: two specify to need we encoders, the configure to access allowing methods write to need we Then, pulse. encoder per distance the and into, subsystem. the uses that code from values encoder the

## Ports Encoder

so: like constructor, encoder's the in specified are ports encoder The
Java
encoder drive left-side The //
$=m_{-}$leftEncoder Encoder final private
Encoder ( new
page) next on (continues

(Source) C++

> ]\},1kLeftEncoderPorts[ ],0m_leftEncoder\{kLeftEncoderPorts[ ]\},1kRightEncoderPorts[ ],0m_rightEncoder\{kRightEncoderPorts[

## Pulse per Distance Encoder

method. setDistancePerPulse encoder's the calling by specified is pulse per distance The edges), four (i.e. cycle encoder full a to refers "pulse" class, Encoder WPILib the for that Note that well, as Remember, config. SysId the in specified was that value the $1 / 4$ be will thus and meters! in measured be should distance the

Java
) ; KEncoderDistancePerPulse(DriveConstants.setDistancePerPulsem_leftEncoder. );kEncoderDistancePerPulse(DriveConstants.setDistancePerPulsem_rightEncoder.
(Source) C++
m_leftEncoder. SetDistancePerPulse(kEncoderDistancePerPulse.value()) ;
m_rightEncoder. SetDistancePerPulse(kEncoderDistancePerPulse.value());

Method Accessor Encoder
method: following the include we encoders, the by measured values the access To
per distance the configured we Because meters! in be must velocities returned The : : पारा factor conversion the apply automatically will getRate() calling above, encoders the on pulse perform must you class, Encoder WPILib's using not are you If meters. to units encoder from a by multiplying manually by or API vendor's respective the through either conversion this factor. conversion

|  | Java |
| :---: | :---: |
| robot. the of speeds wheel current the Returns ${ }^{* * /}$ |  |
|  |  |
| speeds. wheel current The @return * |  |
| \{ ()getWheelSpeeds DifferentialDriveWheelSpeeds public m_rightEncoder. (), getRateDifferentialDriveWheelSpeeds(m_leftEncoder. new return |  |
|  |  |
|  | ( ) ) ; getRate $\hookrightarrow$ |

(Source) C++

easier for object DifferentialDriveWheelSpeeds a in values encoder measured the wrap We on. later class RamseteCommand the with integration

## Gyroscope the Configuring

be then can (which heading robot's the of change of rate the measures gyroscope The turned first it when to relative heading robot's the of measurement a provide to integrated been has which , Board Gyro FRC ADXRS450 Devices Analog the use we example, our In on). years: several for parts of kit the in included

Java
ADXRS450_Gyro(); new = m_gyro Gyro final private
(Header) $\mathrm{C}++$

| sensor gyro The $/ /$ |
| ---: |
| m_gyro; ADXRS450_Gyro: :frc |

Method Accessor Gyroscope
method: following the include we gyroscope, the by measured heading current the access To

(Source) C++
$\left.\begin{array}{r}\{\text { const ()DriveSubsystem: :GetHeading degree_t: :units } \\ \text { m_gyro.GetRotation2d().Degrees(); return }\end{array}\right\}$

## Competition Robotics FIRST

## Odometry the Configuring

drive our up set to time is it configured, gyroscope and encoders our have we that Now readings. gyroscope and encoder the from position its compute automatically to subsystem class: DifferentialDrive0dometry the of instance member a create we First,

Java
pose robot tracking for class Odometry // m_odometry; DifferentialDriveOdometry final private
(Header) C++
pose robot tracking for class Odometry //
m_odometry; DifferentialDrive0dometry::frc

## Odometry the Updating

encoder the from readings new incorporate to updated regularly be must class odometry The is which method, periodic subsystem's the inside this accomplish We gyroscope. and iteration: loop main per once called automatically

Java
pose robot tracking for class Odometry //
m_odometry; Differentialdrive0dometry: :frc
Odometry the Updating
encoder the from readings new incorporate to updated regularly be must class odometry The
is which method, periodic subsystem's the inside this accomplish We gyroscope. and
iteration: loop main per once called automatically

## Method Accessor Odometry

method: following the include we pose, computed current robot's the access To
Java


|  | (); getPoseMetersm_odometry. return |
| :---: | :---: |
|  | (Source) C++ |
|  | \{ ()DriveSubsystem::GetPose Pose2d::frc m odometry.GetPose(); return |

## Method Drive BasedVoltage-

to voltage the set to us allows that method a - method additional one include must we Finally, The interface. MotorController the of method setVoltage() the using drive the of side each ourselves: it write must we so functionality, this include not does class drive WPILib default

Java




(Source) C++
$\left.\begin{array}{r}\text { \{right) volt_t::units left, volt_t: (unitsDriveSubsystem: :TankDriveVolts void } \\ \text { m_leftMotors.SetVoltage(left); } \\ \text { m_rightMotors.SetVoltage(right) ; } \\ \text { m_drive.Feed() } ;\end{array}\right\}$
method, set() ordinary the than rather method setVoltage() the use to important very is It our Since operation. during sag" "voltage battery for compensate automatically will this as identification measured on based are they (as meaningfulphysically- are voltages feedforward accuracy. their ensuring to essential is this data),

שלב 4: יצירה ומעקב אחרי מסלול
an write and trajectory a generate to time now is it written, subsystem drive our With
it. follow to command autonomous
the in this do will we structure project basedcommand- standard the per As the from method full The class. RobotContainer the of method getAutonomousCommand article the of rest The below. seen be can )C++ ,Java( Project Example RamseteCommand detail. more in method the of parts different the down break will


> ()); getInitialPose(exampleTrajectory.reset0dometrym_robotDrive.
> end. the at stop then command, following path Run //
> ));0,0(tankDriveVoltsm_robotDrive. >-(()andThenramseteCommand. return
(Source) C++

> \{ ()RobotContainer::GetAutonomousCommand CommandPtr::frc2 fast too accelerate t'don we ensure to constraint voltage a Create // autoVoltageConstraint\{ DifferentialDriveVoltageConstraint::frc \{>meters::units<SimpleMotorFeedforward::frc
> ka\},::DriveConstants kv,::DriveConstants ks,::DriveConstants
> V\}; 10 kDriveKinematics,::DriveConstants
> trajectory for config up Set //
> kMaxSpeed, ::config\{AutoConstants TrajectoryConfig::frc kMaxAcceleration\};::AutoConstants
> obeyed actually is speed max ensure to kinematics Add //
> kDriveKinematics) ;::config.SetKinematics(DriveConstants constraint voltage the Apply //
> config.AddConstraint(autoVoltageConstraint);
> meters. in units All follow. to trajectory example An // GenerateTrajectory(::TrajectoryGenerator::frc = exampleTrajectory auto direction +X the facing origin the at Start // deg\}, $0 \mathrm{~m}, 0 \mathrm{~m}, 0 \mathrm{Pose} 2 \mathrm{~d}\{:$ :frc
> path curve 's' an making waypoints, interior two these through Pass //
> m\}\}, 1- m, 2Translation2d\{::frc m\},_1 m,_1Translation2d\{::frc\{ forward facing started, we where of ahead straight meters 3 End // deg\}, 0 m, 0 m, 3Pose2d\{::frc config the Pass //
> config);

RamseteCommand(:: ramseteCommand\{frc2 CommandPtr::frc2
,\} m_drive.GetPose(); return \{ ]this[ exampleTrajectory,
kRamseteB, ::RamseteController\{AutoConstants::frc kRamseteZeta\},::AutoConstants
\{>meters::units<SimpleMotorFeedforward: :frc
ka\},::DriveConstants kv,::DriveConstants ks,::DriveConstants
kDriveKinematics,::DriveConstants
,\} m_drive. GetWheelSpeeds(); return \{ ]this[
,\}0 , 0 kPDriveV̄el,::PIDController\{DriveConstants::frc2
,\}0 , 0 kPDriveVel, ::PIDController\{DriveConstants::frc2
,\} right); m_drive. TankDriveVolts(left, \{ right) auto left, auto](this[
m_drive\}) \}; \&\{
trajectory. the of pose starting the to odometry Reset //
m_drive.Reset0dometry(exampleTrajectory.InitialPose());
move(ramseteCommand)::std return
BeforeStarting(.
)) ;\}\{ ,\} V); 0 V, 0m_drive.TankDriveVolts( \{ ]thisRunOnce([::cmd::frc2

Constraints Trajectory the Configuring
that ensure will which trajectory the for parameters configuration some set must we First, followable. is trajectory generated the

## Constraint Voltage a Creating

the that ensure will This constraint. voltage a is need will we configuration of piece first The achieving of capable is it than faster go to robot the commands never trajectory generated supply: voltage given the with

Java

> fast too accelerate t'don we ensure to constraint voltage a Create // $=$ autoVoltageConstraint var
(Source) C++

> fast too accelerate t'don we ensure to constraint voltage a Create //
> autoVoltageConstraint\{ DifferentialDriveVoltageConstraint::frc
> \{>meters::units<SimpleMotorFeedforward::frc
> ka\},: :DriveConstants kv, ::DriveConstants ks,::DriveConstants
> V\}; 10 kDrivekinematics, ::DriveConstants
of voltage battery nominal the than rather 10 V , to voltage maximum the set we that Notice operation. during sag" "voltage with deal to "headroom" some us gives This 12V.

## Configuration the Creating

instance, TrajectoryConfig our create can we constraint, voltage our have we that Now constraints: path our of all together wraps which

Java

| trajectory for config Create // = config TrajectoryConfig TrajectoryConfig( new kMaxSpeedMetersPerSecondAutoConstants. kMaxAccelerationMetersPerSecondSquaredAutoConstants. obeyed actually is speed max ensure to kinematics Add // ) kDriveKinematics (DriveConstants.setKinematics. constraint voltage the Apply // (autoVoltageConstraint); addConstraint. |
| :---: |

```
trajectory for config up Set //
    kMaxSpeed,::config{AutoConstants TrajectoryConfig::frc
kMaxAcceleration};::AutoConstants
    obeyed actually is speed max ensure to kinematics Add //
    kDriveKinematics);::config.SetKinematics(DriveConstants
                                    constraint voltage the Apply //
    config.AddConstraint(autoVoltageConstraint);
```


## Trajectory the Generating

For trajectory. our generate to ready now are we hand, in configuration trajectory our With specify will we means this - trajectory cubic" "clamped a generating be will we example, this as known (also waypoints interior for only positions and endpoints, the at poses robot full meters. in are distances all elsewhere, As points"). "knot

Java

| meters. in units All follow. to trajectory example An // |
| ---: |
| = exampleTrajectory Trajectory |
| (generateTrajectoryTrajectoryGenerator. |


also can one above, outlined as roboRIO the on trajectory the generating of Instead : : पारा .JSON PathWeaver a import

## RamseteCommand the Creating

the that ensures This trajectory. the of pose starting the to pose robot's our reset first will We same. the are position starting trajectory's the and system coordinate the on location robot's

Java

| trajectory. the of pose starting the to odometry Reset // |
| ---: |
| ()); getInitialPose(exampleTrajectory. reset0dometrym_robotDrive. |

For trajectory. the in pose first the match pose robot initial the that important very is It with $(0,0)$ of position a at starting reliably be will robot the example, our of purposes the coordinate your base to desirable not probably is it however, use, actual In .0 of heading a trajectory the and robot the both for position starting the so and position, robot the on system defined been has that trajectory a use to wish you If value. other some to set be should the to relative be to it transform can you situation, a such in coordinates centricrobot- in about information more For ).C++ ,Java( method transformBy the using pose current robot's .Trajectories Transforming see trajectories, transforming
follow will executed, when that, command a create can we trajectory, a have we that Now )C++ ,Java( class RamseteCommand the use we this, do To trajectory. that

Java
= ramseteCommand RamseteCommand

## RamseteCommand( new

exampleTrajectory,
m_robotDrive::getPose,
AutoConstants. , kRamseteBRamseteController(AutoConstants. new
kRamseteZeta $\hookrightarrow$
SimpleMotorFeedforward( new
,ksVoltsDriveConstants.
kvVoltSecondsPerMeterDriveConstants.
), kaVoltSecondsSquaredPerMeterDriveConstants.
kDriveKinematicsDriveConstants.
m robotDrive::getWheelSpeeds,
),0 ,0 ,kPDriveVelPIDController(DriveConstants. new
), 0 , 0 , kPDriveVelPIDController(DriveConstants. new callback the to volts passes RamseteCommand //
m_robotDrive::tankDriveVolts,
m_robotDrive);
(Source) C++

| RamseteCommand(::ramseteCommand\{frc2 CommandPtr::frc2 ,\} m_drive.GetPose(); return \{ ]this[ exampleTrajectory, <br> kRamseteB, ::RamseteController\{AutoConstants::frc <br> kRamseteZeta\},::AutoConstants <br> \{>meters::units<SimpleMotorFeedforward::frc <br> ka\},::DriveConstants kv,::DriveConstants ks,::DriveConstants <br> kDriveKinematics,::DriveConstants <br> \} m_drive.GetWheelSpeeds(); return \{ ]this[ <br> ,\}0 , 0 kPDriveVel,::PIDController\{DriveConstants::frc2 |
| :---: |

page) next on (continues
argument:by-argument- it through go we'll so substantial, fairly is declaration This
command the pass we accordingly, followed; be to trajectory the is This trajectory: The 1. steps. earlier our in constructed just we trajectory the
method subsystem drive the to lambda) (or reference method a is This supplier: pose The 2. to measurement pose current the needs controller RAMSETE The .pose the returns that outputs. wheel required the determine
will that )C++, Java( object RamseteController the is This controller: RAMSETE The 3. and pose measured current the translates that computation followingpath- the perform setpoint. speed chassis a into state trajectory
will that )C++ Java( object SimpleMotorFeedforward a is This feedforward: drive The 4. gains feedforward the with calculation feedforward correct the perform automatically tool. identification drive the from obtained we that ) kA and $\mathrm{kV}, \mathrm{kS}$ (
that )C++, Java( object DifferentialDriveKinematics the is This kinematics: drive The 5 . speeds chassis convert to used be will and file, constants our in earlier constructed we speeds. wheel to
subsystem drive the to lambda) (or reference method a is This supplier: speed wheel The 6. speeds wheel the returns that method
track will that )C++, Java( object PIDController the is This PIDController: sideleft- The 7. drive the from obtained we that gain $P$ the using setpoint, speed wheel sideleft- the tool. identification
will that )C++, Java( object PIDController the is This PIDController: sideright- The 8. the from obtained we that gain $P$ the using setpoint, speed wheel sideright- the track tool. identification drive
subsystem drive the to lambda) (or reference method a is This consumer: output The 9. .motors drive the to outputs voltage the passes that method
does command the ensure to included itself, subsystem drive the is This drive: robot The 10. drive. the uses that command other any as time same the at drive the on operate not
followingpath- the after sequence in command "stop" final a append we that note Finally, trajectory. the of end the at moving stops robot the that ensure to command,

Video
this: like something look should routine autonomous robot's your well, gone has all If

PathWeaver 27.1.3
useful. more potentially as PathPlanner project driven community a find may Users : user intuitive an with applications pathplanning traditional upon improves PathPlanner for support no offers WPILib that Note support. following path swerve and interface projects. community

## PathWeaver to Introduction

useful. more potentially as PathPlanner project driven community a find may Users : Clll user intuitive an with applications pathplanning traditional upon improves PathPlanner for support no offers WPILib that Note support. following path swerve and interface projects. community
impressive do robots when exciting is it match; the of section important an is Autonomous faster The somewhere. go to need usually robot the score, to order In autonomous. in things for method traditional The points! score can it sooner the location, that at arrives robot the straight a in driving and angle, certain a to turning line, straight a in driving is autonomous time of amount negligiblenon- a spends robot the but fine, works approach This again. line turn. and line straight each after again starting and stopping
in driving of Instead planning". "path called is autonomous to approach advanced more A driving moves, continuously robot the complete, is line the once turning and line straight a time. stoppage turning reduce can This motion. likecurve- a with follow and generate to teams by used be can that suite generation trajectory a contains WPILib trajectories visualize and generate to how over go will articles of series This trajectories. the visit please trajectories, following on tutorial comprehensive a For PathWeaver. using .tutorial trajectory endto-end-
you that recommend We PathWeaver. use to required is code following Trajectory : can you there From paths. simple with working that get and following Trajectory with start PathWeaver. by generated paths complicated more testing to on continue

Project Pathweaver a Creating
single a for paths The follow. to robot a for paths the draw to used tool the is PathWeaver project. PathWeaver a in stored are program

## PathWeaver Starting

Visual the of corner the of right top the in icon ellipsis the on clicking by started is PathWeaver icon. the see to project WPILib the from file source a select must You interface. Code Studio below. shown as "PathWeaver" on click then and tool" "Start on click Then

creation project the out fill then and project" "Create on click project, PathWeaver a create To information more display will form the in fields the of any over hovering that Notice form. required. is what about
the contains that directory project level top the normally is This Directory: Project expected the is directory this Choosing program. robot your for files src and build.gradle directories correct the in files output the all locate to it cause will and PathWeaver use to way robot. your to deployment path automatic for
robot. your to deployment for stored are paths the where directory The directory: Output (as step previous the in project robot our of folder project level top the specified you If optional. is directory output the in filling recommended)
overlay image field correct the cause will used) being is game FRC® (which game The Game: described be will procedure the and images field own your create also can You used. be to series. this in later
measurements field the for and robot your describing in used be to units The Unit: Length PathWeaver. using trajectories visualizing when
are you If waypoints. and paths the exporting when used be to units The Unit: Export Same Choosing .Meters Always choose should you then Trajectories, WPILib use to planning above. Unit Length as units same the in export will Project as $\sim 10$ at runs kitbot The tracking. trajectory for robot the of speed max The Velocity: Max $. m / s e c \sim 3$ is which $\mathrm{ft} / \mathrm{sec}$
a Using tracking. trajectory for robot the of acceleration max The Acceleration: Max characteristics. drivetain's your know don't you if start to place good a is $m / \sec ^{2} 1$ conservative to used is This robot. your of wheels right and left the between distance The Base: Wheel around velocity max specified the over go will drive differential a on wheel no that ensure turns.

Interface User PathWeaver

following: the of consists interface user PathWeaver The window. PathWeaver the of most up takes which corner, left top the in area field The 1. program. the of part this on drawn are Trajectories pane. bottom the in displayed are waypoint selected currently the of properties The 2. point. each at tangents the with along Y, and X the include properties These
the of side right upper the on displayed is mode) "autonomous" an (or paths of group A 3. mode. auto single a in trajectories the of all seeing of way convenient a is This window. the of side right lower the in displayed are follow might robot a that paths individual The 4 . window.
files JSON These format. JSON a in trajectories the export will button Paths" "Build The 5. trajectory. the follow to code robot the from used be can properties. project the edit to you allows button Project" "Edit The 6.
a depict images following The trajectories. visualize to is feature primary PathWeaver's autonomous the during take might robot a that trajectory a represents that trajectory smooth be to driving complex more allow can that waypoints of number any have can Paths period. the with depicted stop) and start the (including waypoints 3 are there case this In described. heading robot a as well as field the on position Y X, a of consists waypoint Each icons. triangle
lines. tangent Y and X the as described
trajectory default A window. path the in button (plus) + the click trajectory, a creating start To desire. you that points end and start proper the have not does probably that created be will Changing points. end and start the for lines) (teal vectors tangent the shows also path The trajectory. the of shape the changes vectors tangent the of angle the
this in that Notice locations. desired the to trajectory the of points end and start the Drag the drag can We game. 2019 the for spot legal a in start not does trajectory default the case, HAB. the on start robot the make to waypoint initial

## Heading Waypoint a Changing

final the Here, line. (teal) vector tangent the dragging by changed be can heading robot The rocket. the face to rotated was and pose final desired the to dragged was waypoint

## Path Robot the Control to Waypoints Additional Adding

is that path the affect can vectors tangent their changing and waypoints additional Adding this In path. the of middle the in dragging by added be can waypoints Additional followed. path. the of middle the in waypoint another added we case,
manipulated. being is trajectory the when changing from them prevents lines tangent Locking moved. is point the when locked be also will lines tangent The

## Waypoints of control Precise More

is it follow, should robot the that trajectories draw to simple it makes PathWeaver While setting case, this In placed. be should waypoints the where set precisely to hard sometimes from come might which value Y and X the entering by done be can locations waypoint the a when fields $Y$ and $X$ the in entered be can points The field. the of model CAD accurate an selected. is waypoint

## Routines Autonomous Creating

path one where visualizing of way a are Groups) Path as known (also Routines Autonomous does path, one drives program robot the when is example An starts. one next the and ends piece, game a obtain to location another to drives completed, has path the after something the in path each of points end and start the that important It's it. score to again back then autonomous single a to paths the all adding By points. start and end common have routine can path each Then shown. be will routine that in paths all routine, the selecting and routine paths. the all viewing while edited be

## Routine Autonomous an Creating

Paths the from Paths the drag Then Routines. Autonomous underneath button + the Press Routine. Autonomous your into section
easy it making color different a in drawn be will routine autonomous an to added path Each path. each for is name the what out figure to follows: as works selection routine, a in paths multiple are there If
the see to easy it making routine the in paths all displays routine the Selecting 1. the while edited be can paths the of any on waypoint Any them. between relationship waypoint. the containing path the change only will it and selected is routine
to easy it making path, that display only will routine the in path single a on Selecting 2. if interface the in clutter preventing and doing are waypoints the all what see precisely other. each to close are or over cross paths multiple

## JSON PathWeaver a Importing

follow to code robot into JSON PathWeaver a import to used be can class TrajectoryUtil The trajectory endto-end- the visit Please trajectory. the importing over go will article This it. trajectory. the following on information more for tutorial
in methods static (C++) FromPathweaverJson / (Java) fromPathweaverJson The roboRIO the on stored file JSON a from trajectory a create to used be can TrajectoryUtil system. file
the for coordinates the GUI, simulator the in view Field2d the with compatible be To : : पार was coordinatey- the of range the 2021), (before Previously changed. have JSON exported feet 27 to feet 0 from is coordinatey- the of range the now, whereas feet 0 to feet 27- from affect not should This top). the at being feet 27 and screen the of bottom the at being 0 (with before trajectory the of pose starting the to odometry their resetting correctly are who teams following. path
be automatically will which src/main/deploy/paths in files JSON places PathWeaver : Clll using accessed be can and home/lvuser/deploy/paths/in system file roboRIO the on placed below. shown as getDeployDirectory

Java

path. your of name the with replaced be should YourPath above, examples the In
iteration loop one than more take can Java in file from JSON PathWeaver a Loading : पढ़ाप startup. on paths these load robot the that recommended highly is it so

## PathWeaver to images field Adding

example. an as game 2019 the using image field own your adding for instructions are Here \%USERPROFILE\%/ or macOS and Linux on ~/PathWeaver/Games the from loaded are Games specificgame- a either in be can files The Windows. on directory PathWeaver/Games as layout same the follow must file ZIP The directory. Games the in file zip a in or subdirectory, subdirectory). a in be (cannot file ZIP the of root the in be must file JSON the directory; game a
field Other .here definition field Space Deep Destination FIRST example the Download repository GitHub allwpilib the in available are definitions
PathWeaver/~
Games/
Game Custom/
custom-game.json
field-image.png
OtherGame.zip

Format JSON

should file image the simplicity, For file. JSON the to relative is image field the to path The file. JSON the as directory same the in be
defining pixels rightbottom- and lefttop- the of coordinates Y and X the are corners field The playing rectangularNon- image. field the in area playable the of boundary rectangular the supported. not are areas
units. provided the in field the of area playable the of length and width the is size field The or yards, feet, inches, mm, cm, meters, in be can and insensitivecase- are units field The and"m"are "meter","meters", (e.g. supported are abbreviations and plural, Singular, miles. meters) specifying for valid all
recommended) is pixels 20 of (minimum border a image, field new a making When : : पार accessible. are edge field the on waypoints that so outside the around left be should


## Introduction roboRIO 28.1

basic a has roboRIO The mind. in FIRST with specifically designed is roboRIO The more is but array) gate programmable (field FPGA + processors TimeReal- a of architecture
industry. in used systems similar some than smaller and lighter, powerful, inter- for ports inbuilt- includes that controller robotics reconfigurable a is roboRIO The pulse Ethernet, USB, RS232, (SPI), interfaces peripheral serial (I2C), circuits integrated actuators and sensors common the connect quickly to relays and (PWM), modulation width a and accelerometer, onboard an buttons, LEDs, features controller The robotics. in used and processor Cortex-A9 timereal- ARM coredual- onboard an has It port. electronics custom FPGA. Xilinx customizable
the in and Manual User roboRIO the in found be can roboRIO the on information Detailed .specifications technical roboRIO

1 roboRIO roboRIO: the image first must you roboRIO, your to programs deploying Before

## Dashboard Web roboRIO

checking for used be can that roboRIO the into built webpage a is dashboard web roboRIO The roboRIO. the of settings updating and status
Google as such browsers Alternate (compatibility). IE using issues encounter may Users experience. best the for recommended are Firefox Mozilla or Chrome

## WebDash the Opening

the into roboRIO the of address the enter and browser web a open dashboard, web the open To team your is \#\#\#\# where FRC.local\#\#\#\#-"roboRIO- or USB, for (172.22.11.2 bar address details more for document this See interface). either for zeroes, leading no with number, Configurations IP networking: roboRIO and mDNS about

## Tab Configuration System <br> 28.2.2

main 5 has which tab Configuration System the is dashboard web the of screen home The sections:
web the of sections different to navigate to you allows section This - Bar Navigation discussed are bar navigation this through accessible pages different The dashboard. below.

The Settings. System the about information contains section This - Settings System tool Imaging roboRIO the use instead manually, modified be not should field Hostname such information contains section This number. team your on based Hostname the set to version. image and version firmware IP, device the as are These roboRIO. the for settings Startup contains section This - Settings Startup below stepsub- the in described
resources system of snapshot a provides section This - pictured) (not Resources System load. CPU and memory as such
172.22.11.2: System Co

Save


Settings
Hostname
IP Address

DNS Name
Vendor
Model
Serial Number
firmware Versi
Operating Syste
Status
System Start Ti Image Title
Image Version
Comments

Locale
VISA Resource

Update Firmw

Startup Settir
Force Safe
Vnable Con
$\square$ Disable RT
Disable FPG
(7) Enable Sect

T Labview Pr

1

Settings Startup

with used be can This Mode. Safe into controller the Forces - Mode Safe Force the on button Reset the use to recommended is it but issues, imaging troubleshooting the hold applied, already power (with instead Mode Safe into device the put to roboRIO
unchecked. is Default seconds). 5 for button rest
Console a as used be to port RS232 boardon- the enables This - Out Console Enable talk to port this using are you unless enabled this leave to recommended is it output. to connected be not should and levels RS232 uses port this that (note device serial a to checked. is Default levels). TTL use which microcontrollers many
This startup. at running from code disables box this Checking - App Startup RT Disable program new to unresponsive is roboRIO the find you if troubleshooting for used be may unchecked is Default download.
checked. be not should box This - App Startup FPGA Disable
checked. box this leave to recommended is It - (sshd) Server Shell Secure Enable roboRIO. the on console a access remotely to way a is which SSH enables setting This the onto code loading from teams Java and C++ prevent will box this Unchecking roboRIO.
setting This checked.** box this leave to recommended is It **- Access Project LabVIEW roboRIO. the access to projects LabVIEW allows

## Configuration Network

not is It adapters. network roboRIO's the of configuration the shows page This roboRIO on information more For page. this on settings any change to recommended
article: this see networking

## FTP roboRIO

how describes article This enabled. FTP anonymous and SFTP both has roboRIO The : : पारा system. file roboRIO the access to each use to

## SFTP

28.3.1
using be will you Because system. file roboRIO the access to way recommended the is SFTP have always should over copied files under, run will program your that account same the code. your with compatible permissions

## Software

using discuss will article This SFTP. for programs available freely of number a are There the extrapolate or proceeding before FileZilla install and download either can You FileZilla. choice. of client SFTP your to below directions
roboRIO the to Connecting
roboRIO: your to connect To
box "Host" the in frc.local)TEAM-(roboRIO- name mDNS the Enter under) runs program your account the is (this box Username the in "lvuser" Enter
blank box Password the Leave port) default SFTP (the box port the in "22" Enter

Quickconnect Click

## filesystem roboRIO the Browsing


right The directory. \homeไlvuser the to open will Filezilla roboRIO, the to connecting After computer). (your system local the is pane left the roboRIO), (the system remote the is pane are you directory current the to hierarchy the you shows pane each of section top The click simply files, transfer To directory. the of contents shows pane bottom the browsing, and click right roboRIO, the on directories create To other. the to side one from drag and

Directory". "Create select

FTP 28.3.2
described as SFTP use to recommended is It enabled. FTP anonymous has also roboRIO The software additional no with pinch a in work may FTP need you what on depending but above, type bar, address the In window. Explorer Windows a open roboRIO, the to FTP To required. system file roboRIO the browse now can You enter. press and
computer. your on files browse would you like just

## SSH and Accounts User roboRIO

programming FRC® typical for required not topics advanced contains document This : Cllll
for used two the highlight will article this accounts, of number a contains image roboRIO The the to connect to how describe also will It purpose. their about detail some provide and FRC

SSH. over roboRIO

## Accounts User roboRIO

interest primary of two are there but accounts, user of number a contains image roboRIO The FRC. for

## Admin

or files OS manipulate to used be can and system the to access root has account "admin" The modification the for allows it as account this using when caution take should Teams settings. credentials The roboRIO. the of system operating the corrupt may that files and settings of are: account this for
admin Username:
Password:
blank. intentionally is password The :

The languages. three all for code user run to used account the is account "lvuser" The account this use to wish may Teams changed. be not should account this for credentials changes settings or files any that ensure to roboRIO the with working when sftp) or ssh (via under. run will code their as account same the on made being are

> prevent will "admin" or "lvuser" either for passwords ssh default the Changing : $\begin{array}{r}\text { coder uploading from teams Java and } \mathrm{C}++\end{array}$ coder

## SSH

referred broadly When communication. data secure for used protocol a is SHell) (Secure SSH to refers generally it roboRIO) the on running one the as (such system Linux a regarding to execute to used be can This protocol. SSH the using console line command the accessing https: PuTTY: is SSH for used be can which client free A system. remote the on commands
//www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

## Putty Open

Category:
Session
Logging
Terminal
Keyboar
-. Bell
.... Features

- Window

Appeara

- Behavio
- Translati
- Selectior
.... Colours
Connection
... Data
Proxy
... Telnet
Rlogin
†- SSH
-... Serial
settings: following the set Then prompt). security any at OK (clicking Putty Open shows example number, team your is TEAM (where frc.localTEAM-roboRIO- Name: Host 40) team

SSH Type: Connection
prompt a see you If connection. the open to Open Click defaults. at left be can settings Other
OK. click keys, SSH about
is roboRIO your If hostname. the as 172.22 .11 .2 use can you USB over connected are you If Ethernet/wireless. over connected if hostname the as IP that use can you IP static a to set

press then description) for above (see username desired the enter prompt, the see you When blank). is accounts both for (password enter press prompt password the At enter.

## Draw Current Understanding and Brownout roboRIO

system control other and itself preserve to voltage battery maintain help to order In staged a contains roboRIO the events, draw current high during radio the as such components about information provides scheme, this describes article This scheme. protection brownout functionality new the use to how describes and draw, current system for planning proactively happen do they if events brownout understand to Viewer File Log DS the as well as PDP the of robot. your on

## Protection Brownout roboRIO

28.5.1
input the preserve to attempt to scheme protection brownout staged a uses roboRIO The the in resets device prevent to order in components system control other and itself to voltage low. dangerously voltage battery the pulling draws current large of event

# drop output 6v-1 Stage 

6.8V - Trigger Voltage
drop. to start will pins PWM the on output 6 V the 6.8 V , below drops voltage the When

# Disable Output-2 Stage 

6.3V - Trigger Voltage
state. protection brownout the enter will controller the 6.3V, below drops voltage the When occurred: has condition this that show will indicators following The Amber turn will roboRIO the on LED Power red turn will Station Driver the on display voltage the of Background Brownout Voltage to change will Station Driver the on display Mode 1. by counter fault 12 V the increment will DS the of tab CAN/Power The log. DS the in event brownout a record will DS The voltage: battery the preserve to attempt to steps following the take will controller The value neutral their set have which outputs PWM For disabled. be will outputs PWM is output the before sent be will pulse neutral single a WPILib) in controllers motor (all disabled.
5 V the pins, PWM the on outputs 6 V the includes (This disabled Rails User $3.3 \mathrm{~V} 5 \mathrm{~V}, 6 \mathrm{~V}$, SPI the in pins 3.3 V the bank, Analog the in pins 5 V the bank, connector DIO the in pins bank) MXP the in pins 3.3 V and 5 V the and bank I2C and

ZHigh- to go outputs as configured GPIO low) (driven disabled are Outputs Relay command disable explicit an sent are controllers motor basedCAN-
Pneumatic REV and Module Control Pneumatics CTRE the as such Devices Pneumatic disabled are Hub
7.5V than greater to rises voltage the until state this in remain will controller The brownout the of stage next the for trigger the below drops or

## Blackout Device - 3 Stage

4.5V - Trigger Voltage
depends and this than lower be may voltage exact The blackout. may device the 4.5 V Below device. the on load the on
the when 4.65 V above rises voltage the until state this in remain will controller The sequence. boot normal the begin will device

Planning Draw Current Proactive - Brownout Avoiding

PLOT 1 - AM

your of draw current the for plan proactively to is condition brownout a avoiding to key The complex a be can This budget. power of form some create to is this do to way best The robot. most to effort an in time and draw current estimated both quantify to attempts that document it or match, a of end the at state battery therefore and usage power understand completely
this: do To usage. current of inventory simple a be can
here defined loosely being sustained (with draw current "sustained" max the Establish budget. power the creating of part difficult most the probably is This momentary). not as is volts $7+$ of voltage a maintaining while sustain can battery a draw current exact The measuring for article this (see health battery as such factors of variety a on dependent terminal the ,sheet data 12 NP 18 - the in shown As charge. of state and health) battery draw current as especially decreases, charge of state as steep very gets chart voltage battery new brand a (54A) load continuous 3CA at that shows datasheet This increases. over of voltage terminal a maintaining while minutes 6 over for run continuously be can System Drive 234s Team from permission with (used above image the in shown As 7V. second a than more for 240A drawing battery, fresh a with even ), document Testing sustained our setting on bounds some us gives This issue. an cause to likely is two or 180A. at limit our set we'll exercise, this of purposes the For draw. current game main manipulator, drivetrain, as such robot your of functions different the out List etc. mechanism,
run you that find likely will You functions. these to current available your assigning Start their slip to torque enough have to drivetrain their gear teams Many quickly. pretty out that drivetrain, the on motors 4 have we If motor. per draw current of 50A40- at wheels put to need may we that means This budget! power our exceeds, even or most, up eats used be be) to need (and can functions what understand and scenarios few a together current the limit to need really you that mean will this cases, many In time. same the at
trying as (such drivetrain the out maxing is robot your if/while functions other the of draw for drivetrain a of requirements current "driving" the Benchmarking something). push to factors many on depends it as complex, more little a is scenarios alternative these of some for numbers Current efficiency. and gearing, weight, robot motors, of number as such function the complete to required power the calculating by done be can functions other determining by or designed) been not has mechanism the (if efficiency estimating and current the determine to curve currenttorque- the using and motor the on load torque the motors. the of draw
enforcing consider analysis, your in functions exclusive mutually determined have you If (covered PDP the of monitoring current the use also may You software. in exclusion the exclusions or limits output provide to program robot your in below) detail more in over is current drivetrain the when motor mechanism a run don't as (such dynamically
Y). over is current drivetrain the when output half to up run motor the let only or X

## Brownout Settable 28.5.3

as 6.3 V at fixed is It voltages. brownout custom support not does 1.0 roboRIO NI The above. 2 Stage in mentioned
default The level. brownout settable software a for option the adds 2.0 roboRIO NI The 6.75 V . is 2.0 roboRIO the of 2 ) (Stage level brownout

Java


## PDP/PDH the using Draw Current Measuring

extract to PDP/PDH and roboRIO the with conjunction in works Station Driver FRC® The under still is data this for viewer A PC. DS your on it log and PDP/PDH the from data logged development.
panel front LabVIEW a logging, manual and code robot their use can teams meantime, the In developed. are mechanisms as robot their on draw current visualize to SmartDashboard the or Currents PD Get the using channel PDP/PDH a on current the read can you LabVIEW, In class PowerDistribution the use teams, Java and C++ For pallet. Power the on found VI (easiest time over information this Plotting article. Distribution Power the in described as provide can indicator Graph a using by SmartDashboard the with or Panel Front LV a with mechanisms locate can or budget power your update and against compare to information incorrect calculation, load incorrect to (due expected as performing be to seem not do which binding). as such issues mechanism or assumptions, efficiency

and DS the of tab CAN\Power the on clicking by is brownout a identify to way easiest The the after Log Station Driver the review can you Alternately, count. fault 12V the checking orange bright a with brownouts identify will log The Viewer. Log Station Driver the using fact benchtop a with induced were brownouts these that (note above image the in as such line, robot). FRC typical a on brownouts of behavior and duration the reflect not may and supply

## Mode Safe using roboRIO a Recovering

using recovered be cannot it that point the to corrupted become may roboRIO a Occasionally the allow may Mode Safe into roboRIO the Booting process. imaging and boot normal the imaged.re- successfully be to device
following card SD the Reimaging 2. roboRIO the to applicable not are steps These device. the reformat fully will process imaging card microSD 2.0 roboRIO

Mode Safe into Booting

## roboRIO the Recovering

Imaging in described as Tool Imaging roboRIO the using by imaged be now can roboRIO The .roboRIO your

## Mode Safe About 28.6.3

Disk. RAM a into system operating the of copy separate a boots roboRIO the Mode, Safe In While corrupted. is OS the of copy normal the if even roboRIO the recover to you allows This device the accessing by made changes as (such OS the to made changes any Mode, Safe in disk. on stored OS the of copy normal the to persist not will Serial) or SSH via

roboRIO. the to code robot of deployment the powers that mechanism the is GradleRIO This system. management build and dependency Gradle popular the on built is GradleRIO workflow. their enhance to use can teams that configurations advanced highlights section

$$
\text { Code Robot with Libraries External Using } 29.1
$$

is It code! robot your with behavior unintended have may libraries external Using : : पार्य doing! are you what of aware are you unless recommended not
code. robot their with usage for libraries C++ or Java external add to want might team a Often that options the or dependencies, Gradle your to libraries Java adding highlights article This have. teams C++

Java 29.1.1
to going not likely are (JNI) libraries native on rely that dependencies external Any
repositories required the add simply You dependencies. external add to simple quite is Java .dependencies and
You file. build.gradle the in block \{\} repositories a have not do default by projects Robot following: the add please block, \{\} dependencies the Above yourself. this add to have will
$\square$
is import to want you library the repository whatever with replaced be can mavenCentral() the adding by done is This itself. library the on dependency the add to have you Now using.

Apache adding showcases example below The block. \{\} dependencies your to line necessary project. Gradle your to Commons
$\square$
work not may Intellisense downloaded. are dependencies the ensure and build a run you Now ran! is build a until properly

$$
\mathbf{C + + 2 9 . 1 . 2}
$$

for compile to needing to due trivialnon- is project robot your to dependencies C++ Adding options. of couple a have You roboRIO. the project. robot your into library wanted the of code source the Copy vendordep. a create and example an as template vendordep the Use 2.

## Code Source Copying

then can You project. robot your into headers and/or source necessary the copy Simply below: like args platform necessary any configure

$$
\begin{aligned}
& \text { \{ configure.) Zinuxx86-64""(named.platformConfigs.nativeUtils } \\
& \text { Zibrary filesystem C++ in Zinks // )'Zstdc++fs-'(add.args. Tinker.it }
\end{aligned}
$$

## Vendordep a Creating

.repository vendordep the in instructions the follow Please

## Actions GitHub using Code Robot for CI up Setting

$\qquad$
pushed is that code test to able being is environment team a in working of aspect important An developer lead or manager project a example, For GitHub. as such repository central a to ensure to want might or request pull a merging before tests unit of set a run to want might order. working in is repository a of branch main the on code all that on tests unit run and build to individuals and teams for allows that service a is Actions GitHub commonly more are services of types These requests. pull on and branches various on code GitHub setup to how you show will tutorial This services. Integration" "Continuous as known projects. code robot on Actions
an For GitHub. on hosted being is code robot team's your that assumes tutorial This : : पार्य .guide introduction this see please GitHub, and Git to introduction

## Action the Creating

this, create To file. YAML a in stored are process CI the out carrying for instructions The workflow a up "set the on click Then repository. your of top the at tab "Actions" the on click hyperlink. yourself"
following: the with text default the all Replace editor. text a with greeted be now will You

page) next on (continues

## Competition Robotics FIRST

|  | code robot on tests run and Compile : name build gradlew/ : run |  |
| :---: | :---: | :---: |

the of corner righttop- the on button commit" "Start the clicking by changes save Then, the click Then, so. do to wish you if message commit default the amend can You screen. button. file" new "Commit green
pull a or main to pushed is commit a whenever build a run automatically now will GitHub on tab "Actions" the on click can you build, any of status the monitor To opened. is request screen. the of top the
is line each of understanding strict a Although above. file YAML the of breakdown a is Here potential debug and features more add you help will understanding of level some required, not arise. may that issues
request pull or push on workflow the Triggers run. will action the when Controls \# branch. main the for only but events \# : on
:push
] main [ : branches
pull_request
] main [ :branches
when run will action the Currently, run. will Action the when dictates code of block This main. against opened are requests pull when or main to pushed are commits

$$
\left.\left.\begin{array}{l}
\text { uin or sequentially run can that jobs more or one of up made is run workflow A \# } \\
\text { parallel } \\
\text { : jobs }
\end{array}\right] \begin{array}{r}
\text { build"" called job single a contains workflow This \# } \\
\text { :build }
\end{array}\right\} \begin{array}{r}
\text { on run will job the that runner of type The \# } \\
\text { ubuntu-latest :runs-on }
\end{array}
$$

after (one sequentially either run that jobs more or one a of made is workflow Action Each job. "build" one only is there workflow, our In time). same the (at parallel in or another) virtualized a in and machine virtual Ubuntu an on run to job the want we that specify We toolchains. roboRIO and compiler C++ JDK, the contains that container Docker

$$
\begin{aligned}
& \text { job the of part as executed be will that tasks of sequence a represent Steps \# } \\
& \text { :steps } \\
& \text { it access can job your so GITHUB_WORKSPACE,\$ under repository your Checks-out \# } \\
& \text { actions/checkout@v3 : uses } \\
& \text { ownership. dubious under not and safe repository the Declares \# } \\
& \text { directories safe git to repository Add : name } \\
& \text { GITHUB WORKSPACE\$ safe.directory add-- globat-- config git : run } \\
& \text { gradlew for permission execute Grant \# } \\
& \text { gradlew for permission execute Grant : name } \\
& \text { gradlew +x chmod : run } \\
& \text { shell runners the using command single a Runs \# } \\
& \text { code robot on tests run and Compile : name } \\
& \text { build gradlew/ : :run }
\end{aligned}
$$

involves step first The steps. four has job This executed. be will that steps certain has job Each a for workaround a is step second The code. robot the access to repository the out checking execute to permission machine virtual the giving involves step third The .issue Actions GitHub code robot compile to build gradlew/. runs step final The .gradlew/. using tasks gradle tests. unit any run and

## File README．md a to Badge Status Build a Adding 29．2．3

quickly to file README repository＇s your of top the to badge status CI a add to helpful is It top the at tab＂Actions＂the on click this，do To main．on build latest the of status the check ＂Create the on click Then，screen．the of side left the on tab＂CI＂the select and screen the of code．Markdown badge status the copy and right top the on button badge＂status
and commit，file，README your of top the at copied you code Markdown the paste Finally， main your on badge status Actions GitHub the see should you Now，changes．your push page．repository

Branch：master
prateekma Create F
．github／workflows
－．vscode
－wpilib
gradle／wrapper
$\square \mathrm{src}$
vendordeps

目 gitignore
首 README．md

目 build．gradle

目 gradlew
目 gradlew．bat
目 settings．gradle

MyRobc

## Formatter Code a Using 29.3

the throughout consistent is written code of style the that ensure to exist formatters Code may Teams OpenCV. to Android from projects; major many in used is This codebase. entire maintains codebase the that ensure to code robot their throughout formatter a add to wish throughout. consistency and readability
teams. C++ for wpiformat and teams Java for Spotless using highlight will we article, this For

Spotless 29.3.1

## Configuration

\{\} plugins the In functional. Spotless get to required are changes build.gradle Necessary below. the to similar appears it so plugin Spotless the add ,build.gradle your of block

can This spotless. configure correctly to block \{\} spotless required a add you ensure Then .build.gradle your of end the at placed get just

page) next on (continues
(

> )2(indentWithSpaces
> ) (endWithNewline
> \{ ,'misc' format
> \{ )'.'(fileTree target
> '**/.gitignore' ,'**/*.md' include '**/build-*/**' ,'**/build/**' exclude
\}
)(trimTrailingWhitespace
)2(indentWithSpaces
) (endWithNewline

## Spotless Running

options. formatting all apply will which spotlessApply gradlew/ . using ran be can Spotless is example An formatter. of name the adding just by task specific a specify also can You .spotlessmiscApply gradlew/.
this formatted; correctly is code the ensure also can Spotless code, formatting to addition In ,check $C I$ a as used be can Spotless Thus, .spotlessCheck gradlew/ . running by used be can workflow: Actions GitHub following the in shown as


## Options of Explanation

and java The project. the in files custom of formatting highlights section format Each differently. defined are they so spotless, by supported natively are groovyGradle
parts. multiple into this split can we down, this Breaking
Java Formatting •
files Gradle Formatting •
files XML Formatting •
files Miscellaneous Formatting •
below The explained. be will that differences small some for except similar, all are They block. \{\} java the highlight will example

mean. options the of each what explain Let's

```
    { )'.'(fileTree target
    '**/*.java' include
    '**/build-*/**' ,'**/build/**' exclude
```

build the exclude to and are classes Java our where spotless tells example above The explanatory.self- fairly are options the of rest The directory. project. a of portions specific ignore spotless have to ability the adds toggleOff0n() • following the like looks usage The
format:off //
$\{()$ myWeirdFunction void public
f
format:on //

Guide Style Google the to according format to spotless tells googleJavaFormat () • classes Java your of any from imports unused any remove will removeUnusedImports() • lines your of end the at whitespace extra any remove will trimTrailingWhitespace() • classes your of end the to character newline a add will endWithNewline() • spotless that formatter the is This option. greclipse a is there block, groovyGradle the In files. gradle format to uses
Tools Web "Gradle for stands This block. xml the in option eclipseWtp a is there Additionally, wish may files XML any using not Teams files. xml format to formatter the is and Platform" configuration. this include not to

README Spotless the on available is configurations of list full A :

## Endings Line with Issues

constantly be will diffs Git means which OS,per- endings line apply to attempt will Spotless teams that recommended It's Windows). vs (Unix OSes different on are users two if changing The file. gitattributes. a utilize OSes multiple from repository same the to contribute who endings. line handling for suffice should following
eol=lf text *.gradle
eol=lf text *.java eol=lf text *.md eol=lf text *.xml

## wpiformat 29.3.2

דרישות
higher or 3.6 Python •
)LLVM with (included formatclang-•
will Clang with LLVM Installing time! this at supported currently not is Windows : Windows. on installed if builds robot normal break
command or terminal a into wpiformat install pip3 typing by wpiformat install can You prompt.

Usage
with format will This console. a in wpiformat typing by ran be can wpiformat ., styleguide. ,format-clang.( required are files configuration Three .format-clang root. project the in exist must These ).license-styleguide Download :format-clang. •
Download :license-styleguide. •
below: shown is styleguide example An


It's wish. they however license-styleguide. and styleguide. adapt can Teams : : पार्य wpiformat! run to required are they as deleted, not are these that important
as ,HEAD code-exit-- diff pager-no-- git running by check $C I$ a into this turn can You below: workflow Actions GitHub example the in shown


## Tasks Gradlew 29.4

user for team WPILib the by supported commands gradle the highlight to aims article This robot your of root the at tasks gradlew/ . typing by viewed be can commands These use. not will commands unsupported and tasks gradlew/. in shown commands all Not project. here. documented be

## tasks Build 29.4.1

project your prebuilding for Useful project. this tests and Assembles - build gradlew/. directory. build the Deletes - clean gradlew/ . roboRIO. the to deploying without
tasks CompileCommands 29.4.2
a is This compile_commands.json. Generate - generateCompileCommands gradlew/. Environments. Development Integrated many by supported is that file configuration
tasks EmbeddedTools 29.4.3
to project robot your deploy will This targets. all on artifacts all Deploy - deploy gradlew/. roboRIO). (IE, targets available the
print will This roboRIO. target of address(es) the Determine - discoverRoborio gradlew/. roboRIO. connected a of address IP the out

## tasks GradleRIO 29.4.4

project this by used be may that dependencies all Download - downloadAll gradlew/. IE, tool. the of name the with \$TOOL\$ (Replace \$T00L\$ tool the Runs - \$T00L\$ gradlew/. etc) Shuffleboard, Glass, the of name the with \$T00L\$ (Replace \$T00L\$ tool the Installs - \$T00L\$Install gradlew/. etc) Shuffleboard, Glass, IE, tool.
development the excludes This tools. available all Installs - InstallAllTools gradlew/. required the ensure to requirement users the It's Code. Studio Visual as such environment users! advanced for recommended Only installed. is (Java) dependencies a Exports executable. native for Task External Simulate - simulateExternalCpp gradlew/. tools / editors by use for file JSON a Exports Java/Kotlin/JVM. for Task External Simulate - simulateExternalJava gradlew/. tools / editors by use for file JSON projects Java the for simulation Launches - simulateJava gradlew/. projects C++ for simulation Launches-simulateNative gradlew/.
ㄴำाप See installation. local or URL from file JSON vendordep Install - vendordep gradlew/.


## Deploy in Data Git Including 29.5

commit or name branch as such Git, from information include to how over go will article This as such code, robot in information such using for necessary is This code. robot the into hash, starts. robot the when name branch and hash commit out printing
when default by enabled be should This work. to this for path the in be must Git : : पारा .Git installing

## Name Branch Deploying 29.5.1

Git The branch. current the of name the data extract to parserev- git uses example This is: this for used command

HEAD abbrev-ref-- rev-parse git \$
that commit current the for name the of version short a use to Git tells flag ref-abbrev-- The return will this branch, a on commit recent most the is HEAD When on. acting is parse-rev branch. that of name the and command Git above the run will that file build.gradle the in task new a create Next, example an is following the example, For directory. src/main/deploy the in file a to it write .branch.txt named file a to name branch the write will that writeBranchName named task

```
                    { )writeBranchName""(register.tasks
    terminal of instead to write to stream output an Define //
        )(ByteArrayOutputStream new = stdout def
                        command git the Execute //
                            { exec
    HEAD"" ,abbrev-ref"--" ,rev-parse"" ,git"" commandLine
        terminal of instead stream output the to Write //
                        stdout = standardOutput
    string a into output the Parse //
        )(trim.)(toString.stdout = branch def
                                    file new a Create //
                                    (File new
        directory deploy and directory project Join //
        ,src/main/deploy"/" + )(toString.projectDir
            to write to name File //
        branch.txt""
    branch variable the to file the of contents the Set // branch = text.)
```

variable, a to output the saves command, Git above the uses that task Gradle a registers This be will it directory, src/main/deploy the to written was it Since file. a to it writes then and code. in accessible and robot the to deployed file jar the in included
it that so created, you task the on depend task deploy the make to is step next The name task the uses example This deployed. is code the before run automatically will
of name the with replaced be should it but example, previous the from writeBranchName .build.gradle your in task the
)writeBranchName(dependsOn.frcStaticFileDeploy.artifacts.roborio.targets.deploy

## Hash Commit Deploying 29.5.2

commit current the parse to used be will parse-rev git example, previous the to Similar is: this for used command Git The hash.

## HEAD short-- rev-parse git \$

commit the about information find to used is parse-rev command, Git previous the to Similar with associated name branch the find to ref-abbrev-- using of instead However, HEAD. at hash. commit character7- the find to used is short-- commit, that
can you version, character7- the of instead hash commit full the use to wish you If : : पारा flag. short-- the out leave
a to output the writes and command this runs that build.gradle in task a create to is Next , writeCommitHash named is task the except example, first the as same the largely is This file.
.branch.txt of instead commit.txt to written is it and used, is command Git new the


## Git with Files Generated Ignoring

every regenerated are and Git by tracked already is that data include files these Since the using by Git with changes these track not to recommended is it deployed, is code time VS WPILib the by generated project any in default by exist should file This file. gitignore commit.txt and branch.txt the use to continues that example an is Below extension. Code names: file
txt.branch/deploy/main/src txt.commit/deploy/main/src

## Files Deployed Using 29.5.3

the use to have you code, in directory deploy the to written were that files access to order In GetDeployDirectory() the or Java, in class Filesystem the of method getDeployDirectory () files both opening of example an is Below C++. in namespace frc:: filesystem the of function
examples: previous the from
periodic any during performed be not should and slow is files the reading and Opening : : पार्य once. read be to needs only it deploy, on change only will file the Since methods.

$$
\begin{aligned}
& \text { ();getDeployDirectoryFilesystem. = deployDir File } \\
& \text { );"branch.txt" File(deployDir, new = branchFile File } \\
& \text { );"commit.txt" File(deployDir, new = commitFile File }
\end{aligned}
$$

the of documentation the see objects, file the with interact to how on information more For class. File

. ำ

WPILib the from Veness Tyler 2020, in WPI" by Presented Conference, Spring "RSN the At FRC®. in Autonomous of Validation Based Model on presentation a gave team
.here available is presentation the to link The
30.2 מבוא לבקרות מתקדמות

Basics System Control 30.2.1
with Veness Tyler by FRC in Engineering Controls of sections includes article This : $\operatorname{lllll}$ permission.

Systems Control for Need The
you ones of list small A daily. them with interact we and us around all are systems Control the and control cruise thermostats, with conditioners air and heaters includes seen have may laptops. modern on modulation speed fan and automobiles, on (ABS) system braking lockantiof consist may and these like systems of behavior the control or monitor systems Control control). (automatic machines only of or control), (manual directly them controlling humans directly be cannot but work, useful does which mechanism a have examples these of All desired. is that state the to commanded
input electrical or mechanical no have compressor and fans conditioner's air an example, For compare must mechanism additional some Rather, temperature. a specifies user the where and compressor the cycle to how choose and setpoint, some to temperature air current the temperature. that achieve to off and on fans
directly which lever mechanical no have transmission and engine automobile's an Similarly, speed current the measure must mechanism additional some Rather, speed. particular a sets achieve to cylinders the into injected fuel and gear transmission the adjust and vehicle, the of speed. vehicle desired the
bridge to mechanisms additional those design to how of study the is Engineering Controls actually is mechanism the how to do, to mechanism a wants user the what from gap the manipulated.
behave will example, for car, autonomous an on controllers loopclosed- prove we can How uncertainty? of presence the in specifications performance desired the meet and safely the predict and analyze to used geometry and algebra of application an is theory Control to robust them make and to, them want we how respond them make systems, of behavior uncertainty. and disturbances
As theory. control to applied process engineering the simply, put is, engineering Controls behind math beautiful some has theory control While math. applied just than more it's such, trade- with filled is that other any like discipline engineering an is engineering controls it, our by informed and checked sanity be always should gives theory control solutions The offs. to enough good be to need just we perfect; be to need don't We specifications. performance specifications. our meet

## Nomenclature

that above well knowledge of level a assume topics engineering advanced for resources Most communicates efficiently it While jargon. of use the is problem the of Part necessary. is which
lost. are it with familiar aren't who people new field, the within those to ideas
A .plant the called is system control a by controlled being actuators of collection or system The reference). (the state desired some to state current its from plant the drive to used is controller open- called are output plant's the from measured information include don't which Controllers controllers. loop
closed- called are output plant's the from back fed information incorporate which Controllers controllers. feedback or controllers loop

The view. of point plant's the from defined are system a of output and input The : alll and reference the between difference the driving is shown controller feedback negative zero. to error, the as known also output,

## Gain? is What

input an of magnitude the between relationship the shows that value proportional a is Gain method a contain systems Many state.steady- at signal output an of magnitude the to signal system. the to "power" less or more providing altered, be can gain the which by is output the Since output. and input hypothetical a with system a shows below figure The two. of gain a has system the input, the of amplitude the twice
this Specifically, behavior. its of description mathematical a is mechanism your of model A the how and outputs, and inputs mechanism's the define must description mathematical values. input its of function a as time over change values output
some include also can It equations. algebra simple just often is description mathematical The to classes of number a provides WPILib equations. differential and matrices, algebra, linear math. complex more the simplify help behavior. system of models up build to used equations the of many defines the on experiments doing by determined be can equations those inside values the of Many mechanism.

## Diagrams Block

Block graphically. it model to useful is it system, control a analyzing or designing When systematically. simplified and manipulated be can They purpose. this for used are diagrams
output the to circle) (the input the at node sum the from gain total the is gain loopopen- The feedback The disconnected. was loop feedback the if gain system's the be would this branch. the is output node's sum A node. sum input the to back output the from gain total the is gain inputs. its of sum configuration. feedback a in notation formal more with diagram block a is figure below The
feedback. negative represents minus a where plus" or "minus means $\mp$

## Dimensionality on Note A

feedforward (except controllers and systems all section, introductory the of purposes the For single map only they means this - (SISO) out"single- in,"single- be to assumed are controllers) single a of input an take to considered is motor DC a example, For values. single to values position (either return in value scalar single a only of output an yield and (voltage) value scalar separate as controllers velocity and controllers position consider to us forces This velocity). or both control to want we when situations in confusion of source sometimes is this - entities means also systems SISO to ourselves Limiting profiles). motion a following when as (such like systems (MIMO) out"multiple- in,"multiple- complexmore- analyze to unable are we that independent two least at are (there state single a with represented be cannot that drivetrains drive). a in wheels of sets
following the present to able be to here systems SISO to ourselves restrict we Nonetheless, introductory in featured commonly is which formalism, Controller PID the of terms in tutorials implementations. available many and documentation extensive has and material course
allows which systems these conceptualize to way alternate an is formalism spacestate- The simultaneously as well (as quantities different between interactions capture easily to us motor). a of velocity and position as such quantity, same the of aspects multiple represent and ,input, gain the (e.g. scalars dimensionalsingle- the replacing by roughly, this, does It a of equivalent the formalism, spacestate- the In vectors. dimensionalmulti- with )output state, mechanism valuedvector- single a on controller proportionalvector- a is controller "PID" scalars). gain different three of (instead vector gain single a with
with written controller PID a just really is controller spacestate- a that remember you If transfer will articles introductory of set this in covered principles the of many notation, dense control. spacestate- of case the to seamlessly

## Strategy Control a Picking 30.2.2

with Veness Tyler by FRC in Engineering Controls of sections includes article This : Cllll permission.
different of number a are there mechanism, robot a for algorithm control a designing When complex and advanced to approaches, simple very from range These take. to approaches some situations, different in others than better work will Some .tradeoffs has Each ones. others. than analysis mathematical more require
field. the on success enables which strategy easiest the picking prioritize should Teams take to step""next- a always almost is there mind in keep experiments, do you as However, performance. field your improve to
here: cover will we that controller mechanism of types fundamental two are There
classifiable easily not are strategies control some - definitions strict not are These : a still is it However, controllers. feedback and feedforward both of elements incorporate and applications. FRC most in distinction useful
which algorithms of class the to refers control") loop"open- (or control Feedforward Using operate. to expected is control under mechanism the how of knowledge incorporate to close get mechanism the make to chosen is input control the operation, of "model" this be. should it where
use which algorithms of class the to refers control") loop"closed- (or control Feedback move to commands corrective issue and doing, is mechanism a what measure to sensors be. to it want you where to is, actually it where from mechanism a
pages tutorial The both. use to best usually is it fact in and exclusive, mutually not are These allow and arm), vertical and flywheel, (turret, mechanism of types three cover will follow that strategy, control of type each to responds system of type each how with experiment to you combined. and individually both

## Guess Best a Making Control: Feedforward

think you signal control the with mechanism the providing means control" "Feedforward the where of knowledge any without want, you what do mechanism the make to needs it about know already we information feeds controller feedforward A is. currently mechanism controller feedforward The .effort control required the of estimate an into forward system the for correct to try to system the of behavior measured the to response in this adjust not does guess. the from errors
draw you if because control", loop" open- as to referred sometimes also is control Feedforward to controller the from line a only of consists it system controlled the of diagram block a out (hence controller the into back output plant measured the from connection no with plant, the all). at loop a isn't really which loop, "open" an
"directly" to joystick a use you whenever using implicitly are you control of type the is This most and simplest the is It voltage. applied the through motor a of speed the control when first encountered you one the probably is and control, of type straightforward name. by to referred been have not may it though motor, FRC a programming

## Control? Feedforward Need We Do When

constant some requires system the whenever required is control feedforward general, In arm vertical a of control position as (such setpoint desired the at remain to signal control dynamics motor internal where control velocity or fall, to arm the cause will gravity where fall naturally controllers Feedback time). over down slow to motor the cause will friction and to needed is controller feedforward a so and setpoint, their achieve they when output zero to
it. want we where mechanism the keep to signal the provide
gain integral with controller feedback the in this for account instead strategies control Some feedforward a use to better always almost is It oscillation. to prone and slow is this however, setpoint. the maintain to needed output the for account to controller

## Control Position and Feedforward

an generate to setpoints acceleration and velocity require classes feedforward WPILib The magnetpermanent- a of motionof-equations- the because is This voltage. control estimated that physics of fact a is it acceleration; and velocity to voltage applied the relate motor DC change. cannot we
immediate no there's motor, DC a controlling When position? control to want we if what But for effectively feedforward use to order In signal. control and position between relation robot the take will that velocities of sequence a with up come to need we control, position .profile motion a called is This position. desired the to mechanism doing when profile motion a using of cost technical extra the incur to wish not do teams Many only use to opt and entirely controller feedforward the omit instead and control, position some has but situations, some in work may this later, discuss will we As control. feedback caveats. important
pure though classes, feedforward WPILib's by describedwell- are mechanisms FRC Most mechanisms of control velocity for results acceptable yields only typically control feedforward and unavoidable be will model system the from errors cases, other In load. external little with them. for correct to necessary be will controller feedback a

## Disturbances and Errors for Correcting Control: Feedback

robot's a on exerted be will that force every know to impossible is it study, unlimited with Even forces exact and timing the shooter, flywheel a in example, For detail. perfect in mechanism measure to difficult extremely are mechanism the through put being ball a with associated grease off throw gradually gearboxes that fact the consider example, another For accurately. process complex very a is This time. over friction internal their increasing operate, they as well. model to
be never will controller feedforward our by made "guess" the that means this practice, In the between difference lingering some is, that - error some be always will There perfect. in. it leaves controller feedforward the state the and in, be to mechanism our want we state it; correct to output our adjust to need we that enough large is error this situations, many In loop""closed- called also are controllers Feedback controller. feedback the of job the is this system the through back state current the about information of flow the because controllers, diagram. block system's the in loop the "closes"
responds which controller", "proportional a is possible controller feedback simplest The measured and state desired the between difference (i.e. error current the to proportionally of-rate- the to response add controller) PID the as (such controllers advanced More state). principle the on operate these of All error. accumulated total the to and error the of change setpoint the towards system the "nudge" to order in linear, roughly is response system the that error. the of measurements local on based

## Control? Feedback Need We Do When

control: feedback need we which in scenarios two are there general, In time over accumulate errors so system, the of position the controlling are We mechanism the with interacting forces external dynamicto-difficult- of lot a are There game launching is that flywheel a (e.g. for account cannot loop feedforward the that pieces).
a and controller feedforward a combine to is solution best the situations, these of each In position simple a of case the in However, together. outputs their adding by controller feedback acceptably. work can controller feedback pure a loading, external no with controller

## Control OnlyFeedback-

explicit require they but simple, quite and helpful extremely are controllers Feedforward signal. control required the at guess a generate to order in behavior system the of knowledge control feedback on rely which techniques of set a see may you textbooks, controls many In the when especially cases, many in well works and industry, in common very are These only. reach quickly to want you when or model, explicitly to easy not is behavior system underlying system your investigate thoroughly to time the spending without solution enough" "good a behavior.
where: situations in well works only typically control onlyFeedback-
loading. to relative overpowered fairly are motors The
controlled. being is velocity) (not position mechanism's The
mechanism. the on forces external varying or substantial no are There
can control onlyfeedback- tutorial), tuning turret the in as (such met are criteria these When to model feedforward a use to necessary is it situations, other In results. acceptable yield almost are systems our FRC, In controller. feedback the by done work of amount the reduce always almost is it so support, code working with equations understoodwell- by modeled all controller. feedforward a include to idea good a

## behave? to system your expect you do How Modeling:

responds system the how of knowledge prior some have we if system a control to easiest It's about things assumes implicitly above described strategy feedback" "pure the Even inputs. to work won't consequently and linear), approximately is it that (e.g. response system the system our control To way. expected the in respond not does system the where cases in inputs. to respond will it how predict reliably to way some need we ,optimally
physics: from with familiar be may you concepts several combining by done be can This measurements taking mechanism, the on act that forces the of diagrams body free drawing how of equations standard applying models, CAD your from inertia of moment and mass of
etc. motion, and force mechanical into energy convert cylinders pneumatic or motors DC
modeling called is system your of description mathematical consistent a creating of act The expect you how of model a called are equations of set resulting The behavior. system's your will (we controlled be to model explicit an requires system every Not behave. to system the in satisfactory is controller feedback tunedmanually- pure, a that tutorial turret the in see helpful. always is model explicit an but ),cases some
later in see will we As useful. be to accurate perfectly be to have not do models that Note much effort tuning the make can mechanism a of model simple a using even exercises, tuning simpler.

## Mechanisms Your for Models Obtaining

are FRC in mechanisms Most worry! don't daunting, seems mechanism your modeling If included is models those with interacting for code and equations studiedwell- by modeled parameters physical of set a determine to is needed is that all Usually, WPILib. in your of details specific the on depend that "gains") or constants" "tuning called (sometimes of parameters known other from theoretically estimated be can These mechanism/robot. your from measured or motor/gearbox), of choice and length, mass, as (such system your routine. identification system a through behavior actual mechanism's
!resource support or mentor a ask doubt, in When

## Modeling Theoretical

common of number a for parameters physical estimates which calculator online an is ReCalc the for gains kG and , kA , kV the estimate generate can it Importantly, mechanisms. FRC classes. feedforward WPILib
to used be can that mode" "theoretical a supports tool identification system WPILib The enabling ReCalc, from gains kA and kV the from control feedback for gains PID determine routines. test any running without loop control a of tuning full theory) (in
guaranteed not are gains theoretical purely and reality not is theory that however, Remember, testing. for substitute a never is There well. work to
on experiments perform to is model physics simple a of accuracy the improve to way good A with associated constants the derive to data the use and data, record mechanism, real the or difficult are which quantities physical for useful very is This model. the of parts different gearbox). a in friction (ex: measure to easy but predict, to impossible
including mechanisms, FRC common some supports tool identification system WPILib's data, record mechanism, the exercise to robot the to code own its deploys it drivetrain. schemes. control feedback and feedforward both for gains derive and

## Model Explicit No with Do to What Tuning: Manual

system the Maybe model. explicit an at without system a tune to have you Sometimes, that something need and constraints time under you're maybe or complicated, uniquely is correct a requires control basedModel- optimally. work doesn't it if even quickly, works one. have always not do we worse, for or better for and system, the of model mathematical
.manually tuned be can algorithm control the of parameters physical the cases, such In the until hand by gains controller the "sweeping" systematically by done generally is This one only where cases in quickly work can tuning Manual expected. as behaves mechanism complicatedmore- in however, - adjusted be to need ) $k P$ and $k V$ as (such parameters two or process. difficult and involved very a become can it scenarios
foundedwell- a distinguish to hard be can it that is tuning manual with problem common One controller inappropriate an from properly, tuned yet not is that architecture controller velocity a tune to possible not generally is it example, (for work cannot that architecture In feedforward). a without well functions that controller position arm vertical or controller gains correct such no when gains, correct for searching time of lot a waste can we case, a such controlled being systems the of mechanics the understanding for substitute no is There exist. do we if even mechanism, the for architecture controller correct a determine to enough well methodologies. control basedmodel- any use explicitly not
tuning manual the perform to you allow will that simulations include follow that tutorials The which govern that concepts fundamental The mechanisms. FRC typical several on process mechanism individual the on covered are mechanism each for valid are strategies control
tutorials! the through work you as this to attention close pay pages;

## Feedforward Motor DC to Introduction 30.2.3

Control Feedforward see WPILib, with code in control PID implementing on guide a For : : पार्य .WPILib in

WPILib's of workings mathematical and conceptual the explains page This classes). related other the (and SimpleMotorFeedforward

## Equation Feedforward Motor DC MagnetPermanent- The

of dynamics known the use to is controller feedforward a of point the that earlier from Recall the in mechanism the put to required effort control the at guess best a make to mechanism a we mechanism of kind what of idea some have to need we this, do to order In want. you state and ,output and effort control between relationship the determine will that - controlling are latter. the of value desired the us give will former the of value what at guess us let magnetpermanent- the is controlling in interested we're that system common most the FRC, In .motor DC
to easy particularly them make that properties convenient of number a have motors These between relationship particular a obey they particular, In tasks. FRC for ideal and control, equation". balance "voltage a as known acceleration rotor and velocity, rotor voltage, applied

$$
V=K_{s} \cdot \operatorname{sgn}(\dot{d})+K_{v} \cdot \dot{d}+K_{a} \cdot \ddot{d}
$$

velocity, its is $\dot{d}$ motor, the of (position) displacement the is $d$ voltage, applied the is $V$ where with derivative the denotes traditionally notation "overdot" (the acceleration its is $\ddot{d}$ and time). to respect
follows: as equation above the in coefficients the interpret can We
just to words other in or friction, static motor's the overcome to needed voltage the is $K_{s}$ the has static) well, it's, (because friction static this that out turns it moving; it get barely going you're speed what matter no is, That acceleration. or velocity of regardless effect same your to applied you've voltage the of portion constant some accelerating, you're fast how or overcoming towards going be will assembly) mechanism specific the on (depending motor the of presence the Note kS. your is value this etc; bearings, gears, your in friction static the motion.of-direction- the opposes always force friction because function signum
constant given a at "cruise") (or hold to needed is voltage much how describes $K_{v}$ that friction additional any and force electromotivecounter- the overcoming while velocity relationship The ).losses churning some and drag viscous (including speed with increases legalFRC- (for linear entirely almost is acceleration) constant (at voltage and speed between work. motors DC magnetpermanent- how of because components)
, kV with As shaft. motor the in acceleration given a induce to needed voltage the describes $K_{a}$ perfectly almost is velocity) constant (at acceleration and voltage between relationship the components. FRC for linear
.paper this see information, more For

Equation Feedforward the of Variants
above the into terms additional introduce classes feedforward other WPILib's of Some details - above described case simple the from differences known for account to equation below: found be can tool each for
of force the under mass a to attached motor DC magnetpermanent- a of consists elevator An the in only differs it motor, unloaded an for equation feedforward the to Compared gravity. gravity: of action the for accounts that term $K_{g}$ constant a of inclusion

$$
V=K_{g}+K_{s} \cdot \operatorname{sgn}(\dot{d})+K_{v} \cdot \dot{d}+K_{a} \cdot \ddot{d}
$$

velocity, its is $\dot{d}$ drive, the of (position) displacement the is $d$ voltage, applied the is $V$ where acceleration. its is $\ddot{d}$ and

## Feedforward Arm

under held stick a on mass a to attached motor DC magnetpermanent- a of consists arm An the for account to term $K_{g}$ a includes it feedforward, elevator the Like gravity. of force the the by multiplied is term this however, feedforward, elevator the unlike - gravity of effect
motor): the on directly act not does force gravitational the (since angle arm the of cosine

$$
V=K_{g} \cdot \cos (\theta)+K_{s} \cdot \operatorname{sgn}(\dot{\theta})+K_{v} \cdot \dot{\theta}+K_{a} \cdot \ddot{\theta}
$$

its is $\dot{\theta}$ arm, the of (position) displacement angular the is $\theta$ voltage, applied the is $V$ where acceleration. angular its is $\ddot{\theta}$ and velocity, angular

## Feedforward the Using

above the in unknown each for values in plug to need we feedforward, the use to order In gains the of values the , earlier mentioned As .voltage the than other equation balancevoltagemeasurement Explicit .ReCalc with modeling theoretical through obtained be can $K_{a}, K_{v}, K_{g}$ values needing us leaves That.$K_{s}$ to addition in gains aforementioned the yield will SysId with position. feedforward) arm the of case the (in and acceleration, velocity, for a making are we feedforward with that remember - setpoints our from come these Typically, be. to system the want we where on based need we output the to as "guess"
from value velocity the take can we - problem a pose not does this control, velocity For the infer can we practice) in omitted be often can (it necessary if and directly, setpoint our setpoints. velocity previous and current the between difference the from acceleration
no there's controller, arm the for except - difficult be can this however, control, position For calculate to but choice no have often We position. for equation feedforward the in term direct to and positions, setpoint previous and current the between difference the from velocity our vary setpoints our that ensure to need we better, do to order In entirely. acceleration ignore motion a with accomplished usually is this - constraints of set some to according smoothly .profile

```
30.2.4 מבוא ל-PID
```

.WPILib $\square$ PID see WPILib, with control PID implementing on guide a For :
video A controller. PID a of workings mathematical and conceptual the explains page This .available also is WPI from explanation

## Controller? PID a is What

and integral, proportional, of consisting controller feedback common a is controller PID The controller PID a of definition the up build will article This name. the hence terms, derivative behaves. term each how for intuition some provide to trying while term by term
we context, PID a In way. the of out controllers PID for nomenclature some get we'll First, term the and mechanism, the of state desired the mean to setpoint or reference term the use some are Below mechanism. the of state measured the to refer to variable process or output quantities. relevant for conventions naming variable common

| $r(t)$ | reference, setpoint | $u(t)$ | effort control |
| ---: | ---: | ---: | ---: |
| $e(t)$ | error | $y(t)$ | variable process, output |

$$
. r(t)-y(t) \text {,output the and reference the between difference the is } e(t) \text { error The }
$$

the with consistent be not may interpretation this control, PID with familiar already those For "present", "past", to response to corresponding terms D and I, P, the of explanation classical control PID approaching be instead will we merit, has model that While errors. "future" and different to applied controllers proportional as theory, control modern of viewpoint the from the of explanation complete more a provide will This about. care we quantities physical
.setpoints moving and constant for behavior term's derivative term derivative the zero, to error position the drives term proportional the speaking: Roughly over-error- accumulated total the drives term integral the and zero, to error velocity the drives into go We'll signal control the produce to together added are terms three All zero. to time below. these of each on detail more
tunable the writing of ways two see you'll documentation, WPILib the Throughout : : Inll controller. PID the of constants
gain: proportional the for example, For constant. the notate to way focusedequation-math- standard the is $K_{p}$ software. in variable a as written it see to way common a is kP 。 concept. same the to refer formats two the capitalization, in differences the Despite
the to contributing by zero to error position the drive to attempts term Proportional The the move to tries this Intuitively, error. position current the to proportionally signal control
.reference the towards output

$$
u(t)=K_{p} e(t)
$$

.t time current the at error the is $e(t)$ and gain proportional the is $K_{p}$ where controller. P a by controlled system a for diagram block a shows figure below The


Figure 2.1: P controller
the toward system the pull that springs" defined"software- a like act gains Proportional force the is $F$ where $F=-k x$ as springs model we that physics from Recall position. desired point. equilibrium the from displacement the is $x$ and constant, proportional a is $k$ applied, let we If point. equilibrium the is 0 where $F=k(0-x)$ as way another written be can This one to one a have equations the , setpoint controller's feedback our be point equilibrium the
correspondence.

$$
\begin{aligned}
F & =k(r-x) \\
u(t) & =K_{p} e(t)=K_{p}(r(t)-y(t))
\end{aligned}
$$

the toward output system's the pulls controller proportional the which with "force" the so spring. a like just, error the to proportional is setpoint

## Term Derivative

to contributing by zero to error the of derivative the drive to attempts term Derivative The make to tries this Intuitively, error. the of derivative the to proportionally signal control the .reference the as rate same the at move output the

$$
u(t)=K_{p} e(t)+K_{d} \frac{d e}{d t}
$$

current the at error the is $e(t)$ and gain, derivative the is $K_{d}$ gain, proportional the is $K_{p}$ where .t time controller. PD a by controlled system a for diagram block a shows figure below The


Figure 2.2: PD con
controller proportional a and ) $K_{p}$ ( position for controller proportional a has controller PD A setpoint position the how by provided implicitly is setpoint velocity The ). $K_{d}$ ( velocity for controller. PD a for equation the rearrange will we this, prove To time. over changes

$$
u_{k}=K_{p} e_{k}+K_{d} \frac{e_{k}-e_{k-1}}{d t}
$$

as defined is $e_{k} . k$ timestep at error the is $e_{k}$ and $k$ timestep at effort control the is $u_{k}$ where
.$k$ timestep at state current the is $x_{k}$ and setpoint the is $r_{k}$ where $e_{k}=r_{k}-x_{k}$

$$
\begin{aligned}
& u_{k}=K_{p}\left(r_{k}-x_{k}\right)+K_{d} \frac{\left(r_{k}-x_{k}\right)-\left(r_{k-1}-x_{k-1}\right)}{d t} \\
& u_{k}=K_{p}\left(r_{k}-x_{k}\right)+K_{d} \frac{r_{k}-x_{k}-r_{k-1}+x_{k-1}}{d t} \\
& u_{k}=K_{p}\left(r_{k}-x_{k}\right)+K_{d} \frac{r_{k}-r_{k-1}-x_{k}+x_{k-1}}{d t} \\
& u_{k}=K_{p}\left(r_{k}-x_{k}\right)+K_{d} \frac{\left(r_{k}-r_{k-1}\right)-\left(x_{k}-x_{k-1}\right)}{d t} \\
& u_{k}=K_{p}\left(r_{k}-x_{k}\right)+K_{d}\left(\frac{r_{k}-r_{k-1}}{d t}-\frac{x_{k}-x_{k-1}}{d t}\right)
\end{aligned}
$$

system's the is $\frac{x_{k}-x_{k-1}}{d t}$ reason, same the By .setpoint the of velocity the is $\frac{r_{k}-r_{k-1}}{d t}$ how Notice the driving is controller PD the of term $K_{d}$ the means That timestep. given a at velocity velocity. setpoint the to velocity estimated
the slows term $K_{d}$ the so zero, is setpoint velocity implicit the constant, is setpoint the If commonly are These damper". defined"software- a like acts This moving. it's if down velocity. with linearly increases force damping their and closers, door on seen

קבוע אינטגרלי
better always almost is It use. FRC® for recommended not generally is gain Integral : ${ }^{\circledR}$ gain, integral employ do you If error. statesteady- eliminate to controller feedforward a use to .windup integral against protection some provide to crucial is it
the to contributing by zero to error accumulated total the drive to attempts term Integral The the drive to tries this Intuitively, errors. past all of sum the to proportionally signal control values. reference past all of average the towards values output past all of average

$$
u(t)=K_{p} e(t)+K_{i} \int_{0}^{t} e(\tau) d \tau
$$

time current the at error the is $e(t)$ gain, integral the is $K_{i}$ gain, proportional the is $K_{p}$ where variable. integration the is $\tau$ and,$t$ because integration the for $\tau$ use we.$t$ time current the to 0 time from integrates Integral The $t$ use can't we but integral, the throughout values multiple on take to variable a need we time. current the as that defined already we because
controller. PI a by controlled system a for diagram block a shows figure below The


Figure 2.3: PI conti
small too be may term proportional the state,steady- in setpoint the close is system the When result can This zero. is term derivative the and , setpoint the to way the all output the pull to 2.4 figure in shown as error statesteady- in


Figure
the to it add and error the integrate to is error statesteady- eliminating of way common A
shows 2.4 Figure converges. system the until effort control the increases This .effort control added integrator an how shows 2.5 figure and flywheel, a for error statesteady- of example an to lead can gain integral an of high too However, it. eliminates controller flywheel the to 2.6. figure in shown as overshoot,

Figure 2.5: PI ror

## Together All It Putting

.article relevant the see PIDController, provided WPILib the using on information For : :
definition typical the gets one together, all them summing by combined are terms these When controller. PID a for

$$
u(t)=K_{p} e(t)+K_{i} \int_{0}^{t} e(\tau) d \tau+K_{d} \frac{d e}{d t}
$$

the is $e(t)$ gain, derivative the is $K_{d}$ gain, integral the is $K_{i}$ gain, proportional the is $K_{p}$ where variable. integration the is $\tau$ and,$t$ time current the at error controller. PID a for diagram block a shows figure below The


Figure 2.7: PID co

## Types Response

underdamped, responses: of types three has generally controller PID a by driven
2.8. figure in shown are These damped. critically and damped,overreach initially to takes system the time the is time rise 2.7, figure in responses step the For settle to takes system the time the is time Settling .input step the applying after reference the applied. is input step the after reference the at overdamped An settling. before reference the around oscillates response underdamped An response
the has response damped critically A .reference the overshoot not does and rise to slow is .reference the overshooting without time rise fastest

### 30.2.5 סרטון מבוא ל-PID מאת WPI

?

 PID.

## Tutorials Tuning Controls To Introduction 30.2.6

students allow to is goal Their simulations. tuning interactive three include docs WPILib The software with deal to having without behavior, system impact parameters tuning how learn to behavior. worldreal- other or bugs
through going worth is it gains, optimal with you provide can tooling WPILib though Even the with interact strategies control different the how see to process tuning manual the mechanism.
the on time their make and intuition build to examples the use should students Ultimately, productive. more robot
tutorials. the with working while tips few a details page This
"decrease" or "increase" to instructions get will you simulations, the with interacting While parameters. different
After observed. is effect expected the until two by it multiply value, a "increasing" When mechanism the or unstable is behavior the (i.e. large too becomes value the time first the and encountered value largetoo- first the between halfway to value the reduce overshoots), zero to procedure half""split- this iterating Continue that. before tested value previous the new the between point halfway the pick undershoots, response the (if value optimal the on in between point halfway the pick overshoots, it if - it above immediately value last the and value exponentialterm: an called is This it). below immediately value last the and value new the scale. unknown of values positive find to way efficient very a is and ,search

## Noise System

more a provide to plant the into error gaussian random, introduces option noise" "system The behavior. system of situation realistic
to on it turn Later, behavior. ideal system's the learn to first at off turned setting the Leave effects. worldreal- of presence the in works tuning your how see

Systematic Be
constants.Feedforward tuned three has controller PID a ,PID to introduction the in seen As constants "correct" the for searching means This more. even add will components procedure tuning the approach to necessary therefore is it - difficult quite be can manually systematically.
success. of chances your maximize will it - tutorials the in presented tuning of order the Follow Then correct. to close is solution your believe you until solutions tuning the checking Resist results. own your against compare to one provided the try and answer, your check
mechanisms Flywheeldifficult.:ref: to easy from work Furthermore, Velocity Flywheel a flywheel:Tuningcontrols/introduction/tuning-<docs/software/advancedoff finish Then, .tuning turret the into look that, After tune. to easiest the are Controller> .example arm vertical the with

## Controller Velocity Flywheel a Tuning 30.2.7

principles tuning The flywheel. a for controller velocity simple a tune will we section, this In scenario. control velocity any almost for work also will here explained

# Description Model Flywheel 

of: consists "Flywheel" Our
flywheel) (the piece game the launches which mass inertial rotating A
mass. the driving gearbox) a possibly (and motor A
by used equation same the with modeled is plant this tutorial, this of purposes the For gearbox and delay sensor for adjustment additional with, SimpleMotorFeedforward WPILib's feedback and feedforward by controlled is plant the assumes simulation The inefficiency. fashion: this in composed controllers,

Where:
velocity rotational flywheel the is $y(t)$ output plant's The
flywheel the of velocity desired the is $r(t)$ setpoint controller's The
the driving motor the to applied voltage the is $u(t)$, effort control controller's The motion flywheel's
.here found be can system the of mathematics the of description detailed more A $\qquad$

## Controller Velocity Flywheel a for Strategy Control the Picking

spin. will flywheel the faster the motor, the to applied is that voltage more the general: In to flywheel the bring and motion the oppose EMFback-and friction removed, is voltage Once
stop. a
this In target. a toward air, the through pieces game propel to used commonly are Flywheels simulation. the through halfway about flywheel the into injected is gamepiece a simulation,

[^14]a at spinning is it sure make to is step first good a gamepiece, a launch consistently To control accurately to want we Thus, it. into gamepiece a putting before speed particular flywheel. our of velocity the
which controllers, turret and arm vertical the from different fundamentally is This : 길 .position control both
pure bang,bang- under system the of behavior the demonstrate will below tutorials The strategies. control feedbackfeedforward- combined and (PID), feedback pure feedforward, the expand and controllers, these tune manually to how learn to instructions the Follow parameters. tuning of set basedmodel- optimal an view to solution" "tuning

## Control BangBang-

controlled when responds system flywheel the how see to below simulation the with Interact controller. bangbang- a by
present)(present/not- binary a applies which controller simple a is controller Bang""Bang- The (and description detailed more A setpoint. a to closer it get to try to mechanism a to force here found be can implementation) WPILib corresponding the for documentation adjust only can you - controller bangbang- a for parameters controller tuneable no are There weakness. a also and strength, a is simplicity This setpoint. the output the values, all almost for that see should You down. and up setpoint the adjusting Try setpoint. the near somewhat be to converges

## Controllers BangBang- with Issues Common

These loop. control the in delays of because perfect, not is behavior system the that Note even or timers, iteration loop filters, measurement sensors, the of nature the from result can and "overshoot" of cycle a cause these Collectively, itself. hardware control the in delays is oscillation This setpoint. the below and above goes repeatedly output the as "undershoot", controller. bangbang- a with unavoidable
it that enough small is controller bangbang- a of oscillation statesteady- the Typically, cause can effort control the of cycling on/off rapid However, practice. in well quite performs and bolts loosen can forces removing and applying rapidly of cycles the - issues mechanical gearboxes. on stress of lot a put and joints,
system's the if draw current in changes abrupt cause can effort control in changes abrupt The damage eventual cause and hardware, control motor stress may This low. too is inductance failure. or
more A slowly. relatively accelerate that mechanisms for works only technique this Finally, .here found be can details the of discussion depthin-
fast of sense the (in performance high and simplicity for lot a sacrifices control bangBangdifferent a consider to need we control, "smoother" achieve To setpoint). the to convergence strategy. control

Control Feedforward Pure
controlled when responds system flywheel the how see to below simulation the with Interact controller. feedforward a by only
the until $K_{v}$ gain feedforward velocity the increase controller, feedforward the tune To .$K_{v}$ reduce overshoots, flywheel the If time. over setpoint correct the approaches flywheel
$. K_{v}=0.0075$ is simulation the by used gain exact The
flywheel for well reasonably works strategy control feedforward pure a that see can We motors most control to possible it's why is this earlier, mentioned we As control. velocity still can we However, all. at loop" "control explicit any without joysticks, with "directly" while a takes so and disturbances, reject cannot strategy feedforward pure the - better do the obey perfectly not may motor the Additionally, introduced. is ball the after recover to we these, for account To vibration/noise). for accounting after (even equation feedforward controller. feedback a need

## Control Feedback Pure

controlled when responds system flywheel the how see to below simulation the with Interact controller. (PID) feedback a only by
following: the Perform
zero. to $K_{v}$ and , $K_{d}, K_{i}, K_{p}$ Set
until it decrease then, setpoint the around oscillate to starts output the until $K_{p}$ Increase stop. oscillations the
.setpoint the to converging before "stuck" gets output if $K_{i}$ increase , cases some In
not Do velocity! flywheel for scheme control good very a not is control onlyPID- : : पार "optimal" the when even well, behave not does below simulation the if/when surprised be used. are constants
will $K_{d}=0.0$ and , $K_{i}=0.0, K_{p}=0.1$ of values 300 , of setpoint a for example, particular this In not will it good, very not is strategy control this Since results. reasonable somewhat produce some incorporating by behavior this improve to attempt can You setpoints. all for well work
setpoints. of range wide a across behavior good achieve to difficult very is it but , $K_{i}$

## Alone Control Feedback with Issues

even spinning, flywheel the keep to required is effort control of amount zeronon- a Because to order In flawed. is strategy onlyfeedback- this equal, are setpoint and output the when needed. is strategy feedbackfeedforward- combined a flywheel, a control optimally

## Control Feedback and Feedforward Combined

under responds system flywheel the how see to below simulation the with Interact control. (PID) feedback and feedforward simultaneous
controller feedforward the tune first we - simple is controller flywheel combined the Tuning PID the tune we then and section, onlyfeedforward- the in as procedure same the following PID that Notice section. onlyfeedback- the in as procedure same the following controller feedforward. accurate an of" top "on tune to easier much is controller the of portion
produce will $K_{p}=0.1$ and $K_{v}=0.0075$ of values 300, of setpoint a for example, particular this In behavior controller the change will $K_{p}$ to changes Small setpoints. all across results good very constraints. problem your on depends choice optimal the - aggressive less or more be to
and setpoints, all across well works controller feedbackfeedforward- combined the that Note flywheel. the contacting ball the of disturbance external the after quickly very recovers

## Conclusions Tuning

Control Velocity of Applicability
It control. velocity of applications visible most the of one is flywheel launchinggamepiece- A involves autonomous in path definedpre- a following - control drivetrain to applicable also is loads. different of variety a under precision, with wheels the of velocity the controlling

## Strategies Control of Choice

pure a with performance good fairly achieve can we velocity, controlling are we Because velocity statesteady- motor's DC magnetpermanent- a because is This .controller feedforward robot your drive can you that reason the is and applied, voltage the to proportional roughly is are you case, that in - all at loop control any use to appearing without joysticks with around model. feedforward proportional a using implicitly
the at velocity a maintain to motor the to voltage control constant a apply must we Because typically output (whose controller (PID) feedback pure a use successfully cannot we setpoint, feedback a velocity, control effectively to order in - setpoint) the reach you when disappears
.controller feedforward a with combined be must controller
control PID way the in much control feedforward with combined be can control bangBangsimulation. bangbang-feedforward- combined a include not do we brevity of sake the for - can is effort control no where cases in results reasonable produce can feedback only with Tuning or turrets, like mechanisms for work may This .setpoint the at output the keep to required where flywheel, a for well work not does it above, seen as However, steering. drive swerve the at motion sustaining is it when even motor the slow to act both friction and EMFback- the feedforward a with controller PID the combine to need we system, this control To setpoint. controller.
the when necessary only is it - setpoint constant a with control velocity for useful not is $K_{d}$ changing. is setpoint
statesteady- eliminate to way optimalsub- a often is controller the to gain integral an Adding soon, see will we As above! simulation the in is it "laggy" and sloppy how see can you - error controller. feedforward a with controller PID the combine to is approach better a

## Control Position and Velocity

position a in - inertia of effect the in control position from differs also control Velocity control the if even setpoint the past swing to mechanism the cause to tends inertia controller, infeasible, strategies control aggressive makes This setpoint. the near zero to drops voltage controller, velocity a In oscillations. inducedself- fighting energy of lots wasting up end they as applying stop you as soon as accelerating stops shaft rotor the - different is effect the however, overshoots such so EMF), back- and friction to due down slow will it fact, (in voltage control a loop of result a as only controllers velocity in occurs typically overshoot fact, (in rare are strategy control aggressive extremely simple, extremely an of use the enables This delay).
.control bangbang- called

## Simplifications Feedforward

WPILib the from term $K_{s}$ the omit above simulations the simplicity, of sake the For - important be can this however, mechanisms, actual On equation. SimpleMotorFeedforward static of lot a with flywheel A gearing. mechanism the in friction of lot a there's if especially feedforward the unless relationship velocityvoltage- control linear a have not will friction out. it cancel to term $K_{s}$ a includes controller
move. to starts it until mechanism the to voltage the increase slowly manually, $K_{s}$ measure To move. to begins mechanism the before applied voltage largest the is $K_{s}$ of value The
the unless control velocity for feedforward the in term $K_{a}$ a for need no is there Additionally, here. omitted is gain the so and concern, a not is this flywheel, a for - changing is setpoint

Footnotes

## Controller Position Turret a Tuning 30.2.8

principles tuning The turret. a for controller position simple a tune will we section, this In external no under scenarios controlposition- any almost for work also will here explained loading.

## Description Model Turret

gamepieces. scoring for it position to sideto-side- mechanism some rotates turret A of: consists "turret" Our
turret) (the mass inertial rotating A . mass the driving gearbox and motor A
by used equation same the with modeled is plant this tutorial, this of purposes the For gearbox and delay sensor for adjustment additional with, SimpleMotorFeedforward WPILib's feedback and feedforward by controlled is plant the assumes simulation The inefficiency. fashion: this in composed controllers,

## $r(t)$

Where:
position turret's the is $y(t)$ output plant's The
turret the of position desired the is $r(t)$ setpoint controller's The
turret the driving motor the to applied voltage the is $u(t)$, effort control controller's The

## Controller Position Turret a for Strategy Control the Picking

turret) (and motor the faster the motor, the to applied is that voltage more the general: In until spinning the decrease slowly EMFback- and friction removed, is voltage Once spin. will
position. given a to rotate turret the make to want We stops. turret the
feedforward, pure under system the of behavior the demonstrate will below tutorials The the Follow strategies. control feedbackfeedforward- combined and (PID), feedback pure solution" "tuning the expand and controllers, these tune manually to how learn to instructions can tooling WPILib though Even parameters. tuning of set basedmodel- optimal an view to see to process tuning manual the through going worth is it gains, optimal with you provide mechanism. the with interact strategies control different the how are setpoints acceleration so generation, profile motion any include not does simulation This the by used not is equation feedforward the of term $k A$ the Accordingly, defined.well- very not feedforward- the to inherent delay/lag of amount some be will there means This controller. response. only

## Control Feedforward Pure

when responds system turret the how examine to below simulation the with Interact controller. feedforward a by only controlled
the of perimeter the along angle desired the on click setpoint, turret the change To : : पार indicator. setpoint the drag and click motion, smooth command To turret.
following: the perform controller, feedforward the tune To zero. to $K_{v}$ Set
during setpoint the tracks turret the until $K_{v}$ gain feedforward velocity the Increase gain. the reduce overshoots, turret the If motion. slow smooth, as long so fine is and normal, is this - motion commanded the "lag" may turret the that Note total. in amount correct the moves it
be not Do turrets! for scheme control viable a not is control onlyFeedforward- : : पार्य "correct" the when even well, behave not does below simulation the if/when surprised used. are constants
browser in inaccuracy timing to due that Note $. K_{v}=0.2$ is plant the by used gain exact The this. than smaller somewhat be may simulation the in best works that $K_{v}$ the simulations,

## Alone Control ForwardFeed- with Issues

WPILib the obeys perfectly mechanism simulated our above, mentioned As disabled). is option noise" "system the as long (as equation SimpleMotorFeedforward be should we that, controller velocity flywheel the of case the in like expect, then might We alone. loop feedforward a with setpointto-convergence- perfect achieve to able
allows it - voltage to acceleration and velocity relates equation feedforward our However, not does it but accuracy, high with mechanism our of motion instantaneous the control to us the which (in simulation our in even problem a is This .position the over control direct us allow motion a employ we unless because motion), of equation actual the is equation feedforward immediately jump to turret the ask can we setpoints velocity of sequence a generate to profile turret. simulated our for even impossible, is This another. to position one from spike" "voltage single a output to is controller feedforward the from behavior resulting The high very of iteration loop single a to (corresponding changes setpoint position the when reached already has system the that assumed is it (because voltage zero then and velocity), "impulse" initial an in results this that simulation the in see can we practice, In setpoint). the between.in- position indeterminate some at stops that position, target the towards movement undesirable. as seen generally is and "kick," a called is response of kind This
be can speed achievable maximum turret's the below motion smooth that notice may You however, misleading, is This alone. feedforward with simulation the in accurately followed noise" "system the With equation. feedforward its obeys perfectly mechanism real no because compounding in results eventually motion slow smooth, even that see can we enabled, option setpoint, the to converge accurately To used. is control feedforward only when errors position controller. (PID) feedback a use to need we
when responds system turret the how examine to below simulation the with Interact controller. (PID) feedback a by only controlled
following: the Perform
zero. to $K_{v}$ and , $K_{d}, K_{i}, K_{p}$ Set
moving by setpoint in change sudden a to responds mechanism the until $K_{p}$ Increase setpoint, the around much too oscillates controller the If position. new the to sharply stops. it until $K \_p$ reduce
smoothly a track to tries controller the when "lag" of amount the reduce to $K_{d}$ Increase it move to indicator directional turret's the drag and click (reminder: setpoint moving stops. it until $K_{-} d$ reduce oscillate, to starts controller the If smoothly).
Other, setpoint. the to convergence stable and rapid yield $K_{d}=0.05$ and $K_{p}=0.3$ of Gains well. as nearly work will gains similar

## Alone Control Feedback with Issues

turret the drive to able is controller feedback the enabled, noise system with even that Note smoothly to possible be not may it However, time. over manner stable a in setpoint the to only can controller feedback the as alone, feedback using lag without setpoint moving a track combine to need we worlds, both of best the get To up. built have they once errors to respond controller. feedforward a with controller feedback our

## Control Feedback and Feedforward Combined

under responds system turret the how examine to below simulation the with Interact control. feedback and feedforward simultaneous
controller feedforward the tune first we - simple is controller turret combined the Tuning PID the tune we then and section, onlyfeedforward- the in as procedure same the following PID that Notice section. onlyfeedback- the in as procedure same the following controller feedforward. accurate an of" top "on tune to easier much is controller the of portion
individual the for gains optimal the just are controller combined the for gains optimal The to convergence stable and rapid yield $K_{d}=0.05$ and , $K_{p}=0.3, K_{v}=0.15$ of gains controllers: work will gains similar Other, motion. smooth of tracking accurate relatively and setpoint the well. as nearly
moving smoothly a track accurately should controller combined the properly, tuned Once command. "jump" a after time over setpoint the to converge accurately also and setpoint,

# Conclusions Tuning <br> Strategies Control of Choice 

to trying are we ,flywheel the of case the unlike and, arm vertical the of case the in Like mechanism. our of velocity the than rather position the control
with performance control good achieve could we controller velocity flywheel the of case the In certain a cause will voltage much how predict to hard very is it However, alone. feedforward in errors big very into velocity in errors small even turn can (time position in change total arm, vertical the with as - alone control feedforward on rely cannot we case, this In position). controller. feedback a need will we
the keep to required voltage no is there though, arm, vertical the of case the in Unlike effectively to possible often is it consequence, a As there. it's once setpoint the at mechanism the of output the on only relying all, at controller feedforward any without turret a control a both and well work not may this friction, of lot a has mechanism the (if controller feedback absence the in control position Simple needed). be may controller feedback and feedforward
well. works control feedback pure which in cases only the of one is forces external of
where cases in results reasonable produce can feedback only with mechanism a Controlling work can this turret, a On .setpoint the at output the keep to required is effort control no as setpoint, moving a follow to trying when problems into run still may it however, - acceptably motion intermediate mechanism's the control to transients controller the on entirely relies it setpoints. position between
slow, track can feedforward accurate an that above example onlyfeedforward- the in saw We feedback the with controller feedforward a Combining well. quite setpoints velocity smooth long- stable the with controller feedforward a of followingvelocity- smooth the gives controller controller. feedback a of elimination error term

## Performance IdealNon- for Reasons

are setpoints acceleration so generation, profile motion any include not does simulation This the by used not is equation feedforward the of term $k A$ the Accordingly, defined.well- very not feedforward- the to inherent delay/lag of amount some be will there means This controller. response. only

## Friction Static and Feedforward on Note A

WPILib the from term $K_{s}$ the omit above simulations the simplicity, of sake the For important be can this however, mechanisms, actual On equation. SimpleMotorFeedforward static of lot a with turret A gearing. mechanism the in friction of lot a there's if especially near "stuck" get will it - alone feedback with accurately control to hard very be will friction . $K_{s}$ below falls output loop the when setpoint the at) not (but
move. to starts it until mechanism the to voltage the increase slowly manually, $K_{s}$ measure To move. to begins mechanism the before applied voltage largest the is $K_{s}$ of value The without controller position a to $K_{s}$ measured the apply to difficult mildly be can It to setpoint velocity the uses class SimpleMotorFeedforward WPILib the as profiling, motion a use either this, overcome To point. should term $K_{s}$ the which in direction the determine which on depending controller the of output the to manually $K_{s}$ add else or profile, motion setpoint. the to get to move to needs mechanism the direction

## Controller Position Arm Vertical a Tuning

tuning same The arm. vertical a for controller position simple a tune will we section, this In the under scenarios controlposition- all almost for also work will below explained principles gravity. of load

## Description Model Arm

position. scoring a to up ground the from gamepieces lift to used commonly are arms Vertical elevators. and hoods shooter include examples similar Other of: consists arm" "vertical Our
axle. an around pivoting gravity, of force the under stick, a on mass A
attached is sticka-on-mass- the which to axle the driving gearbox and motor A
used equation same the with modeled is plant this tutorial, this of purposes the For gearbox and delay sensor for adjustment additional with ,ArmFeedforward WPILib's by feedback and feedforward by controlled is plant the assumes simulation The inefficiency. fashion: this in composed controllers,

Where:
position rotational arm's the is $y(t)$ output plant's The arm the of angle desired the is $r(t)$ setpoint controller's The arm the driving motor the to applied voltage the is $u(t)$, effort control controller's The 。

## Arm Vertical a for Strategy Control the Picking

or up arm the drives that mechanism the on force a causes motor the to voltage Applying is it Generally, downward. it pull to arm the on acts still gravity voltage, no is there If down. angle. specific a at arm the keep and effect, this fight to desirable
feedforward, pure under system the of behavior the demonstrate will below tutorials The the Follow strategies. control feedbackfeedforward- combined and (PID), feedback pure solution" "tuning the expand and controllers, these tune manually to how learn to instructions can tooling WPILib though Even parameters. tuning of set basedmodel- optimal an view to see to process tuning manual the through going worth is it gains, optimal with you provide mechanism. the with interact strategies control different the how

## Control Feedforward Pure

when responds system turret the how examine to below simulation the with Interact controller. feedforward a by only controlled
the of perimeter the along angle desired the on click setpoint, arm the change To : : वार indicator. setpoint the drag and click motion, smooth command To turret.
following: the perform controller, feedforward the tune To zero. to $K_{v}$ and $K_{g}$ Set
the If possible. as movement little as with position its hold can arm the until $K_{g}$ Increase will You stationary. remains it until $K_{g}$ decrease direction, opposite the in moves arm places). decimal four least (at precisely fairly $K_{g}$ on in zero to have during setpoint the tracks arm the until $K_{v}$ gain feedforward velocity the Increase may arm the that Note gain. the reduce overshoots, arm the If motion. slow smooth, correct the moves it as long so fine is and normal, is this - motion commanded the "lag" total. in amount
not Do arms! vertical for scheme control viable a not is control onlyFeedforward- : : पार्य "correct" the when even well, behave not does below simulation the if/when surprised be used. are constants

$$
. K_{v}=1.95 \text { and } K_{g}=1.75 \text { are simulation the by used gains exact The }
$$

## Alone Control ForwardFeed- with Issues

WPILib the obeys perfectlyalmost- mechanism simulated our above, mentioned As then might We disabled). is option noise" "system the as long (as equation ArmFeedforward achieve to able be should we that, controller velocity flywheel the of case the in like expect, alone. loop feedforward a with setpointto-convergence- perfect
allows it - voltage to acceleration and velocity relates equation feedforward our However, not does it but accuracy, high with mechanism our of motion instantaneous the control to us the which (in simulation our in even problem a is This .position the over control direct us allow motion a employ we unless because motion), of equation actual the is equation feedforward
immediately jump to arm the ask can we setpoints velocity of sequence a generate to profile arm. simulated our for even impossible, is This another. to position one from
spike" "voltage single a output to is controller feedforward the from behavior resulting The high very of iteration loop single a to (corresponding changes setpoint position the when reached already has system the that assumed is it (because voltage zero then and velocity), "impulse" initial an in results this that simulation the in see can we practice, In setpoint). the between.in- position indeterminate some at stops that position, target the towards movement undesirable. as seen generally is and "kick," a called is response of kind This
movement slow/smooth track can mechanism the tuned, properly once that, notice will You this with problems obvious some are there however, - accuracy of amount surprising a with this - setpoint the at gravity of force the for corrects equation feedforward Our approach. option noise" "system the With setpoint. the from far is arm our if behavior poor in results compounding in results eventually motion slow smooth, even that see also can we enabled, remain and to converge accurately To used. is control feedforward only when errors position controller. (PID) feedback a use to need we setpoint, the at

## Control Feedback Pure

when responds system arm vertical the how examine to below simulation the with Interact controller. (PID) feedback a by only controlled
following: the Perform

$$
\text { zero. to } K_{g} \text { and , } K_{d}, K_{i}, K_{p} \text { Set }
$$

moving by setpoint in change sudden a to responds mechanism the until $K_{p}$ Increase setpoint, the around much too oscillates controller the If position. new the to sharply
stops. it until K_p reduce
. setpoint the to converging before "stuck" gets output the when $K_{i}$ Increase
reduce further and setpoints movingsmoothly- track system the help to $K_{d}$ Increase
oscillation.
not Do arms! vertical for scheme control viable a not is control onlyFeedback- : "correct" the when even well, behave not does below simulation the if/when surprised be used. are constants
yield $K_{d}=1$ and $K_{p}=5$ of Values strategy. control this for solution tuning good no is There the at actually not is equilibrium that but equilibrium, stable a to approach reasonable a setpoint!

## Alone Control Feedback with Issues

setpoint. different a for poorly act will setpoint one for well works that gains of set A laggy. and unstable it's but time, over setpoint the to us push can gain integral some Adding height, constant a at arm the keep to required is effort control of amount zeronon- a Because order In flawed. is strategy onlyfeedback- this equal, are setpoint and output the when even needed. is strategy feedbackfeedforward- combined a arm, vertical a control optimally to

## Control Feedback and Feedforward Combined

under responds system arm vertical the how examine to below simulation the with Interact control. feedback and feedforward simultaneous
controller feedforward the tune first we - simple is controller arm combined the Tuning PID the tune we then and section, onlyfeedforward- the in as procedure same the following PID that Notice section. onlyfeedback- the in as procedure same the following controller feedforward. accurate an of" top "on tune to easier much is controller the of portion
) $K_{v}=1.95$ and $K_{g}=1.75$ ( simulation first our from coefficients feedforward the Combining good a yields ) $K_{d}=1$ and $K_{p}=5$ ( simulation second our from coefficients feedback the and behavior. controller
setpoint, moving smoothly a tracks accurately controller combined the properly, tuned Once command. "jump" a after time over setpoint the to converge accurately also and

## Conclusions Tuning <br> Strategies Control of Choice

the control to trying are we, flywheel the of case the unlike and ,turret the of case the in Like mechanism. our of velocity the than rather position
with performance control good achieve could we controller velocity flywheel the of case the In certain a cause will voltage much how predict to hard very is it However, alone. feedforward in errors big very into velocity in errors small even turn can (time position in change total arm, vertical the with as - alone control feedforward on rely cannot we case, this In position). controller. feedback a need will we
mechanism the keep to required voltage a is there though, turret, the of case the in Unlike consequence, a As gravity). of force the by affected is arm the (because setpoint the at steady combined a and system, this for acceptably work not will controller feedback pure a needed. is strategy feedbackfeedforward-
The gravity. is arm vertical the for fails strategy control onlyfeedback- the reason core The at rest at when even counteract to effort control constant a requires gravity of force external at when effort control any output typically not does controller feedback a but setpoint, the simulation the in clearly see can we which used, is gain integral (unless setpoint the at rest oscillations). introduces and laggy is
slow, track can feedforward accurate an that above example onlyfeedforward- the in saw We feedback the with controller feedforward a Combining well. quite setpoints velocity smooth long- stable the with controller feedforward a of followingvelocity- smooth the gives controller controller. feedback a of elimination error term

## Performance IdealNon- for Reasons

are setpoints acceleration so generation, profile motion any include not does simulation This the by used not is equation feedforward the of term $k A$ the Accordingly, defined.well- very not feedforward- the to inherent delay/lag of amount some be will there means This controller. response. only
smoothly- for even overshoot some usually is There perfect. not but good, is law control The above note the (see feedforward the in $K_{a}$ of lack the of combination is this - setpoints moving to Attempting simulation. the in error discretization some and here), omitted is it why for which diverge, to mechanism and setpoint the cause also can quickly too setpoint the move correcting term :math:«K_g« the to due behavior poor in result will earlier) mentioned (as Using measurement. the not setpoint, the from calculated is it as force, wrong the for to opposed (as linearization" "feedback called is gravity for correct to measurement the strategy control better a be can and used), is setpoint the when linearization" "feedforward accurate. and fast sufficiently are measurements your if

## Friction Static and Feedforward on Note A

WPILib the from term $K_{s}$ the omit above simulations the simplicity, of sake the For important be can this however, mechanisms, actual On equation. SimpleMotorFeedforward gearing. mechanism the in friction of lot a there's if especially -
separately estimate to tedious somewhat be can $K_{s}$ elevator, or arm vertical a of case the In recommended is it important, be to $K_{s}$ for friction enough has elevator or arm your If . $K_{g}$ from gains. system your determine to tool identification system WPILib the use you that

## remove.. please Reviewer, testing, for just is translation This 30.2.10

feedback and feedforward tuning while arise can which issues common of number a are There controllers.

## Windup Term Integral

,setpoint in change large a Following occur. can windup integral large, too is $K_{i}$ if that Beware result, a As .effort control maximal the than larger error an accumulate can term integral the unwound. is error accumulated this until increase to continues and overshoots system the
this: mitigate to ways few a are There
possible. if zero to down, $K_{i}$ of value the Decrease
. setpoint the from far too is output the if zero to term integrator the reset to logic Add a with this implement PIDController WPILib's and controllers motor smart Some method. setIZone()
this implements PIDController WPILib's value. maximum some at integrator the Cap method. setIntegratorRange() the with
seem that systems and control, integral any require not do FRC in mechanisms Most : : प्रा model. feedforward inaccurate an have probably well respond to control integral require to

## Sag Voltage

causes This battery. its from current draw we robot, our on mechanisms operate we When means This drop. to of off operate mechanisms robot the all that voltage" "bus available the the of action and loading the on depending vary will mechanisms our of performance the that ideal. not is this - robot
internal their for setting compensation" "voltage a offer controllers voltage most this, fix To in changes despite constant loops control the of voltage output the keep that loops control the do can method setVoltage a offers class MotorController WPILib The voltage. bus the loop robot every it call you (provided RIO the on run being are loops control the if thing same iteration).
motor the to applied voltage the increase cannot compensation voltage that mind in Keep you'll below), (described saturating is actuator your if - bus the on available is what beyond separately. that for account to have

## Saturation Actuator

current the and setpoint the between error the on based output its calculates controller A controller the for available authority control unlimited have don't world real the in Plant . state torque/acceleration achievable maximum some have mechanisms real say, to is that - apply to velocity. and
mechanism the move to try might algorithm control our aggressive, too are gains control our If and "saturate", will mechanism the case, this In going. actually of capable is it than faster control affect adversely might This are. they than smaller were gains control the if as behave instability). and errors in result (i.e., response
your modifying consider saturation, actuator with problems encountering are you If motor. bigger a with it powering or gearing mechanism

Filters
30.3
found be can section this in plots demonstration various the generate to used data The : : .here
noise for useful are that WPILib with included filters of number a describes section This smoothing. input and/or reduction
30.3.1 מבוא לפילטרים
numerous find and technology, modern in used tools common most the of some are Filters a of notion the Understanding controls. and processing signal both in robotics in applications WPILib. by provided filters of types various the of utility the understanding to crucial is filter
 full/rigorous a but - this than general more are involved concepts the Obviously, data. series documentation. this of scope the of out is filtering and signals of discussion
a to inputs of stream a from mapping a is filter a put, Simply then? filter, a is exactly what So, only not depend can principle) (in filter a by output value the say, to is That outputs. of stream course, (of values future and past of set entire the on but input, the of value current the on data; streaming on timereal- in implementable are WPILib by provided filters the practice, in values). future on not and input, the of values past the on depend only can they accordingly, unwanted remove/mitigate to filters use we generally because concept, important an is This signal the how modifying in interested we're signal, a filter we When signal. a from dynamics .time over changes

## השפעות השימוש בפילטר

הפחתת רעש
is noise reduces that filter A reduction. noise for is filter a of uses typical most the of One blocking while through," "pass to frequencies low allows it (because filter passlow- a called passlow- effectively are WPILib in included currently filters the of Most frequencies).high-
filters.

## Limiting Rate

closely is This change. can signal a which at rate the reduce to used commonly also are Filters change of rate the limit to tend also noise reduce that filters and reduction, noise to related output. their of
high permits only which filter, passhigh- the is filter passlow- the to counterpart The build to tricky somewhat be can filters passHigh- output. the to through pass to frequencies passhigh- since - detectionedge- is filter passhigh- a for usage common a but for, intuition useful are they changes, slower ignoring while input the in changes sudden reflect will filters signal. the in discontinuities sharp of location the determining for

## Lag Phase

lag." "phase of introduction the is filter passlow- timereal- a of effect negative unavoidable An (we signal the of values past on depend only can filter timereal- a earlier, mentioned as Since, up" "catch to time some takes value filtered the values), future the obtain to traveltime- cannot introduced the greater the reduction, noise- the greater The changing. starts input the when be should and filtering, timereal- of offtrade- fundamental the ways, many in is, This delay. design. filter your of factor driving primary the
they as lag, phase a to opposed as ,lead phase a introduce filters passhigh- Interestingly, input. the of value the to changes local exacerbate

## Filters Linear

30.3.2

- filter linear a is supports WPILib that filter of sort employed)commonly- most (and first The filter. (LTI) invarianttime- linear a specifically, more or,
at stream output the of value the - average moving weighted a simply, put is, filter LTI An difference The time. that near inputs the of average weighted localized, a is time given any the of choice the in difference the to reducible thus is filters LTI of types different between The used. response") "impulse an or function" "window a as known (also function weighting .convolution is operation this for term mathematical
finite and (IIR), responses impulse infinite responses: impulse of "sorts" broad two are There (FIR). responses impulse
infinitely- an over nonzero are they is, that - "support" infinite have responses impulse Infinite value a once - "memory" infinite have also they that broadly, means, This region. large typically is This .forever outputs, subsequent all influence will it stream, input the in appears impulse infinite with filters however perspective, processingsignal- strict a from undesirable recursion simple by expressed be can they as compute to easy very be to tend responses relations.
region. bounded a on nonzero are they is, that - "support" finite have responses impulse Finite equal output the setting simply is, that - average moving flat a is filter FIR "archetypical" The than properties desirablemore- have to tend filters FIR inputs. n past the of average the to compute. to costly more are but filters, IIR
).C++ ,Java( class LinearFilter the through WPILib in supported are filters Linear


## LinearFilter a Creating

input. the for used type data the on templated is class LinearFilter C++ The :

Do object. filter own its requires stream input each "memory", have filters Because : : प्रा streams. input multiple for object filter same the use to attempt not
far is it filter, custom a build to class LinearFilter instantiate directly to possible is it While instead: methods, factory supplied the of one use to common) (and convenient more
filter response impulse infinite polesingle- a creates method factory singlePoleIIR() The most in filter passlow- try""first- to,""go- the is This .smoothing exponential performs which cases. most in works and trivial computationally is it applications;

Java


C++

filter's the of timescale" "characteristic the determines parameter constant" "time The timescales on occur that dynamics signal any out cancel will filter the response; impulse

## Competition Robotics FIRST

the of timescale approximate the also is it Relatedly, this. than shorter significantly "cutoff the is pi, 2 by multiplied timescale, this of reciprocal The .lag phase introduced filter. the of frequency"
called. be will method calculate() filter's the which at period the is parameter "period" The of period loop robot main standard the be will this implementations, of majority vast the For seconds. 0.02
movingAverage
the is This filter. average moving flat simple a creates method factory movingAverage The single- the as contexts same the of many in useful is and filter, FIR passlow- possible simplest somewhat a in behaves generally but compute, to costly more somewhat is It filter. IIR pole manner. nicer

Java

```
        filter average moving flat new a Creates //
        samples 5 last the over taken be will Average //
    );5MovingAverage(::>double<LinearFilter::frc = filter >double<LinearFilter::frc
```

moving flat the in included be will that samples of number the is parameter "taps" The constant time effective the - above constant" "time the to similarly behaves This average. called. is calculate() which at period the times taps of number the is

## highPass

High-Pass F
Time Constant
passhigh- response impulse infinite orderfirst- simple a creates method factory highPass The .singlePoleIIR the to "counterpart" the is This filter.

Java


C++

```
    filter IIR high-pass new a Creates //
    seconds 0.1 is constant Time //
    period loop main FRC standard the is this - seconds 0.02 is Period //
s);_0.02 s, 0.1HighPass(::>double<LinearFilter::frc = filter >double<LinearFilter::frc
```

filter's the of timescale" "characteristic the determines parameter constant" "time The timescales on occur that dynamics signal any out cancel will filter the response; impulse introduced the of timescale approximate the also is it Relatedly, this. than longer significantly of frequency" "cutoff the is pi, 2 by multiplied timescale, this of reciprocal The .lead phase filter. the
called. be will method calculate() filter's the which at period the is parameter "period" The of period loop robot main standard the be will this implementations, of majority vast the For seconds. 0.02

## LinearFilter a Using

its parameter, timescale specified the obey to filter created the for order In : Clll reason, some for If, period. specified the at regularly called be must function calculate() be should method reset() filter's the occur, must calls calculate() in lapse significant a use. further before called
with method calculate() the call simply - easy is it using created, been has filter your Once output: filtered the obtain to input recent most the

Java

| output the of value next the Calculates // <br> (input); calculatefilter. |
| ---: |
| C++ |
| output the of value next the Calculates // <br> filter.Calculate(input); |

Filter Median 30.3.3

Median Filte
5 Taps
a Where .filter median the is filter averagemoving- the to alternative robust statistically A window, sample moving a over input the of mean arithmetic the takes filter average moving instead. median a takes name) the (per filter median a

This stream. input an from outliers occasional removing for usefulmost- is filter median The to prone are which sensors, distance from inputs filtering to suitedwell- particularly it makes completely remain will filter median the average, moving a Unlike interference. occasional extreme. how matter no outliers, of numbers small by unaffected
).C ++ ,Java( class MedianFilter the through WPILib in supported is filter median The

## MedianFilter a Creating

input. the for used type data the on templated is class MedianFilter C++ The : $\operatorname{llll}$

Do object. filter own its requires stream input each "memory", have filters Because : : streams. input multiple for object filter same the use to attempt not
simple: is MedianFilter a Creating
Java

| samples 5 of size window a with MedianFilter a Creates // |
| ---: |
| ) ;5MedianFilter ( new $=$ filter MedianFilter |$|$| C++ |
| ---: |

## MedianFilter a Using

with method calculate() the call simply - easy is it using created, been has filter your Once output: filtered the obtain to input recent most the

Java

| output the of value next the Calculates // <br> (input); calculatefilter. |
| ---: |
| C++ |
| output the of value next the Calculates // <br> filter.Calculate(input); |

## Limiter Rate Slew 30.3.4

the example, (for inputs control of behavior the soften to is FRC ® in filters for use common A poorly- is filter passlow- simple a Unfortunately, controls). driver your from inputs joystick sudden to stream input an of response the soften will filter passlow- a while job; this for suited solution better A lag. phase introduce and detail control fine out wash also will it changes, rate slew a with performed is This directly. input control the of changeof-rate- the limit to is signal. the of changeof-rate- maximum the caps that filter a - limiter rate slew the fact, In profile. motion primitive of sort a as of thought be can limiter rate slew A it - WPILib by supported Profile Motion Trapezoidal the of equivalent orderfirst- the is limiter allowed is constraint acceleration the when motion trapezoidal of case limiting the precisely is factode- a applying for choice good a is limiter rate slew the Accordingly, infinity. to tend to approximately usually are which voltages, (or setpoints velocity of stream a to profile motion use to better usually is it positions, control that streams input For velocity). to proportional profile. trapezoidal proper a
).C++ Java( class SlewRateLimiter the through WPILib in supported is limiting rate Slew

SlewRateLimiter a Creating
more For input. the of type unit the on templated is class SlewRateLimiter C++ The : : .Library Units C++ The see units, C++ on information

Do object. filter own its requires stream input each "memory", have filters Because : Tlll streams. input multiple for object filter same the use to attempt not
simple: is SlewRateLimiter a Creating
Java
${ }_{4} 0.5$ to signal the of change of rate the limits that SlewRateLimiter a Creates // second per units $\rightarrow$
);0.5SlewRateLimiter( new = filter SlewRateLimiter
C++
u 0.5 to signal the of change of rate the limits that SlewRateLimiter a Creates // second per volts $\rightarrow$ s\};_1 / V_0.5filter\{ >volts::units<SlewRateLimiter::frc

## SlewRateLimiter a Using

with method calculate() the call simply - easy is it using created, been has filter your Once output: filtered the obtain to input recent most the

Java

| output the of value next the Calculates // <br> (input); calculatefilter. |
| ---: |
| C++ |
| output the of value next the Calculates // <br> filter. Calculate(input); |

## DifferentialDrive with SlewRateLimiter a Using

doubles, with use for units: :scalar on filter the templates below example C++ The : dimensionless. typically are values joystick since
be can This drive. robot's a of acceleration the limit to is SlewRateLimiter a of use typical A do To drives. powerful very have that or heavy,top- very are that robots for handy especially function: drive robot your into passed value a to SlewRateLimiter a apply this,

```
    applied ramping no with call Ordinary //
    turn); (forward,arcadeDrivedrivetrain.
acceleration forward/backward limiting input, forward/backward the limits Slew-rate //
    turn); (forward),calculate(filter.arcadeDrivedrivetrain.
                                    C++
        applied ramping no with call Ordinary //
    turn); drivetrain.ArcadeDrive(forward,
acceleration forward/backward limiting input, forward/backward the limits Slew-rate //
    turn); drivetrain.ArcadeDrive(filter.Calculate(forward),
```

"bounces," (termed cycles on/off quick unwanted eliminate to used filter a is debouncer A usually are cycles These thrown). is it as switch a of vibrations physical the from originally to trying is sensor the event actual the not and reflections or noise like error sensor a to due record.
a filters which ),C++, Java( class Debouncer the by WPILib in implemented is Debouncing nominal some for change a sustains input the if changes only output the that so stream boolean period. time

Modes
modes: different three in configured be can Debouncer WPILib The only. )true to false from (transitions edges rising Debounces (default): Rising • only. )false to true from (transitions edges falling Debounces Falling: • transitions. all Debounces Both: •

## Usage

Java

| 0 DIO on DigitalInput a Initializes // |
| ---: |
| );0DigitalInput( new = input DigitalInput |

mode. both"" in Debouncer a Creates //


WPILib. - ㄴำ

## Systems Coordinate 30.4.1

objects« representing for use we that systems coordinate main two are there FRC®, In positions.

## System Coordinate Field

system coordinate absolute an is system) coordinate global (or system coordinate field The counter- the in is (theta) $\theta$ Positive origin. the as designated is field the on point a where station driver alliance's your from away points axisx- positive the and direction, clockwise axis.x- positive the of left the to and perpendicular is axisy- positive the and wall,

## System Coordinate Robot

system coordinate relative a is system) coordinate local (or system coordinate robot The and axis, x positive the is facing is robot the direction The origin. the is robot the where clockwise.counter- is $\theta$ Positive robot. the of left the to perpendicular, is axis y positive the
order in reading the invert to have you so positive,clockwise- is class Gyro WPILib's : : पारा system. coordinate either with rotation the get to

## Pose and Rotation, Translation, 30.4.2

Translation
).C++, Java( class Translation2d WPILib's by represented is dimensions 2 in Translation a on $\left[\begin{array}{l}x \\ y\end{array}\right]$ vector the or $(x, y)$ point the representing component, y and x an has class This system. coordinate dimensional2-
the using by object Translation2d another to distance the get can You Translation2d another to distance the returns which ,other) getDistance(Translation2d theorem. Pythagorean the using by

WPILib other using on planning you're If library. Units C++ the uses Translation2d : $\square$ use to sure make generator, trajectory the as such Java, in Translation2d use that classes meters.

## Rotation

This ).C++ ,Java( class Rotation2d WPILib's by represented is dimensions 2 in Rotation a on axis an to relative rotation robot's the represents which component, angle an has class counterclockwise. are rotations Positive system. coordinate dimensional2-
either accepts Java in constructor The library. Units C++ the uses Rotation2d : $\square$ IT] will method fromDegrees the but angle, the of cosine and sine the or radians, in angle the degrees. from object Rotation2d a construct
passed is degrees 400 of value a if so angle, the of value the wrap not does Rotation2d : : वार calls. value subsequent in returned be will degrees 400 then constructor, the into
class Pose2d the by represented is and rotation and translation both of combination a is Pose system, coordinate field the in robot your of pose the describe to used be can It ).C++, Java( coordinate robot the in robot your to relative targets, vision as such objects, of pose the or $\cdot\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$ vector the represent also can Pose2d system.

 . ㄷำ






origin the about $\theta$ rotation clockwisecounter- a by Translation2d a of Rotation Rotation: • the by vector the multiplying to equivalent is This .rotateBy using by performed be can

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { matrix }
$$

in unaryMinus using by degrees 180 by Translation2d a rotate can you Additionally, • C++. in operator - unary the or Java,

## Rotation2d

 'sRotation2d this to other of component rotation the Adds ( $\mathrm{C}++$ ): + or (Java) plus • component rotation
this to other of component rotation the Subtracts ( $\mathrm{C}++$ ): - binary or (Java) minus component rotation 'sRotation2d of scalar a by component rotation the Multiplies (C++): - unary or (Java) unaryMinus • 1.-
scalar. a by component rotation the Multiplies : (C++) * or (Java) times •

## Twist2d-ו Transform2d

to transformation a represents which ),C++, Java( Transform2d classes, 2 provides WPILib Transform2d arc. an along movement a represents which )C++, Java( Twist2d and pose, a components. $\theta$ and y x , have all Twist2d and
rotation a and translation an has It transformation. relative a represents Transform2d component translation the rotates Transform2d a by Pose2d a Transforming component. component translation rotated the adds then and pose, the of rotation the by transform the of returns Pose2d.plus(Transform2d) words, other In pose. the to component rotation the and

$$
\left[\begin{array}{l}
x_{p} \\
y_{p} \\
\theta_{p}
\end{array}\right]+\left[\begin{array}{ccc}
\cos \theta_{p} & -\sin \theta_{p} & 0 \\
\sin \theta_{p} & \cos \theta_{p} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t} \\
\theta_{t}
\end{array}\right]
$$

represent to used is class this Usually, arc. an along distance in change a represents Twist2d $y$ the driven, distance forward the is component $x$ the where drivetrain, a of movement the
change the is component $\theta$ the and positive), (left side the to driven distance the is component moving after pose (new exponential pose the finding behind math underlying The heading. in 10. chapter in here found be can twist) the of curvature the along forward pose the

0 . be always should Twist2d a of component y the drivetrains, nonholonomic For :
odometry WPILib's in used is Twist2d location. robot estimate to used be can classes Both to used be can Transform2d while movement, on based pose robot's the update to classes data. vision from position global robot's the estimate

## Controllers 30.5

are that classes controller feedforward and feedback WPILib various describes section This that classes profilingmotion- as well as mechanisms, robot of motion the controlling for useful controllers. these with use for setpoints generate automatically can
30.5.1 בקרת PID עם WPILib
a For WPILib. in control PID of implementation codein- on focuses article This : : PID-प रापा see PIDController, a of working the of explanation conceptual
see ,framework basedcommand- the through control PID implementing on guide a For : : पार्य .PIDCommands and PIDSubsystems through Control PID
).C++ Java( class PIDController the through mechanisms of control PID supports WPILib methods offering as well as user, the for calculation loop feedback the handles class This its reached has loop control the if checking and tolerances, setting error, the returning for tolerances. specified the within setpoint

שימוש במחלקה PIDController
should teams C++ - deprecated is namespace frc the in class PIDController The : the in class the use should teams Java Likewise, instead. namespace, frc 2 the in one the use package. edu.wpi.first.math.controller

PIDController a Constructing
any provide not does it asynchronously, used be may PIDController While : ใी०ा thus and user, the to entirely left is operation threadsafe ensuring - features safety thread teams. advanced for only recommended is usage asynchronous

PIDController a construct first must users functionality, control PID WPILib's use to order In gains: desired the with object

Java

period the specifying constructor, the to provided be can parameter fourth optional An for primarily intended is object PIDController The run. be will controller the which at 20 ms . to defaulted is value this so and loop, robot main the from use synchronous

## Output Loop Feedback the Using

at regularly called being is method calculate() the that assumes PIDController The : ใ०ार unintended in result will this do to Failure period. configured the with consistent interval an behavior. loop
automatically not does PIDController new the ,PIDController old the Unlike : : पाराप use and calculate() call to required are users - thread own its from output an control code. own their in output resulting the
from method calculate() the call simply simple: is PIDController constructed the Using method): autonomousPeriodic() robot's the (e.g. loop main robot's the

Java

| reading sensor the on based algorithm PID the of output the Calculates // |
| ---: |
| motor a to it sends and // |
| setpoint)); (), getDistance(encoder.calculate(pid.setmotor. |

C++
reading sensor the on based algorithm PID the of output the Calculates ///
motor a to it sends and //
setpoint)); motor. Set(pid. Calculate(encoder. GetDistance(),
is loop the that assuming named are getVelocityError() and getPositionError() : : प्रा error velocity the return these velocity, a controlling is that loop a for - position a controlling respectively. error, acceleration the and
getPositionError() the by returned is variable process measured the of error current The function: getVelocityError() the by returned is derivative its while function,

## Tolerances Checking and Specifying

infinity. to defaults tolerance velocity the specified, is tolerance position a only If : ใ०ार
its to "velocity" and measurement, variable process the to refers "position" above, As : : प्रा respectively. acceleration, and velocity actually are these loop, velocity a for thus, - derivative
given a within to setpoint the tracked has controller a if know to useful is it Occasionally, a following (while or ended, be should command a if determine to example, for - tolerance planned.re- be to needs and impeded being is motion if profile) motion
we then, method; setTolerance() the with tolerances the specify must first we this, do To method. atSetpoint() the with it check can

Java
second per 10 to tolerance derivative error the and 5, to tolerance error the Sets //
);10 ,5(setTolerancepid.

C++
second per 10 to tolerance derivative error the and 5, to tolerance error the Sets // );10 ,5pid.SetTolerance(
the and units, 5 than less is error the if true Returns // units 10 than less is derivative error // pid.AtSetpoint();

## Controller the Resetting

integral the importantly, (most state internal the clear to desirable sometimes is it PIDController the when (e.g. valid longer no be may it as ,PIDController a of accumulator) reset() the calling by accomplished be can This enabled).re- then and disabled been has method.

## Value Integrator Max a Setting

It systems. loop feedback into hysteresis and instability introduce Integrators : other no absolutely unless gain integral using avoid teams that recommended strongly is better be can integrator an with solved be can that problems often, very - do will solution .feedforward accuratemore- a of use through solved
causing up""wind- excessive is feedback integral using when encountered problem typical A the - ways of number a in alleviated be can This setpoint. the overshoot wildly to system the overcome teams help to limiter range integrator an enforces class PIDController WPILib issue. this
1.0- between be to limited is gain integral the from contribution output total the default, By 1.0. and
method. setIntegratorRange() the using decreased or increased be may limits range The
Java
from 0.5 than more subtract or add never will term gain integral The // output loop total the //
);0.5, 0.5-(setIntegratorRangepid.
C++
from 0.5 than more subtract or add never will term gain integral The //
output loop total the //
);0.5 , 0.5 -pid.SetIntegratorRange(

High Too is Error the if Gain Integral Disabling
integral where range error the limiting by is alleviated be can up"" wind- integral way Another .IZone setting by achieved be can This active. is gain
disabled. is IZone default, By
to it set it, disable To method. setIZone() the using decreased or increased be may IZone infinity.

Java
is error the of value absolute the if applied be not will gain Integral //
2 than more //
) ;2(setIZonepid.

C++
is error the of value absolute the if applied be not will gain Integral //

## Input Continuous Setting

a (e.g. motion rotational continuous fully of capable not is mechanism your If : : पारा input continuous enable not do rotates), it as twist wires whose ring, slip a without turret from mechanism the prevent to feature safety additional an implemented have you unless limit! its past moving

- values input your wrap automatically not does function input continuous The : : पारा specified the of outside never are feature, this using when values, input your that sure be range!
rather scale, circular a on measured are turret) a of angle the as (such variables process Some same the to corresponds range variable process the of "end" each is, that - one linear a than two are there configuration, a such In degrees). 0 and degrees 360 (e.g. reality in point error the circle the around way which to corresponding error, given any for values possible errors. these of smaller the use to best usually is It measured. is enableContinuousInput() the use this, do automatically to PIDController a configure To method:

Java


Output Controller Clamping
features, clamping output any offer not does controller new the ,PIDController old the Unlike easily be can clamping Output themselves. output loop the use to expected is user the as c++): in std: : clamp (or function clamp() WPI's with controller the composing by achieved

Java
0.5 and 0.5 - between to output controller the Clamps //
);0.5, 0.5- setpoint), (),getDistance(encoder.calculate(pid.clampMathUtil.
C++
0.5 and 0.5 - between to output controller the Clamps //
);0.5 , 0.5- setpoint), clamp(pid.Calculate(encoder.GetDistance(),::std

## WPILib in Control Feedforward 30.5.2

For WPILib. in control feedforward of implementation codein- on focuses article This : : पारा to Introduction see WPILib, by used equations feedforward the of explanation conceptual a

Feedforward Motor DC


#### Abstract

system's a (making tracking reference for PID) as (such control feedback used have may You measure; reactionary a it's effective, is this While signal). reference desired a follow output could we If behind. already is system the until effort control applying start won't system the system the beforehand, input required and movement desired the about controller the tell feeds that controller A work. less do could controller feedback the and quicker react could controller. feedforward a called is this like plant the into forward information mathematical a (like dynamics system's the about information injects controller feedforward A we actions control the of parts handles Feedforward movement. intended the or does) model compensates feedback then reference, a track system a make to applied be must know already runtime. at behavior system's the about know cannot or not do we what for


## Classes Feedforward WPILib The

control feedforward accurate implement users help to classes of number a provides WPILib than important more is feedforward accurate an ways, many In mechanisms. their for obey closely mechanisms FRC® most Since mechanism. a of control effective to feedback and easy both is feedforward accurate an with starting equations, system understoodwellcontrol. mechanism robust and accurate to beneficial hugely
tools characterization mechanism available the match closely classes feedforward WPILib The quickly to used be can toolsuite identification system The .toolsuite SysId the in available to unable are you If feedforward. of type each for gains correct the determine effectively and reasonable constraints), time and/or space to (due mechanism your characterize empirically available also are and computation, simple fairly by obtained be can KA and $, \mathrm{kV}, \mathrm{kG}$ of estimates empirically. measured be must and model, to impossible nearly is kS .ReCalc from
control: feedforward for classes helper three following the provides currently WPILib

$$
\begin{array}{r}
\text { )C++ ,Java( SimpleMotorFeedforward • } \\
\text { )C++ ,Java( ArmFeedforward • } \\
\text { )C++ ,Java( ElevatorFeedforward • }
\end{array}
$$

for used type unit the on templated is class SimpleMotorFeedforward the C++, In : प्राप have must gains inpassed- The linear. or angular be may which measurements, distance should kS thrown. be will error timecompile- a or units, distance the with consistent units should kA and ,distance / seconds * volts of units have should kV ,volts of units have The see units, C++ on information more For .distance / seconds^2 * volts of units have .Library Units C++
the by determined units in outputs calculate will components feedforward Java The : : Inl consistent, units keep to care take must Users gains. feedforward provideduser- the of units system. unit safetype- a have not does WPILibJ as
of consist that mechanisms for feedforwards calculates class SimpleMotorFeedforward The such inertia, and friction than other loading external no with motors DC magnetpermanentdrives. robot and flywheels as
gains: required the with it construct simply ,SimpleMotorFeedforward a create To
many For zero. of value a to default will is, it if and omitted, be can gain kA The : Clll necessary. not is it inertia, little with those especially mechanisms,

| Java |
| ---: |
| $k A$ and $k V, k S$, gains with SimpleMotorFeedforward new a Create // |
| $k \mathrm{kV}$, SimpleMotorFeedforward(kS, new = feedforward SimpleMotorFeedforward |

C++
kA and kV, kS, gains with SimpleMotorFeedforward new a Create // meters in measured is Distance //
kA); kV, feedforward(kS, >meters::units<SimpleMotorFeedforward::frc
motor desired the with method calculate() the call simply feedforward, the calculate To acceleration: and velocity
is, it if and call, calculate() the from omitted be may argument acceleration The : : पार्य definedclearly- a not is there whenever done be should This zero. of value a to default will setpoint. acceleration

Java

| uacceleration an and units/second 10 of velocity a for feedforward the Calculates // units/second^2 20 of $\leftrightarrows$ construction. at in passed gains the of units the by determined are Units // );20,10(calculatefeedforward. |
| :---: |
| C++ |
| uacceleration an and meters/second 10 of velocity a for feedforward the Calculates // meters/second^2 20 of $\hookrightarrow$ volts in is Output // mps_sq);_20 mps,_10feedforward.Calculate( |

## ArmFeedforward

The linear. not angular, are distances assumes class ArmFeedforward the C++, In : प्राप will error timecompile- a or unit, angular the with consistent units have must gains inpassed/ seconds * volts of units have should kV ,volts of units have should kG and kS thrown. be information more For .radians / seconds^2 * volts of units have should kA and ,radians .Library Units C++ The see units, C++ on
the by determined units in outputs calculate will components feedforward Java The : : पारा consistent, units keep to care take must Users gains. feedforward provideduser- the of units system. unit safetype- a have not does WPILibJ as
a by directly controlled are that arms for feedforwards calculates class ArmFeedforward The arm. the of mass and inertia, friction, of loading external with motor, DC magnetpermanentFRC. in arms most of model accurate an is This
gains: required the with it construct simply ,ArmFeedforward an create To
many For zero. of value a to default will is, it if and omitted, be can gain kA The : : necessary. not is it inertia, little with those especially mechanisms,

Java
kA and kV, kG, kS, gains with ArmFeedforward new a Create // kA); kV, kG, ArmFeedforward(kS, new = feedforward ArmFeedforward

C++
kA and kV, kG, kS, gains with ArmFeedforward new a Create //
kA) ; kV, kG, (kS, feedforward ArmFeedforward::frc
arm desired the with method calculate() the call simply feedforward, the calculate To acceleration: and velocity, position,
is, it if and call, calculate() the from omitted be may argument acceleration The : : वार definedclearly- a not is there whenever done be should This zero. of value a to default will setpoint. acceleration

Java
units/second, 2 of velocity a units, 1 of position a for feedforward the Calculates // and $\rightarrow$ units/second^2 3 of acceleration an // construction. at in passed gains the of units the by determined are Units // );3,2,1(calculatefeedforward.

C++
radians/ 2 of velocity a radians, 1 of position a for feedforward the Calculates // and second, $\hookrightarrow$
page) next on (continues
(ำा

```
        radians/second^2 3 of acceleration an //
    volts in is Output //
s));_1 * s_1(/rad_3 rad_per_s,_2 rad,_1feedforward.Calculate(
```

or units, distance the with consistent units have must gains inpassed- the C++, In : : Inll have should kV , volts of units have should kG and kS thrown. be will error timecompile- a / seconds^2 * volts of units have should kA and, distance / seconds * volts of units .Library Units C++ The see units, C++ on information more For .distance
the by determined units in outputs calculate will components feedforward Java The : : वार consistent, units keep to care take must Users gains. feedforward provideduser- the of units system. unit safetype- a have not does WPILibJ as
of consist that elevators for feedforwards calculates class ElevatorFeedforward The This elevator. the of mass the and inertia, friction, by loaded motors DC magnetpermanent-

FRC. in elevators most of model accurate an is
gains: required the with it construct simply ,ElevatorFeedforward a create To
many For zero. of value a to default will is, it if and omitted, be can gain kA The : $\mathrm{\square lll}$ necessary. not is it inertia, little with those especially mechanisms,

Java

```
        kA and kV, kG, kS, gains with ElevatorFeedforward new a Create //
        kA); kV, kG, ElevatorFeedforward(kS, new = feedforward ElevatorFeedforward
```

C++
kA and kV, kS, gains with ElevatorFeedforward new a Create // meters in measured is Distance //
kA); kV, KG, (kS,feedforward ElevatorFeedforward::frc
motor desired the with method calculate() the call simply feedforward, the calculate To acceleration: and velocity
is, it if and call, calculate() the from omitted be may argument acceleration The : definedclearly- a not is there whenever done be should This zero. of value a to default will setpoint. acceleration

Java
units/second 20 of velocity a for feedforward the Calculates // units/second^2 30 of acceleration an and //
construction. at in passed gains the of units the by determined are Units //
);30,20(calculatefeedforward.
meters/second 20 of velocity a for feedforward the Calculates //
meters/second^2 30 of acceleration an and //
volts in is Output //
mps_sq);_30 mps, 20feedforward.Calculate(

## Mechanisms Control to Feedforward Using

the use to best is it meaningful, physically are voltages feedforward Since : : प्रा "voltage for compensate to motors to them applying when method )C++,Java( setVoltage() battery. the from sag"

This controller. feedback a without own, its on entirely used be can control Feedforward be can drives) robot (especially mechanisms many for and control, loop""open- as known is drive robot a control to employed be might SimpleMotorFeedforward A satisfactory. perfectly follows: as

Java

> \{ rightVelocity) double leftVelocity, double(tankDriveWithFeedforward void public (leftVelocity));calculate(feedforward.setVoltageleftMotor. (rightVelocity));calculate(feedForward.setVoltagerightMotor.

## Control PID and Feedforward Combining 30.5.3

control feedforward/PID combined of implementation codein- the covers article This : : वार in concepts involved the describing Documentation classes. library provided WPILib's with forthcoming. is detail more
effective most are but isolation, in used be each can controllers feedback and Feedforward exceedingly is methods control two these combining Thankfully, together. combined when together. outputs their adds simply one - straightforward
gain feedforward any of lack the notice may class PIDController old the with familiar Users is there themselves, output controller the use to expected are users As controller. new the in add simply may users - feedforward implement to PIDController the for need any longer no motors: their to it sending before controller the of output the to like they feedforward any

Java
motor the to it sending before output loop the to feedforward a Adds // feedforward); + setpoint) (), getDistance(encoder.calculate(pid.setVoltagemotor.

C++
motor the to it sending before output loop the to feedforward a Adds // feedforward); + setpoint) motor.SetVoltage(pid.Calculate(encoder. GetDistance(),

Python
motor the to it sending before output loop the to feedforward a Adds //
feedforward) + setpoint) getDistance(),.calculate(encoder.setVoltage(pid.motor
reason no has thus and feedback, from entirely feature separate a is feedforward Moreover, WPILib concerns. of separation violates this as object, controller same the in handled be to common for voltages feedforward accurate compute to classes helper several with comes .WPILib in Control Feedforward see information, more for - mechanisms FRC®

PID with Components Feedforward Using
the use to best is it meaningful, physically are voltages feedforward Since : ใराप "voltage for compensate to motors to them applying when method )C++, Java( setVoltage()
battery. the from sag"
like? look control feedforward/PID combined of example complete more a might What include to this modify easily can We page. feedforward the from example drive the Consider
component): SimpleMotorFeedforward a (with control feedback
Java

```
_double leftVelocitySetpoint, double(tankDriveWithFeedforwardPID void public
\{ rightVelocitySetpoint) \(\rightarrow\)
(leftVelocitySetpoint)calculate(feedforward.setVoltageleftMotor.
leftVelocitySetpoint)); (), getRate(leftEncoder.calculateleftPID. +
(rightVelocitySetpoint) calculate(feedForward.setVoltagerightMotor. rightVelocitySetpoint)) ; (), getRate(rightEncoder.calculaterightPID. +
```

C++

page) next on (continues

```
    rightVelocitySetpoint.value())); rightPID.Calculate(rightEncoder.getRate(), +
```

| Python |
| :---: |
| ```(tank_drive_with_feedforward_PID def ,float left_velocity_setpoint: ,float right_velocity_setpoint: :None >- ) setVoltage(.leftMotor calculate(left_velocity_setpoint).feedforward left_velocity_setpoint) getRate(),.\overline{calculate(leftEncoder.leftPID +} setVoltage(.rightMotor calculate(right_velocity_setpoint).feedforward right_velocity_setpoint) getRate(),.cal`culate(rīghtEncoder.rightPID +``` |
|  |

similarly. handled be can types mechanism Other

## WPILib in Profiles Motion Trapezoidal 30.5.4

profiles. motion trapezoidal of generation codein- the covers article This : forthcoming. is detail more in concepts involved the describing Documentation
command- the in class TrapezoidProfile the implementing on guide a For : $\square$ पार and TrapezoidProfileSubsystems through Profiling Motion see framework, framework based
.TrapezoidProfileCommands
a with composed when useful most is own, its on used class, TrapezoidProfile The : To functionality). PID inbuilt- a with controller motor "smart" a as (such controller custom Control PID and Profiling Motion Combining see ,PIDController WPILib a with it integrate
.ProfiledPIDController with
setpoint, given a achieve to ways convenient offer control feedback and feedforward While While mechanisms. our for setpoints generating of problem the with faced still often are we it work, may state desired its to mechanism a commanding immediately of approach naive the command to wish often we mechanisms, our of handling the improve To suboptimal. often is state, current its between interpolate smoothly that setpoints of sequence a to mechanisms
state. goal desired its and
).C++ ,Java( class TrapezoidProfile a provides WPILib this, do users help To

## TrapezoidProfile a Creating

distance for used type unit the on templated is class TrapezoidProfile the C++, In : : Inll units have must values inpassed- The linear. or angular be may which measurements, more For thrown. be will error timecompile- a or units, distance the with consistent .Library Units C++ The see units, C++ on information

## Constraints

maximum the calculating for methods provide classes helper feedforward various The : : Itll useful very be can These mechanism. a of acceleration and velocity achievablesimultaneously.TrapezoidProfile your for constraints motion appropriate calculating for
on constraints some impose first must we profile, motion trapezoidal a create to order In the that acceleration and velocity maximum a specify must we Namely, motion. desired the instance an create we this, do To motion. the during achieve to expected be will mechanism ):C++, Java( class TrapezoidProfile. Constraints the of

Java

| constraints profile motion trapezoidal of set new a Creates // |
| ---: |
| second per meters 10 of velocity Max $/ /$ |
| squared second per meters 20 of acceleration Max // |
| $1 ; 20,10$ (ConstraintsTrapezoidProfile. new |

C++
constraints profile motion trapezoidal of set new a Creates //
second per meters 10 of velocity Max //
squared second per meters 20 of acceleration Max //
mps_sq\};_20 mps,_10Constraints\{ $\{:>$ meters : innits $<$ TrapezoidProfile: :frc

## States End and Start

the using mechanisms our for states ending and starting desired the specify must we Next, velocity: a and position a has state Each ).C++ ,Java( class TrapezoidProfile.State

Java
meters 5 of position a with state new a Creates // second per meters 0 of velocity a and // );0 ,5(StateTrapezoidProfile. new

C++
meters 5 of position a with state new a Creates // second per meters 0 of velocity a and // mps\};_0 m,_5State\{::>meters::units<TrapezoidProfile::frc
initializer simple a thus and classes, inner the of type the infer to able often is C++ : ใ००ा in included are names class full The parameter. a as sent be can name) class the (without list clarity. for below example the
are we states, start/end desired the and constraints of set a create to how know we that Now parameters, 3 takes constructor TrapezoidProfile The profile. motion our create to ready state. initial the and state, goal the constraints, the order: in

Java


TrapezoidProfile new a Creates // second per meters 5 of vel max a have will Profile // squared second per meters 10 of acceleration max a have will Profile // meters 5 at stationary end will Profile // position zero at stationary start will Profile // profile\{ >meters: :units<TrapezoidProfile::frc mps_sq\}, 10 mps, 5Constraints\{::>meters::units<TrapezoidProfile::frc mps\}, 0 m, 5State\{::>meters::units<TrapezoidProfile::frc mps\}\}; 0 m, 0State\{::>meters::units<TrapezoidProfile::frc

## TrapezoidProfile a Using <br> Profile the Sampling

at state profile the get to simple: very is it using ,TrapezoidProfile a created we've Once method: calculate() the call started, has profile the after time given the

Java
motion of seconds 5 after state profile motion the Returns // );5(calculateprofile.

C++
motion of seconds 5 after state profile motion the Returns // s) ;_5profile.Calculate(
used was that one same (the class TrapezoidProfile. State a returns method calculate The control, actual for this use To profile). the constructing when states initial/end the specify to (for wish you controller whatever to values velocity and position contained the pass simply PIDController): a example,

Java
(elapsedTime); calculateprofile. = setpoint var ); positionsetpoint. (), getDistance(encoder.calculatecontroller.

C++
profile.Calculate(elapsedTime); = setpoint auto
setpoint.position.value()); controller.Calculate(encoder. GetDistance(),

## Example Usage Complete

different somewhat a is This timestep. every computedre- is profile the example, this In : : पारा the - principles same the to according works but above, detailed is than technique usage next the for setpoint the get to period loop the to corresponding time a at sampled is profile iteration. loop
the in provided is usage TrapezoidProfile of example complete more A ):C++, Java( project example ElevatorTrapezoidProfile

Java

| ;edu.wpi.first.wpilibj.examples.elevatortrapezoidprofile package <br> ;edu.wpi.first.math.controller.SimpleMotorFeedforward import ;edu.wpi.first.math.trajectory.TrapezoidProfile import ;edu.wpi.first.wpilibj.Joystick import ;edu.wpi.first.wpilibj.TimedRobot import <br> \{ TimedRobot extends Robot class public ;0.02 = kDt double static private <br> ) ;1Joystick( new = m_joystick Joystick final private unew $=$ m_motor ExampleSmartMotorController final private ) ;1ExampleSmartMotorController( $\hookrightarrow$ robot. your for tuned be to have will and fake, are gains These Note: // u. 1SimpleMotorFeedforward( new = m_feedforward SimpleMotorFeedforward final private <br> = m_constraints ConstraintsTrapezoidProfile. final private );0.75 ,1.75(ConstraintsTrapezoidProfile. new <br> () ;StateTrapezoidProfile. new = m_goal StateTrapezoidProfile. private () ;StateTrapezoidProfile. new = m_setpoint StateTrapezoidProfile. private |
| :---: |
|  |

(
);0.7,0.0,1.3(setPIDm_motor.
@Override
\{ ()teleopPeriodic void public
\{ ))2(getRawButtonPressed(m_joystick. if
);0 ,5(StateTrapezoidProfile. new = m goal
\{ ))3(getRawButtonPressed(m_joystick. if else \}
);0 ,0(StateTrapezoidProfile. new = m_goal
maximum and velocity maximum given the with profile motion a Create // the and goal, desired the setpoint, next the for constraints acceleration // setpoint. current //
m_setpoint); m_goal, TrapezoidProfile(m_constraints, new = profile var moves setpoint This timestep. next the for setpoint profiled the Retrieve // constraints. the obeying while goal the toward //
(kDt) ;calculateprofile. = m_setpoint
PID controller offboard to setpoint Send // (setSetpointm_motor.
kPosition. PIDModeExampleSmartMotorControllēr.
positionm_setpoint.
);12.0 / )velocity(m_setpoint.calculatem_feedforward.

page) next on (continues
(ำ

> \{ )) $3\left(\mathrm{~m} \_\right.$joystick. GetRawButtonPressed ( if else $\}$ $\mathrm{mps}\} ; 0 \mathrm{~m}, ~ 0\left\{=\mathrm{m} \_\right.$goal
maximum and velocity maximum given the with profile motion a Create // the and goal, desired the setpoint, next the for constraints acceleration // setpoint. current // m_goal, profile\{m_constraints, >meters::units<TrapezoidProfile::frc m_setpoint\};
moves setpoint This timestep. next the for setpoint profiled the Retrieve // constraints. the obeying while goal the toward // profile.Calculate(kDt); = m_setpoint

PID controller offboard to setpoint Send // kPosition,::PIDMode::m_motor.SetSetpoint (ExampleSmartMotorController
m_setpoint.position.value(),
V); 12 / m_feedforward.Calculate(m_setpoint.velocity)
:private
;\}1m_joystick\{ Joystick::frc
;\}1m_motor\{ ExampleSmartMotorController m_feedforward\{ >meters: :units<SimpleMotorFeedforward::frc robot. your for tuned be to have will and fake, are gains These Note: // m\}; 1 / s_1 * V_1.5 V,_1
mps, 1.75m_constraints\{ Constraints::>meters::units<TrapezoidProfile::frc mps sq\}; 0.75
m_goal; State::>meters::units<TrapezoidProfile::frc m_setpoint; State::>meters::units<TrapezoidProfile::frc

RUNNING_FRC_TESTS ifndef\#
\{ ()main int
();>Robot<StartRobot::frc return
endif\#
with Control PID and Profiling Motion Combining 30.5.5 ProfiledPIDController
basedcommand- the in class ProfiledPIDController the implementing on guide a For : : पारा .BasedCommand- in PID and Profiling Motion Combining see framework, framework
use and create to class TrapezoidProfile the use to how saw we article, previous the In manually demonstrates article that from code example The profile. motion trapezoidal a "smart" a of feature control PID external the with class TrapezoidProfile the composing controller. motor
with combined setpoints generating for profile motion (a functionality of combination This comes WPILib this, facilitate To common. extremely is them) following for controller PID a combining of work the of most does that )C++, Java( class ProfiledPIDController a with
the of that to similar very is ProfiledPIDController the of API The functionalities. two these with mechanism controlledPID- a to profiling motion add to users allowing ,PIDController code. their to changes few very

## class ProfiledPIDController the Using

for used type unit the on templated is class ProfiledPIDController the C++, In : : पारा have must values inpassed- The linear. or angular be may which measurements, distance more For thrown. be will error timecompile- a or units, distance the with consistent units .Library Units C++ The see units, C++ on information
that to identical effectively is ProfiledPIDController of functionality the of Much : : Incl substantially- are that features cover only will article this Accordingly, .PIDController of standard on information For functionality. profiling motion the accommodate to changed .WPILib

## ProfiledPIDController a Constructing

initializer simple a thus and classes, inner the of type the infer to able often is C++ : : प्रा in included is name class full The parameter. a as sent be can name) class the (without list clarity. for below example the

The .PIDController a creating to identical nearly is ProfiledPIDController a Creating be will which ,constraints profile trapezoidal of set a supply to need the is difference only instances: TrapezoidProfile generatedinternally- the to forwarded automatically

Java
ProfiledPIDController a Creates //
second per meters 5 is velocity Max $/ /$
second per meters 10 is acceleration Max //
ProfiledPIDController( new = controller ProfiledPIDController
kD, kI, kP,

[^15]
## Setpoint vs Goal

that is ProfiledPIDController a and PIDController standard a between difference major A user the Rather, user. the by specified directly not is loop control the of setpoint actual the automatically computed is controller the for setpoint the and state, or position goal a specifies user- the while So, goal. the and state current the between profile motion generated the from identical: mostly looks call side

Java

| reading sensor the on based algorithm PID the of output the Calculates // |
| ---: |
| motor a to it sends and // |

goal)); (), getDistance(encoder.calculate(controller.setmotor.
C++

| reading sensor the on based algorithm PID the of output the Calculates // |
| ---: |
| motor a to it sends and // |

goal)); motor. Set (controller.Calculate(encoder. GetDistance(),
,TrapezoidProfile. State a or value position a either be can (which value goal specified The is it rather, - loop the of setpoint current the necessarily not is desired) is velocity nonzero if terminates. profile generated the once setpoint eventual the

## Setpoint the Getting/Using

poll to desirable often if is setpoint, the from differs goal ProfiledPIDController the Since ).feedforward with use to values get to instance, (for controller the of setpoint current the method. getSetpoint () the with done be can This example: following the in as used be then might setpoint returned The

Java

|  |
| :---: |

C+ +



Example Usage Complete
the in provided is usage ProfiledPIDController of example complete more A ):C++ ,Java( project example ElevatorProfilePID

Java

page) next on (continues


C++

;\}1m_joystick\{ Joystick::frc ;\}2 , 1m_encoder\{ Encoder::frc
;\}1m_motor\{ PWMSparkMax::frc
maximum to subject is change s'setpoint whose controller PID a Create // constraints. acceleration and velocity //
mps,_1.75m_constraints\{ Constraints::>meters: :units<TrapezoidProfile::frc mps_sq\}; 0.75
$0.7,0.0,1.3 m \_c o n t r o l l e r\{>m e t e r s:$ units<ProfiledPIDController::frc kDt\}; m_constraints,

RUNNING_FRC_TESTS ifndef\#
(ำा


## BangBangController with Control BangBang- 30.5.6

(when on states: two only employs that strategy control a is algorithm control bangbang- The a to equivalent roughly is This (otherwise). off and setpoint) the below is measurement the gain. infinite with loop proportional
unstable become to known are loops PID as strategy, control poor a like seem initially may This on controller bangbang- a use to idea bad very a is it indeed, and - large become gains the as .mechanism inertiahigh- a of control velocity than other anything
a (like loads varying under mechanisms inertiahigh- of velocity the controlling when However, better/more thus and time recovery faster yield can controller bangbang- a flywheel), shooter bang- a loop, P ordinary an Unlike controller. proportional a than performance consistent is variable process the when on turns controller the is, that - asymmetric is controller bang forward the in effort control the allows This otherwise. nothing does and setpoint, the below control the as oscillations destructive risking without possible as large as made be to direction overshoot. resulting a correct to tries loop ,Java( class BangBangController the by WPILib in provided is control bangbang- Asymmetric ).C++

## BangBangController a Constructing

constructor any need not does it gains, any have not does controller bangbang- a Since it but , atSetpoint by used tolerance controller the specify optionally can (one arguments required). not is

Java

| BangBangController(); new | BangBangController a Creates // = controller BangBangController |
| :---: | :---: |
|  | C++ |
| BangBangController a Creates // controller; BangBangController::frc |  |
|  | Python |
| BangBangController a Creates \# BangBangController().wpimath = controller |  |

## BangBangController a Using

response on relies that algorithm aggressive extremely an is control bangBang- : : पारा been have controllers motor your that certain absolutely Be stable. remain to asymmetry else or controller, bangbang- a with them control to attempting before mode" "coast to set oscillation. destructive potentially cause and controller the fight will action braking the
easy: is controller bangbang- a Using
Java

| controller BangBang the of output the with motor a Controls // setpoint)); (), getRate(encoder.calculate(controller.setmotor. |
| :---: |
| C++ |
| controller BangBang the of output the with motor a Controls // setpoint)); motor. Set(controller.Calculate(encoder. GetRate(), |
| Python |
| controller BangBang the of output the with motor a Controls \# setpoint)) getRate(),.calculate(encoder.set(controller.motor |

## Feedforward with Control Bang Bang Combining

controller feedforward a with conjunction in obtained are results best controller, PID a Like that so speed, desired the at output system the sustain to voltage necessary the provides that bangbang- the Since disturbances. rejecting for responsible only is controller bangbang- the a use to preferable be may it however, direction, forward the in correct only can controller speed.over- not does shooter the that ensure to estimate feedforward conservative slightly

Java

> feedforward a and controller BangBang the of output the with motor a Controls // shooter the overspeeding avoid to slightly feedforward the Shrinks // $\mathbf{4}^{*} 0.9+12.0^{*}$ setpoint) (), getRate(encoder.calculate(controller.setVoltagemotor. (setpoint)); calculatefeedforward. C++

Python
feedforward a and controller BangBang the of output the with motor a Controls \#」* 0.9 + 12.0 * setpoint) getRate(),.calculate(encoder.setVoltage(controller.motor calculate(setpoint)).feedforward $\hookrightarrow$

# 30.6 יצירה ומעקב מסלולים עם WPILib 

and trajectories spline parameterized generating for support WPILib describes section This drives. robot FRC® typical with trajectories those following

Generation Trajectory 30.6.1

with curve, smooth a is trajectory A trajectories. generating help that classes contains WPILib the on endpoints two connecting curve, the along point each at accelerations and velocities autonomous performing for useful incredibly is trajectories of following and Generation field. stopping, forward, moving involves which - routine autonomous simple a of Instead tasks. motion for allows trajectories using - forward moving then right, the to degrees 90 turning creating routines, autonomous up speeding of advantage the has This curve. smooth a along more navigation autonomous makes well, implemented when and tasks; other for time more precise. and accurate
go will series this in articles few next The trajectory. a generate to how over goes article This robot your that things few a are There trajectory. generated the follow actually to how over trajectories: of world the into dive you before have must
the is encoder An robot. the of side each of velocity and position the measure to way A • etc. sensors, flow optical include may options other however, this; do to way best
best the is gyroscope A chassis. robot the of rate angular or angle the measure to way A • velocities, encoder using calculated be can rate angular the Although this. do to way
scrubbing. wheel of because recommended NOT is method this
on section the see navigation, autonomous perform to way simpler a for looking are you If .distance a to driving

## Splines

connecting as it of Think points. between interpolate that curves of set a to refers spline A and cubic clamped hermite splines: of types two supports WPILib curves. with except dots, quintic. hermite
of Generation users. most for option recommended the is This cubic: clamped Hermite and points, all of coordinates $y$ ) ( x , the specifying involves splines these using trajectories are waypoints interior the at headings The waypoints. end and start the at headings the heading) the of change of (rate curvature continuous ensure to determined automatically throughout.
y) ( x , specify to user the requires which option advanced more a is This quintic: Hermite • with unhappy are you if used be should This waypoints. all for headings and coordinates want you if or splines cubic clamped the by generated being are that trajectories the points. interior the at headings of control finer
have not does itself spline the however, trajectories; generate to tool a as used are Splines that recommended not is it Therefore, accelerations. and velocities about information any and velocities with path smooth a generate to order In directly. classes spline the use you generated. be must trajectory a accelerations,

## config trajectory the Creating

contains config The trajectory. a generate to order in created be must configuration A addition in acceleration max the velocity, max the constraints, special about information whether about information contains also config The velocity. end and velocity start the to The waypoints). the along backward travels (robot reversed be should trajectory the this for constructor The config. a construct to used be should class TrajectoryConfig fields other The acceleration. max and velocity max the arguments, two takes class values reasonable to defaulted are )constraints, reversed ,endVelocity , startVelocity( these of any of values the modify to wish you If created. is object the when ) \{\},false, 0,0 ( methods: following the call can you fields,

```
/ (Java) startVelocityMetersPerSecond) setStartVelocity(double •
    (C++) startVelocity) SetStartVelocity(units::meters_per_second_t
/ (Java) endVelocityMetersPerSecond) setEndVelocity(double •
    (C++) endVelocity) SetEndVelocity(units::meters_per_second_t
/ (Java) constraint) addConstraint(TrajectoryConstraint •
    (C++) constraint) AddConstraint(TrajectoryConstraint
```

If backward. traveling is robot the whether represents simply property reversed The : through order same the in travel still will robot the d , and $\mathrm{c}, \mathrm{b}$, a, waypoints, four specify you account must you that means also This .true to set is flag reversed the when waypoints the is robot your if example, For waypoints. the providing when robot the of direction the for starting the element, field some to backwards travels and wall station alliance your facing degrees. 180 of rotation a have should waypoint

## trajectory the Generating

four are There .generateTrajectory(...) is trajectory a generate to used method The use that others two the and splines cubic clamped use that Two method. this for overloads The trajectory. a construct to ways two are there spline, of type each For splines. quintic objects. Pose2d accept that overloads the are methods easiest
starting the for one objects, Pose2d two accepts method this splines, cubic clamped For Translation2d of vector a in takes method The waypoint. ending the for one and waypoint are waypoints interior these at headings The waypoints. interior the represent which objects method the splines, quintic For curvature. continuous ensure to automatically determined heading and point a representing Pose2d each with objects, Pose2d of list a in takes simply field. the on
when used is method This splines. for vectors" "control accepts overload complex more The the of magnitude the control to able are you where Pathweaver, with trajectories generating Each arrays. double two of consists class ControlVector The point. each at vector tangent that at derivatives the represent elements its and $y$ ), or ( $x$ dimension one represents array ( 0 th coordinate x the represents array x the of 0 element at value the example, For point. on. so and dimension $x$ the in derivative 1st the represents 1 element at value the derivative),
derivatives), 1 st and ( 0 th 2 be must array the of length the splines, cubic clamped using When 2 nd and 1st, ( 0 th, 3 be should array the of length the splines, quintic using when whereas is method simpler and first the doing, are you what exactly know you Unless derivative).

Pathweaver using not when (i.e. trajectories. generating manually for recommended HIGHLY files). JSON
game, 2018 the for splines cubic clamped using trajectory a generating of example an is Here Up: Power FIRST

Java
\{ ExampleTrajectory class
\{ ()generateTrajectory void public
waypoints. auto scale cross 2018 //
),23.23(feetToMetersUnits. ),1.54(feetToMetersPose2d(Units. new = sideStart var
) ) ;180- (fromDegreesRotation2d.
),6.8(feetToMetersUnits. ),23.7(feetToMetersPose2d(Units. new = crossScale var
) ) ;160-(fromDegreesRotation2d.
() ; >Translation2d<ArrayList new = interiorWaypoints var Units. ), 14.54(feetToMetersTranslation2d(Units. new(addinteriorWaypoints.
)) ) ;23.23(feetToMeters $\hookrightarrow$
Units. ), 21.04(feetToMetersTranslation2d(Units. new(addinteriorWaypoints.
)) ) ; 18.23(feetToMeters $\rightarrow$
Units. ), 12(feetToMetersTrajectoryConfig(Units. new = config TrajectoryConfig
)) ;12(feetToMeters $\rightarrow$
); true(setReversedconfig.
(generateTrajectoryTrajectoryGenerator. = trajectory var
sideStart,
interiorWaypoints,
crossScale,
config);

C++

> \{ ()GenerateTrajectory void waypoints auto scale cross 2018 //
> deg)\}; 180Rotation2d(::frc ft, $23.23 \mathrm{ft}, 1.54 \mathrm{sideStart} \mathrm{\{ }$ Pose2d::frc const deg) \}; 160-Rotation2d(::frc ft, $6.8 \mathrm{ft}, \quad 23.7 \mathrm{crossScale} \mathrm{\{ } \mathrm{Pose2d::frc} \mathrm{const}$
> interiorWaypoints\{ >Translation2d::frc<vector::std
> $\mathrm{ft}\}, 23.23 \mathrm{ft}$, 14.54Translation2d\{::frc
> ft\}\}; 18.23 ft, 21.04Translation2d\{::frc
> fps_sq\}; 12 fps, 12 config\{ TrajectoryConfig::frc
> );trueconfig.SetReversed(

GenerateTrajectory(::TrajectoryGenerator::frc = trajectory auto config); crossScale, interiorWaypoints, sideStart,
conversions. unit easy for utility, Units the utilizes code Java The : ใ०ा
it's but long, isn't This ms. 25 to ms 10 about takes trajectory typical a Generating :
). robotInit( startup on trajectories all generate to recommended highly still

## Trajectories Concatenating

the using trajectory single a into combined be can Java in Trajectories trajectories two the )+( add simply can users C++ function. concatenate(trajectory) together.
appended the of start and initial the of end the that ensure to user the to up is It : : पाराप end and start the that ensure to responsibility user's the also is It match. trajectory match. trajectories their of velocities

Java


C++

```
        GenerateTrajectory(::TrajectoryGenerator::frc = trajectory0ne auto
            rad), 0 m, 0 m, 0Pose2d(::frc
            m)},1- m, 2Translation2d(::frc m), 1 m, 1Translation2d(::frc{
        fps_sq));_3 fps,_3TrajectoryConfig(::frc rad),_0 m,_0 m,_3Pose2d(::frc
            GenerateTrajectory(::TrajectoryGenerator::frc = trajectoryTwo auto
                        rad),_0 m, 0 m, 3Pose2d(::frc
            m)}, 3 m, 5Translation2d(::frc m), 4 m,_4Translation2d(::frc{
        fps sq)); 3 fps, 3TrajectoryConfig(::frc ra\overline{d}), 0 m, 0 m, 6Pose2d(::frc
                            m_trajectoryTwo; + m_trajectoryOne = concatTraj auto
```

Constraints Trajectory 30.6.2
when added were constraints custom no that noticed have might you ,article previous the In on restrictions more impose to users allow constraints Custom trajectories. the generating curvature. and location on based trajectory the along points at acceleration and velocity the
certain a under trajectory the of velocity the keep can constraint custom a example, For
purposes. stability for turns near robot the down slow or region certain a in threshold

## Constraints ProvidedWPILib-

generating when utilize can users that constraints predefined of set a includes WPILib follows: as is constraints providedWPILib- of list The trajectories.
robot the of acceleration centripetal the Limits :CentripetalAccelerationConstraint • turns. tight around robot the down slow help can This trajectory. the along traverses it as
around robot the of velocity the Limits :DifferentialDriveKinematicsConstraint • maximum specified a over goes robot drivedifferential- a of wheel no that such turns velocity.
drive differential a of acceleration the Limits :DifferentialDriveVoltageConstraint • maximum. specified a over goes voltage commanded no that such robot
the on region elliptical an in only constraint a Imposes :EllipticalRegionConstraint • field.
composed be can This constraint. velocity max a Imposes :MaxVelocityConstraint • the limit to RectangularRegionConstraint or EllipticalRegionConstraint the with region. specific a in only robot the of velocity
such turns around robot the of velocity the Limits :MecanumDriveKinematicsConstraint • velocity. maximum specified a over goes robot drivemecanum- a of wheel no that on region rectangular a in only constraint a Imposes :RectangularRegionConstraint • field. the
such turns around robot the of velocity the Limits :SwerveDriveKinematicsConstraint • velocity. maximum specified a over goes robot driveswerve- a of wheel no that
voltage theoretical that ensures only DifferentialDriveVoltageConstraint The : : पार्य robot the If .model feedforward a using maximum specified the over go not do commands higher be may voltage commanded the tracking, while reference the from deviate to were maximum. specified the than

## Constraint Custom a Creating

interface. TrajectoryConstraint the implementing by constraint own their create can Users
Java
@Override
_double poseMeters, (Pose2dgetMaxVelocityMetersPerSecond double public curvatureRadPerMeter, $\hookrightarrow$ \{ velocityMetersPerSecond) double page) next on (continues


given the for velocity allowed maximum the return should method MaxVelocity The The constraints. any without trajectory the of velocity original and curvature, pose, acceleration allowed maximum and minimum the return should method MinMaxAcceleration velocity. constrained and curvature, pose, given the for
on examples more for constraints providedWPILib- the for )C++, Java( code source the See constraints. trajectory custom own your write to how

## Trajectories Manipulating 30.6.3

certain using it from information retrieve can you generated, been has trajectory a Once trajectories. these follow to code writing when useful be will methods These methods.

## trajectory the of duration total the Getting

take should it time of amount the point, each at timestamps have trajectories all Because / (C++) TotalTime() The determined.pre- is trajectory entire the traverse to robot a for traverse to takes it time the determine to used be can method (Java) getTotalTimeSeconds () trajectory. the

Java
seconds in trajectory the of time total the Get //
();getTotalTimeSecondstrajectory. = duration double

C++
trajectory the of time total the Get //
trajectory.TotalTime(); = duration second_t::units

## trajectory the Sampling

acceleration and velocity, pose, the get to timesteps various at sampled be can trajectory The timeSeconds) sample(double / (C++) time) Sample(units::second_t The point. that at to refers parameter The timestep. any at trajectory the sample to used be can method (Java) method This trajectory). the of point starting (the seconds 0 since passed time of amount the point. sample that about information with Trajectory: :Sample a returns

Java
robot the where represents This seconds. 1.2 at trajectory the Sample //
traversal. of seconds 1.2 after be should //
);1.2(sampletrajectory. = point SampleTrajectory.
C++
robot the where represents This seconds. 1.2 at trajectory the Sample // traversal. of seconds 1.2 after be should // s);_1.2trajectory.Sample( = point State::Trajectory
point: sample the about information of pieces several has struct Trajectory: :Sample The point. sample the to up trajectory the of beginning the from elapsed time The :t •
point. sample the at velocity The :velocity •
point. sample the at acceleration The :acceleration •
point. sample the at heading) y , (x, pose The :pose • the along distance to respect with heading of change of (rate curvature The :curvature • point. sample the at trajectory)
velocity the multiplying by calculated be can point sample the at velocity angular The Note:
curvature. the by

## (advanced) trajectory the of states all Getting

States () the calling by trajectory the of states all of list a get can user advanced more A the When trajectory. the on point a represents state Each method. (Java) getStates ( ) / (C++) method, TrajectoryGenerator::GenerateTrajectory (...) the using created is trajectory a at trajectory the samples user the When created. are states / points trajectory of list a states / points existing two between interpolated is point sample new a timestep, particular
list. the in

## Trajectories Transforming 30.6.4

within moved and another to system coordinate one from transformed be can Trajectories methods These methods. transformBy the and relativeTo the using system coordinate a trajectory existing already an redefining or space, within trajectories moving for useful are reference. of frame another in

[^16]of frame another in trajectory existing already an redefine to used is method relativeTo The with defined is that object) Pose2d a (via pose, a argument: one takes method This reference. coordinate new the of origin the represents that system, coordinate current the to respect
system.
coordinate in redefined be can A system coordinate in defined trajectory a example, For relativeTo the using A, system coordinate in degrees) 303 , ( 3 , at is origin whose B , system method.

Java

```
));30(fromDegreesRotation2d. ,3 ,3Pose2d( new = b0rigin Pose2d
    (bOrigin);relativeToaTrajectory. = bTrajectory Trajectory
```

C++
deg)\}; 30Rotation2d(::frc m, 3 m, 3bOrigin\{ Pose2d::frc aTrajectory.RelativeTo(bOrigin); = bTrajectory Trajectory::frc

## Competition Robotics FIRST

been has above) code the in aTrajectory( trajectory original the above, diagram the In at located axes, red The axes. black the by represented $A$, system coordinate in defined B. system coordinate represent system, coordinate original the to respect with $30^{\circ}$ and 3) (3, to relative be to trajectory the in poses all redefine will aTrajectory on relativeTo Calling axes). (red B system coordinate
a within trajectory a rotate) and translate (i.e. move to used be can method transformBy The object) Transform2d a (via transform a argument: one takes method This system. coordinate same the of position initial desired a to trajectory the of position initial current the maps that trajectory.
make to degrees) 302 , ( 2 , at begins that trajectory a transform to want may one example, For method. transformBy the using degrees) 504 , (4, at begin it

Java

```
(trajectory.minus)).50(fromDegreesRotation2d. ,4 ,4Pose2d( new = transform Transform2d
    ());getInitialPose ↔
    (transform);transformBytrajectory. = newTrajectory Trajectory
```

C++

> trajectory. - deg) ) 50Rotation2d( m, 4 m, 4Pose2d( = transform Transform2d: :frc InitialPose(); trajectory.TransformBy(transform); = newTrajectory Trajectory: :frc

## Competition Robotics FIRST

9

8
blue. in visible is $30^{\circ}$ at and 2 ) (2, at starts which trajectory, original the above, diagram the In to changed is location starting trajectory's resultant the above, transform the applying After orange. in visible is trajectory resultant The $50^{\circ}$. at 4) (4,
30.6.5 בקר Ramsete
be can tracker This WPILib. to in built is that tracker trajectory a is Controller Ramsete The disturbances. minor for correction with trajectories track accurately to used

## Object Controller Ramsete the Constructing

values Larger .zeta and b namely gains, two with initialized be should controller Ramsete The of values larger whereas term proportional a like aggressive more convergence make b of the how dictate only gains controller These response the in damping more provide zeta of tracking velocity actual the affect NOT does It velocities. adjusted output will controller agnostic.robot- generally are gains controller these that means This robot. the
produce to repeatedly tested been have zeta and b for 0.7 and 2.0 of Gains : : प्रा for constructor argumentzero- a such, As meters. in were units all when results desirable values. these to defaulted gains with exists RamseteController

> Java $\begin{array}{r}\text { Here RamseteController. of constructor default the Using // } \\ 0.7 \text { and } 2.0 \text { to initialized are gains the // } \\ \text { RamseteController(); new = controllerl RamseteController }\end{array}$ where RamseteController of constructor secondary the Using // gains. other any choose can user the // );0.8,2.1RamseteController( new = controller2 RamseteController

C++
Here RamseteController. of constructor default the Using //
0.7 and 2.0 to initialized are gains the //
controllerl; RamseteController: :frc
where RamseteController of constructor secondary the Using //
gains. other any choose can user the //
$;\} 0.8$, 2.1controller2\{ RamseteController: :frc

## Velocities Adjusted Getting

these tracks robot the when the that so velocities" "adjusted returns controller Ramsete The periodically updated be should controller The point. goal the reaches accurately it velocities, desired and velocity, linear desired pose, desired a of comprises goal The goal. new the with updated be also should robot the of position current the Furthermore, velocity. angular and linear adjusted the return to arguments four these uses controller The periodically. velocities angular and linear these to robot their command should Users velocity. angular tracking. trajectory optimal achieve to
particular a at be should robot the that position the represents pose" "goal The : Clll the of endpoint final the represent NOT does It trajectory. the tracking when timestep trajectory.

## Competition Robotics FIRST

There method. (Java) calculate / (C++) Calculate the using updated be can controller The position robot current the accept overloads these of Both method. this for overloads two are goal the in takes overloads these of one parameters, other the For parameter. first the as other the whereas velocity) angular and velocity, linear (pose, parameters separate three as pose. goal the about information contains which object, Trajectory. State a accepts overload trajectories. tracking when method latter the use should users ease, its For

Java


C++

```
    uat trajectory the sample // s); 3.4trajectory.Sample( = goal State::Trajectory const
    beginning the from seconds 3.4\hookrightarrow
    goal); controller.Calculate(currentRobotPose, = adjustedSpeeds ChassisSpeeds
```

position robot updated an with iteration, loop every at performed be should calculations These
goal. and

## Velocities Adjusted the Using

in velocity (linear vx a contains which ,ChassisSpeeds type of are velocities adjusted The (angular omega an and direction), sideways the in velocity (linear vy a direction), forward the controller a is controller Ramsete the Because frame). robot the of center the around velocity object speeds adjusted the sideways), move cannot which (robots robots holonomicnon- for
zero. of vy a has
classes kinematics the using speeds usable to converted be can speeds adjusted returned The right and left to converted be can velocities adjusted the example, For type. drivetrain your for object. DifferentialDriveKinematics a using drive differential a for velocities

Java
goal); (currentRobotPose, calculatecontroller. = adjustedSpeeds ChassisSpeeds (adjustedSpeeds);toWheelSpeedskinematics. = wheelSpeeds DifferentialDriveWheelSpeeds ;leftMetersPerSecondwheelSpeeds. = left double ;rightMetersPerSecondwheelSpeeds. = right double

C++
goal); controller.Calculate(currentRobotPose, = adjustedSpeeds ChassisSpeeds
kinematics.ToWheelSpeeds(adjustedSpeeds); = wheelSpeeds DifferentialDriveWheelSpeeds
kinematics.ToWheelSpeeds(adjustedSpeeds); = right] [left, auto
PID two voltages, not and speeds still are velocities right and left new these Because WPILib the Either velocities. these track to used be may side each for one Controllers, controllers motor smart on feature PID Velocity the or used, be can )Java ,C++( PIDController used. be can MAX SPARK the and TalonSRX the as such

## Framework BasedCommand- the in Ramsete

a For WPILib. to in built is class RamseteCommand a users, for ease of sake the For see RamseteCommand, using autonomous followingpath- a implementing on tutorial full
.Tutorial Trajectory

## Controller Drive Holonomic 30.6.6

drivetrains holonomic with robots for tracker trajectory a is controller drive holonomic The with trajectories track accurately to used be can This etc.). mecanum, swerve, (e.g. disturbances. minor for correction

## Controller Drive Holonomic a Constructing

profiled 1 and controllers PID 2 with instantiated be should controller drive holonomic The controller. PID
and $x$ relativefield- the in error for correct should that controllers are controllers PID 2 The 0 , PIDController(1, are arguments 2 first the if example, For respectively. directions y an add will controller drive holonomic the respectively, 0 ) 0 , PIDController(1.2, and 0 ) and direction x the in error of meter every for direction x the in second per meter additional the in error of meter every for direction $y$ the in second per meters 1.2 additional an add will direction. y

Because robot. the of rotation the for ProfiledPIDController a is parameter final The in movement from decoupled are drivetrain holonomic a of dynamics rotation the a following while references heading custom set can users directions, $y$ and $x$ the the in set parameters the to according profiled are references heading These trajectory.
.ProfiledPIDController
Java


C++

> controller\{ HolonomicDriveController::frc
> ,$\} 0$, 0, 1PIDController\{:frc2,f0,0,1PIDController\{: frc2
> \{>radian::units<ProfiledPIDController::frc Constraints\{::>radian::units<TrapezoidProfile::frc,0,0,1
> s\}\}\}; 1 / rad per s 3.14 rad_pers, 6.28
> velocity max a were constraints profile rotation our Here, // degrees 180 of acceleration max a and second per rotation 1 of // squared. second per //

## Velocities Adjusted Getting

tracks robot the when that such velocities" "adjusted returns controller drive holonomic The updated be should controller The point. goal the reaches accurately it velocities, these and velocity, linear pose, desired a of comprised is goal The goal. new the with periodically heading.

endpoint. trajectory's the represent NOT does It trajectory. the tracking when timestamp

There method. (Java) calculate / (C++) Calculate the using updated be can controller The as position robot current the accept overloads these of Both method. this for overloads two are parameters, middle the For parameter. last the as heading desired the and parameter first the other the while reference velocity linear the and pose desired the accepts overload one The pose. goal the about information contains which object, Trajectory. State a accepts trajectories. tracking for preferred is method latter

Java
beginning. the from seconds 3.4 at trajectory the Sample //
);3.4(sampletrajectory. = goal StateTrajectory.
facing be to robot the want we Here, speeds. adjusted the Get //,
system). coordinate field-relative the (in degrees $70 / /$
(calculatecontroller. $=$ adjustedSpeeds ChassisSpeeds
)) $70.0(f r o m D e g r e e s R o t a t i o n 2 d . ~ g o a l, ~ c u r r e n t R o b o t P o s e, ~$

C++
beginning. the from seconds 3.4 at trajectoty the Sample // s);_3.4trajectory.Sample( = goal auto const
facing be to robot the want we Here, speeds. adjusted the Get // system). coordinate field-relative the (in degrees 70 // controller.Calculate( $=$ adjustedSpeeds auto const deg); 70 goal, currentRobotPose,

## Velocities Adjusted the Using

in velocity (linear vx a contains which ,ChassisSpeeds type of are velocities adjusted The (angular omega an and direction), sideways the in velocity (linear vy a direction), forward the frame). robot the of center the around velocity
kinematics the using speeds usable into converted be can speeds adjusted returned The drive swerve a assume will we below, code example the In type. drivetrain your for classes except robot drive mecanum a for same the exactly is code kinematics the however, robot;
.MecanumDriveKinematics using
Java

[^17]page) next on (continues
(ำำ ำ

> ;]2[moduleStates = backLeft SwerveModuleState
]3[moduleStates = backRight SwerveModuleState

## C++

> kinematics.ToSwerveModuleStates(adjustedSpeeds); = br] bl, fr, [fl, auto

PID use to need will you angles, and speeds still are states module swerve these Because angles. and speeds these set to controllers
30.6.7 פתרון בעיות

פתרון כשלונות מוחלטים

## ต



?
ำ . 닐 MalformedSplineException

direction. other the facing trajectory the drive to around swings robot My • wrong? trajectory your of headings end and start the Are heading? wrong the to reset getting gyro robot's your Is incorrectly? set flag reverse the have you Do them. negate should you so, If positive? clockwise angles gyro your Are . $\operatorname{ll}$ (
 units? correct the with object odometry your to heading gyro your passing you Are units? correct the in it Is correct? width track your Is -
 incorrectly? set flag reverse the have you Do -
opposite approximately with together close very waypoints two have you Do headings?
coordinates? same) the nearly (or same the with waypoints two have you Do -






## Performance Poor Troubleshooting

tracking trajectory poor troubleshooting with concerned mostly is section This : : पार्य robots errors, compilation like failures catastrophic not error, of meter a like performance s.MalformedSplineException or direction, wrong the in going and around turning
be can ideas the of most but robots, drive differential for designed is section This : mecanum. or drive swerve to adapted
trajectory the Although troubleshoot. to difficult be can performance tracking trajectory Poor are there box, the of out performant and useto-easy- be to intended are follower and generator generator trajectory The should. it where up end quite doesn't robot your where situations know to difficult be can it so parts, moving many and tune to knobs many have followers and problems trajectory of source the locate to difficult is it because especially start, to where behavior. general robot's the from
is that followers and generator trajectory the of layer the locate to hard so be can it Because tracking poor general for recommended is approach layerby-layer- systematic, a misbehaving, steps below The degrees). twenty than more or feet few by off is robot the (e.g. performance that so order this follow to important is it in; them do should you that order the in listed are other. each from steps different of effects the isolate can you
to way easiest The .NetworkTables onto values diagnostic put examples below The : : पार .capabilities graphing Shuffleboard's use to is values these graph

## Odometry Verify

modifies it because misbehave, may controller Ramsete your then bad, is odometry your If is. robot the thinks odometry your where on based velocities target robot's your is robot your that verify help can field2d to trajectory and pose robot your Sending : : trajectory. robot the to relative correctly driving
update: odometry each after position robot's your record to code your up Set 1.
Java
(getTable().getDefaultNetworkTableInstance. = m xEntry NetworkTableEntry
);"X"(getEntry)."troubleshooting" $\hookleftarrow$
(getTable().getDefaultNetworkTableInstance. = m_yEntry NetworkTableEntry );"Y"(getEntry)."troubleshooting" ↔
@Override
\{ ()periodic void public block periodic the in odometry the Update // m_leftEncoder. (getHeading()), fromDegrees(Rotation2d.updatem_odometry.
() , getDistance $\hookrightarrow$
());getDistancem_rightEncoder.
page) next on (continues
(ㄴำ ำ

| (); getTranslation().getPoseMetersm_odometry. = translation var ()) ; getX(translation. setNumberm_xEntry. ()) ; getY(translation.setNumberm_yEntry. |
| :---: |
| C+ |
| ```GetDefault().GetTable(::NetworkTableInstance::nt = m_xEntry NetworkTableEntry );"X"GetEntry(>-)"troubleshooting' GetDefault().GetTable(::NetworkTableInstance::nt = m_yEntry NetworkTableEntry );"Y"GetEntry(>-)"troubleshooting" { ()DriveSubsystem::Periodic voi here. goes method periodic subsystem of Implementation // degree_t(GetHeading())),::Rotation2d(units::m_odometry.Update(frc meter_t(m_leftEncoder.GetDistance()),::units meter_t(m_rightEncoder.GetDistance()));::units m_odometry.GetPose().Translation(); = translation auto m_xEntry.SetDouble(translation.X().value()); m_yEntry.SetDouble(translation.Y().value());``` |

meter one about out robot your push and robot your to parallel measure tape a out Lay 2.
pushing over, start and axis $Y$ the along measure tape a out Lay measure. tape the along arc. rough a in axis $Y$ the along meter one and axis $X$ the along meter one robot your
than more by off is X If Y . and X actual to robot the by reported Y and X Compare 3. wheel your measured you that check should you then test first the in centimeters 5 by off is test second the If down. worn not are wheels your that and correctly, diameter center the from (distance width track your then Y or X either in centimeters 5 than more you that sure you're if incorrect; be may wheel) right the of center the to wheel left the of may wheels robot's your then measure tape a with correctly width track the measured you then case the is this width-if track by for accounted not is that way a in slipping be SysID in test (Angular)" "Drivetrain the using identification width track the run should measure. tape your from one the of instead width track that use and

| - Analyzer |  |
| :---: | :---: |
| Select |  |
| Units: <br> Units Per Rotat |  |
| Type: |  |
| Override Units |  |
| V Feedforward |  |
| 0.10989 | Ks |
| 156.12 | Kv |
| 29.538 | Ka |
| 0.18921 | Resp |
| 0.61059 | Trac |
| $\boldsymbol{V}$ Feedback Ana |  |
| Default |  |
| 12.0 Max Cor |  |
| 1.0 Veloci |  |
| 0.0200 Contro |  |
| $\checkmark$ Time-Normali |  |
| 0.0000 Measur |  |
| Convert Gain |  |
| Velocity |  |
| 211.84 | Kp |
| 0 | Kd |

Feedforward Verify
as track not will robot the of side each for controllers $P$ the then bad are feedforwards your If acceleration robot's your limit not will DifferentialDriveVoltageConstraint your and well, test and isolate can we that so controllers P wheel the off turn to want mostly We accurately. feedforwards. the
every for 0 to gain $P$ the Set wheel. each for controller $P$ the disable set must we First, 1. 0 : to kPDriveVel set would you example, RamseteCommand the In controller.

Java

| ), 0,0, kPDriveVelPIDController(DriveConstants. new |  |
| :--- | :--- | :--- |
| ), 0,0, | , kPDriveVelPIDController(DriveConstants. new |

C++

$$
\begin{aligned}
& \text {,\}0,0 kPDriveVel, ::PIDController\{DriveConstants::frc2 } \\
& \text {,\}0 , } 0 \text { kPDriveVel, ::PIDController\{DriveConstants::frc2 }
\end{aligned}
$$

isolate to easier it make to controller Ramsete the disable to want we Next, 2. the on setEnabled(false) call simply so, do To behavior. problematic our :RamseteCommand your into passed RamseteController

Java
$\qquad$

put should (you velocity wheel actual and velocity wheel desired log to need we Finally, 3. your if or Shuffleboard, using you're if graph same the on velocities desired and actual capability): that has software graphing

Java
);"troubleshooting"(getTable().getDefaultNetworkTableInstance. = table var );"left_reference"(getEntrytable. = leftReference var );"left_measurement"(getEntrytable. = leftMeasurement var
);"right_reference" (getEntrytable. = rightReference var
);"right_measurement"(getEntrytable. = rightMeasurement var
);0 ,0 PIDController(kPDriveVel, new = leftController var );0 ,0 PIDController(kPDriveVel, new = rightController var RamseteCommand( new = ramseteCommand RamseteCommand
exampleTrajectory,
m_robotDrive::getPose,
here disabledRamsete in Pass̄ // disabledRamsete,
ukvVoltSecondsPerMeter, SimpleMotorFeedforward(ksVolts, new
kaVoltSecondsSquaredPerMeter), $৬$
kDriveKinematics,
m_robotDrive::getWheelSpeeds, leftController,
rightController,
callback the to volts passes RamseteCommand //
\{ >- rightVolts) (leftVolts,
rightVolts); (leftVolts,tankDriveVoltsm_robotDrive.
) ;leftMetersPerSecond().getWheelSpeeds(m_robotDrive.setNumberleftMeasurement.
()) ; getSetpoint (leftController.setNumberleftReference.
().getWheelSpeeds(m_robotDrive.setNumberrightMeasurement.
) ; rightMetersPerSecond $\hookrightarrow$
page) next on (continues

if see to check and line), straight and (curved trajectories of variety a on robot the Run 4 . NetworkTables. from graphs at looking by velocity desired the tracks velocity actual the diameter wheel the if check should you then lot $a$ by off are actual and desired the If 5 . that verified you've If correct. were identification system for used you encoderEPR and same the on recharacterizing try should you then correct, are conversions and units your data. better get can you if see to on testing you're that floor

Gain P Verify

can problem your then away went problem the and step previous the completed you If wheel your that verify to going we're step this In steps. next the of one in found be probably we that so Ramsete off turn to want we then Java using you're If tuned.well- are controllers $P$ own. their on controllers PF our view just can
velocity desired vs. actual logs that step previous the from code the all usere- must You 1. must gain $\mathbf{P}$ the that except Java), using you're if Ramsete, disables that code the (and
value. nonzero previous its to back set be
desired vs. actual your that check and trajectories, of variety a on again robot the Run 2 . good. look graphs
desired) the from different very is velocity actual the (i.e. good look not do graphs the If 3. trajectories. test your rerunning and gain $P$ your tuning try should you then

Constraints Check

 to code the remove should you then Java using you're If steps. previous the in added code Ramsete. disable
issue an have might you then steps previous the of all through persisted issue accuracy your If constraints available different the that symptoms of list a are Below constraints. your with tuned. poorly when exhibit will
remaining one your tune constraints, other the Remove time! a at constraint one Test checklist below The use. to want you constraint each for process that repeat and constraint, time. a at constraint one use only you that assumes

## :DifferentialDriveVoltageConstraint •

this for voltage max the that possible it's then slowly very accelerates robot your If low. too is constraint data identification system your then path the of end the reach doesn't robot your If problematic. may
:DifferentialDriveKinematicsConstraint •
drivetrain max the that possible it's then heading wrong the at up ends robot your If max the tune to is tell to way only The high. too it's that or low, too is speed side happens. what see to and speed
:CentripetalAccelerationConstraint •
your If culprit. the be could this then heading wrong the at up ends robot your If centripetal max the increase should you then enough turn to seem doesn't robot should you then quickly to turns tight around go to seems it if but acceleration, acceleration. centripetal maximum the decrease
(and waypoints moving Try driveable. very not is itself trajectory your that possible is It turns. sharp reduce to applicable) if waypoints, the at headings

## WPILib with Control Based Model and SpaceState- 30.7

control. spacestate-for support WPILib describes and to introduction an provides section This

SpaceState-30.7.1 מבוא לבקרת
permission. with Veness Tyler by FRC in Engineering Controls from is article This

מבקרת PID לבקרה מבוססת מודל
the to relating parameters controller with fiddling on focus we controllers, PID tuning When states. system underlying the than rather terms) D and I (P, error future and past, current, world. the of view incomplete an is it situations, of lot a in works approach this While we (mechanism) system the of model accurate an developing on focuses control basedModelbased controllers feedback for picked gains inform help models These control. to trying are derived gain proportional arbitrary an than rather system, the of responses physical the on but react, will system a how time of ahead predict to only not us allows This testing. through
bugs. simple debugging time save and robot physical a without controllers our test also
algebra linear on More algebra. linear of use extensive makes control spaceState- : : पारा be can resources, and algebra linear to introduction an including theory, control modern in .FRC in Engineering Controls of 4 Chapter in found
classes, sister its or SimpleMotorFeedforward for classes feedforward WPILib's used you've If control! basedmodel- with familiar already you're you, for gains PID pick to SysId used or react will drivetrain) or arm, (or motor a how describe to used be can gains ka and kv The WPILib's using notation spacestate- standard into constants these put can We voltage. to article. later a in do will we something ,LinearSystem

## Vocabulary

.Glossary the see article, this throughout used be will that vocabulary background the For

## Algebra Linear to Introduction

recommend we Algebra, Linear of concepts core the to introduction intuitive and short a For even what (Vectors, series algebra linear of Essence 3Blue1Brown's of 4 through 1 chapters matrices, and transformations Linear vectors, basis and span, combinations, Linear they?, are composition). as multiplication Matrix and

## Space?State- is What

pair a as space this within locations represent We y. and $x$ axes: two has space 2D that Recall along move to far how of measure a is coordinate each and vector, a in packaged numbers of each for axis an with system coordinate Cartesian a is spaceState- axis. corresponding the a with space: 2D for do we way same the it within locations represent we and variable, state system. the of state a to corresponds vector the in element Each vector. a in numbers of list with model elevator an of spacestate- the in vectors state example two shows example This
:[position, velocity] states the
these on now From arrows. are spacestate- in states representing vectors the image, this In rest the that remember but tip, vector's the at point a by simply represented be will vectors there. still is vector the of
mapping the Since vectors. as represented are outputs and inputs ,state the to addition In natural it's equations, of system a is state in change the to inputs and states current the from notation. spacestate- in written be can equation matrix This form. matrix in it write to

## Notation? SpaceState- is What

over evolve will system a how describe which equations matrix of set a is notation spaceStatecombinations linear to, $\mathbf{y}$ output the and,$\dot{\mathbf{x}}$ state in change the relate equations These time.
.u vector input and $\mathbf{x}$ vector state current the of
the In systems. timediscrete- and timecontinuous- with deal can control spaceStatelinear a as expressed is $\mathbf{x}$ state system's the of change of rate the case, timecontinuous.u input and $\mathbf{x}$ state current the of combination
$\mathbf{x}_{k+1}$ timestep next our at system the of state the expresses systems timediscrete- contrast, In the is $k+1$ and timestep current the is $k$ where, $\mathbf{u}_{k}$ input and $\mathbf{x}_{k}$ state current the on based timestep. next
linear a as expressed is $\mathbf{y}$ vector output the forms, timediscrete- and continuous- the both In the of subset a is output the cases, many In .input and state current the of combination input. current the from contribution no has and state, system's the because representation timecontinuous- the derive first we systems, modeling When linear a as state system's a of change of rate the as written naturally are motion of equations on timediscrete- to representation this convert We inputs. and state current its of combination continuously. of instead there timesteps discrete in system the update we because robot the discrete- and timecontinuous- of form standard the are equations of sets two following The notation: spacestate- time

$$
\begin{aligned}
\text { Continuous: } \dot{\mathbf{x}} & =\mathbf{A x}+\mathbf{B u} \\
\mathbf{y} & =\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

Discrete: $\mathbf{x}_{k+1}=\mathbf{A} \mathbf{x}_{k}+\mathbf{B u} u_{k}$

$$
\mathbf{y}_{k}=\mathbf{C} \mathbf{x}_{k}+\mathbf{D} \mathbf{u}_{k}
$$

A matrix system $\quad \mathbf{x}$ vector state
B matrix input u vector input
C matrix output $\quad \mathbf{y}$ vector output
D matrix feedthrough
through system timediscrete- a into converted be can system spacestate- timecontinuous- A discretization. called process a

This updates. between constant held is state system's the form, timediscrete- the In : : पार्य updated. is estimate state our as quickly as disturbances to react only can we that means WPILib's point. a to up performance, improve help can quickly more estimate our Updating desired. are loop robot main the than faster updates if used be can class Notifier
the have D and C, B, A, matrices timediscrete- and timecontinuous- system's a While : Clll of rate the describes matrices timecontinuous- The equivalent. not are they names, same the at state system's the describe matrices timediscrete- the while , $\mathbf{x}$ state, the of change input. and state current the of function a as timestep next
them converts and matrices, system timecontinuous- takes LinearSystem WPILib's : Clll necessary. where form timediscrete- the to internally

## Ka and Kv from Flywheel Example: Notation spaceState-

the with motor DC brushed a to connected flywheel a of motion the model can we that Recall a and velocity angular flywheel's the is v output, voltage is V where, $V=K_{v} \cdot v+K_{a} \cdot a$ equation . $a=\frac{-K_{v}}{K_{a}} \cdot v+\frac{1}{K_{a}} \cdot V$ or,$a=\frac{V-K_{v} \cdot v}{K_{a}}$ as rewritten be can equation This acceleration. angular its is its to flywheel the of acceleration angular the relates equation This familiar? anything Notice applied. voltage the and velocity angular
state one with system a create can We notation. spacestate- to equation this convert can We derivative first the that Recalling (velocity). output one and (voltage), input one (velocity), , $\mathbf{x}$ with velocity replacing follows, as equation our write can we acceleration, is velocity of $: \mathbf{u}$ with $\mathbf{V}$ voltage and, $\mathbf{x}$ with acceleration

$$
\mathbf{x}=\left[\frac{-K_{v}}{K_{a}}\right] \mathbf{x}+\left[\frac{1}{K_{a}}\right] \mathbf{u}
$$

following: the is equation output the so same, the are state and output The

$$
\mathbf{y}=[1] \mathbf{x}+[0] \mathbf{u}
$$

constants. $K_{a}$ and $K_{v}$ the have we which for system a of model spacestate- the That's it! That's velocity drivetrain and flywheels model to identification system in used is math same This systems.

## Portrait Phase Responses: SpaceState- Visualizing

space.state- in system a of response the for intuition visual a give help can portrait phase A the in point and space,state- in $\mathbf{x}$ point some at roots their have graph the on vectors The a shows example This time. over evolve will system the that direction the , $\mathbf{x}$ of direction velocity. angular and angle of states the with pendulum a of model
to point a choose space,state- through take could system a that trajectory potential a trace To there, From.$[-2,0]$ at start might we example, this In around. arrows the follow and at start the reach we until decrease to starts and vertical through swing we as increases velocity the indefinitely. repeats origin the about spinning of cycle This swing. the of extreme opposite

## Control Feedback

states current all of knowledge and model mathematical a just with motor, DC a of case the In voltage future the given states future all predict can we velocity), angular (i.e., system the of like equations, our by modeled isn't that way any in disturbed is system the if But inputs. model the from deviate will motor the of velocity angular the friction, unexpected or load a feedback a using commands corrective motor the give can we this, combat To time. over controller.
following the uses often control spaceState- control. feedback of form a is controller PID A the is $\mathbf{x}$ and state, reference the is $\mathbf{r}$ matrix, gain controller some is $\mathbf{K}$ where ,law control
.error the is , $\mathbf{r}-\mathbf{x}$ vectors, two these between difference The space.state- in state current

$$
\mathbf{u}=\mathbf{K}(\mathbf{r}-\mathbf{x})
$$

Proportional system. our of state each for controller proportional a is law control This reference our toward state system's our pull that springs definedsoftware- create controllers velocity and position has controlled being system the that case the In space.state- in state position drive to tries also which controller, PD a as behave will above law control the states, zero. to error velocity and
from system pendulum the use We'll action. in law control this of example an show Let's $\mathbf{K}$ where case The space.state- in origin the circled pendulum swinging the where above,

## Competition Robotics FIRST

no - zero of gains D and P picking like be would zeros) all with matrix (a matrix zero the is above. one the to identical look would portrait phase the and applied, be would input control
is pendulum the to input our where 2], [2, of $\mathbf{K}$ a pick arbitrarily we feedback, some add To angular the ,error position of radian every for that mean would K This acceleration. angular per radians 2 by accelerate we similarly, squared; second per radians 2 be would acceleration somewhere from arrow an following Try .error of second per radian every for squared second reference the at settle will state the conditions, initial the matter no - inwards spacestate- in feedforward. pure with endlessly circle than rather
manually can we While system? our for K matrix gain optimal an choose we can how But controller, PID a like roboton- it tune or response system the simulate and gains choose (LQR). Regulator QuadraticLinear- the answer: better a has theory control modern

Regulator QuadraticLinear- The
an given system a of states future the predict can we that means control basedmodel- Because matrix gain optimal mathematically a pick can we inputs, control future and condition initial do We like. look would $\mathbf{K}$ "bad" or "good" a what define to have first we this, do To .K number a us gives which time, over input control and error of square the summing by this arrived have will we sum, this minimize we If be. will law control our "bad" how representing law. control optimal the at

## Definition LQR:

cost following the minimizes that law control a finding by work Regulators QuadraticLinearlinear the to subject time, over effort control and error of sum the weights which function, $. \mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{A x}_{\mathbf{k}}+\mathbf{B} \mathbf{u}_{\mathbf{k}}$ dynamics system

$$
J=\sum_{k=0}^{\infty}\left(\mathbf{x}_{k}^{T} \mathbf{Q} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} \mathbf{R} \mathbf{u}_{k}\right)
$$

.error the is $r_{k}-x_{k}$ where, $\mathbf{u}=\mathbf{K}\left(\mathbf{r}_{\mathbf{k}}-\mathbf{x}_{\mathbf{k}}\right)$ as written be can $\mathbf{J}$ minimizes that law control The
for calculated $\mathbf{K}$ the but discretization, need don't matrices $\mathbf{R}$ and $\mathbf{Q}$ design's LQR : : पारा different. be will systems time discrete and timecontinuous-

## tuning LQR:

our how change to want also we gains, their adjusting by tuned be can controllers PID Like minimize to want might spaceship a example, For input. and error our balances law control to need might arm robotic speedhigh- a while reference, given a reach to expends it fuel the disturbances. to quickly react
function cost our In matrices. $\mathbf{R}$ and $\mathbf{Q}$ with LQR our in effort control and error weight can We and error our weight $\mathbf{R}$ and $\mathbf{Q}$ perform), will law control our "bad" how describes (which $\mathbf{Q}$ a use might we above, from example spaceship the In other. each to relative input control our while error, penalize highly to want don't we that show to numbers small relatively with undesirable. is fuel expending that show to large be might $\mathbf{R}$ control and excursions state maximum desired of vector a takes class LQR the WPILib, With use often We rule. Bryson's with matrices $R$ and $Q$ full to internally them converts and efforts matrices. the to refer to $\mathbf{R}$ and $\mathbf{Q}$ and vectors, these to refer to $\mathbf{r}$ and $\mathbf{q}$ lowercase the and errors, large weight heavily less LQR the make would elements $\mathbf{q}$ the Increasing penalizing to effect similar a has This conservatively. more behave will law control resulting
elements. 'sr decreasing by heavily more effort control
heavily, more errors large penalize LQR the make would elements $\mathbf{q}$ the decreasing Similarly, to effect similar a has This aggressively. more behave will law control resulting the and elements. r increasing by heavily less effort control penalizing and position with system elevator an for R and Q following the use might we example, For states. velocity

Java



## application example LQR:

flywheel a have we Say example. worldreal- a to Regulator QuadraticLinear- a apply Let's and $K_{v}=1 \frac{\text { volts }}{\text { second per radian }}$ have to identification system through determined system velocity linear following the have we above, example flywheel the Using $. K_{a}=1.5 \frac{1}{\text { squared second }}$ vols
:system

$$
\mathbf{x}=\left[\frac{-K_{v}}{K_{a}}\right] v+\left[\frac{1}{K_{a}}\right] V
$$

an and,$q=[0.1 \mathrm{rad} / \mathrm{sec}]$ of error) (maximum excursion state desired a choose arbitrarily We K This $. \mathbf{K}=81$ of gain a find we 20 ms , of timestep a with discretization After .[12 volts] of $\mathbf{r}$ velocity. flywheel's on loop PID a of component proportional the as acts gain elements $\mathbf{r}$ the decreasing or elements $q$ the increasing that know We .r and $\mathbf{q}$ adjust Let's ,effort control penalize heavily more controller our make would $\mathbf{R}$ and $\mathbf{Q}$ create to use we if fact, In economy. fuel improve to conservatively more car a driving to trying to analogous $\sim 11$. to $\sim 81$ from drops $\mathbf{K}$ matrix gain our 1.0, to 0.1 from q tolerance error our increase we .K decreases 1.2 to 12.0 from $r$ voltage maximum our decreasing Similarly, with time over voltage applied and velocity angular flywheel's the shows graph following The reference the reach system the make will gain higher a how see can We s.gain different two This longer. for 12 V at saturated motor our keeping while seconds), $0.8=\mathrm{t}$ (at quickly more
$\sim 8 \mathrm{x}$. of factor a by controller PID a of gain P the increasing as same the exactly is

## Compensation Latency Measurement and LQR

the example For measurements. their with associated delay a have sensors our Oftentimes, velocity with associated delay of 30 ms to up have can CAN over controller motor MAX SPARK measurements.
based commands voltage generating be will controller feedback our that means lag This and instability introducing of effect the has often This past. the from estimates state on below. graph the in shown as system, our into oscillations
into delayed is state system's the where control to controller our model can we However, for performance controller off trading ,K matrix gain LQR's the reduce will This future. the used also is delay, for account to matrix gain the adjusts which formula, below The stability. identification. system in

$$
\mathbf{K}_{\text {compensated }}=\mathbf{K} \cdot(\mathbf{A}-\mathbf{B K})^{\text {delay } / d t}
$$

we case, this In timestep. one by gains the advances essentially $\mathbf{A}-\mathbf{B K}$ by $\mathbf{K}$ Multiplying delay. measurement's by gains the advance to $(\mathbf{A}-\mathbf{B K})^{\text {delay/dt }}$ by multiply
control. feedback disabling effectively zero, to $\mathbf{K}$ reducing of effect the have can This : Clll
and 19.5 ms , of delay a with filter FIR tap40- a uses controller motor MAX SPARK The : : 20 ms . every sent default by are frames status
delays: input sensor for gain $K$ controller's LQR the adjust to how shows below code The
Java

| We delay. input sensor of ms 25 for controller s'LQR our Adjust // sensor the and timestep, discretization system, linear the provide // arguments. as delay input // );0.025,0.02 (elevatorSystem, latencyCompensatecontroller. |
| :---: |
| C++ |
| We delay. input sensor of ms 25 for controller s'LQR our Adjust // sensor the and timestep, discretization system, linear the provide // arguments. as delay input // ms);_25 ms, 20 controller. LatencyCompensate(elevatorSystem, |

Linearization

using systems spacestate- and functions nonlinear approximate to used tool a is Linearization nonlinear while lines straight are functions linear space, dimensionaltwo- In ones. linear linear corresponding its and function nonlinear a of example common $A$ curve. functions This zero. near $y=x$ by approximated be can function This $. y=\sin x$ is approximation the from further stray we as accuracy looses but , $x=0$ near while accurate is approximation within 0.02 within to accurate is $\sin x \approx x$ approximation the example, For point. linearization see we picture, following the In that. past accuracy loses quickly but, $y=0$ of radians 0.5 . $x$ at $\sin x$ of value true the and approximation the between difference the and $y=x, y=\sin x$
a picking by this do We .dynamics nonlinear with systems spacestate- linearize also can We above the in Like functions. nonlinear our to input the as this using and spacestate- in $\mathbf{x}$ point but linearized, was system the which about point the near states for well works this example, state. that from further diverge quickly can

# Walkthrough Controller SpaceState- 30.7.2 


.SpaceState-
spacestate- a implementing on instructions end"to-"end- provide to is tutorial this of goal The to: how learn will readers tutorial, this following By flywheel. a for controller
CAD or identification system using flywheel a of model spacestate- accurate an Create 1. software.
lag. without measurements velocity encoder filter to Filter Kalman a Implement 2.
basedmodel- with combined when which, controller feedback $L Q R$ a Implement 3. .reference a to flywheel the drive to inputs voltage generate will feedforward,
programming of deal great a without teams for approachable be to intended is tutorial This its which in manner the in flexibility significant offers library WPILib the While expertise. outlined implementation the following closely implemented, are features control spacestatevariety a for reused be can which structure basic a with teams provide should tutorial this in systems. spacestate- of
flywheel spacestate- and )C++/Java( flywheel spacestate- the in available is example full The projects. example )C++/Java( identification system

## Control? SpaceState- Use Why

can we system, our of model accurate an creating on focuses control spacestate- Because simulate to us allows This .inputs control to respond will model our how predict accurately we that gains choose easily as well as robot, physical a to access without mechanisms our Kalman as such filters, lagless create to us allows also model a Having well. work will know readings. sensor filter optimally to Filters,

## Flywheel Our Modeling

of system following the using modeled are systems spacestate- continuous that Recall equations:

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{A x}+\mathbf{B u} \\
\mathbf{y} & =\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

is $\mathbf{u}$ state, current system's the is $\mathbf{x}$,state 'ssystem the of change of rate the is dotx- Where .output system's the is $\mathbf{y}$ and system, the to input the
first We'll ways. different two in flywheel our model to equations of system this use Let's the on based it model then and toolsuite, SysId the using identification system using it model inertia of moment flywheel's and motor
can We states. system's our picking is system spacestate- our up building of step first The wanted we if states unrelated completely pick could we - state a as want we anything pick state our in states hidden include can We important. are that states pick to helps it but Kalman our let and position) its measure to able only were we if velocity elevator as (such their towards driven be will choose we states the that Remember values. their estimate Filter

Regulator QuadraticLinear- the (typically controller feedback the by references respective optimal). it's since
also to chose could we While velocity. its state: one about only care we flywheel, our For system. our for necessary isn't state this of inclusion the acceleration, its model put can we things as of thought be can Inputs system. our to inputs the identify we Next, single- other many (and flywheel the of case the In state. its change to system our "into" By motor. the to applied voltage input: one just have we FRC®), in mechanisms jointed for compensate can we cycle), duty motor like something (over input our as voltage choosing increases. load battery as sag voltage battery
the of change of rate instantaneous the or ,dotx- writes system spacestate- timecontinuous- A is state our Because .inputs and state current the to proportional as state, 'ssystem system's acceleration. angular flywheel's the be will $\mathbf{x}$ velocity, angular WPILib's system. spacestate- timecontinuous- a as flywheel our model will we Next, for notation spacestate- Review internally. timediscrete- to this convert will LinearSystem systems. timediscrete- and timecontinuous- on more

## Identification System with Modeling

flywheel the from recall we ,identification system using notation spacestate- in this rewrite To .a of terms in equation following the rewrote we where , example notation spacestate-

$$
\begin{array}{r}
V=k V \cdot \mathbf{v}+k A \cdot \mathbf{a} \\
\mathbf{a}=\mathbf{v}=\left[\frac{-k V}{k A}\right] v+\left[\frac{1}{k A}\right] V
\end{array}
$$

Rewriting voltage. is $V$ and acceleration, flywheel are $\mathbf{v}$ and $\mathbf{a}$ velocity, flywheel is $\mathbf{v}$ Where find: we vector, input the for $\mathbf{u}$ and vector state the for $\mathbf{x}$ of convention standard the with this

$$
\mathbf{x}=\left[\frac{-k V}{k A}\right] \mathbf{x}+\left[\frac{1}{k A}\right] \mathbf{u}
$$

the to inputs and state current system's the relates notation spacestate- of part second The measure) can sensors our that things (or $\mathbf{y}$ vector output our flywheel, a of case the In .output Therefore, .x vector state our of element an be to happens also which velocity, flywheel's our is out this Writing $. \mathbf{D}=[0]$ is matrix feedthrough system our and, $\mathbf{C}=[1]$ is matrix output our following. the yields notation spacestate- timecontinuous- in

$$
\begin{aligned}
& \mathbf{x}=\left[\frac{-k V}{k A}\right] \mathbf{x}+\left[\frac{1}{k A}\right] \mathbf{u} \\
& \mathbf{y}=[1] \mathbf{x}+[0] \mathbf{u}
\end{aligned}
$$

identified systems spacestate- creating easily for methods contains class LinearSystem The a and 0.023 of kV a with model flywheel a shows example This .identification system using 0.001: of kA

Java

(ำำ

> second. per radians in [velocity], States: //
> volts. in [voltage], in"): put" can we (what Inputs // second. per radians in [velocity], measure): can we (what Outputs /// toolsuite. Characterization FRC the using found are constants Ka and Kv The /// $=\begin{array}{r}\text { flywheelplant }>N 1 \mathrm{N1,} \mathrm{N1,} \mathrm{<LinearSystem} \mathrm{final} \mathrm{private}\end{array}$ kFlywheelKa) ; (kFlywheelKv,identifyVelocitySystemLinearSystemId.

C++

| frc/system/plant/LinearSystemId.h>< include\# |
| :---: |
| the has system This flywheel. our of model state-space a holds plant The // properties: following // <br> second. per radians in [velocity], States: // <br> volts. in [voltage], in"): put" can we (what Inputs // <br> second. per radians in [velocity], measure): can we (what Outputs // // <br> toolsuite. Characterization FRC the using found are constants Ka and Kv The // = m_flywheelPlant >1,1,1<LinearSystem::frc <br> (kFlywheelKv,>radian::units<IdentifyVelocitySystem::LinearSystemId::frc kFlywheelKa); |

## Gearing and Inertia of Moment Flywheel Using Modeling

the about information using robot, physical a to access without modeled be also can flywheel A presented is model this of derivation full A .inertia of moment flywheel's and gearing motors, .FRC in Engineering Controls of 8.2.1 Section in
the from flywheel a of model a create easily to methods contains class LinearSystem The calculated be can inertia of moment The .inertia of moment and gearing motors, flywheel's flywheel the in detailed are here used examples The physics. using or software CAD using ).C++/Java( project example
if is, that - input over output as written is gearing classes, spacestate- WPILib's For : : पार one. than greater be should number this motors, the than slower spins flywheel the
and mixups unit prevent to Library Units C++ the uses class LinearSystem C++ The : : पाल dimensionality. assert

Java

```
        m^2 * kg // ;0.00032 = kFlywheelMomentOfInertia double final static private
    _flywheel the If input. over output as encoder, and motors between Reduction //
                        than slower spins
                        one. than greater be should number this motors, the //
                        ;1.0 = kFlywheelGearing double final static private
    uthe has system This flywheel. our of model state-space a holds plant The //
                        properties: following }
                                //
                            second. per radians in [velocity], States: //
                            volts. in [voltage], in"): put" can we (what Inputs //
        second. per radians in [velocity], measure): can we (what Outputs //
            = m_flywhee\Plant >N1 N1, N1,<LinearSystem final private
                        (createFlywheelSystemLinearSystemId.
        kFlywheelGearing); kFlywheelMoment0fInertia, ),2(getNEODCMotor.
```

$$
\begin{array}{r}
=\text { kFlywheelMoment0fInertia kilogram_square_meter_t: :units constexpr static } \\
\text { kg_sq_m;_0.00032 }
\end{array}
$$

flywheel the If input. over output as encoder, and motors between Reduction // one. than greater be should number this motors, the than slower spins //
;1.0 = kFlywheelGearing double constexpr static
the has system This flywheel. our of model state-space a holds plant The // properties: following //
second. per radians in [velocity], States: //
volts. in [voltage], in"): put" can we (what Inputs // second. per radians in [velocity], measure): can we (what Outputs // = m_flywheelPlant >1 ,1 ,1<LinearSystem::frc

FlywheelSystem(::LinearSystemId::frc
kFlywheelGearing) ; kFlywheelMoment0fInertia, ), 2NE0(::DCMotor::frc

## State Flywheel Observing Filters: Kalman

to model spacestate- our using measurements velocity our filter to used are filters Kalman filter Kalman a use can we linear, is model flywheel our As . $\hat{\mathbf{x}}$ estimate state a generate we (which LinearSystem a takes filter Kalman WPILib's velocity. flywheel's the estimate to can We measurements. sensor and model of deviations standard with along above), found standard state Larger weights. these adjusting by is estimate state our "smooth" how adjust measurements new favor and estimate state our "distrust" to filter the cause will deviations opposite. the do will deviations standard measurement larger while highly, more
measurement a and rad/s 3 of deviation standard state a with start we flywheel a of case the In weights these - choose to user the to up are values These rad/s. 0.01 of deviation standard to reacted quickly estimate state whose but noise some to tolerant was that filter a produced well behaves that filter a create to tuned be should and - flywheel $a$ for disturbances external outputs and references, inputs, measurements, states, Graphing flywheel. specific your for
filters. Kalman tune to way visual great a is time over

## Competition Robotics FIRST

filter IIR polesingle- a as well as filters, Kalman tuned differently two shows graph above The four and seconds, $\sim 5$ over shooter a with collected was data This .Filter Median a and are there While velocity). in dips four the in seen (as shooter the through run were balls in should they deviations, standard measurement and state good choosing on rules hard no external to quickly reacting while noise reject to enough model the trust to tuned be general disturbances.

Kalman the by estimated hatx- the using error computes controller feedback the Because estimate state filter's the quickly as only disturbances to react will controller the filter, and 3.0 of deviation standard state a (with plot left upper the chart, above the In changes. disturbances to quickly reacted that filter a produced 0.2 ) of deviation standard measurement the by affected barely was that filter a shows plot right upper the while noise, rejecting while dips. velocity

Java
noise. reject to inputs voltage and data encoder our fuses observer The //
$=m_{-}$observer $>\mathrm{N} 1 \mathrm{N1}, \mathrm{N1},<$ KalmanFilter final private
(><KalmanFilter new
(), N1Nat.
page) next on (continues
(),N1Nat.
is model our think we accurate How // ), 3.0(fillvecBuilder.
encoder our think we accurate How // ), 0.01(fillVecBuilder.
is data //
is $) ; 0.020$
frc/estimator/KalmanFilter.h>< include\#
noise. reject to inputs voltage and data encoder our fuses observer The //
m_observer\{ >1 , 1 , 1<KalmanFilter::frc
m_flywheelPlant,
is model our think we accurate How // ,\}3.0\{
is data encoder our think we accurate How // ,\}0.01\{
ms\}; 20
that important is it ,step Predict the in model spacestate- our use filters Kalman Because input flywheel's a record to is this verify to way One possible. as accurate as is model our Kalman the on predict only calling by data this replay and time, over velocity and voltage adjusted be can constants) other and inertia of moment (or gains kA and kV the Then, filter. data. recorded the matches closely model the until

## Feedforward Inversion Plant and Regulators QuadraticLinear-

to system flywheel our drive to controller feedback a finds Regulator QuadraticLinear- The will LQR our by picked law control the state, one just has flywheel our Because .reference its picked law control the words, other in matrix; 1x1 a is $\mathbf{K}$ where $\mathbf{u}=\mathbf{K}(\mathbf{r}-\mathbf{x})$ form the in be gain This gain. P a only with controller PID a or controller, proportional a simply is LQR by on More it. pass we efforts control and excursion state the on based LQR our by chosen is .example application $L Q R$ the in found be can controllers LQR tuning inputs voltage feedforward generate to used be can SimpleMotorFeedforward like Much feedforward generate class Feedforward Inversion Plant the constants, kA and kV, kS, given the by generated commands voltage The system. spacestate- a given inputs voltage inputs. feedback and feedforward the of sum the are class LinearSystemLoop

Java

```
            commands. voltage create to feedback uses LQR A //
                        = m_controller >N1 N1, N1,<LinearQuadraticRegulator final private
                        (><LinearQuadraticRegulator new
                m_flywheelPlant,
    \iotaper radians in tolerance, error Velocity qelms. // ),8.0(fillVecBuilder.
                    Decrease second. }
    _controller the make or excursion, state penalize heavily more to this //
                                    more behave }
                            aggressively. //
            „tolerance. (voltage) effort Control relms. // ),12.0(fillVecBuilder.
                            more to this Decrease }
uaggressive. less controller the make or effort, control penalize heavily //
                            good a is 12}
    ua of voltage maximum (approximate) the is that because point starting //
page) next on (continues
```


commands. voltage create to feedback uses LQR A // m_controller\{ >1,1<LinearQuadraticRegulator::frc
m_flywheelplant,
this Decrease second. per radians in tolerance, error Velocity qelms. // behave controller the make or excursion, state penalize heavily more to // aggressively. more //
more to this Decrease tolerance. (voltage) effort Control relms. //
less controller the make or effort, control penalize heavily // the is that because point starting good a is 12 aggressive. // battery. a of voltage maximum (approximate) //
,\}12.0\{
if lower be can but TimedRobot, for 20ms loops. between time Nominal // notifiers. using // ms\}; 20
plant and feedforward observer, controller, a combines loop state-space The //
control. easy for //
m_controller, m_loop\{m_flywheelplant, >1,1,1<LinearSystemLoop: :frc ms\}; $20 \mathrm{~V}, 12 \mathrm{~m}$ _observer,

## LinearSystemLoop Together: All it Bringing

earlier. created we that observer and controller, system, our combines LinearSystemLoop .PlantInversionFeedforward a instantiate also will shown constructor The

Java

| „for plant and feedforward observer, controller, a combines loop state-space The // control. easy $\rightarrow$ = m_loop >N1 N1, N1,<LinearSystemLoop final private );0.020, 12.0 m_observer, m_controller, (m_flywheelPlant,><LinearSystemLoop new |
| :---: |
|  |  |

C++
frc/system/LinearSystemLoop.h>< include\#
15
plant and feedforward observer, controller, a combines loop state-space The // control. easy for // m_controller, m_loop\{m_flywheelplant, >1 ,1 ,1<LinearSystemLoop::frc ms\}; $20 \mathrm{~V}, 12 \mathrm{~m}$ observer,
that, do To it. run actually is do to left thing only the ,LinearSystemLoop our have we Once and measurements velocity encoder new our with filter Kalman our update periodically we'll with correct then reference the set first we that, do To it. to commands voltage new apply the apply and timestep, next the into filter Kalman the predict speed, flywheel current the .getU using generated inputs

Java
() teleopPeriodic @override setpoint the setting to similar is This flywheel. our of speed target the Sets //
(kSpinupRadPerSec)); fill(VecBuilder.setNextRm_loop.
\{ ()) getTriggerReleased(m_joystick. if else \}
down spin s'let so trigger, the released just We // )) ;0.0(fill(VecBuilder.setNextRm_loop.
data. encoder with estimate vector state s'filter Kalman our Correct // ())); getRate(m_encoder.fill(VecBuilder.correctm_loop.
sto voltages the use and commands voltage new generate to LQR our Update // next the predict $\rightarrow$
filter. Kalman out with state // ); 0.020 (predictm_loop.
motors. the to voltage calculated new the Send // so voltage, battery * cycle duty = voltage // voltage battery / voltage = cycle duty //
);0(getUm_loop. = nextVoltage double
(nextVoltage) ; setVoltagem_motor.

C++


5
6
7
\{ override ()TeleopPeriodic void the setting to similar is This flywheel. our of speed target the Sets // controller. PID a of setpoint // \{ (m_joystick.GetRightBumper()) if reference next our set s'let so bumper, the pressed We // kSpinup.value()\}); \{>1<Vectord::m_loop.SetNextR(frc \{ else \} down spin s'let so bumper, the released We //
); $\} 0.0\{>1<$ Vectord: :m_loop. SetNextR(frc

| ( |
| :---: |
| data. encoder with estimate vector state s'filter Kalman our Correct // m_encoder.GetRate() $)$; \{>1<Vectord::m_loop.Correct(frc <br> to voltages the use and commands voltage new generate to LQR our Update // <br> filter. Kalman out with state next the predict // ms) ; 20m_loop. Predict ( <br> motors. the to voltage calculated new the Send // so voltage, battery * cycle duty = voltage // voltage battery / voltage = cycle duty // <br> ) \}) ;0volt_t\{m_loop.U(::m_motor.SetVoltage(units |
| LQR with Wrap Angle |
| below code the calling by wrapped angle that have can angle continuous a with Mechanisms .r) lqr.Calculate(x, of instead |
| ```(x);minus().getRlqr. = error var )));0 ,0(get(error.angleModulusMathUtil. ,0 ,0(seterror. (error);times().getKlqr. = u var``` |
| C++ |
| $x ;-\operatorname{lqr} . R()=$ error $>2$, double<Vector::Eigen <br> )\}).value();0radian_t\{error(::AngleModulus(units::frc = )0error( ēror; * lqr.K() $=u>2$, double<Vector: :Eigen |

## Filters Kalman and Observers State 30.7.3

measurements external and behavior system's a about information combine observers State the is systems linear for used observer common A system. the of state true the estimate to measurements fuse they as filters other over advantageous are filters Kalman Filter. Kalman a estimate optimally to system the of model spacestate- a with sensors more or one from state. system's
different of variety a through run time, over measurements velocity flywheel shows image This spinup flywheel during lag measurement no shows filter Kalman tunedwell- a that Note filters. it. through pass balls as disturbances to quickly reacting and data noisy rejecting still while .section filters the in found be can filters on More
a of case the In . ${ }^{1}$ process a in noise the model to distribution Gaussian a utilize filters Kalman measure a is variance the while mean, the is system the of state estimated the filter, Kalman .state true the about is filter the uncertain) (or certain how of
is Covariance filter. Kalman a of function the to central is covariance and variance of idea The state, single a with system a In correlated. are variables random two how of measurement a the of $\operatorname{var}\left(\mathbf{x}_{1}\right)$ variance the containing matrix a or, $\operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ simply is matrix covariance the Gaussian the of deviation standard the of square the is variance this of magnitude The . $x_{1}$ state

[^18]
might covariance for values large Relatively estimate. state current the describing function confident more is filter the that indicate might covariances small while data, noisy indicate are covariance or variance for values "small" and "large" that Remember estimate. it's about $\operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ meters, in measured was $\mathbf{x}_{\mathbf{1}}$ if example, for - used being unit base the to relative squared. meters in be would
form: following the in written are matrices Covariance
\[

\mathrm{\square}=\left[$$
\begin{array}{cccc}
\operatorname{cov}\left(x_{1}, x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{cov}\left(x_{1}, x_{n}\right) \\
\operatorname{cov}\left(x_{2}, x_{1}\right) & \operatorname{cov}\left(x_{2}, x_{2}\right) & \ldots & \operatorname{cov}\left(x_{1}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(x_{n}, x_{1}\right) & \operatorname{cov}\left(x_{n}, x_{2}\right) & \ldots & \operatorname{cov}\left(x_{n}, x_{n}\right)
\end{array}
$$\right]
\]

Filters Kalman
 and visual great a provides Labbe Roger by Python in Filters Bayesian and Kalman book algebra linear use WPILib in filters Kalman The filters. Bayesian to introduction interactive suggest We case. dimensionalsingle- the to similar are ideas the but math, the gentrify to doing. are filters these what for intuition an gain to 4 Chapter through reading
and prediction parts: two have filters) Bayesian all (and filters Kalman summarize, To system's our to according time in forward estimate state our projects Prediction correction. filters While state. measured the towards state estimated the steers correct and dynamics, WPILib's example, For - necessary strictly not it's timestep, same the in both perform often is data measurement new when only correct and frequently, predict call estimators pose system). vision frameratelow- a from example, (for available
filter: Kalman timediscrete- a of equations the shows following The step Predict

$$
\left.\begin{array}{rl}
\hat{\mathbf{x}}_{k+1}^{-} & =\mathbf{A} \hat{\mathbf{x}}_{k}^{+}+\mathbf{B u} \\
k
\end{array}\right]=\mathbf{P}_{k+1}^{-}=\mathbf{A} \mathbf{P}_{k}^{-} \mathbf{A}^{T}+\square \mathbf{Q} \square^{T} .
$$

step Update

$$
\begin{aligned}
\mathbf{K}_{k+1} & =\mathbf{P}_{k+1}^{-} \mathbf{C}^{T}\left(\mathbf{C P}_{k+1}^{-} \mathbf{C}^{T}+\mathbf{R}\right)^{-1} \\
\hat{\mathbf{x}}_{k+1}^{+} & =\hat{\mathbf{x}}_{k+1}^{-}+\mathbf{K}_{k+1}\left(\mathbf{y}_{k+1}-\mathbf{C} \hat{\mathbf{x}}_{k+1}^{-}-\mathbf{D} \mathbf{u}_{k+1}\right) \\
\mathbf{P}_{k+1}^{+} & =\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}\right) \mathbf{P}_{k+1}^{-}
\end{aligned}
$$

| A | matrix system | $\hat{\mathbf{x}}$ | vector estimate state |
| :--- | :--- | :--- | :--- |
| $\mathbf{B}$ | matrix input | $\mathbf{u}$ | vector input |
| $\mathbf{C}$ | matrix output | $\mathbf{y}$ | vector output |
| $\mathbf{D}$ | matrix feedthrough | $\square$ | vector intensity noise process |
| $\mathbf{P}$ | matrix covariance error | $\mathbf{Q}$ | matrix covariance noise process |
| $\mathbf{K}$ | matrix gain Kalman | $\mathbf{R}$ | matrix covariance noise measurement |

Gaussian the of covariance and mean the describe , $\mathbf{P}$ with together , $\mathbf{x}$ estimate state The state. true system's the of estimate filter's our describes that function

## Matrices Covariance Noise Measurement and Process

of variance the describe $\mathbf{R}$ and $\mathbf{Q}$ matrices covariance noise measurement and process The variance function, Gaussian a for that Remember measurements. and states our of each diagonal are R and Q WPILib, a In deviation. standard function's the of square the is filter Kalman a example, For variances. respective their contain diagonals whose matrices and $\left[\begin{array}{l}0.1 \\ 1.0\end{array}\right]$ deviations standard state with [position] measurements and $\left[\begin{array}{l}\text { position } \\ \text { velocity }\end{array}\right]$ states with matrices: $\mathbf{R}$ and $\mathbf{Q}$ following the have would [0.01] deviation standard measurement

$$
Q=\left[\begin{array}{cc}
0.01 & 0 \\
0 & 1.0
\end{array}\right], R=[0.0001]
$$

## Matrix Covariance Error

Informally, . $\hat{\mathbf{x}}$ estimate state the of covariance the describes $\mathbf{P}$ matrix covariance error The the about uncertainty our large, is $\mathbf{P}$ If .state estimated the about certainty our describes $\mathbf{P}$ about uncertainty less imply would elements smaller with $\mathbf{P}$ a Conversely, large. is state true state. true our
state true system's the about certainty our as increases $\mathbf{P}$ forward, model the project we As decreases.
step Predict
dynamics system linear the to according updated is estimate state our prediction, In covariance noise process the by increases $\mathbf{P}$ covariance error our Furthermore, $. \mathbf{x}=\mathbf{A x}+\mathbf{B u}$ is $\mathbf{P}$ This quickly. more grow $\mathbf{P}$ covariance error our make will $\mathbf{Q}$ of values Larger . $\mathbf{Q}$ matrix measurements. and model the weight to step correction the in used
step Correct
information. measurement new include to updated is estimate state our step, correct the In Large . $\mathbf{K}$ gain Kalman the by $\hat{\mathbf{x}}$ estimate state the against weighted is information new This more $\mathbf{K}$ of values smaller while measurements, incoming weight highly more $\mathbf{K}$ of values increase will $\mathbf{P}$ of values larger , $\mathbf{P}$ to related is $\mathbf{K}$ Because prediction. state our weight highly long a for predicted is filter a example, for If, measurements. weight heavily more and $\mathbf{K}$ information. new the weight heavily would $\mathbf{P}$ large the duration, estimate. state the in confidence our increase to decreases $\mathbf{P}$ covariance error the Finally,
noise process of vector a system, linear a take constructors classes« Filter Kalman WPILib’s to converted are These deviations. standard noise measurement and deviations standard or deviations, standard the of square the with diagonals the filling by matrices $\mathbf{R}$ and $\mathbf{Q}$ (and deviation standard state's a decreasing By measurement. or state each of variances, more. measurements incoming distrust will filter the ), $\mathbf{Q}$ in entry corresponding its therefore more. measurements incoming trust will deviation standard state's a increasing Similarly, make will entry an decreasing - deviations standard measurement the for holds same The while state, corresponding the for measurement incoming the trust highly more filter the measurement. the in trust decrease will it increasing

Java



5
6
7
noise. reject to inputs voltage and data encoder our fuses observer The //
m_observer\{ >1,1 ,1<KalmanFilter::frc m_flywheelPlant,
is model our think we accurate How // ,\}3.0\{
is data encoder our think we accurate How // ,\}0.01\{
ms\}; 20

These drivetrains. mecanum and swerve differential, for estimators pose includes WPILib classes odometry existing the for replacements indrop- be to designed are estimators gyro and encoder with estimates pose robot compensatedlatency- fusing support also that These data. vision noisy and drift encoder for account can estimators These measurements. is update only if classes odometry corresponding their to identically behave can estimators estimators. these on called
the with system spacestate- a using position robot estimate estimators Pose WPILib .Pose2d a as position robot represent can which, $\left[\begin{array}{lll}x & y & \theta\end{array}\right]^{T}$ states and SwerveDrivePoseEstimator ,DifferentialDrivePoseEstimator includes update call users these, In position. robot estimate to MecanumDrivePoseEstimator update to classes) odometry the as (same measurements gyro and encoder with periodically relativefield- its of measurements receives robot the When position. estimated robot's the pose the SLAM,V- or vision computer as such sensors from )Pose2d a as (encoded position position. robot estimate accurately to measurement the compensateslatency- estimator
:DifferentialDrivePoseEstimator a initialize to how Here's
Java

.Update() calling by loop every measurements odometry Add
Java
m rightEncoder (updatem_poseEstimator.
m_rightEncoder. (), getDistancem_leftEncoder. (), getRotation2dm_gyro.
()) ; getDistance $\hookrightarrow$

C++

[^19].AddVisionMeasurement () calling by occasionally measurements pose vision Add
Java

| uvision from exclusively position field-relative s'robot the Compute // measurements. = visionMeasurement3d Pose3d <br> m_cameraToObjectEntry) ; m_robotToCamera, objectToRobotPose(m_objectInField, <br> measurements. vision apply to needed Pose2d to Pose3d from pose robot Convert // <br> ();toPose2dvisionMeasurement3d. = visionMeasurement2d Pose2d <br> ua input t'don we only, purposes simulation For measurements. vision Apply // on -- delay latency $\rightarrow$ uor latency known on either based calculated be must this robot, real a // timestamps. Timer. (visionMeasurement2d,addVisionMeasurementm_poseEstimator. <br> ()) ; getFPGATimestamp $\hookrightarrow$ |
| :---: |
| C++ |
| $\begin{array}{r} \text { vision from exclusively position field-relative s'robot the Compute // } \\ \text { measurements. // } \\ \text { ObjectToRobotPose( = visionMeasurement3d Pose3d: frc } \end{array}$ |

## Estimators Pose Tuning

measurements and model for deviations standard customizableuser- offer estimators pose All spread how of measure a is deviation Standard them). provide don't you if used are (defaults will it means deviation standard smaller a state a Giving signal. random a for is noise the out fusion. data during more trusted be a for do might one (as measurements for deviation standard the increasing example, For incoming the than more estimate state its trusting estimator the to lead would signal) noisy data vision noisy reject can filter the that mean might this field, the On measurements. be can values these While deviations. model for correct to slow being of cost the at well, global and robot each of setup unique the on depend much very they beforehand, estimated method. measurement
large, very deviation standard heading vision the make poses, AprilTag incorporating When standard $y$ and $x$ vision the scale and small, deviation standard heading gyro the make
tag. the from distance by deviation

Controllers and Models SpaceState- Debugging 30.7.5
flipped. being signs is controllers spacestate- with bugs of causes common most the of One positive a in result to voltage positive expect WPILib in included models example, For mechanism the make not does voltage positive a applying If versa. vice and acceleration, readings) sensor other (or encoder makes "forwards" moving if or forwards, accelerate encoder positive a in results input voltage positive that so inverted be should they decrease, motors) right and left the for forwards (full $[12,12]^{T}$ of input an apply I if example, For reading. axis +X the (along "forwards" robot my propel should wheels my drivetrain, differential my to velocity. positive a read to encoders my for and locally),
may You motors. any invert not does default, by ,DifferentialDrive WPILib The : that so invert to object controller motor the on method setInverted(true) the call to need motion. forward creates input positive

## Graphs of Importance The

when important is time over soutput and sinput s,state system's the of data Reliable data this send to is approach common One observers. and controllers spacestate- debugging the graph both to us allow which ,Shuffleboard as such tools use and NetworkTables over Google as such tools with later plotting for file CSV a to it save as well as timereal- in data Python. or Excel Sheets,
be can this testing, For rate. update 10 hz a to limited is NetworkTables default, By : Cl Cl be should code This 100 hz . to up at data submit to snippet code following the with bypassed data. new publish forcibly to periodically run
 It utilization. network increase also will This dashboards. robot and code user both with competitions. during this disable to idea good a often is


## Lag Input for Compensating

onboard to due delayed be may readings) velocity (i.e. data input sensor some times, Often no assumes gain K LQR's default, By perform. to tend controllers motor smart that filtering cause can milliseconds of tens of order the on delay significant introducing so delay, input for performance off trading reduced, be can gain $K$ LQR's the this, combat To instability. rigorous mathematically a in latency this for compensate to how for example code A stability.
.here available is manner

## Glossary Controls 30.8

control bangbang-
on" "turns simply It technique. control loopclosed- requiredtuning-no- simple, very A control the off" "turns and small, too is variable process the when effort control the See all. not but cases, some in well works It big. too is variable process the when effort info. more for Wikipedia on control bang""Bang-

## system coordinate Cartesian

its indicating numbers, of set a by described is point each where space in points of set A orthogonal the of expression an are coordinates These space. that within coordinates 2- system). "rectangular" a (IE, axes orthogonal fixed, of set a from point each of distance learned was what likely (and FRC in common most are spaces dimension3- and dimension Cartesian See possible. theoretically is dimensions of number any but 1), algebra in info. more for Wikipedia on system coordinate

## losses churning

rotate, bearings and gears when that fact the from arising forces likefriction- Complex mechanisms. rotating of efficiency the reduces This lubricant. liquid displace must they
signal control
voltage. a as quantified usually ,controller a by plant a to sent signal driving The
effort control

signal Control

## law control

given , state desired a to system a drive to inputs generates that formula mathematical A $\mathbf{u}=\mathbf{K}(\mathbf{r}-\mathbf{x})$ law control the is example common A .state current the

## controller

state system desired a about bring to plant a with feedback negative or position in Used zero. to output the and signal reference a between difference the driving by
convolution
function, one of average moving weighted a calculates that operation mathematical A input sensor "filter" to way common A function. second a by assigned weights the with .convolution See function. filtering chosencarefully- a using it, to convolution a apply to is info. more for Wikipedia on

## force electromotivecounter-

a has that fact the of result a is voltage The motor. spinning a in generated voltage A for Wikipedia on electromotive_forceCounter- See magnet. a near rotating wire of coil info. more

## current

"Amps" of unit a with described is Current conductor. a through electrons of flow The
to equal is amp One circuit. a in point single a at measured is and "A"), simply (or second. one in point measurement the past moving electrons 6241509074000000000

## dynamics

In forces. of action the under bodies of motion the with concerned physics of branch A dynamics. their to according evolve systems control, modern

## derivative

given a at function a of change"of-"rate- the evaluates which operation mathematical A info. more for Wikipedia on derivative See point.

## error

.state or output an minus Reference

## search exponential

a applying by range search wide a within value specific a finding of process iterative An more for Wikipedia on search exponential See value. search the to factor multiplicative
info.

## smoothing exponential

window exponential an using filter, passlow- simple a implement to way common very A down simplifies operation convolution The signal. input an with convolution a in function See output. previous and input current the on operations math of set simple very a to info. more for Wikipedia on smoothing exponential
gain
output an of magnitude the to signal input an of magnitude the relates that value scalar A would one than greater gain A .input * gain $=$ output in gain example, For signal. A signal. input an dampen would one than less gain a while signal, input an amplify signal. input the negate would gain negative

## distribution Gaussian

of graph The averages. of distributions describes that function mathematical special A (the mean its by described is function This shape. curve" "bell a is function Gaussian a out" "spread how of measure (a variance and curve) bell the of "peak" the of location info. more for Wikipedia on distribution Gaussian See is). curve bell the

## gradient

is output the result, a As inputs. multiple with function a to applied but ,derivative The occurs. it which along direction vector the and change, of rate the of magnitude the both

## state hidden

other to related be can dynamics whose but measured, directly be cannot that state A states.
input
.state plant's the change to used be can that name) the (hence plant the to input An it. driving motor the of voltage the input: 1 have will flywheel A Ex. •
motors. right and left the of voltages the inputs: 2 have might drivetrain A Ex. • input per entry one with vector column a , u variable the by represented often are Inputs .system the to
regression squaresleast-
error the of square the minimizes to curve a picks which technique fittingcurve- A squaresleast- ordinary See data. measured actual the and curve, fitted the between info. more for Wikipedia on regression

## LQR

system a operate to seeks which scheme control feedback A - Regulator QuadraticLinearof square the minimizing of sense the in manner, cost" "lowest or optimal" "most a in effort. control and error system of combination a represents that function" "cost some and controlled, being system the of model mathematical accurate an requires This for Wikipedia on LQR See state. system given any of "cost" the describing function info. more

## measurement

using system, physical or ,plant a from measured are that outputs are Measurements sensors.

## model

behavior. system's physical a of aspect some reflects that equations mathematical of set A

## observer

given a of state internal the of estimate an provides that system a theory, control In WPILib .system real the of output and input the of measurements from system real ExtendedKalmanFilter and systems, linear observing for class Filter Kalman a includes systems. nonlinear for classes UnscentedKalmanFilter and

## orthogonal

example, For influence. mutual lacking or independent, being of property the Having zero causes line one along units of number any moving if orthogonal are lines two lines orthogonal, system coordinate cartesian a In line. other the along displacement other. each between angles degree90- have to said often are

## output

These states. then measurements more be can There sensors. from Measurements Filters. Kalman of step "correct" the in used are outputs
velocity. it's measures that encoder a from output 1 have might flywheel A Ex. •
on position $\mathrm{x} / \mathrm{y} / \mathrm{heading}$ it's find to SLAMV- and solvePNP use might drivetrain A Ex. • SLAMV- and $\mathrm{x} / \mathrm{y} /$ heading (solvePNP measurements 6 are there that fine It's field. the $\mathrm{x} / \mathrm{y} /$ heading). (robot states 3 and $\mathrm{x} / \mathrm{y} /$ heading)
with vector column a, $\mathbf{y}$ variable the using represented often are system a of Outputs states had system our if example, For measure). can we thing (or output per entry one output our our, velocity, measure only could sensor our but acceleration and velocity for velocity. 'ssystem the include only would vector

## portrait phase

some given time, in change they as derivative its and value function's a of graph A (stable/unstable behavior system analyzing for useful are They conditions. starting initial starting or parameters of set certain a given etc.) cycles, limit points, operating info. more for Wikipedia on portrait phase See conditions.

## PID

signal control a calculates which controller feedback A - DerivativeIntegral-Proportionalaccumulated an and error, the of change of rate the , error the of sum weighted a from info. more for Wikipedia on .controller PID See errors. previous of sum plant
controlled. being actuators of collection or system The
variable process
control. PID of context the in plant a of output the describe to used term The

## squaredr-

representing data, of set a predicts model a well how of measurement statistical A accurately is that variable independent the in variation observed the of fraction the to equivalent fit, terrible (a 0.0 from runs typically value The model. the by predicted See fit). perfect (a 1.0 to variable) independent your of value average the guessing just info. more for Wikipedia on Coefficient_of_determination

## reference

error controller's a for point reference the as used is value This state. desired The calculation.

## time rise

.input step a applying after reference the reach initially to takes system a time The

## RMSE

set a to fit is curve a well how of measurement Statistical - Error Squared Mean Root all of squares the of (mean) average the of root square the as calculated is It data. of input original the of units has It fit. curve the and sample actual the between errors the info. more for Wikipedia on Error Squared Mean Root See data.

## setpoint

controller. PID a of reference the describe to used term The

## time settling

applied. is input step a after reference the at settle to takes system a time The
function signum
all for 1- to equal is It input. its of "sign" the expresses that function continuousnon- A See numbers. input positive all for 1 and 0 , of input an for 0 numbers, input negative info. more for Wikipedia on ,function signum
state
system's the determine to used be can that velocity) (e.g., system a of characteristic A column a as written is system a of state the notation, spacestate- In behavior. future space.state- in position it's describing vector the on position it's describe to $\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$ states the have might system drivetrain A Ex. • field.
current its describe to $\left[\begin{array}{c}\text { position } \\ \text { velocity }\end{array}\right]$ states the have might system elevator An Ex. • velocity. and height
entry one with vector column a, $\mathbf{x}$ variable the by represented often is state system's A .state per

## robust statistically

outlier- or noisy a to resilient it makes which algorithm processing data a of property The because important is robots on algorithms robust statistically Designing set. data prone is behavior robot unexpected but unpredictable, be often can data sensor worldrealinfo. more for Wikipedia on Statistics Robust See desirable. never
equilibrium. reaches system after Error
input step
that input step A . $t \geq 0$ for 0 than greater constant a and $t<0$ for 0 is that input system A input. step unit a called is $t \geq 0$ for 1 is
response step
.input step a to system a of response The
system
which ,observer and controller a with interaction it's and plant a encompassing term A outputs to inputs maps system a speaking, Mathematically entity. single a as treated is .states of combination linear a through

## identification system

measured using model mathematical a in dynamics systems a capturing of process The terms. kA and kV kS , find to identification system uses toolsuite SysId The data.
response system
.input given a for time over system a of behavior The
voltage
circuit. a through electrons "pushing" is field electric an much how of measurement The "Volts". of units in measured is It "EMF". or Force", "Electromotive called sometimes is It two between travels electron one If circuit. a in points two between defined is always It point the to accelerated been have will it them, between EMF of volt one have that points energy. of joules $\frac{1}{6241509074000000000}$ having of

## drag viscous

fluid. turbulentnon- through slowly relatively moving object an from generated force The describes It object. the of velocity the to proportional roughly is force the region, this In as well as encounter, would robot FRC an resistance" "air of type common most the more for Wikipedia on (physics) Drag See grease. displacing from gearbox a in losses info.
dotx-
,state velocity a just had system the If .x vector state the of derivative the dot:x- or , $\dot{\mathbf{x}}$ acceleration. 'ssystem the represent would $\dot{\mathbf{x}}$ then
hatx-
.observer an by estimated as system, a of state estimated the hat:x- or , $\hat{\mathbf{x}}$

advanced other with used be that features convenience general some covers section This features. programming

## Frequencies Custom at Functions Scheduling 31.1

faster rate a at methods custom run to one allows method addPeriodic() 'sTimedRobot make to had teams Previously, ms). (20 rate update periodic TimedRobot default the than 20 of period loop TimedRobot the than often more controllers feedback run to Notifier a feedback run can users Now, advised). not is this than often more TimedRobot (running ms TimedRobot the with synchronously but loop, robot main the than often more controllers issues. safety thread potential eliminating functions, periodic
to function (the lambda a in takes method (C++) AddPeriodic () / (Java) addPeriodic () The time. starting common the from offset optional an and period requested the with along run), relative timeslot different a in function a scheduling for useful is argument third optional The methods. periodic TimedRobot other the to
can library units the C++, In Java. in seconds are offset and period the for units The : Clll unit. time any in offset and period a specify to used be


## Competition Robotics FIRST


(Source) C++

update controller the and ms, 20 every runs example this in method teleopPeriodic() The their that so runs teleopPeriodic() when from ms 5 of offset an with ms 10 every run is the etc.; $\mathrm{ms}, 40 \mathrm{~ms}, 20 \mathrm{~ms}, 0$ at runs teleopPeriodic() (e.g., conflict don't timeslots etc.). ms, $25 \mathrm{~ms}, 15 \mathrm{~ms}, 5$ at runs controller

## EventLoop With Programming BasedEvent- 31.2

common one are buttons conditions; certain by driven are code robot in operations Many an using by style programming imperative an with polled be can Conditions example. drivenevent- an offers WPILib alternative, an As method. periodic a in statement if classes. BooleanEvent and EventLoop the of shape the in API of style programming


## EventLoop 31.2.1

polled be can which actions, and conditions of pairs for "container" a is class EventLoop The it if and queried be will condition every polled, When method. Poll()/poll() the using executed. be will condition the with associated action the true returns

Java


C++

```
m_loop\{\}; EventLoop: :frc
\} m_loop. Poll(); \{ override ()RobotPeriodic void
```

*Periodic() a in consistently called be should method poll () 'sEventLoop The : : वाराप behavior. loop unintended in result will this do to Failure method.

## BooleanEvent 31.2.2

/ )Java( BooleanSupplier a condition: boolean a represents class BooleanEvent The (C++). ><bool()std::function :IfHigh()/ifHigh() use condition, the to action callback a bind To

Java


C++

## Competition Robotics FIRST


ideally once, declared be to need only bindings :declarative is binding button that Remember else. everything handles library The initialization. robot during time some

## Conditions Composing 31.2.3

done is this C++ In conditions. composite create to composed be can objects BooleanEvent using done are Java in compositions all and cases other applicable, when operators using methods.

## \&\& / and()

true returns that condition third a into conditions BooleanEvent two composes \&\&/and ( ) The .true return conditions the of both when only

Java

| held is button thumb the if // |
| ---: |
| intakeButton |
| Kicker the at ball a not is there and //. |
| ()$)$ negate(isBallatKicker.and. |
| intake the activate //, |

C++

true returns that condition third a into conditions BooleanEvent two composes ||/or() The .true return conditions the of either when only

Java

| held not is button thumb the if // |
| :--- | :--- |
| intakeButton |
| () negate. |


to instead but condition, a of state current the to not action an bind to desired is it times Often pressed newly is button a when to action an binding example, For .changes state that when do: decorators falling() and rising() the what is This held. is it when to opposed as true returned condition original the when only true is that condition a return will rising () that condition a returns falling() polling; previous the in false and polling current the in
false to true from transition a on only true returns
in instance same the use not do have, conditions these "memory" the to Due : $\square$ ००ा places. multiple


## Objects BooleanEvent Downcasting

used subclass Trigger the commonly most types, other to objects BooleanEvent convert To exists: decorator CastTo()/castTo() generic the, conditions to commands binding for

Java
); new(Trigger::castTobooleanEvent. = trigger Trigger
C++
(); Trigger: frc2<booleanEvent.CastTo = trigger Trigger::frc2
an accepting constructor a to reference method a expects parameter the Java, In : ClO this references, method of lack the to Due .BooleanSupplier a and instance EventLoop Type(frc: : EventLoop*, form the of constructor a as long as C++in defaulted is parameter exists. >) <bool () std: : function


```
not are they functional, examples WPILib keep to made is attempt every While : प|\\\
be to need will constants specificrobot- least, very the At is.""as- used be to intended
values their have constants empirical Many robot. user a on work to code the for changed
own their write to encouraged strongly are Users purposes. demonstration for "faked"
    code. example copy than rather template) existing an from or scratch (from code
```

patterns. use and features library of number large a demonstrate projects example WPILib competition- complete, to functionality single a of demonstrations simple from range Projects entering by Code VS in available are examples these of All programs, robot capable example. choosing and project new a Create WPILib: selecting then ,Ctrl+Shift+P
beginning for useful are They functionality. robot basic/minimal demonstrate examples These in limited highly are but programming, robot with familiarity initial gaining are who teams functionality.
implementation drive differential simple a Demonstrates ): $\mathrm{C}++$, Java( Drive Arcade class. DifferentialDrive the through controls style"arcade"- using
seen functionality same the Demonstrates ): $\mathrm{C}++$, Java( Controller Xbox Drive Arcade joystick. ordinary an of instead XboxController an using except example, previous the in
drives that routine autonomous simple a Demonstrates ): $\mathrm{C}++$, Java ( Started Getting speed. half at seconds two for forwards implementation drive mecanum simple a Demonstrates ): $C++$, Java( Drive Mecanum class. MecanumDrive the using
with motor a of output the control to how Demonstrates ): $\mathrm{C}++$, Java ( Controller Motor position. motor read to encoder an with joystick a to camera USB a from video stream to how Demonstrates ): $\mathrm{C}++$, Java( Vision Simple dashboard. the
output relay a control to class Relay the of use the Demonstrates ): +++ , Java( Relay buttons. joystick of set a with
DoubleSolenoid and Solenoid the of use the Demonstrates ): $\mathrm{C}++$, Java( Solenoids buttons. joystick of set a with outputs solenoid control to classes using implementation drive differential simple a Demonstrates ): $\mathrm{C}++$, Java( TankDrive class. DifferentialDrive the through controls style"tank"-
in seen functionality same the Demonstrates ): $\mathrm{C}++$, Java ( Controller Xbox Drive Tank joystick. ordinary an of instead XboxController an using except example, previous the

## Examples Control

Sensors controls. robot common of implementations WPILib demonstrate examples These examples. these of concept emphasized the not are but present, be may
differential advanced an Demonstrates ):C++ ,Java( DifferentialDriveBot the through odometry gyroand-encoder- including implementation, drive through control velocity PID with composition and class, DifferentialDriveOdometry classes. PIDController and DifferentialDriveKinematics the
the of use the Demonstrates ): $\mathrm{C}++$, Java( controller PID profiled with Elevator mechanism. elevator an of position the control to class ProfiledPIDController the of use the Demonstrates ): $\mathrm{C}++$, Java( PID profiled trapezoid with Elevator the control to controller" motor "smart a with conjunction in class TrapezoidProfile mechanism. elevator an of position robot mecanum a of control orientedfield- Demonstrates ): $\mathrm{C}++$, Java( Mecanum Gyro gyro. a with conjunction in class MecanumDrive the through implementation, drive mecanum advanced an Demonstrates ): C++, Java( MecanumBot and class, MecanumDriveOdometry the through odometry gyroand-encoder- including and MecanumDriveKinematics the through control velocity PID with composition classes. PIDController
and class PIDController the of use the Demonstrates ):
( PotentiometerPID mechanism. elevator an of position the control to potentiometer a
RamseteController the of use the Demonstrates ): C++ ,Java( RamseteController period. autonomous the during trajectory a follow to class
implementation, drive swerve advanced an Demonstrates ): $C++$, Java( SwerveBot and class, SwerveDriveOdometry the through odometry gyroand-encoder- including SwerveDriveKinematics the through control velocity and position PID with composition classes. PIDController and
in class PIDController the of use the Demonstrates ): $\mathrm{C}++$, Java( UltrasonicPID object. an from distance set a to drive to sensor ultrasonic an with conjunction

## Examples Sensor

Mechanisms WPILib. using processing data and reading sensor demonstrate examples These examples. these of concept emphasized the not is but present, be may control
Axis an and OpenCV of use the Demonstrates ): $\mathrm{C}++$, Java( Sample Camera Axis dashboard. the to it stream and feed video captured a on rectangle a overlay to Netcam sensor obtaining Demonstrates ):C++, Java( Monitoring CAN Distribution Power PowerDistribution the using CAN over module Distribution Power a from information class.
class DutyCycleEncoder the of use the Demonstrates ): C++, Java( Encoder Cycle Duty encoder. absolute typePWM- a from values read to
to class DutyCycleInput the of use the Demonstrates ): +++ , Java( DutyCycleInput input. PWM a of cycle duty fractional and frequency the read a from values read to class Encoder the of use the Demonstrates ): $\mathrm{C}++$, Java( Encoder encoder. quadrature robot measure to class AnalogGyro the of use the Demonstrates ):C++, Java( Gyro driving. stabilize and heading
camera USB a and OpenCV of use the Demonstrates ): $\mathrm{C}++$, Java( Vision Intermediate dashboard. the to it stream and feed video captured a on rectangle a overlay to using AprilTags of detection roboRIOon- Demonstrates ): $\mathrm{C}++$, Java( AprilTagsVision camera. USB attached an
data read to class Ultrasonic the of use the Demonstrates ): $C++$, Java( Ultrasonic signal reduce to class MedianFilter the with conjunction in sensor ultrasonic an from noise.

## Examples BasedCommand-

TrapezoidProfileSubsystem a of use the Demonstrates ): C++ Java( ArmBotOffboard arm. robot a control to controller" motor "smart a with conjunction in a of use the Demonstrates ):C++ ,Java( DriveDistanceOffboard drive to controller" motor "smart a with conjunction in TrapezoidProfileCommand profile. motion trapezoidal a with distance set a by forward shootingfrisbee- simple a for code robot of set complete A ): +++ , Java( FrisbeeBot control PID simple Demonstrates .Ascent Ultimate game FRC® 2013 the of typical robot class. PIDSubystem the through
robot, demonstration WPI the for code robot of set complete A ):C++, Java( Bot Gears
GearsBot.
and PIDCommand of use the Demonstrates ): $C++$, Java( Commands Drive Gyro specified a face to robot a turn to gyro a with conjunction in ProfiledPIDCommand driving. while heading stabilize to and heading deliveryhatch- simple a for code robot of set complete A ): $\mathrm{C}++$, Java ( Hatchbot Inlined in written are Commands .Space Deep Destination: game FRC 2019 the of typical bot avoided. is Command of subclassing explicit which in style, "inline" an
hatch- simple a for code robot of set complete A ): $\mathrm{C}++$, Java( Hatchbot Traditional are Commands .Space Deep Destination: game FRC 2019 the of typical bot delivery robot each for written are Command of subclasses which in style, "traditional" a in written action.
generation trajectory Demonstrates ): $\mathrm{C}++$, Java( MecanumControllerCommand and TrajectoryGenerator the using drive mecanum a with following and classes. MecanumControllerCommand
following and generation trajectory Demonstrates ): +++ , Java( RamseteCommand classes. RamseteCommand and TrajectoryGenerator the using drive differential a with .here found be can tutorial stepby-step- matching A

SelectCommand the of use the Demonstrates ):C++ ,Java( Example Command Select condition. evaluatedruntime- a on depending commands of selection a of one run to class generation trajectory Demonstrates ): $C++$,Java( SwerveControllerCommand and TrajectoryGenerator the using drive swerve a with following and classes. SwerveControllerCommand

## Examples SpaceState-

flywheel. a of control spacestate- Demonstrates ):C++ ,Java( StateSpaceFlywheel using control spacestate- Demonstrates ):C++ ,Java( StateSpaceFlywheelSysId flywheel. a controlling for Identification System SysId's
elevator. an of control spacestate- Demonstrates ): $\mathrm{C}++$, Java( StateSpaceElevator
Arm. an of control spacestate- Demonstrates ): $\mathrm{C}++$,Java( StateSpaceArm a of control spacestate- Demonstrates ):C++ Java( StateSpaceDriveSimulation and controller following path RAMSETE a with combination in drivetrain differential class. Field2d

## Examples Physics Simulation

simulation. physics the of use the demonstrate examples These
a with simulation physics of use the Demonstrates ):C++,Java( ElevatorSimulation elevator. simple
simple a with simulation physics of use the Demonstrates ):
( ArmSimulation arm. jointedsingle-
a of control spacestate- Demonstrates ): C++ ,Java( StateSpaceDriveSimulation and controller following path RAMSETE a with combination in drivetrain differential class. Field2d
basic a of example barebones A ):C++ ,Java( SimpleDifferentialDriveSimulation simulation. in used be can that drivetrain

## Examples Miscellaneous

of any into fit not does that functionality WPILib miscellaneous demonstrate examples These categories. above the
to class AddressableLED the of use the Demonstrates ): $\mathrm{C}++$,Java( LED Addressable feedback. driver and/or decoration robot for LEDs RGB control
from read to Access) Memory (Direct DMA of use the Demonstrates ): $\mathrm{C}++$, Java( DMA
CPU. RoboRIO's the using without sensors
the without Layer) Abstraction (Hardware HAL of use the Demonstrates ): $\mathrm{C}++$ ( HAL only). (C++ users advanced for is example This WPILib. of rest the of use
tactile for functionality "rumble" the of use the Demonstrates ): $C++$, Java( Rumble HID XboxControllers). as (such HIDs supported on feedback
the on layouts tab/widget configuring Demonstrates ): $\mathrm{C}++$,Java( Shuffleboard fluent class's Shuffleboard the through code robot from dashboard "Shuffleboard" API. builder
.robot Romi the run to how of example based command A ): C++ Java( RomiReference .Mechanism2d using of example simple A ):C++ Java(Mechanism2d

find can You devices. party third with use for programs example find you helps list This page. $\square \square \square \square \square \square \square \square$ the on parties third these of many for support (CTRE) Electronics Road The Cross •
(navX) Labs Kauai •
left) the on found be can studies, case called examples, (additional Limelight 。
PhotonVision •
Robotics REV •


## Practices Best Wiring 34.1

where connects what of details the through walks article The : 님 Practices" "Best additional some provides article this and System Control FRC the up wire to Preemptive at look a Take easier. maintenance make and reliability increase may that tricks. and tips more for Troubleshooting

## Vibration/Shock

shock and vibrations to comes it when environment rough incredibly an is Robot FRC® An mechanical for tested extensively are electronics specific FRC the of many While loads. specifically not are radio, the as such components, few a conditions, these in robustness these vibration and shock the reduce to steps Taking platform. mobile a on use for designed reduce may that suggestions Some failures. reduce help may to exposed are components failures: mechanical
excessive create which components any isolate to sure Make - Isolation Vibration reduce help will This isolators". "vibration using compressors, as such vibration, failure fatigue premature cause and fasteners loosen can which robot the on vibration components. electronic some on
design. your for possible as robot the of much as cover to Bumpers Use - Bumpers robot, your of corners the around coverage bumper specific require rules the While damped be will collisions all that likelihood the increases bumpers of use the maximizing collision a in experienced forcesg- the reduce significantly Bumpers bumpers. your by by experienced shock the reducing surface, robot hard a on directly hitting to compared
failure. related shock a of chance the decreasing and electronics the
electronic your of all or some mount shock to choose may You - Mounting Shock especially is This collisions. robot in see they forces the reduce further to components be not may which processors,co- as such electronics other and radio robot the for helpful mounting or foams, springs, isolators, Vibration platforms. mobile on use for designed components. these by seen forces shock the reduce may all materials flexible to
feasible. is redundancy where System Control FRC the in places few are there Unfortunately primary The reliability. increase can redundancy for opportunities of advantage Taking PoE provided the to addition in radio the to connector barrel the wiring is this of example the dislodged, or damaged becomes cables the of one if that ensures This connection. provide to areas potential other for out eye an Keep radio. the to power maintain will other
robot. your programming and wiring when redundancy

## Savers Port 34.1.3

and plugged frequently be may that station Driver or Robot the on connections any For tether) Ethernet and tether, USB roboRIO Ethernet, DS joysticks, DS as (such unplugged port. the damaging for potential the reduce substantially can "pigtail" or Saver" "Port a using on port the that cycles of number the reducing both duty, double serve can device of type This location. convenient more a to connection the relocating as well as sees, device electronic the damage. port avoid to item) next the (see saver port the secure to sure Make

## Relief Strain and Management Wire 34.1.4

wire good is maintenance and reliability robot to components critical most the of One components: few a of comprised is management wire Good relief. strain and management
manage. to more just is length wire excess Any length. correct the are cables sure Make extra the secure cabling, COTS on length additional to due wire extra have must you If wire. the of rest the securing before ties cable separate using bundle small a into avoid to slack enough with points, connection to close secured are cables that Ensure the minimizing to critical is and relief, strain called is This connectors. on strain putting (these point connection a at off breaks wire a or unplugged comes cable a that likelihood concentrators). stress generally are
secure are runs wire all that sure Make components. moving any near cables Secure bend to were components moving the if even components, moving from protected and
travel.over- or
care Take clean. and neat wiring keep to necessary as points additional at cables Secure make actually may it locations, many too in secured are wires if wires; secure over not to difficult. more maintenance and troubleshooting
is what describing documentation create to is easier maintenance make to way great A of type this creating of ways of number a are There robot. the on where connected list quick a to charts excel to diagrams wiring complete from range which documentation with lists these integrate also teams Many channels. which to attached are functions what of bullet). next the (see labeling
out, burns component a or malfunctioning, is mechanism a or cut, accidentally is wire a When connected is what you tell to documentation some have you if repair to easier much be will it neat!) is wiring your if (even through way the all wiring the trace to having without where

## Labeling 34.1.6

are There above. described documentation wiring the supplement to way great a is Labeling cons. and pros own their with all electronics, and wiring labeling to strategies different many (some maker label a using or hand, by made be can wires for flags and electronics for Labels labeling or tape electrical of colors different use can you or labels), shrinkheat- do also can understand you sure make choose, you system Whatever things. different indicate to flags familiar is team your on everyone sure make and documentation your complements it how
it. with

## connections and wiring all Check 34.1.7

on pulling connection, each check to sure make complete, is robot the on wiring all After "whiskers" wire stray no that ensure Additionally, secure. is everything that ensure to each, exposed. are connections uninsulated no that and point connection any of out sticking are the makere- discovered, are "whiskers" any or testing, while loose come connections any If complete. when it check person second a have to sure make and connection
any For fasteners. boltand-nut- or typescrew- is connections poor of source common A roboRIO), PDP, breaker, main connections, battery (e.g. robot the on type this of connections the that ensure connections, style boltand-nut- For tight. are fasteners the sure make breaker main or wire battery your rotate can you if hand; by rotate be cannot wire/terminal enough. tight not is connection the twisting, and terminal the grasping by connection
are fuses these Ensure PDP. the of end the at fuses the is failures of source common Another completely. them seat to expect you than force more apply to need may you seated; completely hand. by remove to impossible or difficult be likely will they properly seated are fuses the If ties cable or clips using secured be should connector 50SB- the as such connections inSnapimpacts. during loose pop not do they ensure to

## Often and Early CheckRe- 34.1.8

match first the playing after possible as thoroughly as system electrical entire the checkReloosen may sees robot the impacts few first The testing). vigorous very doing (or two or issues. expose or fasteners
rough very a As basis. regular a on connections electrical checkingre- for checklist a Create checked be should connections PDP and battery as such fasteners rotational point, starting connectors Weidmuller and WAGO the as such connections type Spring matches. 31- every responsible is who knows team the that Ensure event. per once checked be to need only likely
done. been has it that document will they how and checklist the completing for

## Maintenance Battery

## 34.1 .9

poorly, functional to robot a cause easily can battery bad A batteries! your of care good Take during usage of track keep help to batteries your of all Label match. a during all, at not or label. this on battery the of age the as such information include also teams Many event. the
the has wires the by batteries Carrying wires! the by batteries carry or lift Never plates, the and terminals the between connection internal the damage to potential performance. degrading and resistance internal increasing dramatically
the to addition In conducted. be can test complete a until bad battery dropped any Mark damage to potential the has also battery a dropping connections, terminal mentioned hiding instead test, voltage simple a on register not may damage This cells. individual load. under placed is battery the until
charge to time most the have batteries that ensure helps This evenly. batteries Rotate cycles) charge/discharge of number (equal evenly wear they that and rest and commercially of number a are There health. monitor to possible if batteries test Load designed one least at including batteries, test load to use teams products available measuring by health battery of indicator an provide can test load A FRC. for specifically match to comes it when meaningful more much is measurement This resistance. internal multimeter. a by provided number voltage loadno- simple a than performance

## Logs DS Check 34.1.10

looks usage current and voltage battery the what see to logs DS the review match, each After you robot, your for is items these of range normal the what established have you Once like. before binding) mechanical motors, failing batteries, (bad issues potential spot to able be may failures. critical become they

## Basics Wiring CAN

34.2
multiple between communication facilitate to designed is that network wire two a is CAN chain""daisy- a follow robot your on CAN that recommended is It robot. your on devices into go and roboRIO your at start usually should wiring CAN the that means This topology. PDP. the at ending finally until successively device each of out and

## Wiring Standard 34.2.1

and HighCAN- the as acting yellow with wire green and yellow with wired generally is CAN to scheme color green and yellow this show devices Many signals. LowCAN- the as green in. plugged be should wires the how indicate PCM. the to roboRIO the from wiring CAN


## Termination

34.2 .2

CAN the because PDP the at ends and roboRIO the at starts wiring the that recommended is It two these into built are these and resistors $\Omega 120$ by terminated be to required is network position. "ON" the in jumper resistor terminating bus CAN the with ships PDP The devices. nodes CAN additional any place and position this in jumper the leave to recommended is It to wish you If bus). the of end the as PDP the (leaving PDP the and roboRIO the between the move terminals) CAN PDP of pairs both (utilizing bus the of middle the in PDP the place of end the at resistor terminating $\Omega 120$ own your place and position "OFF" the to jumper chain. bus CAN your

# Module Control Pneumatic CTRE - Pneumatics Wiring 

For (PCM). Module Control Pneumatic CTRE the with pneumatics wiring describes page This
.page this see (PH) Hub Pneumatic REV the with pneumatics wiring on instructions

Robot year's this consult requirements, mechanical \& safety pneumatics For : Cl is Manual Pneumatics FIRST the guidelines, design mechanical For rules. Construction here located

## Overview Wiring

the for output an providing applications, pneumatics most support will PCM single A (12V channels solenoid 8 to up for outputs and switch, pressure the for input compressor, powered and bus CAN the over roboRIO the to connected is module The selectable). 24 V or

PDH. or PDP the from 12 V via
voltages, solenoid multiple or channels more requiring designs robot complicated For system. control the to added be can PHs or PCMs additional
of end the on connectors VRM/PCM PDP the from wired be can robot your on PCM first The a controlling if recommended amp (20 PDH the on port amp 20 or amp 15 a from or PDP the in anywhere placed be can and CAN via roboRIO the to connected is PCM The compressor). on details more For terminator). custom a with end the on (or chain CAN the of middle the (Optional) Power Pneumatics see PCM, single a wiring
and PDP the of side the on connector WAGO standard a to wired be can PCMs Additional placed be also should PCMs Additional breaker. circuit smaller or 20A a with protected chain. CAN the of middle the in anywhere

## Compressor The 34.3.3

If PCM. the on connectors Out Compressor the to directly wired be can compressor The extension. the for larger or wire AWG 18 use to sure make required, is length additional

## Switch Pressure The

on terminals input switch pressure the to directly connected be should switch pressure The either itself, switch pressure the on or terminals input the on polarity no is There PCM. the spade or Ring switch. the on terminal either to connected be can PCM the on terminal screws the that (note screws switch the to connection the for recommended are terminals \#6 a for hole a with terminal ring a through threaded be can but \#6, than larger slightly are
image). the in shown terminals the as such screw

## Solenoids

34.3.5

PCM. the on terminals of pair numbered a to directly wired be should channel solenoid Each will solenoid acting double A pair. terminal numbered one use will solenoid acting single A datasheet the check wiring, coded color with come not does solenoid your If pairs. two use
polarity. proper the with wire to sure make to

## Wiring Control and Power PCM 34.4.2

the of end the on connectors VRM/PCM PDP the from wired be can robot your on PH first The compressor). a controlling if recommended amp ( 20 PDH the on port 20A or 15A a from or PDP of middle the in anywhere placed be can and CAN via roboRIO the to connected is PH The single a wiring on details more For terminator). custom a with end the on (or chain CAN the
(Optional) Power Pneumatics see PCM,
and PDP the of side the on connector WAGO standard a to wired be can PHs Additional PHs Additional PDH. the on port 15A a to or breaker circuit smaller or 20A a with protected chain. CAN the of middle the in anywhere placed be also should

## Compressor The 34.4.3

additional If PH. the on connectors Compressor the to directly wired be can compressor The extension. the for larger or wire AWG 18 use to sure make required, is length

Switch Pressure The 34.4.4
analog an or switch, pressure digital a pressure, detecting for options two has PH The switch. pressure
input sensor pressure digital the to directly connected be should switch pressure digital A switch pressure the on or terminals input the on polarity no is There PCM. the on terminals Ring switch. the on terminal either to connected be can PH the on terminal either itself, the that (note screws switch the to connection the for recommended are terminals spade or hole a with terminal ring a through threaded be can but \#6, than larger slightly are screws
image). the in shown terminals the as such screw \#6 a for

Analog
pressure analog the to directly connected be can 110711-REV-( switch pressure analog An pressure the reading allows sensor pressure analog an Using terminals. input 0 port sensor on turning for thresholds trigger custom setting and code through system pneumatic the in compressor. the off and
attention. special requires and fit tight very a is port Sensor Pressure Analog The ..warning:: tips more for Sensor Pressure Analog an Wiring REV See

## Solenoids 34.4.5

PH. the on terminals of pair numbered a to directly wired be should channel solenoid Each will solenoid acting double A pair. terminal numbered one use will solenoid acting single A datasheet the check wiring, coded color with come not does solenoid your If pairs. two use polarity. proper the with wire to sure make to

## Switch Voltage Solenoid

34.4 .6
to connected solenoids all but solenoids, 24 V or 12 V either powering of capable is PH The for voltage appropriate the to switch voltage the Set voltage. same the be must PH single a use. to prior solenoids

הסבר קצר על Light Status $\qquad$
be can that lights indicator have System Control FRC® the of components the of Many hardware the of each shows guide This robot. your with problems diagnose quickly to used from information and Photos indicators. the of meaning the describes and components Electronics. Road the Cross and FIRST Innovation
(RSL) Light Signal Robot 34.5.1

| Power | प पुप | disabled outputs tripped, pr | uts tripped, pr for rails user |
| :---: | :---: | :---: | :---: |
|  | पडाप |  |  |
|  | पडाप | circuit short for rails user |  |
| Status |  | off turn should then roboRIO reima |  |
|  | प) |  |  |  |
|  | \% | resolved not if reimage roboRIO, |  |
|  | - | roboRIO, reboot rebooting, without twice |  |
|  |  |  |  |
|  | on solid stays or flash Cowstent |  |  |
| Radio |  |  |  |
| Comm | पडाप |  |  |
|  |  | \% | th |
|  | - |  |  |
|  |  |  |  |
| Mode | - | etc.) out,brown- Disa | abled, in (robo |
|  |  |  |  |
|  |  |  |  |
|  | पडाप |  |  |
| RSL |  |  |  |

## Radio OpenMesh 34.5.3

| Power |  | ¢ |
| :---: | :---: | :---: |
|  |  | - |
| Link Eth |  |  |
|  |  |  |
| WiFi | पड0] | firmware FRCnon- or Unlinked mode, Bridge |
|  |  | Unlinked AP, |
|  |  | Linked AP, |
|  | Tड0] | Linked mode, Bridge |

## Panel Distribution Power 34.5.4

## Hub Distribution Power 34.5.5

later and 21.1.7 version firmware to apply only patterns led These : 릴

## LED Status PDH 34.5.6

| Color LED | Status |
| :---: | :---: |
| Solid Blue | established communication no but on Device |
|  | established roboRIO with Communication Main |
| Blinking Magenta | Timeout Alive Keep |
| Cyan Solid | Client) Hardware REV to (Connected Heartbeat Secondary |
| Blinking Orange/Blue | Battery Low |
| Blinking Orange/Yellow | Fault CAN |
| Blinking Orange/Cyan | Fault Hardware |
| Blinking Orange/Red | Safe Fail |
| Blinking Orange/Magenta | Current Over Device |

## LEDs Channel

| LED | Status |
| :---: | :---: |
| Color |  |
|  | expected as operating is and voltage has Channel |
| पाले 밈 | or tripped for Check fault. active an is there and voltage NO has Channel fuse / breaker circuit missing |
| 7ान <br>  | fuse. / breaker circuit tripped for Check channel. the on fault Sticky |

## Module Regulator Voltage

is supply the If supplies. power two the of state the indicate VRM the on LEDs status The the dim, is or lit not is LED the If green. bright lit be should LED the properly functioning
current. much too drawing or shorted be may output
(PCM) Module Control Pneumatics 34.5.8
communicate cannot device the if only occur not will fault Comm CAN No the that Note : : पार the not but other, each with communicate can PDP and PCM the if device, other any with roboRIO.

Table States Special LED PCM

| LED | Problems |
| :---: | :---: |
| प | Hardware Damaged |
|  | Bootloader In |
| LED No | Polarity Power/Incorrect No |

## LED Comp PCM

active is output compressor the when green is LED This LED. Compressor the is This active. not is output compressor the when off and on) currently is (compressor

## LEDs Channel Solenoid PCM

disabled. is it if lit not and enabled is channel Solenoid the if red lit are LEDs These

## Hub Pneumatic 34.5.9

| Color LED | Status |
| :---: | :---: |
| Solid Blue | established communication no but on Device |
|  | established Communication Main |
| Blinking Magenta | Timeout Alive Keep |
| Cyan Solid | Client) HW REV to (connected Heartbeat Secondary |
| Blinking Orange/Blue | Fault Hardware |
| Blinking Orange/Yellow | Fault CAN |
| Blinking Orange/Red | Safe Fail |
| Blinking Orange/Magenta | Current Over Device |
| Blinking Orange/Green | Blinking Orange/Green |

# LED Compressor 

| Color LED | Status |
| :---: | :---: |
| प | On Compressor |
| Solid Black | Off Compressor |

LEDs Solenoid

| Color LED | Status |
| :---: | :---: |
| ใ | On Sole |
| Solid Black | Off |

Controllers Motor FX Talon \& SPX Victor \& SRX Talon

## Operation Normal During LEDs Status

| LEDs | Colors | State SRX Talon |
| :---: | :---: | :---: |
| Both | Blinking Green | is rate Blink applied. is throttle Forward Cycle. Duty to proportional |
| Both | Blinking Red | is rate Blink applied. is throttle Reverse Cycle. Duty to proportional |
| None | None | SRX Talon to applied being is power No |
| Alternate LEDs | Off/Orange | disabled robot detected, bus CAN |
| Alternate LEDs | Off/Slow Red | detected not is bus/PWM CAN |
| Alternate LEDs | Off/Fast Red | Detected Fault |
| Alternate LEDs | \% | Hardware Damaged |
| towards Strobe $\underset{\substack{\text { LEDs } \\ \text { )(M- }}}{\text { (M) }}$ |  | Limit Soft Forward or Switch Limit Forward |
| $\text { towards Strobe } \begin{gathered} \text { LEDs } \\ (\mathrm{M}+) \end{gathered}$ |  | Limit Soft Reverse or Switch Limit Reverse |
| to (closest Only LED1 $\mathrm{M}+/ \mathrm{V}+$ ) |  | loaderBoot- In |
| towards Strobe $\begin{gathered}\text { LEDs } \\ (\mathrm{M}+)\end{gathered}$ | Off/Orange | Only) FX (Talon Shutoff / Fault Thermal |

# Calibration During LEDs Status 

| Code Blink LEDs Status | State SRX Talon |
| ---: | ---: |
| Red/Green Flashing | Mode Calibration |
| Green Blinking | Calibration Successful |
| Red Blinking | Calibration Failed |

Codes Blink CAL B/C

| Color Button CAL B/C | State SRX Talon |
| :---: | :---: |
|  | Mode Brake |
|  | Mode Coast |

Controller Motor MAXSPARK- 34.5.11


## SPARK Robotics REV

| Sta |  |
| :---: | :---: |
| No Signal |  |
| Full For |  |
| Proportiona |  |
| Neutral |  |

Proportiona
Full Re
Forward Lim
Reverse Lin

Calibratio
Successful Failed Cal

Reset to Fact

Controller Motor SPVictor- 34.5.13
in is controller the if off mode, brake in is controller the if Red - Button/LED Brake/Coast/Cal mode coast

Status

| ]flu | Solid | output forward Full |
| :---: | :---: | :---: |
|  |  | ] voltage output forward to Proportional |
|  | Solid | output reverse Full |
|  | Itill | - voltage output forward to Proportional |
| ] | Solid 4\% (+/- range deadband in signal or lost, signal PWM disabled, robot FRC |  |
| ग०० | Iापाप | calibration, successful indicates flashes green Several calibration. for Ready calibration. unsuccessful indicates times several red and |

Controller Motor Talon
34.5.14

| प) | Solid | output forward Full |
| :---: | :---: | :---: |
|  | - | voltage output forward to Proportional |
| प | Solid | output reverse Full |
|  | प | voltage output reverse to Proportional |
| ] | Solid | connected are devices CAN No |
|  |  | deadband in signal or disabled, robot FRC lost, signal PWM state, Disabled output) $4 \%$ (+/- range |
|  |  | पाप |
|  calibration. unsuccessful indicates times several red and calibration, |  |  |
|  |  |  |

Controller Motor Jaguar 34.5.16

| State LED | Status Module | Conditions Op |
| :---: | :---: | :---: |
|  |  |  |
| Yellow Solid | 0 ) to set (speed Neutral |  |
| Green Flashing Fast | Forward |  |
| प | Reverse |  |
| Green Solid | forward speedFull- |  |
|  | reverse speedFull- |  |
|  |  |  |
| Yellow Flashing Slow | link Network or servo of Loss |  |
| Yellow Flashing Fast | ID CAN Invalid |  |
|  | condition fault Switch Limit or Temperature, Voltage, |  |
| and Red Flashing $\begin{array}{r}\text { Slow } \\ \text { Yellow }\end{array}$ | condition fault Current |  |
| Conditions CAI |  |  |
| Green and Red Flashing | active mode Calibration |  |
| Yellow and Red Flashing | failure mode Calibration |  |
| Yellow and Green Flashing | success mode Calibration |  |
| Green Flashing Slow | mode assignment ID CAN |  |
| Yellow Flashing Fast | ID) determine to flashes (count ID CAN Current |  |
| Yellow Flashing | ID valid awaiting 0 ) to Set is, (that invalid ID CAN |  |

LED. CAL Brake/Coast one and LEDs Blue) and Green, (Red, RGB four contains DMC60C The normal during status indicate to used are and corners the in located are LEDs RGB four The of center the in located is LED CAL Brake/Coast The occurs. fault a when as well as operation, current the indicate to used is and housing, the of center the at located is which triangle, the When mode. coast in operating is device the off, is LED center the When setting. Brake/Coast mode Brake/Coast The mode. brake in operating is device the illuminated, is LED center the button. the releasing then and triangle, the of center the on down pressing by toggled be can
for lasts This brighter. getting continually Blue, illuminate LEDs RGB the on,power- At an to respond not will controller motor the time, this During seconds. five approximately completed, has onpower- initial the After enabled. be drivers output the will nor signal, input function a is LEDs RGB the on displayed gets what and operation normal begins device the faults no that Assuming state. fault current the as well as applied, being signal input the of follows: as function LEDs RGB the occurred, have

| Signal PWM Applied | State LED |
| :---: | :---: |
| Input No or Signal Input Invalid Width Pulse | LEDs LED4) and (LED3 bottom and LED2) and (LED1 top between Alternate Off. and Red illuminated being |
| $\begin{aligned} & \text { Neutral } \\ & \text { Pulse Input } \\ & \text { Width } \end{aligned}$ | Orange. illuminated LEDs 4 All |
| Positive <br> Pulse Input Width | $\rightarrow$ LED3 $\rightarrow$ LED2 $\rightarrow$ (LED1 pattern circular clockwise a in Green blink LEDs of cycle duty the to proportional is rate update LED The LED1). $\rightarrow$ LED4 all cycle, duty $100 \%$ At cycle. duty increased with increases and output the Green. illuminated are LEDs 4 |
| Negative <br> Pulse Input Width | $\rightarrow$ LED4 $\rightarrow$ (LED1 pattern circular clockwisecounter- a in Red blink LEDs duty the to proportional is rate update LED The LED1). $\rightarrow$ LED2 $\rightarrow$ LED3 duty $100 \%$ At cycle. duty increased with increases and output the of cycle Red. illuminated are LEDs 4 all cycle, |


| State Control Bus CAN | State LED |
| :---: | :---: |
| bus CAN or Signal Input No detected error | bottom and LED2) and (LED1 top between Alternate Off. and Red illuminated being LEDs LED4) and (LED3 |
| received Frame Control CAN No | bottom and LED2) and (LED1 top between Alternate |
| the or 100 ms last the within | and Orange illuminated being LEDs LED4) and (LED3 |
| specified frame control last | Off. |
| Disabled) (Output modeNoDrive |  |
| Frame Control CAN Valid | Orange. solid illuminated LEDs 4 All |
| 100 ms . last the within received mode control specified The |  |
| Cycle Duty Neutral a in resulted |  |
| Output Motor to applied being |  |
| Frame Control CAN Valid | (LED1 pattern circular clockwise a in Green blink LEDs |
| 100 ms . last the within received | update LED The LED1). $\rightarrow$ LED4 $\rightarrow$ LED3 $\rightarrow$ LED2 $\rightarrow$ |
| mode control specified The | and output the of cycle duty the to proportional is rate |
| Cycle Duty Positive a in resulted | cycle, duty 100\% At cycle. duty increased with increases |
| Output Motor being | Green. illuminated are LEDs 4 all |
| Frame Control CAN Valid | pattern circular clockwisecounter- a in Red blink LEDs |
| 100 ms . last the within received | LED The LED1). $\rightarrow$ LED2 $\rightarrow$ LED3 $\rightarrow$ LED4 $\rightarrow$ (LED1 |
| mode control specified The | the of cycle duty the to proportional is rate update |
| Duty Negative a in resulted Output Motor being Cycle | At cycle. duty increased with increases and output Red. illuminated are LEDs 4 all cycle, duty 100\% |

## Indicators Color Fault

is fault a and $0 \%$ to reduced is cycle duty output the detected, is condition fault a When LEDs onboard the time this During seconds. 3 for disabled remains then output The signaled. toggling by indicated is condition fault The condition. fault the indicate to used are 4)(LED1Red illuminated being LEDs LED4) and (LED3 bottom and LED2) and (LED1 top the between table The active. presently are faults which on depends LEDs bottom the of color The off. and faults. active presently the to maps LEDs bottom the of color the how describes below

| צבע | Temperature Over | Voltage Under |
| :---: | :---: | :---: |
|  | On |  |
|  | ] | On |
| Aqua / Cyan | On | On |

is LED center the When mode. coast in operating is device the off is LED center the When by toggled be can mode Brake/Coast The mode. brake in operating is device the illuminated button. the releasing then and triangle the of center the on down pressing

Controller Motor Venom
34.5.18

| LED Pattern |
| :---: |
|  |
|  |
|  |
|  |
| - |
|  |
|  |
| $\bigcirc \bigcirc$ |
| $\bigcirc$ |
|  |
|  |
| $\bigcirc$ |
| $\bigcirc$ |
|  |
| $\bigcirc$ |
|  |
|  |
| $\bigcirc$ |
| $\bigcirc$ |
| $\bigcirc$ |
| $\bigcirc$ |


| LED Power |  | supplied not is Power |
| :---: | :---: | :---: |
|  |  | supplied is Power |
| LED Motor | प०० | direction Forward |
|  |  | direction Reverse |
| LED Signal PWM |  | detected is signal PWM valid No |
|  |  | detected is signal PWM Valid |

Bus) (CAN SD540C Mindsensors 34.5.20

CAN Signal Indicator LE

| LED Power |  | supplied not is Power |
| :---: | :---: | :---: |
|  | - | supplied is Power |
| LED Motor | प) | direction Forward |
|  | Itil | direction Reverse |
| $\begin{array}{r} \text { Signal CAN } \\ \text { LED } \end{array}$ |  | connected are devices CAN No |
|  | पडाप | open is station driver the and roboRIO the to Connected |

## Module Power Servo Robotics REV

MOUNTING HOL \#6 SCREW

HIGH-POWER 6V DC OUTPUT (TO SERVOS)

6V POWER
LED

12V POWER
INPUT
(FROM PDP)

## LEDs Status

the of state sensed the indicate will that LED status corresponding a has channel Each pattern. LED corresponding state's each describes below table The signal. PWM connected

| State | Pattern |
| :---: | :---: |
| Signal No | T) |
| Signal Left/Reverse |  |
| Signal Center/Neutral |  |
| Signal Right/Forward | Green Solid |

shutdown currentOver- = applied power with flickering or dim off, LED Power 6V

## switch solenoid or light, motor, a as configured relay Spike



| Forward (White) | Reverse (Red) | Iqpuldedisator |  |  | Function Motor |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M+ | M- |  |  |
| ] |  | GND | GND |  | (default) Condition Off/Brake |
| On | ]ctu | $+12 \mathrm{v}$ | GND |  | direction one in rotates Motor |
| ] | On | GND | $+12 \mathrm{v}$ |  | opposite in rotates Motor $\begin{array}{r}\text { direction }\end{array}$ |
| On | On | +12v | $+12 \mathrm{v}$ | पडाप | Condition Off/Brake |

of shorting the to due motor the of stopping dynamic the to refers Condition« »Brake : : वार state. off an to going when optional not is condition This inputs. motor the
solenoids two or one for as configured relay Spike
34.5.23

| Forward <br> (White) | Reverse (Red) | Inpulpaltsator |  |  | Function Motor |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | M+ | M- |  |  |
|  |  |  |  |  |  |
| पड0] | प | GND | GND | ใ | (default) Off Solenoids Both |
| On |  | $+12 \mathrm{v}$ | GND | T०० | is M+ to connected Solenoid |
| पडाप | On | GND | $+12 \mathrm{v}$ | - | is M- to connected Solenoid ON |
| On | On | +12v | +12v |  | ON Solenoids Both |

Encoder CANCoder 34.5.24

| $\begin{aligned} & \text { LED } \\ & \text { Color } \end{aligned}$ | LED Brightn | Bus | $\begin{array}{r} \text { CAN } \\ \text { detection } \end{array}$ | Strength Field Magnet | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ]til | ] |  |  |  | not isCANCoder <br> powered |
| Yellow/Grearight |  |  |  |  | loader.boot- in is Device for manual user See information. more |
| Slow Red Blink | Bright |  | bus CAN lost been |  |  |
| Rapid Red Blink | Dim |  | bus CAN never detected boot since | $\begin{array}{ll} \text { range of out is Magnet } \\ & >135 \mathrm{mT}) \text { or }(<25 \mathrm{mT} \end{array}$ |  |
| Rapid Yellow Blink |  |  |  | with range in Magnet accuracy reduced slightly 135 mT ) 75 - or 45 mT (25- |  |
| Rapid Green Blink |  |  |  | (between range in Magnet $75 \mathrm{mT})-45 \mathrm{mT}$ |  |
| Rapid Red Blink | Bright |  | bus CAN present | $\begin{array}{ll} \text { range of out is Magnet } \\ & >135 \mathrm{mT}) \text { or }(<25 \mathrm{mT} \end{array}$ |  |
| Rapid Yellow Blink |  |  |  | with range in Magnet accuracy reduced slightly 135 mT ) 75 - or 45 mT (25- |  |
| Rapid Green Blink |  |  |  | (between range in Magnet $75 \mathrm{mT})-45 \mathrm{mT}$ |  |

## Troubleshooting Preemptive Robot

around driving while stress of lot a take robots Competition, Robotics ®FIRST In : Alll securely bolted are parts tight, are connections that sure make to important is It field. the not does field the around bouncing robot a that so mounted is everything that and place in break.
removed been has examples these in connection battery the covering be should that tape The covered. be should connections the robots, your On on. going is what illustrate to or loosen, screws the because loose are these Often connector. harness battery Wiggle though ones bad really the catch only will You closed. completely not is crimp the sometimes Using stiff. feels it where point a to connection the stiffens tape electrical the often because this. with help will Beak Battery or voltmeter a of direction the move to try to degrees 90 at cable battery the onto force considerable Apply with begin to enough tight not was connection the successful if battery, the leaving cable the information. battery detailed more has article This redone. be should it and

Robot the to Battery the Securing
battery secured properly not a where robot one least at see we event every almost In This robot. the from power disconnects and apart comes Anderson) large (the connector to easy an Its else. everywhere and Einstein the on matches championship in happened has wrap tie a wrapping by connectors two the securing by you to happen doesn't this that ensure high a not is event an during mind of piece the for wraps tie 12 or 10 connection. the around event actual an from robot this of problem the have not will you that guarantee to pay to price loop and hook with chassis the to battery your secure Also, defense. a over ride bumpy a after climbing. or obstacles defense, rough with games in especially method, another or tape

## Leads Power Main \& Connector Battery the Securing

leads power main the allow can SB) Anderson large (the connector battery siderobot- loose A "tug" that loose, are leads power main the If replaced. is battery the when tugged be to Power or Breaker Circuit Amp 120 the to attached lugs crimp the to back way the all get can fatigue. from break to end lug the cause time over and lug, the bend (PDP), Panel Distribution down bolting and chassis the to leads power main the attaching wraps tie couple a Putting the connect to easier it make as well as this, prevent can connector battery siderobot- the battery.

## Breaker) Circuit Amp 120) Breaker Main

element. rigid a to attached is breaker the and firmly tightened are nuts Ensure : :
nut the then rotates lug the If lug. crimped the rotate to try to force twisting strong a Apply
lug. the rotate to trying again once by retest nut, the tightening After enough. tight not is require may these time: over out wear can which feature, locking star a has nut original The attached not is connector battery siderobot- your if especially matches, few every checking chassis. the to is nut the if correct is this ensure thread: 281/4- uncommon relatively a normally is nut The replaced. off break may you awhile in once every case, the into molded just is stud metal the Because
assembly. the replace just stress, Don't stud. the fatigue to susceptible is Breaker Main the seasons, competition multiple to subjected When thermal the time Each impact. under opening start can and use, and vibration from damage teams veteran Many trip. to easier progressively become can it triggered, is function fuse spares. carry and breaker, main fresh a with season each start

## (PDP) Panel Distribution Power

visually to easy not is it but screws, PDP the under placed were washers split that sure Make squeeze you if Also case. the removing by check can You can't. you sometimes and confirm, connections. lose really the catch can you sometimes together, wires black and red the
radio and connector, power roboRIO output, compressor power, for contacts Weidmuller The none that sure Make shown. as connections the on tugging by verify to important are power out. pull connections the of each to close are that connections Weidmuller with shorts impending or possible for Look long). extra stripped are that (wires lengths leadwire- longtoo- have and other, well. as those testtug- so crimps, improper to due fail also can connectors Spade

## Fuses Blade 34.6.7

right. the on (red) fuse 10A the and left the on (yellow) fuse 20A the place to sure Be

> fuses The holders. fuse the into seated fully are fuses ensure to care Take : प्राप्र different have fuses brand (different below figure the as far as least at descend should (without hands bare with fuse the remove to impossible nearly be should It lengths). lead intermittent exhibit may robot/radio the done, properly not is this If pliers). of use the issues. connectivity
that sure Make completely. in not are they then hand by fuses blade the remove can you If operation. robot during out pop don't they that so PDP the in seated completely are they

## swarf roboRIO <br> 34.6.8

machining a by produced material other or metal, stone, of filings or chips fine is Swarf are parts system control the while robot a to made be must modifications Often operation. absolutely doesn't that but coated, conformally is roboRIO the for board circuit The place. in case, this In case. the inside components or traces out short won't chips metal that guarantee any or roboRIO the in up end chips the of none that sure making in care exercise must you chips where place a are headers pin 3 exposed the particular, In components. other the of usually is flashlight a with sides four the of each through sweep quick A case. the enter can infiltration. of areas bad really the find to sufficient
reason. no for out falls and small too is that one not used, is jack barrel correct the sure Make random some use will team a awhile in once every and FTA an ask but common, isn't This contact. first on match a in out falls it and correctly, sized not is that jack barrel

## Cable Ethernet <br> 34.6.10

another get in, connector the locks that clip the missing is cable ethernet radio to RIO the If Make competition. every in times several happen will that problem common a is This cable. through it pulling when especially off, breaks often clip The secure. are cables your that sure
breaks. then something on snags it path, tight a

## Cables Loose

34.6.11
radio The cable. ethernet and power radio the particularly down, tightened be must Cables barrel) correct the is it if (even out fall will and force friction of lot a have don't cables power freely. swing to allowed is slackcable- the of weight the if
be not may clip plastic the freely, swing to allowed it's if heavy, pretty also is cable Ethernet circuit. in connectors pin ethernet the hold to enough

## Pit the in Problems Reproducing

34.6.12
suggested is it tethered, and powered is robot the whilst cables of shaking normal the Beyond against especially field, the on Driving dropped. and up picked be robot the of side one that better is It out. falls nothing sure makes helps this and violent, very be often will defenders, match. a of middle the in than rather pits the in fail to robot the for
otherwise tethered, USB not and tethered ethernet be to important it's test this doing When paths. critical the of all testing not are you

## Versions and Firmware Check

34.6.13
they and out inspectors robot helps it well, as it do should you but this, do inspectors Robot code. fixed bug recent, most the with running are you that guarantees it And it. appreciate software system control of piece date of out an of because match a lose to want wouldn't You robot. your on

## Checks Station Driver 34.6.14

should: You Station. Drivers the with problems see often We battery the good how matter doesn't it field, the to cable power laptop the bring ALWAYS field. the at in plug to allowed are you is, etc. savers, screen hibernate, and sleep off turn settings, sleep and power the Check manager) (dev devices USB for management power off Turn manager) (dev ports ethernet for management power off Turn
field. the on out when DS/Dashboard for except apps all Close menu start the in tray application the in running unnecessary nothing is there that Verify side) right (bottom

Tools Handy 34.6.15
scrutinize to enough not least at robots, inside light enough be to seems never There the inspect to flashlight LED handheld a using consider so points, connection critical the hardware/automotive any or depot home from available They're robot. your on connections store.

I'll Often wires. stranded with connections Weidmuller redoing for tool nice is tool WAGO A down press to tool WAGO the using rest the do them have then and team, the show to one do makes tool WAGO the of angle The wire. stranded the insert they while plungerwhite- the helpful. particularly this

## Basics Battery Robot

non- Acid) Lead (Sealed SLA 18Ah 12V single a is robot FRC® an for supply power The fully when 500A over arcing and 180A over supplying briefly of capable battery, spillable contacts, with cables lead battery, COTS the includes assembly Battery Robot The charged. Batteries. Robot multiple have to encouraged are Teams connector. SB Anderson and

Battery COTS
battery acid lead sealed spillablenon- COTS a specify Manual Game the in Rules Robot The vendors. of variety a from numbers part legal of examples gives and criteria, specific meeting

## Handling \& Safety Battery

polarities the If energized. always are terminals the and "On" always is battery healthy A two between gap the bridges and falls can aerosol or wrench a example, for - together short drives risk This arc. dangerous a in released be will energy stored the all - terminals bare and uncovering only storage, in terminals covering as such practices, best of range wide a connectors, in inserted fully contacts SB keeping time, a at polarity or terminal one on working etc.
them. by pulling avoid always and ,cables the by assembly battery a carry *NOT* Do internal the and tabs, lugs, the damage to begin will cables the by batteries on Pulling of out tears tab entire the until up add can damage fatigue time, Over tab. the of connection battery the increase can damage fatigue internal broken, clearly isn't it if Even housing! the to able be not will battery The battery. the out wearing prematurely resistance, internal connectors the if or resistance internal increased with current of amount same the provide
.loose are

create issues, performance cause and plates internal the bend can batteries the Dropping Glass Absorbent use batteries FRC most While open. case battery the crack even or bulges, may it punctured is cell a when performance, and safety for technology Gel or [AGM] Mat teams recommends FIRST reasons the of one is This acid. battery of amount small a leak still available. kit spill battery a have
overcharge can features mode" "maintenance without chargers battery older certain Finally, acid. battery the of some off boiling in resulting battery, the
sell that retailers All possible. as soon as of disposed safely be should batteries Damaged may They you. for it of dispose to able be should batteries, car like batteries, SLA large law. state your on depending refund", charge "core small a provide or fee, small a charge
batteries. functionalnon- or damaged "repair" to attempt NOT DO $\square$

## Tools \& Construction Battery

Leads Battery

and SWG) 7 (16mm2, AWG 6 section) (cross size minimum copper, be must leads Battery Standard connector. SB Anderson an with polarity, for coded color 12", length maximum are and Parts of Kit the in come often leads battery SB50 Pink/Red with leads copper 6AWG vendors. FRC by sold

Cables Lead
aluminum), clad (copper CCA use not Do allowed. is copper coated or annealed, Tinned, the on printed normally is metal conductor The metal. base coppernon- other or aluminum, ratings. cable other the with insulation the of outside
small A contacts. SB50 standard fits and robots all almost for sufficient is 6AWG size Wire benefits. performance marginal for sizes wire larger adopt teams of number
bend smaller a has wire") "welding or "Flex" as sold (sometimes wire count strand Higher count strand no is There limit. fatigue higher a and route, to easier it makes which radius, wire") "welding strand (259 259/30 and wire) hookup "flex" strand ( $8484 / 25$ but requirement, wire). hookup strand (19 19/0.0372 than with work to easier much be both will
must wire +12 Vdc the 2021, of as Manual: Game the per codedcolor- be must insulation The black be must wire) (return wire ground the and w/stripe black or yellow, brown, white, red, be or blackened any but requirement, rating temperature insulation explicit no is There blue. or lower and plenty is 105C hand, off replaced: be to needs wire the means insulation damaged is lower requirement, rating voltage insulation no is There robots. all almost for work will insulation. thinner for better

Connector SB
Anderson another or SB50, Pink/Red standard the be may Connector SB Anderson The for SB50 Pink/Red the use to recommended STRONGLY are Teams connector. SB be will you and intermate, not will housings of sizes and colors other the interoperability: chargers. or batteries borrow to unable

Anderson into leads the assemble and contacts crimp to instructions manufacturer's Follow the on (push contacts the insert to help can screwdriver flathead small A connectors. SB contact the if latch internal the disengage to help can it or insulation), wire the on not contact, down. upside or slot wrong the in is

Lugs Battery

hole $\sim 5 \mathrm{~mm}$ or ( $\sim 0.2^{"}$ tabs battery M5) (or bolt \#10 for lugs") ("crimp lugs Compression accepted the by sold houses, supply electrical through and online available are diameter) end Higher diameter"). "hole size", ("bolt diameter post and mm2) (or AWG in sizes wire their in counts strand (>80) Flex and ( $\sim 19$ ) Standard between distinguish also will vendors straight common more to addition in lugs, angle right offer also vendors Some catalogs. lug
lugs. the crimp to instructions manufacturer's Follow styles.
the use lugs, terminal screw using If recommended. not but legal, are lugs terminal Screw frequently tightness terminal the Check terminal. the tighten to screwdriver size tip correct time. over loosen may they because

## Connection Post To Lug Lead Battery

tab. battery the to lug lead battery the connect bolt \& nut M5 or \#10 A
of washer a put not do copper: to copper contact, directly must tab and lug The : : हाराप them. separating kind any
with replaced or used, be may they package: the in bolts tab with come batteries Some star \#10 a as such washer, lock functional a add to idea good a is It bolts. steel alloy stronger use Only nut. ("nylock") locking nylon a to addition in system, washer nordlock a or washer lock ring split provides manufacturer the if Even connection. each in washer lock of style one
them. use to required not are you package, the in washers
in while lug the of movement Any reliability. for tight very be must connections These disconnections field and reboots robot in resulting power, robot interrupt may operation
more. or seconds 30 lasting
will tape electrical safety; electrical for covered completely be also must connection This ratios shrink High recommended. is connection entire the over fits that heatshrink but work, lined Adhesive heatshrink. the apply to easier it make will $4: 1$ ) recommend 3:1, (minimum up" "touched be must shrink Heat covered! is copper the all sure Be allowed. is shrink heat shows. copper some if tape electrical with

## Chargers Battery

rated batteries, SLA 12V for designed chargers battery "smart" COTS good many are There are 6A over rated Chargers features. mode«»maintenance with battery, per less or 6A for pits. FRC in allowed not
a Attaching connectors. SB Anderson use to required are competition at used Chargers nuts wire sized appropriately using leads charger the to lead battery connector SB COTS shrink heat with copper exposed any cover to sure (be simple and fast is terminals screw or the if sizes, wire smaller for available also are Contacts Connector SB tape). electrical or capability. crimping has team
 battery. first the in plugging before
attached.pre- connectors SB50 red with chargers sell vendors FRC Some

Tools Evaluation Battery

Charger Battery

can you LED, GREEN a as such indicator, Mode Maintenance has charger battery your If between cycle will chargers Some READY. are you whether you tell to indicator that use sometimes behavior, "maintenance" a is This periodically. "READY" and "CHARGING" charge. more accept to able being and off cooling battery the with associated

## Log and Display Station Driver

voltage battery the laptop, station driver the to connected and in plugged is robot the When software. Station Driver NI the on displayed is
Viewer. Log the in voltage battery the review can you session, driving a finish you After
Multimeter or Voltmeter heldHand-
you give will battery disconnected a of connector $S B$ the on probes from reading voltage $A$ "Unloaded" the in is voltage") "float or circuit, open (Voltage Voc the what of snapshot a the health: battery understanding for method recommended a not is Voc the general In state. at voltages and resistance internal of combination the as useful as not is voltage circuit open

Analyzer). Battery (or Tester Load a by provided loads specific
Tester Load
a of readiness detailed the determine to way quick a as used be can tester load battery A internal load, under voltage voltage, loadopen- like: information provide may It battery. battery a that confirm quickly to used be can metrics These charge. of state and resistance, battery. the with problems term long some identify to help even and match a for ready is
for specification manufacturer The Ohms. 0.015 than less be should resistance internal Ideal to idea good a is it Ohms 0.020 than higher gets battery a If Ohms. 0.011 is batteries most matches. competition for battery that using not consider
be not may it loads, current test higher the at voltages lower significantly shows battery a If retired. be to need may it or charging, done

## Voltages Battery Understanding

12.0 V . but anything is battery" " 12 V A

Open (Voc). circuit open volts 13.5 to 12.7 from anywhere be can battery a charged, Fully connected. nothing with measured is voltage circuit
battery the flowing, is current of amount any and connected, is robot) a (like load a Once then and 13.2, reads it and Voltmeter, a with battery a check you if So drop. will voltage Station Driver the on 12.9 maybe lower, read will it on, power and robot your to it connect Characterization see robot, specific and battery every with vary will numbers Those display. drop will voltage the and current, more pull will it running, starts robot your Once below. further.
match. a before charged and swapped be should robot idle an on 12.5 V reading Batteries thresholds safety brownout reaching starts robot the before batteries the swap Always voltage low entering frequently as display), Station Driver the on voltages low at (dwelling states Voc of variety a at happen can behavior this damage; battery permanent risks ranges of State battery The design. robot and manufacturer, battery health, battery on depending longevity. battery for $50 \%$ over kept be should Charge
batteries. happy are batteries cool temperature: on depends also current and voltage Battery

## Characterization Battery

battery of comparison and inspection detailed a give to used be can analyzer battery A performance.

time significant takes test This time. over performance battery of graphs provide will It recommended is It competition. during testing to suited less is it so hours) two (roughly will This performance. its track and monitor to year every battery each on test this run to of. disposed or testing, practice, matches, used: be should it how determine
amp 11.5 a least at have should batteries competition load, test amps 7.5 standard the At demanding less other or practice for used be only should that than less Anything rating. hour cases. use
required currents high The cycles. charge/recharge normal 1200 about for rated is battery A be to intended are cycles These cycles. 400 about to lifespan that reduce match FRC an for battery the cycling Deep volts. 12.5 or 12 to down 13.5 around from discharge, low relatively
it. damage will down) way the all it (running
charging by either use, in not when charged fully kept are they if longest the last Batteries of month every 0.1 V roughly drop Batteries charger. maintenance a of use by or regularly use.non-
storing means generally This cold. and heat extreme both from away kept be to need Batteries lot parking a fine, usually is closet classroom a area: controlled climate a in batteries the risky. more is container shipping

## Practices Best Battery

you where situation a in are you If matches. competition for battery charged a use Only to wants Nobody help! for team veteran a ask please batteries, charged of out run have battery. uncharged or bad a to due ) brownout (field the on dead robot a see
quality stringent and tools rated properly use to recommended strongly are Teams commercial a or teams veteran local (ask processes crimping for practices control Leads. Battery madevendor- use or help), for electrician
warm be not should case the recharging: before match the after cool to batteries for Wait plenty. usually is minutes fifteen touch, the to
their keep help to year each batteries new several purchasing consider should Teams be not may there and batteries many require can matches Elimination fresh. batteries
recharge. to time enough

Many time. a at battery one than more charge to you allows charger battery bank multi A
and transport easy for allowing chargers and batteries their for cart robot a build teams storage.
year, number, team least: at with battery each identify permanently to idea good a is It identifier. unique a and
to etc.) machine labeling (stickers, removable something use to want also may Teams when and data performance its on based for used be should battery that what identify run. was test analyzer last the
way common a is connector) battery the in placed plastic of piece (a flags battery Using printed. 3D easily be also can flags Battery charged. been has battery a that indicate to the on pulling avoid help to printed 3D or purchased be can contacts SB50 for Handles the carry to handles these use not Do batteries. disconnecting or connecting while leads battery. the of weight
fit that nylon flat other or seatbelts old from straps carrying battery sew teams Some leads. by carrying prevent help to battery the around
leads. battery relieve strain to lugs crimp degree 90 with used be can clips edge tie Cable


35.1 1 מנועים ליישומים ברובוטיקה

ต
 , 니 ง

the allow Sensors vehicles. controlled radio really are robots sensing and sensors Without the as well as systems mechanical robots the of operation internal the understand to robots Professor WPI videos, these In robot. the around environment the with interact to ability provides and used, are they how sensors, of classes of number a describes Putnam Craig applications. your for best are sensors what on guidance
35.3 פניאומטיקה
are There robots. on used be can that device actuation underused often an is Pneumatics Stafford Ken Professor video this In motors. using over pneumatics to advantages many the calculating and robots, with applications pneumatics, of characteristics the describes application. an for system sized right
motor that transmitting is application an for motors correct the choosing with hand in Hand ways effective two are sprockets and chains or gears Using needed. it's place the to power Robotics WPI video, this In driven. being application the to power motor the matching of choosing including transmission, power about talks Delph Michael student PhD Engineering robot your from performance maximum the get to ratios sprocket and chain or gear correct design.


## Hardware - Overview Sensor 36.1

software a For code. in sensors of use the not hardware, sensor covers section Thissee guide, sensor

their about information gather to able be to robots for vital often is it effective, be to order In are environment its of state the on robot the to feedback provide that Devices surroundings. measuring for teams, FRC® to available sensors of variety large a are There "sensors." called positioning. motor/mechanism to orientation robot to positioning fieldon- from everything games FRC most while success; fieldon- for skill crucial absolutely an is sensors of use Making on heavily rely robots best the robot, "blind" a by accomplished be can that tasks have do possible. as reliably and quickly as tasks game accomplish to sensors
mechanisms robot many - safety robot for important extremely be can sensors Additionally, against safeguard a provide Sensors incorrectly. used if themselves breaking of capable are stop.hard- a against is mechanism a if motor a disable example, for to, robots allowing this,
by and function, by ways: different two in categorized generally be can FRC in used Sensors latter the design; robot for relevant is categorization former The protocol. communication programming. and wiring for

Function by Sensors
Sensor state. robot's the of aspects different of variety a on feedback provide can Sensors include: FRC to common functions
switches") ("limit switches proximity Mechanical switches proximity Magnetic switches proximity Inductive
switches proximity Photoelectric
sensors Distance
sensors Ultrasonic -
rangefinders Triangulating -
LIDAR -
sensors rotation Shaft
Encoders -
Potentiometers -
Accelerometers
Gyroscopes •

## Protocol Communication by Sensors

several are There roboRIO. the to "talk" to able be must it useful, be to sensor a for order In roboRIO: the to readings their communicate can sensors which by methods main
input Analog
input Digital •
bus Serial •
is inputs digital and analog via communicate that sensors for support general, In complicated. more be can bus serial over communication while straightforward,

## קלט אנלוגי - חומרה

see inputs, analog to guide software a For hardware. input analog covers section This : : पारा .Software - Inputs Analog
lies This interval. continuous a in anywhere lie can value whose signal a is signal analog An The values. discrete several of one only take can which, signal digital a to contrast stark in 0V from values with signals analog of measurement the allow ports input analog roboRIO's 5 V . to
a as such device digital a with signal analog "true" a measure to way no is there practice, In bit12- a as measured actually are inputs analog the Accordingly, roboRIO). the (like computer . ${ }^{1}$ resolution high a quite is this however, - signal digital vary measurements whose sensors for used always!) not (but typically are inputs Analog can they as ,potentiometers and rangefinders ultrasonic as such range, a over continuously measurements. their to proportional voltage a outputting by communicate
of resolution effective an that's range, 5V a For values. different 4096 or , $2^{12}$ yields resolution bit12- A ${ }^{1}$ discretization the so 50 mV , minusor-plus- is specification accuracy actual The .0012 V . or $\mathrm{mV}, 1.2$ approximately accuracy. measurement the in factor limiting the not is

## ports input analog roboRIO to Connecting

use To port. expansion "MXP" the via available are inputs analog four additional An : : प्रा needed. is MXP the to connects that sort some of board breakout a these,
before using are you sensor the of specifications technical the consult Always : 게리 Failure pin. each to connected being is wire correct the that ensure to sensor, the wiring RIO. the or sensor the to damage in result can so do to
roboRIO! the on port any on pin ground the to pin power the connect directly Never : : वारा behavior. unexpected in result may and roboRIO the on features protection trigger will This


POWER
STATUS
RADIO
COMM
MODE RSL

## roboRIO

## port input analog single a to sensor a Connecting

ground and power interchangeable have may ) potentiometers as (such sensors Some : : पारा
connections.
and power, signal, - wires three have will ports input analog to connect that sensors Most be should They ports. input analog the of pins three the to precisely corresponding - ground accordingly. connected

## ANALOG IN

RESET

the of position rotational the calculate to used be then can which potentiometer, the across shaft.

## potentiometer analog an Wiring 36.3.1

input analog roboRIO's the to connect potentiometers analog names, the by suggested As to important is it however, potentiometers, wire to exactly how understand To ports. circuitry. internal their understand

## Footnotes

## Hardware - Inputs Digital

see inputs, digital to guide software a For hardware. input digital covers section This : : .Software - Inputs Digital
majority vast the In states. discrete several of one in be can that signal a is signal digital A - signal digital a for states two only are there and wire, a in voltage the is signal the cases, of respectively). false, and true or 0 , and 1 denoted (also low or high,
"high" so 5V, on function ports "DIO") (or ports outputinput- digital inbuilt- roboRIO's The . ${ }^{21} 0 \mathrm{~V}$ of signal a to "low" and 5 V , of signal a to corresponds
ports DIO roboRIO the to Connecting
a these, use To port. expansion "MXP" the through available are ports DIO Additional : : पारा needed. is MXP the to connects that sort some of board breakout
before using are you sensor the of specifications technical the consult Always : Cllll Failure pin. each to connected being is wire correct the that ensure to sensor, the wiring device. the to damage in result can so do to
roboRIO! the on port any on pin ground the to pin power the connect directly Never : : पाराप behavior. unexpected in result may and roboRIO the on features protection trigger will This consistent. be to guaranteed not is thresholds two these between behavior common less far is this of use the however, port; expansion "MXP" the via logic 3.3V offers also roboRIO The ${ }^{2}$ 5 V . the than
). switch limit a as (such switch a is port DIO a to connected be can that device simplest The circuit the when "high" read will port the port, DIO a to correctly connected is switch a When closed. is circuit the when "low" and open, is
should Switches wires. two has only thus and powered, be to need not does switch simple A is circuit switch the When port. DIO the of pins ground the and signal the between wired be When "high." reads it that ensure will resistor uppull- the and float, will pin signal the open,
"low." read thus and rail, ground the to directly connect will it closed, is circuit switch the

## port DIO a to sensor powered a Connecting

to order in power require switches) proximity contactno- most as (such sensors digital Many These ground. and power, signal, - wires three have generally will sensor powered A work. port. DIO the of pins corresponding the to connected be should
ports DIO multiple uses that sensor a Connecting
in ports DIO multiple to connect to need may ) encoders quadrature as (such sensors Some single a and power single a require ever only will sensors these general, In function. to order needed. be will port(s) additional the of pin signal the only - pin ground

Footnotes 36.4.2

## Hardware - Switches Proximity

switches proximity using to guide a For hardware. switch proximity covers section This : : वार .Software - Inputs Digital see software, in
a it (be object an when detecting is robot a on tasks sensing common most the of One on point known a of distance certain a within is element) field or piece, game mechanism, switch." "proximity a by accomplished is sensing of type This robot. the

## operation switch Proximity

36.5.1
which (in state "open" an between circuit a operate they - switches are switches Proximity Thus, ).is there which (in one "closed" a and circuit) the across connectivity not is there always almost are they accordingly, and signal, digital a generate switches proximity ports. input digital roboRIO's the to connected
the closes switch the activating which in open,""normally- either be can switches Proximity switches Some circuit. the opens switch the activating which in closed," "normally or circuit, effective the practice, In switch. same the to connected circuit NC a and NO a both offer the that case the in system the of behavior the is switch NC a and NO a between difference NC circuit. open an in result always almost will failure wiring a as fails, switch the to wiring switch the if as behave to system the causes failure wiring a that in "safer," often are switches this itself, damaging from mechanism a prevent to used often are switches as - pressed were fault. wiring a of case the in mechanism the to damage of chance the mitigates (1 high be input the make will that resistors uppull- have roboRIO the on inputs digital The input the since 0 to goes value the closes switch the when but open, is switch the when value)
ground. to connected now is

## Switches Proximity of Types 36.5.2

FRC®: in used commonly are that switches proximity of types several are There
switches") ("limit Switches Proximity Mechanical •
Switches Proximity Magnetic •
Switches Proximity Inductive •
Switches Proximity Photoelectric •
Switches Proximity flightof-Time-•
switches") ("limit Switches Proximity Mechanical
present. is magnet no when deactivates and pole, either of presence the in activate mechanical their than reliable more often are switches proximity magnetic While thus, - sensed be to object the on magnet a mount to user the require they counterparts, location. mechanism sensing for used mostly are they

## Switches Proximity Inductive

a within comes sort any of conductor a when activated are switches proximity Inductive switches. contact""no- are they switches, proximity magnetic Like sensor. the of range certain proximity magnetic as purposes same the of many for used are switches proximity Inductive than rather conductor, any of presence the in (activating nature generalmore- Their switches. application. the of nature the on depending hindrance, a or help a either be can magnet) a just

Switches Proximity Photoelectric

Elight Distance Sensor

time the measure and laser, small a as such source, light concentrated a use They FRC. it light, of speed the Using it. detects receiver the when and light of emission the between on Range area. target small very a for measurement distance accurate very a produce can VL53L0X the for 1000 mm around to 30 mm between greatly, range can sensor of type this information More available. versions range longer also are There above. pictured sensor be can circuitry the about more and article this in found be can sensors flight of time about .article this in found

## אנקודרים - חומרה

Encoders see encoders, to guide software a For hardware. encoder covers section This :
and FRC®, in motion rotational measuring for method common most the far by are Encoders signals, digital produce they As reliable. and use,to-easy- cheap, are they - reason good for ).potentiometers as (such devices analog than interference and noise to proneless- are they

## Encoders of Types 36.6.1

FRC: in used typically are that physically connect encoders ways main three are There
encoders Shafted •
encoders shaftOn-•
encoders Maanetic •
to addition In question. in mechanism the to mounted are they how in vary encoders These integrated encoders quadrature with come mechanisms FRC many encoders, of types these design. their into in used typically are that communicated is data encoder the ways main three also are There FRC:
encoders Quadrature •
encoders Cycle Duty •
emcoders Amalog o
method communication one then more support may encoders Some : : पारा
ncremental Encoder

the track they rather, all; at shaft the to coupling mechanical no require encoders Magnetic encoders magnetic of nature contactno- the While shaft. the to fixed magnet a of orientation is magnet the that ensure to order in construction precise require often they handy, be can encoder. the to respect with correctly positioned encoders: magnetic of Examples

Encoder Mag CTRE •
Encoder Magnetic Absolute Thrifty •
Lamprey2 221 Team •

## Encoders Quadrature

A measured/encoded. is motion the which by method the to refers "quadrature" term The from phaseof-out- degrees90- are that pulses wavesquare- two produces encoder quadrature below: picture the in seen as other, each

## Competition Robotics FIRST

Channel A (leads)

Channel B

Channel A

Channel B (leads)
use The "quad"). (hence period per "edges" total four are there channels, both across Thus, determined unambiguously be to motion of direction the allows pulses phaseof-out- two of other. the "leads" pulse which from
input digital the to connect encoders quadrature signal, digital a is pulse wave square each As roboRIO. the on ports encoders: quadrature of Examples Choice FIRST through available VAMT103- 。

Encoder Mag CTRE •
63r Grayhill •
Encoder Bore Through REV •
E4T Digital US •
highto-low- or lowto-high- from transitions of number total the to refers revolution per Edges edges. four contains period full A shaft. encoder the of revolution per channels both across per channels both of periods complete of number total the to refers revolution per Cycles cycle. one is period full A shaft. encoder the of revolution same the of that times four value a has revolution per edges in stated resolution a Thus, revolution. per cycles in stated resolution
finer somewhat be should revolutionper-edges- in encoder your of resolution the general, In mechanism the know to want you if Thus, positioning. in error acceptable smallest your than higher somewhat resolution a with encoder an have should you degree, one minusor-plusrevolution. per edges 360 than

## Encoders Cycle Duty

Channel A -
pulse a output They roboRIO. the on input digital single a to connect encoders cycle Duty encoder. the of position absolute the to proportional is pulse a of length the where encoders: cycle duty of Examples

Encoder Mag AndyMark •
Encoder Mag CTRE •
Encoder Bore Through REV •
Lamprey2 221 Team•
MA3 Digital US •

## Competition Robotics FIRST

## Gyros of Types 36.7.1

and gyros axisthree- gyros, axissingle- FRC: in usedcommonly- Gyros of types two are There gyro. axis3- a include often which IMUs,

Gyros axisSingle-

## ces

## yro

## Gyros axisThree-


$y, x$, labeled (typically axes spacial three all around rate rotation measure gyros axisThreeroll. and yaw, pitch, called is axis these around motion The z ). and Choice FIRST in been has that Robotics FIRST for Board IMU ADIS16470 Devices Analog The gyro. axisthree- used commonly a is years recent in

## Hardware - Ultrasonics

ultrasonics, to guide software a For hardware. sensor ultrasonic covers section This : : पारा
.Software - Ultrasonics see
are They FRC®. in used rangefinders common most the of some are rangefinders Ultrasonic of pulse a emitting by work rangefinders Ultrasonic reliable. fairly and use,to-easy- cheap, sensor the reach to echo the takes it long how measuring then and sound, frequencyhighis it air, in sound of speed the and time measured the From target. the off bouncing after target. the to distance the calculate to possible
ultrasonics of Types 36.8.1
above, outlined principle response""ping- the on operate rangefinders ultrasonic all While roboRIO. the with communicate they way the in vary may they
ultrasonics Analog
ultrasonics responsePing-
ultrasonics Serial
the of one over RIO the with communicate may sensors ultrasonic complicatedmore- Some 232.RS- as such ,buses serial
36.8.2 חסרונות

As caveats. few a are there however use, to easy quite generally are sensors Ultrasonic generally they echo, its and pulse the between time the measuring by work ultrasonics important extremely is it Thus, range. their in target closest the to only distance measure generally will sensors ultrasonic for documentation The job. the for sensor right the pick to the which in "window" the of shape the shows that pattern" "beam the of picture a include
sensor. your selecting when this to attention close pay - target a detect will ultrasonic
order In sensors. ultrasonic other from interference to susceptible also are sensors Ultrasonic fashion robin""round- a in ultrasonics responseping- run can roboRIO the this, minimize to sensors from interference that ensure to way sure no is there competition, in however, occur. not does robots other on mounted redirect that or waves, sound absorb that objects detect to able be not may ultrasonics Finally, objects. flat hard, detecting for best work they Thus, ways. strange in them

## Hardware - Accelerometers

acceleration. measure to used sensors common are Accelerometers track to used and integrateddouble- be can acceleration of measurements precise principle, In integrated be can gyroscope a from rate turn of measurement the how to (similarly position the within available are that accelerometers practice, in however, - heading) determine to are accelerometers However, use. this for accurate nearly not are range price FRC® legal FRC. in tasks of number a for useful still use, can teams all that accelerometer axisthree- inbuilt- a with comes roboRIO The peripheral a use and purchase may measurements precisemore- seeking teams however well. as accelerometer,
accelerometers of Types 36.9.1
accelerometers, axissingle- FRC: in usedcommonly- accelerometers of types three are There IMUs. and accelerometers, axismulti-
accelerometers axisSingle-

## RESET USER


accelerometers axisMulti-

## ANALOG IN RESET



## Hardware - LIDAR

increasing seeing rangefinder of variety a are sensors ranging) and detection (light LIDAR FRC®. in use
is laser A sound. of instead light use but ,ultrasonics to similarly quite work sensors LIDAR back. bounces pulse the until time the measures sensor the and pulsed,

LIDAR of Types 36.10.1
LIDAR, dimensional1- FRC: current in used commonly sensors LIDAR of types two are There LIDAR. dimensional2- and

## LIDAR Dimensional-1

the measures it - sensor ultrasonic an like much works sensor LIDAR (1D) dimensional1- A sensors LIDAR 1D it. of front in line a along less or more object nearest the to distance are and profiles" "beam narrower have they as ultrasonics, than reliablemore- be often can Distance Optical LiteLIDAR- Garmin the is above Pictured interference, to susceptible less
.Sensor
distance, measured the to proportional voltage analog an output generally sensors LIDAR 1D .buses serial roboRIO's the of one to or ports input analog roboRIO's the to connect thus and

Generally, plane. a in directions all in distance measures sensor LIDAR (2D) dimensional2- A that turntable a on sensor LIDAR 1D a placing simply by less)or-(more- accomplished is this rate. constant a at spins roboRIO, the to back data of amount large a send to need sensors LIDAR 2D nature, by Since, .buses serial roboRIO's the of one to connect always almost they
drawbacks: common few a from suffer do sensors LIDAR Thus, sensor. the to back pulse emitted the of reflection the on relies LIDAR ultrasonics, Like laser. the of wavelength the in material the of reflectivity the on depends critically LIDAR infrared the in transparent be to tends which polycarbonate, of made is wall field FRC The to struggle to tends LIDAR Thus, use). FRC for legal generally is what is (which wavelength barrier. field the detect
processing and noisy, quite be to tend use) FRC for legal range price the (at sensors LIDAR 2D software. complex of lot a involve can cloud") "point a as (known data measured their software so FRC, for specifically made sensors LIDAR 2D few very are there Additionally, scarce. be to tends support
at rate the by limited is rate update their work, to turntable a on rely sensors LIDAR 2D As that means often this FRC, for legal range price the in sensors For spins. turntable the which robot the when limitation a be can which quickly, particularly values their update not do they moving. are targets) the (or of resolution spatial the resolution, angular in limited are sensors LIDAR 2D as Additionally, away. further are targets when worse is cloud point the

## מדי טווח שפועלים בשיטת הטריאנגולציה <br> 36.11

the in function commonly they as rangefinders," "IR called (often rangefinders Triangulating The FRC®. in used rangefinder of type common another are band) wavelength infrared sensor brandSharp- common a is above shown sensor of emission the between time the measure not do rangefinders triangulating , LIDAR Unlike a emitting by work rangefinders IR most Rather, reflection. a of receiving the and pulse a closer The beam. reflected the of position the measuring and angle, slight a at beam constant sensor. the to object the closer the emitter, the to beam reflected the of contact of point the


Proximitv Sensor

## buses serial supported of Types 36.12.1

communications: serial of types basic many supports roboRIO The

SPI •
232RS-•
Host USB •
Bus CAN •
CAN the over devices peripheral with communications supports roboRIO the Additionally, peripheral few relatively idiosyncratic, quite is protocol CAN FRC® the as However, bus. controllers). motor for used heavily is it (though it support sensors

| Signal Name |
| :---: |
| GND |
| 3.3 V |
| SCL |
| SDA |

corresponding its to wired be should pin each I2C, over devices peripheral to communicate To long so port, single a to devices slave of "chain" a wire to users allows I2C device. the on pin set. IDs separate have devices those as is MXP the on bus I2C The .port expansion MXP the through used be also can bus I2C The the on device a as ID same the have can bus main the on device a example, For independent.
bus. MXP

[^20]| Signal Name |
| :---: |
| 3.3 V |
| 5 V |
| CS $<0 . .3>$ |
| SCLK |
| MOSI |
| MISO |
| GND |

corresponding its to wired be should pin each SPI, over devices peripheral to communicate To (corresponding devices four to up to communications supports port SPI The device. the on pin above). diagram the on pins 30- (CS) Select Chip the to provides port MXP The . port expansion MXP the through used be also can bus SPI The CS. additional an and lines input/output and clock, independent

## Signal Name

its to wired be should pin each $232, R S$ - over devices peripheral to communicate To device. the on pin corresponding
. port expansion MXP the through used be also can bus 232RS- The port serial MXP The 15 v ). (+/- levels signaling 232 RS- uses port serial 232 RS- roboRIO The 3.3v). (+/- levels signaling CMOS uses

In console. serial roboRIO's the by utilized is port $232 R \mathrm{R}$ - onboard the default, By : $\mathrm{\square} \mathrm{C}$ Imaging the using disabled be must console serial the device, external an for it use to order .Dashboard Web roboRIO or Tool

## Client USB

36.12 .5
connected be can This port. client USB or B,USB- a is roboRIO the on ports USB the of One cable. USB standard a with computer, Station Driver a as such devices, to

## Competition Robotics FIRST

Expansion MXP roboRIO's the through use for available also are buses serial the of Several well as inputs, analog and digital additional many of use make to users allows port This Port. buses. serial various the as wiring no requiring convenience, for port MXP the to directly attach devices peripheral Many user. the of part the on
include: examples Some bus. CAN the use primarily sensors Several playingwithfusion.com from Sensor Range/Distance Flightof-Time- Based CAN • Encoder MAG SRX the and IMU Pigeon Gadgeteer the as such sensors, basedTalonSRX CANifier • the and (PDP) Panel Distribution Power CTRE the into built sensors monitoring Power . (PDH) Hub Distribution Power REV article the in found be can bus CAN the to connected devices using about information More . devices can using about


Thinkscape. via available is Robot Romi the using programming teaches that course A : $\quad$ I available is course this on Information

## nomi 37.1

. . shipping free for qualifies Order - Pololu from Kit Romi 1.<br><br>card SD Micro larger) (or 8GB 3.<br>one have already don't you if - reader card SD Micro 4. charger) the forget (don't best is Rechargeable - batteries AA 65.

ใ



the into caster ball rear the for rollers three the place and down upside chassis the Flip the push Then rollers. three the of top on ball plastic $1^{\prime \prime}$ the Place chassis. the in cutouts into snap legs three the so chassis the into and ball the over clip retention caster ball
holes. respective their
robot. the of back the and front the on caster a is there so caster ball front the for Repeat
suspension a as acts that arm flexible a by supported is caster ball front The Optional: hooks two the around band rubber a wrap can you stiffer, it make to want you If system. chassis. the of side top the on caster ball the of side either on located

## Competition Robotics FIRST

down) side (thread standoffs Two board. Pi Raspberry the support to standoffs the Install as label 32U4" "Romi the to closest board Romi the of side the on holes the in mount compartment. battery the inside are standoffs these for nuts The picture. the in shown attach To board. the of side opposite the on holes the into go standoffs two other The standoffs. the in screw you while nut the hold to pliers noseneedle- a need will you them, go. should standoffs the where show below image the in holes circled The

AA rechargeable using recommend (we batteries AA six or four with works chassis The shapedbattery- the by indicated is batteries the for orientation correct The cells). NiMH itself. chassis the in indicators - and + the as well as chassis Romi the in holes
connector pin $2 \times 20$ the aligning carefully down, upside board Pi Raspberry the Attach to care taking pressure even with Push Romi. the on socket pin $2 \times 20$ the with Pi the on Raspberry the fasten to screws supplied the use inserted, Once pins. the of any bend not step. previous a in installed were that standoffs the to board Pi
battery the inside hole hexagonal a in nut a placing require will screws the of Two : Cl Cl above. image the in circles blue the by shown are locations The compartment.
complete! now is chassis Romi your of assembly The

## 37.2 צריבת ה-Romi

boards: microprocessor 2 has Romi The running program robot the with communication levelhigh- handles that Pi Raspberry A and desktop the on operation. sensor and motor levellow- handles that Board Control 32U4 Romi A properly. operates robot the that so installed firmware have to need boards Both

Pi Raspberry $\qquad$ be must and FRCVision) (formerly WPILibPi on based is firmware Pi Raspberry The
of bottom the at Assets on Click card. SD micro Pi Raspberry the to written and downloaded
files: image available the see to description the

הגדרת רשת אלחוטית
Romi: the with use to ready Pi Raspberry your get to steps following the Perform
position. on the to board 32U4 Romi the on switch power the sliding by on Romi the Turn boot to minutes 32- approximately take will it image new a with started is it time first The a than less in boot will it times Subsequent reboots. and system file the resizes it while minute.
SSID the using network WiFi Romi the to connect computer, your Using number) serial Pi Raspberry the on based is ><number (where ><number-WPILibPi .WPILib2021! passphrase WPA2 the with
runningWPILibPi- multiple with environment an in Pi Raspberry the on powering If : the through audibly announced also is Pi Raspberry particular a for SSID the Pis, Raspberry which file, ssid.txt-boot/default/ the to written also is SSID default The port. headphone boot the opening and computer a into reader) a (via card SD the inserting by read be can partition.
http://10. either at dashboard Pi Raspberry the to connect and browser web a Open .http://wpilibpi.local/ or 0.0.2/
button Writable the click to necessary is it so default, by onlyread- up boots image The : : प्रा memory prevent to button Only-Read the click changes, making done Once changes. make to corruption.
page. web dashboard the of top the at Writable Select WPA2 the in password new a setting by Romi your for password default the Change
field. Passphrase
changes. save to page the of bottom the at button Save the Press
a on Romi your operating on plan you if name unique a to SSID network the Change Romis. other with network wireless
set. you password new the with network WiFi Romi's the to Reconnect completed. been have changes the all when only-Read to Dashboard the set to sure Be

## Board Control 32U4 37.2.2

Board. Control 32U4 the to image firmware the write to used be now can Pi Raspberry The Romi the off Turn micro the to ports USB Pi's Raspberry the of one from cable Bmicro- to A USB a Connect Board. Control 32U4 the on port USB as dashboard web the to connect and network Wifi its to connect and Romi the on Turn steps. previous the in button. Firmware Update the press page, configuration Romi the On
has firmware the Once process. deploy firmware the of log a showing appear will console A will you. Thank done. avrdude message the Board, Control 32U4 the to deployed been appear.

# Romi your know to Getting 37.3 

## Conventions Directional 37.3.1

caster suspended and pins GPIO ports, USB Pi Raspberry the where is Romi the of front The are. wheel
"front". of definition above the use forward driving to references documentation, Romi all In

## GPIO and Sensors, Hardware,

hardware/peripherals: inbuilt- following the has Romi The encoders with motors geared 2 x
(IMU) Unit Measurement Inertial 1x
red) yellow, (green, LEDs 3 x
C) and B, A, (marked pushbuttons 3 x
(EXT) channels GPIO configurable 5 x
Buzzer

WPILib. by supported not currently is Buzzer The : ใराप

Encoders and Wheels, Motors,
150 of speed output loadno- a and reduction, gear 120:1 a have Romi the on used motors The is torque Stall amps. 1.25 is current stall the and amps 0.13 is current free The 4.5 V . at RPM torques. lower at slipping start might clutch safety inbuilt- the but m) N- ( 0.1765 inoz- 25 ( 5.55 "). 141 mm of trackwidth a have They ( 2.75 "). 70 mm of diameter a have wheels The Per Counts 12 have and shaft output motor the to directly connected are encoders The revolution. wheel per counts 1440 nets this ratio, gear provided the With (CPR). Revolution below. table the in listed are channels PWM motor The

| Channel | Romi רכיבי התוכנה של |
| ---: | ---: |
| 0 PWM | Motor Left |
| 1 PWM | Motor Right |

applied. is output positive when direction backward a in spin will motor right The : $\square$ हाप code. robot in inverted be to needs controller motor corresponding the Thus,
below. table the in listed are channels encoder The

| Channel | Romi |
| ---: | ---: |
| 4 DIO | A Channel Quadrature Encoder Left |
| 5 DIO | B Channel Quadrature Encoder Left |
| 6 DIO | A Channel Quadrature Encoder Right |
| 7 DIO | B Channel Quadrature Encoder Right |

forward. moves Romi the when up count encoders the default, By :
which (IMU) Unit Measurement Inertial LSM6DS33 STMicroelectronics an includes Romi The accelerometer. axis3- a and gyro axis3- a contains
selectable has gyro The 16G. and 8G, 4G, 2G, of sensitivity selectable has accelerometer The DPS. 2000 and DPS, 1000 DPS, 500 DPS, 250 (DPS), Second Per Degrees 125 of sensitivity offsetszero- its measure and gyro the calibrate to means a provides also UI Web Romi The code. robot with use before

## Buttons Push and LEDs Onboard

as exposed are that onboard LEDs 3 and buttons push 3 has board control 32U4 Romi The code. robot to channels (DIO) IO Digital

| Channel DIO | Romi |
| ---: | ---: |
| 0 DIO | only) (input A Button |
| 1 DIO | (output) LED Green (input), B Button |
| 2 DIO | (output) LED Red (input), C Button |
| 3 DIO | only) (output LED Yellow |

ops.no- in result will 7 and $65,4,0$, DIO to Writes

# Pins GPIO Configurable 

a allow that EXT4) through EXT0 (named pins GPIO configurable 5 has board control The Romi. the to actuators and sensors external connect to user
exception the (with PWM and In, Analog IO, Digital modes: following the support pins 5 All configured be can ports the of mode The PWM). and IO Digital supports only which 0, EXT of

Ground, for connections with interface, style servo pin,3- a via exposed are channels GPIO The and board, the of edge the to closest being connection Ground the (with Signal and Power board). the of inside the to closest being signal the into hooked be can but unconnected left initially are pins GPIO the for connections power The (as bus power the to pin 5 V the connect to jumper a using by supply 5 V boardon- Romi's the needed, is provide can Romi the than power more if Additionally, above). image the in seen and bus power to directly it connect and supply power 5 V own their provide can user the pins. ground

## Configuration Default GPIO

The EXT4). through (EXT0 pins GPIO the of configuration default the shows below table The The pins. GPIO configurable 5 the of functions the customize to user the allows UI Web Romi IO the once screen on mappings channel/device WPILib appropriate the provide also will UI complete. is configuration

| Channel | Pin Ext |
| ---: | ---: |
| 8 DIO | EXT0 |
| 0 In Analog | EXT1 |
| 1 In Analog | EXT2 |
| 2 PWM | EXT3 |
| 3 PWM | EXT4 |

## Support Hardware Romi

with compatible is roboRIO, a than architecture hardware different a having robot, Romi The components. system control FRC used commonly of subset a

## Hardware Compatible

following: the with compatible is Romi the general, In
LEDs) single switches, bumper (e.g. devices Input/Output Digital Simple controllers) motor based PWM servos, (e.g. devices output PWM styleRC- Standard voltage) a as distance report that sensors distance (e.g sensors Input Analog

## Hardware Incompatible

37.4 .2
following: the with compatible not is Robot Romi the limitations, hardware to Due encoders integratedRomi- the than other Encoders channels) DIO 2 require (which sensors ultrasonic style "Ping" sensors based Timing
devices based CAN
buzzer inbuilt- Romi

## Classes Compatible

assume here, listed not is class a If Robot. Romi the by supported are here listed classes All work. not will and supported not is it that )Spark (i.e. Controllers Motor PWM

Encoder
AnalogInput
DigitalInput
DigitalOutput
Servo
BuiltInAccelerometer
.Vendordep Romi the by provided are classes following The
RomiGyro
RomiMotor
OnboardIO

## UI Web Romi The

accessible is It image. Pi Raspberry WPILibPi the of part as installed comes UI Web Romi The UI. Web WPILibPi main the of bar navigation the in tab Romi the on clicking by
describe and UI Web Romi the of parts various the through walk will section this of rest The functionality. relevant the

## Status Service Background

 37.5.1Web Romi running currently the about information provides UI Web Romi the of section This bring to controls provides UI The Romi). the to talk to WPILib allows what is (which Service service. web the of uptime current the shows as well as up/down service the
useful be can it but often, section this in functionality the use to need not will Users : : troubleshooting. for

## Status Romi

battery version, service the including Romi, the about information provides section This is board 32 U 4 Romi the on firmware installed currently the not or whether and voltage, service. web the of version current the with compatible

Romi your Imaging on section the see compatible, not is firmware the If : पु०ा

## Update Service Web

Web Service

To perform a release page

Upload Romi
work. to section this for mode Writable in be must Pi Raspberry The : $\square \square$
web Romi the of version time) publication (at latest the with ships image WPILibPi Romi The allows section this service, web Romi the of versions newer to upgrading support To service. GitHub service web Romi the via obtained be can that bundle builtpre- a upload to users page releases
page. Releases GitHub the from file .tgz appropriate the download upgrade, an perform To will bundle service web updated The .Save click and file .tgz downloaded the select Next, Status Romi the moment, short a After installed. be and Pi, Raspberry the to uploaded be information. version latest the with itself update should section

## Configuration IO External

 37.5.4Romi Pin

Setting

Robot
Port

Save Exter

Romi. the on channels GPIO external 5 the configure to users allows section This
work. to section this for mode Writable in be must Pi Raspberry The :
the from option appropriate an select channel, GPIO a of configuration the change To and In Analog IO, Digital support 0) EXT of exception the (with channels All lists. dropdown IO External Save on click made, are selections appropriate the Once types. channel as PWM configuration. IO new the up pick and restart then will service web The .Configuration
GPIO configured each for mapping WPILib appropriate the provides row Port" "Robot The in accessible be will and channel, IO Digital a as configured is 0 EXT example, For channel. 8. channel DigitalOutput) (or DigitalInput a as WPILib

## Calibration IMU

IMU Calibrat

Most gyros v
gyro can be
To calibrate 1
calibration is
Current Gyro
x offset
0.683
work. to section this for mode Writable in be must Pi Raspberry The :
sort some have usually Gyros Romi. the on gyro the calibrate to users allows section This in it use and offset the calculate to Romi the allows calibration and error, offsetzero- of calculations.
Gyro Calibrate the click Then, surface. stable flat, a on Romi the place calibration, begin To calibration Once process. calibration current the showing appear, will bar progress A button. Romi the with registered and screen on displayed be will values offset latest the complete, is service. web
reboots. between persist and disk to saved are values offset These

Firmware

## Output Console

Console Out

Version:
HardwareI
[CONFIG]
[CONFIG]
WebSocket
[IMU] Ide
[IMU] Gyr
[IMU] Acc
[IMU] Gyr
[ROMI] LS
Robot (WP
[SERVICE]
[REST-INT
[REST-INT
[REST-INT
[REST-INT
[REST-INT
[REST-INT
[REST-INT
[RFST - TNT
web Romi the that output console raw the view to users allows section this enabled, When out find to just or Romi, the with issues troubleshooting for useful is This provides. service scenes. the behind on goes what about more

Mode Bridge
37.5.8
an as acting of instead network WiFi a to connect to robot Romi your allows mode Bridge use can you as environments, learning remote in useful especially is This (AP). Point Access hardware. extra without Romi the using while internet the
environments network restricted in properly work to likely not is mode Bridge : :
Institutions). (Educational
menu. top the in Writable Enable
.Settings Network on Click

DHCP :Ethernet
Bridge :Mode WiFi
network your of (name) SSID :SSID
network wifi your of Password :Passphrase WPA2
DHCP :Address WiFi
to navigate to able be now should You Romi. the reboot please applied, are settings the Once network. specified your to connected while browser web your in wpilibpi. local

## Romi Access to Unable

few a have we it, access to unable are you and settings bridge correct the has Romi the If workarounds.

Romi the into Ethernet
Romi the Reimage
can you resolving, Romi the of hostname the with interfere can networks restricted Some address. IP the find to Scanner IP Angry using by this workaround

[^21]
## Romi the Programming

robot. FRC regular a for program a writing to similar very is Romi the for program a Writing be can etc) SmartDashboard, Station, Driver Code, Studio (Visual tools same the all fact, In

Romi. the with used

## Program Romi a Creating

the to similar program, FRC normal a creating like is Romi a for program new a Creating
steps. programming Robot To Zero
TimedRobot, on based one including projects, Romi for templates two with comes WPILib which provided is project example an Additionally, template. project BasedCommand- a and through walk will article This Romi. the of functionality inbuilt- the of some showcases example. this from project a creating
must compiler desktop C++ compatible a C++, using Romi the program to order In : : पार . Dependency $C++$ Additional - Simulation Robot See installed. be

## Project Romi WPILib New a Creating

project" "New type and ,Ctrl+Shift+P with palette command Code Studio Visual the up Bring command: project" new a "Create the Select prompt. the into
project a "Select on click here, From Window". Creator Project "New the up bring will This appears: that prompt the from "Example" pick and Template), or (Example type
"RomiReference" the find to list the through Scroll appear. will examples of list a Next, example:

W Select a pro
StateSpaceF
StatespaceF
StatespaceE
statespaceA
Simplediffer
statespaceD
Elevatorsim
Armsimulati
DifferentialD
MecanumDri
SwerveDrive
RomiReferer
to Project" "Generate click and Creator" Project "New the in fields the of rest the out Fill project. robot new the create

## Program Romi a Running

builtpre- a has project The run. to ready essentially is it generated, is project robot the Once using around Romi the drive you lets that command default associated and class Drivetrain joystick. a
code the that is project robot FRC regular a from differs project Romi a where aspect One development your on runs project Romi a Instead, Romi. the to directly deployed not is Romi the with communicate to framework simulation WPILib the leverages and computer robot.
the to connect Next, on. powered is Romi your that ensure first, program, Romi a run To network Romi the changed you If Romi. the by broadcast network WiFi ><number-WPILibPi address IP the change may you network) WiFi own your to it connect to example, (for settings and file build.gradle the open this, do To Romi. the to connect to uses program your that address. IP appropriate the to line wpi. sim. envVar the update
host. remote client websocket the Sets//
true $=$ defaultEnabled.) (addWebsocketsServer. sim. wpi
true $=$ defaultEnabled.) (addWebsocketsclient.sim.wpi
)Ctrl+Shift+P (type Palette Command WPILib the open code, robot Romi your start to Now .F5 press or Code", Robot "Simulate select and

WebSocket "HALSimWS: reads that output console the in line a see should you well, goes all If
Connected":

## (LabVIEW) Romi the Programming 37.7

regular a for program a writing to similar very is Romi the for program LabVIEW a Writing Romi. the with used be can tools same the all fact, In robot. based roboRIO

## Project Romi a Creating 37.7.1

program, |reg| FRC normal a creating than different no is Romi a for program new a Creating separate a create to wish may you Initially, steps. programming Robot To Zero the to similar ports different to connected be may hardware Romi the as Romi the just on use for project robot. roboRIO your on than
respectively. side right and left for 1 and 0 ports PWM used Robot Romi The

## VI WebSockets the Installing

the that is project robot |reg| FRC regular a from differs project Romi a where aspect One development your on runs project Romi a Instead, Romi. the to directly deployed not is code Romi the with communicate to framework simulation WPILib the leverages and computer,

Romi. the with converse to uses LabVIEW that protocol the is WebSockets robot. top the in box search the into websockets Type application. Manager Package VI the Open .Network Tools LabVIEW by VI the Select right.

## Competition Robotics FIRST



## Target Project the Changing

target the change to is Romi the on program LabVIEW your run to needed step primary The Explorer Project the in VI Main Robot the locate target, project the change To Desktop. the to section. Computer My the to section Target the from it drag and click and

address IP the with Romi a to connect to attempt will program LabVIEW your default, By Driver the to input an as it specify can you IP, different a use to wish you If .10.0.0.2 of for terminal input pink the Locate .Main Robot inside VI Communication Start Station filledpre- constant a create to Constant Create select and clickright- then URL Simulation to care taking text, the of portion address IP the modify then can You value. default the with same. the end) the (at suffix and port and beginning) the (at section protocol the leave

## Program Romi a Running

to connect you Once on. powered is Romi your that ensure first, program, Romi a run To start to arrow Run white the press Romi, the by broadcast network ><number-WPILibPi the computer. your on program Romi the running
either to connect to attempt automatically will program The running! now is code Romi Your IP. an specified not have you if default the or specified, have you IP the
LabVIEW the as computer same the on software Station Driver the run to recommended is It automatically will it Station, Driver the to connects successfully program your Once code. Station Driver the allowing Desktop, the on running is code the that Station Driver the notify need you'll Next, Station. Driver the inside information any changing you without connect to 127.0.0. to number team the setting by done is This Romi. your to Station Driver the point to enable/disable and mode robot the set to Station Driver the in controls the use then can You . 1 normal. as

## Encoder or Gyro the Using

is This functions. RomiGyro the using available is Romi the on available is that gyro The under located

Library Robotics WPI
Sensors -
Libraries Party Third -
RomiGyro -
are: ports DIO The function. encoder standard the using used be can encoders The
5) $(4, \mathrm{Left}$
7) (6, Right

roboRIO Station Driver

## Basics Networking 38.1

## Address? IP an is What 38.1.1

device each identifies that periods by separated numbers, of string unique a is address IP An 255.0- from ranging (octets) sections 4 into up divided is address IP Each network. a on
${ }^{32} 2$ are there meaning address bit32- a is address IP each that means this above, shown As used are these of most However, possible. addresses 4,300,000,000 nearly or addresses, servers. web like things for publicly
have must network the on device Each Addressing: IP of point key first our up brings This will collisions otherwise address, IP same the have can devices two No address. IP unique a occur.
computers billion 4 than more are there and addresses, billion 4 only are there Since addresses. IP out giving with possible as efficient as be to need we internet, the to connected addresses. private vs. public to us brings This

## Addresses IP Private vs Public 38.1.2

implemented. was Ranges" IP "Reserved of idea the Addresses, IP using with efficient be To web to assigned be never will that Addresses IP of ranges are there that means this short, In house. your in those as such networks, local for used be only will and servers,
modem basic provider's internet your to connecting directly are you Unless :\#2 point Key means This ranges. these of one in Address IP an have will device your function), router (no $99 \%$ will device your etc., home, office, work school, your as: such network, local any at that below: listed range a in address IP an have time the of

| Class | Bits | Address Start | Address End | Addresses of Number |
| ---: | ---: | ---: | ---: | ---: |
| A | 24 | 10.0 .0 .0 | 10.255 .255 .255 | $16,777,216$ |
| B | 20 | 172.16 .0 .0 | 172.31 .255 .255 | $1,048,576$ |
| C | 16 | 192.168 .0 .0 | 192.168 .255 .255 | 65,536 |

and house, entire an to Address" IP "unreserved one assign us let ranges reserved These to computer one than more connect to range reserved a in addresses multiple use then Address (Network NAT as known router internet home's the on process A internet. the using data, requesting is IP private which track keeping of process the handles Translation), back data returned the passing then and internet, the from data that request to IP public the for addresses IP reserved same the use to us allows This it. requested that IP private the to presented is process this of image An conflicts. any causing without networks, local many
below.
use to us allows range This range. 10.0.0.0 the use will we networks, FRC ${ }^{\circledR}$ the For : alll would networks C or B Class the using whereas addresses, IP for format 10.TE.AM.xx the be would formatting this of example An format. the follow to teams of subset a allow only 1750. Team FRC for 10.17.50.1

## assigned? addresses these are How 38.1.3

for use will we addresses IP which and are, addresses IP what of basics the covered We've the to assigned get will addresses these how discuss to need we now so competition, FRC the same the on devices two have can't we that above stated already We network. our on devices receives device every that sure be to way a need we so Address, IP same the with network Statically or (automatic), Dynamically done be can This overlapping. without address an
(manual).

Dynamically
manage network the on device a letting are we that means addresses IP assigning Dynamically Protocol Configuration Host Dynamic the through done is This assignments. address IP the think will we document, this of scope the for but it, to components many has DHCP (DHCP). device new a in plug you Whenever network. the manages automatically that service a as it of IP available an with it provides then device, new the sees service DHCP the network, the to can This communicate. to device the for required settings network other the and address device. each of address IP exact the know not do we times are there that mean

## server? DHCP a is What

devices new for network the monitor to service DHCP the runs that device a is server DHCP A DHCP the running computer dedicated a be could this businesses, larger In configure. to networks, FRC networks, home For server. DHCP the be would computer that and service case, this in router; the on running usually is service DHCP the networks, smaller other and
server. DHCP the is router the
server DHCP a have to need you where situation a into run ever you if that means This home closest the finding as simple as it's devices, network your to addresses IP assigning in. it plugging and router,

## Statically

the on device each telling manually are we that means addresses IP assigning Statically setting a through happens configuration This have. to it want we address IP which network we manually, addresses the assigning and network the on DHCP disabling By device. each on because but network, the on device each of address IP exact the knowing of benefit the get we addresses, IP used the of track keeping service no is there and manually one each set we careful be must we addresses, IP setting statically While ourselves. this of track keep to have settings network other the setting are we sure be must and addresses, duplicate assign to not device. each on correctly gateway) default and mask subnet as (such

## local?link- is What 38.1.4

can This network. a on communicate cannot it then address, IP an have not does device a If a from address its acquire dynamically to set is that device a have we if issue an become when be would this of example An network. the on server DHCP no is there but server, DHCP an acquire dynamically to set are both and roboRIO a to connected directly laptop a have you the on devices two only the are they since and server, DHCP a is device Neither address. IP automatically. addresses IP assigned be not will they network,
device a if to back""fall- can we that addresses of set standard a us give addresses localLinkwill device the happens, this If address. an acquire to able not is dynamically acquire to set address. locallink- a is this range; address 169.254.xx.yy the in address IP an itself assign been haven't they realize will devices both above, example computer and roboRIO our In both are they Once address. locallink- a themselves assign and address IP an assigned will and network same the in be will they range, 169.254.xx.yy the in addresses assigned not did server DHCP a and dynamic to set were they though even communicate, to able be addresses. assign

## FRC for Addressing IP 38.1.5

information. more for Article Networking IP the See

## Configurations Static and Dynamic Mixing

in statically set devices having with issues any notice not should team the field, the on While no are there as long as addresses DHCP assign field the having and range, 10.TE.AM.xx the above. section the in to referred as conflicts address IP
following the for devices DHCP and Static mixing with issues encounter may team a pits, the In 169.254.xx. ( address locallink- a to back fall will devices DHCP above, mentioned As reason. the If same. the be always will address IP the devices, static For present. isn't server a if )yy locallink- to back fall laptop and station, driver roboRIO, the and present not is server DHCP network different a in be will range 10.TE.AM.xx the in devices set statically the addresses, provided is this of description visual A addresses. locallink- with those to visible not and below:
is configuration Forwarding Port a roboRIO, the to USB via connected When : shown network green the (on radio OpenMesh the to connected devices access to required above).

## Ports Network Available

ports. network available regarding information for Manual Game 2023 the of R704 see Please

```
mDNS 38.1.6
```

the from benefit to us allows that protocol a is System Name Domain multicast or mDNS, let's clearer, this make To network. the on server DNS a having without DNS, of features is. DNS what about talk and back step a take

DNS? is What
we paper, this of scope the for but topic, complex a become can System) Name (Domain DNS DNS explanation, basic most the In DNS. of overview levelhigh- the at look just to going are and Addresses, IP to devices network for names friendlyhuman- relate to us allows what is change. they if addresses IP those of track keep
172.217. is site this for address IP The .Www.google.com site the at look Let's 1: Example remember! to friendlyuser- very not is that however ,164.132

DNS the contacts computer the computer, their into www. google. com types user a Whenever www. google. for file on address IP the is what asks and DHCP!) by provided setting (a server to that use to able is computer the then and address IP the returns server DNS The .com website. Google the to connect
to want you that MYCOMPUTER named server a have you network, home your On 2: Example of Address IP the know don't you so DHCP uses network Your laptop. your from to connect Additionally, name. MYCOMPUTER the using by just connect to you allows DNS but ,MYCOMPUTER address, different a with up end may MYCOMPUTER refresh, assignments DHCP the whenever address, IP specific a of instead name MYCOMPUTER the using by connecting you're because but connect. to able still you're and updated was record DNS the
reference we if DNS, With FRC. for relevant most the and DNS to benefit second the is This our in anything change to have don't we Address, IP of instead name friendly their by devices new the return and changes the of track keep will DNS changes. Address IP the if program changes. ever it if address
lookups the perform to us allows that server DNS no is there pits, the in and field the On remembering not of benefits the have to like still we'd but website, Google the for do we like different a assigns DHCP if address device's every at guess to having not and Address, IP every picture. the into comes mDNS where is This expect. we than address
way a in implemented just is but DNS, traditional as benefits same the us provides mDNS friendly a using device a to connect to asks user a Whenever server. a require not does that The itself. identify to name that with device the asking message a out sends mDNS name, on devices all so address IP its including message return a sends then name the with device roboRIO our to refer to us allows what is mDNS information. their update can network the network. DHCP a on connect it have and FRC. local-TEAM-roboRIO as
 connect to address exact the know won't we but range, 10.TE.AM.255-10.TE.AM. 20 the in need would device the case, this In before. like name friendly the use to able be won't we and Address. IP static a have to

## Principles - mDNS

hostnames of resolution for allows which system a is (mDNS) System Name Domain Multicast a hostname a resolve To server. name dedicated no with networks small on addresses IP to device The device. the for querying network the to message multicast a out sends device store can network the on Devices IP. its containing message multicast a with responds then the from resolved be can address this for requests subsequent so cache a in information this query. network the repeating without cache

## Providers - mDNS

some are Here PC. your on installed be to required is implementation mDNS an mDNS, use To platform: major each for implementations mDNS common

Windows:
Tools Game FRC NI the with Installed Responder: mDNS NI
iTunes with Installed Bonjour: Apple
OSX:
default by Installed Bonjour: Apple
Linux:
variants Linux some on default by enabled and Installed mDNS/Avahi/Zeroconf:nssArch) as (such others on enabled or installed be to need May Mint). or Ubuntu as (such

Firewalls - mDNS
is section this required, be may changes no configuration, PC your on Depending : : पारा troubleshooting. with assist to provided
network the Because firewall. your through pass to allowed be must mDNS properly work To IDE, or Station Driver the from directly not and implementation mDNS the from comes traffic resolve to ways main two are There sufficient. be not may through applications those allowing issues: firewall mDNS
mDNS (NI implementation mDNS the for exception application/service an Add \Responder mDNS\Shared\Instruments National\Files Program\C: is Responder )nimdnsResponder.exe
Ranges: IP 5353. UDP to/from traffic for exception port a Add

$$
\begin{array}{r}
10.255 .255 .255-10.0 .0 .0- \\
172.31 .255 .255-172.16 .0 .0- \\
192.168 .255 .255-192.168 .0 .0 \\
169.254 .255 .255-169.254 .0 .0 \\
224.0 .0 .251
\end{array}
$$

support Browser - mDNS
web roboRIO the access to address mDNS the utilize to able be should browsersweb- Most Edge, Microsoft include browsers These installed. is provider mDNS an as long as server Chrome. Google and Firefox,

USB
Game FRC-पाराप्र the need do (you required is setup network no interface, USB the using If automatically will driver roboRIO The Driver). USB roboRIO the provide to installed Tools listed software the and roboRIO and computer) (your host the of address IP the configure roboRIO. your utilize and locate to able be should above

## Ethernet/Wireless

case use home the in radio OpenMesh the on server DHCP the enable will can you router, a using and mode bridge in OpenMesh the putting are you if mode), (AP address IP basedteam- same the to set is bridge The router. the on addressing DHCP enable .10. TE.AM. 199 to 10.TE.AM. 20 from address DHCP out hand will and )10.TE.AM.1( before as range. IP same the in addresses out hand also will FMS field, the to connected When

## Summary

38.1.9
these FRC, For network. a on devices with communicate to us allow what are Addresses IP server DHCP a to connected are we if range 10.TE.AM.xx the in be to going are addresses are devices the if range 169.254.xx.yy locallink- the in or statically, assigned are they if or work, Addresses IP how on information more For present. server no is there but DHCP, to set Microsoft. by article this see
referred and DHCP to set be can devices all then mDNS, support network the on devices all if support not do devices some If ).FRC. local-TEAM- roboRIO (ex. names friendly their using to addresses. static use to set be to need will they mDNS,
the settings), static correct (with assignments IP Static or DHCP use to set are devices all If If needed. changes any without field the on and pit the both in work should communication connect will devices Static the then devices, DHCP some and Static some of mix a are there devices all setting either by resolved be can This pit. the in connect not will but field, the on pit. the in server DHCP a providing and settings current the leaving or settings, static to

Configurations IP
38.2
in and fields the on both events, at used configuration IP the describes document This : : पारा configurations. workaround and issues potential pits, the

Notation IP TE.AM
38.2.1
notation This document. this in places numerous in IPs of part as used is TE.AM notation The octets. address IP the for pairs digit two into number team digit four your splitting to refers
10.TE.AM. 2 Example:
10.0.12.2-12 Team

10.12.12.2-1212 대리
10.12.2.2-1202 Team
10.12.20.2-1220 Team
10.34.56.2-3456 이리
38.2.2 על המגרש
. $\operatorname{ck}$ (

הגדרת DHCP למגרש

addresses out hand will that team each for pools with server DHCP a runs Network Field The a and, 255.255 .255 .0 of mask subnet a with 10.TE.AM. 199 to 10.TE.AM. 20 of range the in DHCP a runs Radio Team the event, an for configured When .10.TE.AM. 4 of gateway default range the in addresses out hand will that robot the onboard devices for pool a with server of gateway a and 255.255.255.0, of mask subnet a with 10.TE.AM. 219 to 10.TE.AM. 200 of 10.TE.AM.1.

Kiosk by programmed 10.TE.AM. 1 Static - radio ACOM5P- or ANOM5P- OpenMesh
 by assigned 10.TE.AM.X automatically") address IP an ("Obtain DHCP - Station Driver field

Radio Robot by assigned 10.TE.AM.Y DHCP - used) (if camera IP Radio Robot by assigned 10.TE.AM. Z DHCP - used) (if devices Other

## Configuration Static Field the On

software or devices accommodate to devices your on IPs static configure to possible also is It that addresses avoid to sure make to want you so doing When mDNS. support not do which for 10.TE.AM. 1 are addresses These network. field the on is robot the when use in be will 10.TE.AM. than greater anything and router, field the for 10.TE.AM. 4 radio, OpenMesh the roboRIO The reserved. else or DHCP for configured device a to assigned be may which 20 webdashboard. the from set be can configuration network
Kiosk by programmed 10.TE.AM. 1 Static - radio OpenMesh
255.255. of mask subnet choice, reasonable a be would 10.TE.AM. 2 Static - roboRIO
(default) 255.0
be must mask subnet choice, reasonable a be would 10.TE.AM. 5 Static - Station Driver additionally without Server, FMS and robot the both reach to DS the enable to 255.0.0.0 is mask subnet the and assigned is address static a If gateway. default the configuring
.10.TE.AM. 4 to configured be must gateway default the then , 255.255.255.0 to set
255.255. subnet choice, reasonable a be would 10.TE.AM. 11 Static - used) (if Camera IP fine be should 255.0
subnet present) not camera if (.11 19.-12. or 10.-10.TE.AM. 6 Static - devices Other
255.255.255.0

Pits the In

Robot the of side wired the on running server DHCP a now is There 2018: for New : configuration. event the in Radio

# Configuration DHCP Pits the In 

Kiosk. by programmed 10.TE.AM. 1 Static - radio OpenMesh
Radio Robot by assigned ,10.TE.AM. 2 - roboRIO
by assigned, 10.TE.AM.X automatically"), address IP an ("Obtain DHCP - Station Driver Radio Robot
Radio Robot by assigned ,10.TE.AM.Y DHCP, - used) (if camera IP Radio Robot by assigned ,10.TE.AM.Z DHCP, - used) (if devices Other

## Configuration Static Pits the In

software or devices accommodate to devices your on IPs static configure to possible also is It that addresses avoid to sure make to want you so doing When mDNS. support not do which the for 10.TE.AM. 1 are addresses These network. field the on is robot the when use in be will router. field the for 10.TE.AM. 4 and radio OpenMesh

## Troubleshooting Network roboRIO

38.3
connectivity. network for (DHCP) addresses IP dynamic use tools FRC® and roboRIO The PC your between connectivity networking troubleshooting for steps describes article This roboRIO your and

## mDNS using roboRIO the Ping

application an is it if isolate to is issues networking roboRIO identifying to step first The to Enter press >- cmd type >- Start click this, do To issue. network general a or issue team your is \#\#\#\# where FRC.local-\#\#\#\#-roboRIO ping Type prompt. command the open with likely is issue the succeeds, ping the If enter. press and zeroes) leading no (with number check and application, the in configuration number team your verify application, specific the configuration. firewall your

## Address IP roboRIO the Ping

command the using ) Notation IP TE.AM( 10.TE.AM. 2 pinging try response, no is there If address mDNS the resolving issue an have you works, this if above. described as prompt the on installed resolver mDNS an having not are causes common most two The PC. your on using address .local the resolve to trying is that network the on server DNS a and system DNS. regular
is this Windows, On system. your on installed resolver mDNS an have you that Verify resolvers, mDNS on information more For Tools. Game FRC NI the by fulfilled typically . article Basics Network the see

OM5P- the have you sure make and networks other any from computer your Disconnect Removing .Utility Configuration Radio FRC the using point, access an as configured AN causing server DNS a not is there that verify help will system the from routers other any
issue. the
network the with issue an have may you fails, directly address IP the pinging If this, check To .Automatic to configured be should PC The PC. the of configuration select network, your on Depending .Internet \& Network >-Settings >-Start click settings IP to down Scroll network. connected your on click Then .Ethernet or Wifi selected. is option (DHCP) Automatic the ensure and Edit click and

## Troubleshooting Connection USB

IP roboRIO's the pinging try connection, USB the troubleshoot to attempting are you If as configured be should it PC, the to connected roboRIO one only is there as long As address. and powered, and connected roboRIO the have you sure make fails, ping this If 172.22.11.2. drivers roboRIO the installs tools game The Tools. Game FRC NI the installed have you that connection. USB the for needed
is hostname roboRIO the either that likely is it fails, ping .local the but succeeds, ping this If resolve to attempting is which server DNS a to connected are you or incorrectly, configured address. .local the
.2 roboRIO 1 roboRIO number: team your for imaged been has roboRIO your that Verify mDNS. by used hostname the sets This

## Connection Ethernet 38.3.5

that sure make first to helpful be may it connection, Ethernet an troubleshooting are you If open connection, USB the Using connection. USB the using roboRIO the to connect can you ethernet the on address IP an has roboRIO the that verify and webdashboard roboRIO the 169.*. assignedself- a be should this directly roboRIO the to tethering are you If interface. form the of address an be should it radio, ANOM5P- the to connected are you if address, *.* is here address IP only the If number. team FRC digit four your is TEAM where 10.TE.AM.XX connection. ethernet roboRIO physical the verify address, USB the

## Adapters Network Disabling

38.3.6
the putting or button physical a with off adapters the turning as same the always not is This adapters. disable to how on detail more provide steps following The mode. airplane into PC

icon. settings the on clicking by application Settings the Open
category. Internet \& Network the Choose

## Competition Robotics FIRST

Settings
जि Home

Find a setting

Network \& Interne
\#) Status

토 Ethernet

ค Dial-up
\% VPN
A) Airplane mod
((1)) Mobile hotspc
\# Proxy
.options adapter Change on Click

Control Pane

Manage wire Change adap Change adva settings
.Settings Adapter Change click pane, left the On
and adapter the on click right radio, the to connected one the than other adapter each For menu. the from Disable select

Proxies 38.3.7
networking. roboRIO the with issues cause may enabled proxy a Having Proxies.

## Configuration Firewall Windows

reasons. various for access network need $F R C ®$ in used tools programming the of Many with interfere potentially may Firewall Windows the configuration, exact the on Depending programs. these of more or one for access this

## Firewall Windows Disabling

note Additionally PC. the to privileges administrator requires firewall your Disabling : : पार्य internet. the to connect that computers for recommended not is firewall the disabling that
does this that beware should Teams Firewall. Windows the disable to is solution easiest The internet. the to connecting if attacks malware to vulnerable more potentially PC the make


Security \& Update Click

Security Windows Open select pane, right the In
protection network and Firewall select pane, left the In
options highlighted the of each on Click
off. it turn to toggle On the on click Then

## Apps Whitelisting

having are you programs FRC any for Firewall the to exceptions add can you Alternatively, with. issues

Settings >- Start Click


Security \& Update Click
protection network and Firewall select pane, left the In
firewall through app an Allow select window, the of bottom the At
list the in appears it that sure make with, issue an having are you program FRC each For made you setting, a change to need you If columns. 3 the of each in check a has it that and the If settings. the changing before right top the in button settings Change the click to need the to browse and button program... another Allow the click all, at list the in not is program it. add to program the of location

## Usage Bandwidth Measuring

2023 the in R704 (see bandwidth network limited allocated is team each Field FRC® the On bandwidth the determining on information more provides Whitepaper FMS The manual). bandwidth overall their measure to wish may teams some but camera, Axis the of usage measurement. that make to how details document This consumption.

Bridge FRC the using home at throttling bandwidth the simulate can Teams : Olll checked. checkbox bandwidth the with Utility Configuration

# (Win Monitor Performance the Using Bandwidth Measuring 

monitor to used be can that Monitor Performance the called tool inbuilt- a contains Windows interface. network a over usage bandwidth the

## Monitor TimeReal- Open

monitor. timereal- the display to Monitor Performance click pane, left the In
counter a add to screen the of top the near plus green the Click it select to Interface Network on click and locate pane, left top the In to instances All use (or interface network desired the locate pane, left bottom the In interfaces) all monitor
pane. right the to counter the add to >>Add Click graph. the to counters the add to OK Click

## Counters Extra Remove

Delete the press and Total/sec Bytes than other counter each select pane, bottom the In pane. the in remaining entry only the be should entry Total/sec Bytes The key.

## Properties Data Configure



Performance
General
Counters
Wetwor
相

Add.

Color:
Scale:
and Scale to next dropdown the on Click window. Properties the up bring to Ctrl+Q Press tab. Graph the on click Then .1 .0 select

## Properties Graph Configure

## Performanc <br> General

View:
Line

Title:

Vertical a

Show
Hol
to converted Megabits 7 is (this 917504 enter Scale Vertical under Box Maximum the In the close to OK click Then box. the checking by grid horizontal the on turn desired, If Bytes). dialog.

## Usage Bandwidth Viewing

haven't you (if interface selected the over normal as robot your to connect now may You with connection, the of usage bandwidth total the show will graph The already). so done also are values Max and Min Average, Last, The graph. the of top the at cap bandwidth the meaning Bytes/Second in are values these that Note graph. the of bottom the at displayed $\sim 100000$ at line flat a see should you open Station Driver the just With 917,504. is cap the Bytes/Second.

## Wireshark using Usage Bandwidth Measuring

monitor to program party 3rd a install to need will you monitor, performance use not can you If Download Wireshark. is purpose this for used be can that program One usage. bandwidth is installation After Windows. of version your for Wireshark of version latest the install and Driver the open robot, your to computer your Connect Wireshark. open and locate complete, using. be may you programs custom or Dashboard any and Station

the to connect to using are you interface the select side, left the on program Wireshark the In Start click and robot

Summary Statistics Open

.Summary then Statistics click then minute, 1 least at for run capture the Let

## Competition Robotics FIRST

## Usage Bandwidth View

| Wireshark Summa |
| :--- |
| File |
| Name |
| Length: |
| Format |
| Encapsulation: |
| Time |
| First packet: |
| Last packet: |
| Elapsed: |
| Capture |
| OS: |
| Capture applicatio |
| Capture file comm |
| Interface |
| LDevicelNPF_/6AS |
|  |
|  |
| Display |
| Display filter: |
| Ignored packets |
| Traffic |
| Packets |
| Between first and la |
| Avg. packets/sec |
| Avg. packet size |
| Bytes |
| Avg. bytes/sec |
| Avg. MBit/sec |
| Help |

summary the of bottom the near displayed is Megabits/Second in usage, bandwidth Average window.

## Modification Radio ACOM5P-

and shocks same the to it subject not does radio ACOM5P- the for case use intended The pressure significant to subjected is radio the If environment. FRC® the in sees it as forces at shield metal a shorting by reboot radio a cause to possible is it case, the of bottom the on article This board. the of bottom the on leads metal exposed some to radio the of bottom the scenario. this prevent to radio the to modification a details
reboot a cause to case the of bottom the to applied pressure significant takes It : : पाराप some in path power the to traced be can issues reboot radio FRC Most manner. this in than rather radio the of mounting strategic via risk this mitigating recommend We form. components): internal delicate damaging risk (and radio the modifying and opening
radio. the of bottom the on features tab" "mounting the using Avoid a go can little A absorption. shock some for allow to radio the mount to wish may You with surface robot a to or fastener loop and hook using radio the mounting way, long the reduce significantly can etc.) sheet, metal sheet or (plastic flex of amount small a radio. the by experienced forces

## Radio the Opening

Users device. serviceable user a be to designed not is ACOM5P- OpenMesh The : : वार avoid to carefully and slowly work to sure Make risk. own their at modification this perform cables. antenna radio as such components internal damaging
using radio the off them pry then radio the of side front the on feet rubber two the Locate two the remove screwdriver, Phillips small a Using etc. screwdriver, flat small fingernails,
feet. the under screws

## Latches Side

see can (you edge long each of middle the near radio the of lid the on latch small a is There slide tool, thin very or fingernail a Using picture). next the in clearly more latches these radio, the of middle the towards back to front from case and lid the between gap the along (note: side other the on Repeat radio. of middle the near you as pop small a hear should you are sides both sure make this, doing while side first the latchre- accidentally to hard not it's as side front the on open slightly be now should lid radio The proceeding). before unlatched above. image the in shown

Look pads. heatsink the to due it remove you as lid the to stick may board The : 기리 it, with coming is board the if see to lid the remove you as radio the of vents the through the from it separate to down board the hold to tool small a insert to need may you is it if applied vents, the through fits that tool similar or screwdriver small a recommend We lid. scroll can You hole. screw the above right side, jack barrel the on corner front the through area. this in like looks board the what see to removed lid the with picture the to down
case the hit holders screw the until slightly) (lifting forward it slide lid, the removing begin To this. doing while areas latch the on pressure apply to need may (you front
continuing while shown as side, jack barrel the from away slightly lid the rotating begin Next, Continue corner. right top the in visible triangle small the from lid the unhook will This lift. to jack barrel the towards corner left top the pushing while direction this in slightly rotate to Then corner. left top the in feature similar a unhook to step) this in further lift to try (don't body. the from away completely lid the lift

## Board Remove

 steps. next the performing while them damage to not care take fragile, are connectors,
fingers your with ports network both or one grasping recommend we board, the remove To network the until upward and radio) the of front the (toward inward pushing and shown) (as case. the from free are jack barrel and ports
shield metal the expose to cable) antenna grey short the (towards up board the Tilt underneath.
the on button reset small $a$ is there that notice may you step, this perform you When : alll reset the pressing that Note case. the in hole the than larger is that board the of underside is radio the of case the drilling that and effect no has installed firmware FRC the with button modification. permitted a not

## Tape Apply <br> 38.6 .2

network the of inside just area the in shield metal the to tape electrical of piece a Apply board the of underside the on leads exposed the prevent will This openings. jack port/barrel
plate. this on circuiting short from

## Radio assembleRe- 38.6.3

it: open to instructions the reversing by radio the assembleReand front the near holes screw the with aligns it sure making down, back board the Lay securely seats
Take left. to right from in it moving by feature retaining left back the onto lid the Slide area this in capacitor the of care in feature retaining right back the slide and downwards press lid, the Rotate latches the seat to lid the of front/middle the on firmly down Press feet front in screws 2 Replace feet front Replace


## Forwarding Port 39.1

useful is This host/port. another to ports local forward to way easy an provides class This the to tethered computer a from devices connectedEthernet- access to way a provide to forward can you means this forwarder, port TCP raw a as acts class This port. USB roboRIO

SSH. as such connections

## Port Remote a Forwarding

The robot. their controlling for roboRIO the to directly connect to wish may teams Often for connection Pi Raspberry the forward to used be can ) C ++ , Java( class PortForwarding remote the between bridge a establishes class PortForwarding The times. these during usage String port, PortForwarder.add(int do simply Java, in port a forward To client. the and .remotePort) int remoteName, Java


C++


Python
)80 ,"wpilibpi.local" ,8888add( getInstance(). PortForwarder.wpiutil
important also is It port. forwarded local your as 1024 than less port a use not can You : Cl Cl IP use only should and )http://wpilibpi. local( URLs full use not can you that note to

## Port Forwarded a Removing

port the being port with port) remove(int call simply port, specified a on forwarding stop To happen. will nothing forwarded, being not is that port a on remove( ) call you If number.

Java


C++
):
);8888GetInstance().Remove(: PortForwarder: wpi

Python
)8888remove(.getInstance(). PortForwarder wpiutil

40.1 הנחיות תרומה
to unfamiliar are you If project. docsfrc- the for guidelines contribution the to Welcome .here it on up read please format, reStructuredText the in writing


40.1.1
 ง ใ



 . H (1)
 ต

Competition Robotics FIRST-ㄴำ


Process Release 40.1.2
the and stable// site main the handling for process release special a uses docsfrcbelow. detailed is flow This .latest// site development

Season: During
branch main to made Commit website the on latest// and stable// Updates

Season: of End
purposes archival for year, with tagged is Repository
Season:Off-
commit seasonon- last the to locked is branch stable
branch main to made Commit
site documentation the on latest// updates Only

PR a Creating
branch main the to point should They GitHub. on repo docsfrc- the to made be should PRs
.stable not and

## Content New Creating

know should you things couple a are There project! docsfrc- the to contributing for Thanks started! getting before
articles? place to Where
that articles Standalone subject. opinionated pretty a be can articles new for location The category subject mentioned into placed be should category subject already an into well fall section). simulation the into placed be should simulation about something on (documentation two references or combines article an when complicated pretty get can things However, the on issue an open to author the advise we situation, this In sections. existing separate

PR. the opening before going discussion get to repository
 ज , ㄷ . ㄹำ

## sections? place to Where

to author the advise We content. of amount large a contain they as tricky, quite are Sections PR. a up opening before discussion gather to issue an open

## Articles Other Linking

the article, another in described is that content references article the that instance the In reference. first the upon article that to link to effort best make should author
tutorial: drivetrain a in content following the have we Imagine

```
    _competition. a of outside code robot their test to need often may Teams
        uthis. achieve to means a is `link-to-simulation:simulation>< Simulation`:ref: }
sever without code robot their test and test unit to way a teams offers Simulation }
                        robot. a needing }
```

author the structure the is This linked. is Simulation of instance first the only how Notice you If content. of topics different has article linked a where times are There follow. should reference new each to link should you article, the in content of types different the reference otherwise). appropriate it deemed has author the where situations in (except once
40.2 הנחיות סגנון

ำ

40.2.1 שמות הקבצים

, ำ .hardware.rst-ultrasonics

text recommended the extension, rst. the with files editing issues having are you If : : पार extension. rST the with Code VS is editor

### 40.2.2 טקסט

function wrapword- the use readability, need you If line. same the on be should content text All editor. your of

RoboRio) 니 roboRio, RoboRIO, 디) roboRIO •
LabView) $\bar{\square}$ labview 미) LabVIEW •
(
 ( ( linux) [C) Linux • java) [1) Java •
 ㄴำ
ำ
 .

 . . .

 . deprecated`:term: using by glossary the

Whitespace 40.2.3
הזחה
. $x$ ( spaces. 3 be should toctree: : . . line new as directives content of Indentation

שורות ריקות
be should There titles. section and blocks text basic separating line blank 1 be should There directives. content and blocks text separating line blank 1

## פנימי Whitespace 

40.2.4 כותרות
. . . ำ

ำ
ำ
ำ
.
headings. for case title Use
40.2 .5 רשימות




### 40.2.6 בלוקי קוד

## Include) Literal (Remote RLI 40.2.7

lines code pulls This used. be should RLI an blocks, code using of instead possible, When keeps automatically This programs. example the using commonly most GitHub, from directly is: RLI an of format The made. are that changes any with date to up code the

raw the to link to sure make Also used. be to needs tabcode- than rather tabgroup- that Note page. the of corner right top the in button Raw handy a is There GitHub. on file the of version

## 40.2 .8 אזהרות

There itself. admonition the as line same the on text their have should )here (list Admonitions an of inside content of sections multiple having when however, rule, this to exceptions are not is admonition an of inside content of sections multiple having Generally admonition.
recommended.

$\square$
40.2.9 קישורים

Links Internal
section and filename ReStructuredText the on based generatedauto- be will Links Internal title.
documents. and sections to link to ways several are here example, For
the use must You section. document a reference to format this Use apis/sensors/-docs/software/hardware`:ref: document. the of path absolute .ultrasonics Analog to renders `ultrasonics software:Analog-ultrasonics underscore. single the Note document. same the of section a reference to format this Use .Images to renders _`Images`
paths relative use can You document. a of leveltop- the reference to format this Use
 apis/sensors/-docs/software/hardware/`:doc: path the of beginning the at slash forward the is rendered text the that Note .Software - Ultrasonics to renders `software-ultrasonics
filename. target the of regardless page target the of title section main
actual the surrounding by text displayed the customize may you : doc: or : ref: using When the and `backtick first the between text custom the adding and >< brackets angle with link apis/-<docs/software/hardware text custom': ref: example For .<bracket angle first .text custom to renders`>ultrasonics software:Analog-sensors/ultrasonics

## Links External

note to thing important The hyperlinks. anonymous as links external format to preferred is It used, is underscore one only that situation the In text. the appending underscores two the is document. the compiling when arise may issues
cool! pretty s'it and __https://example.com>< link a is this` there, Hi
. $\operatorname{ch}$ (

```
cool! pretty s'it and _`link a is this` there, Hi
    https://example.com link: a is this_ ..
```

40.2.10 תמונות



images/my-article/my-image.png ::image .. image. the describing here text alt add Always :alt:

קבצי תמונה
name/-document of directorysub- directory, document the in stored be should files Image .images

 ำ


images/my-document/my-image.png ::image .. image example An :alt:

תמונות וקטוריות
 . $\operatorname{ch}$ (

## 

images/my-document/my-image.svg ::image .. image. the describing here text alt add Always :alt:
 ㄴำ

. H (
diagrams/my-document/diagram-1.drawio.svg ::image .. image. the describing here text alt add Always :alt:







: ㄷำ

40.2.12 תוכן עניינים

 source/index. at located file index root the to added be then can file index. rst category The .rst
40.2.13 דוגמאות

40.2.14 הערה חשובה!



## 40.3 הנחיות בנייה

 .

### 40.3.1 דרישות מקדימות

clone git using by cloned is repository docsfrc- the that and installed is Git that Ensure .docs.git-https://github.com/wpilibsuite/frc

## IDE / Editors Text

reStructuredText the with along Code VS use you that recommend we development, For work. will editor text any However, .extension

## Windows

required only are they HTML, building for required not are convert-rsvg and MikTeX : : पारा builds. PDF Windows for


Python. 대ํ

ำ source/requirements.txt r-install pip : हैं
 packages.txt-require=@miktex-- verbose-- mpm
(Ubuntu) Linux
update apt sudo \$
python3-pip python3 install apt sudo \$ wheel setuptools pip U- install pip m- python3 \$ source/requirements.txt r-install pip m- python3 \$ texlive- texlive-fonts-recommended texlive-latex-recommended y-install apt sudo \$ texlive-fonts- texlive-xetex texlive-luatex texlive-lang-greek latexmk latex-extra $\rightarrow$ librsvg2-bin dvipng extra $\hookrightarrow$
40.3.2 בנייה

USERPROFILE\%\Documents"\%" cd > PS
https://github.com/wpilibsuite/frc-docs.git clone git C:\Users\Example\Documents> PS
...'frc-docs' into Cloning done. 217, objects: Enumerating remote:
done. (217/217), 100\% objects: Counting remote:
page) next on (continues
(ㄴำ ำ
done. (196/196), 100\% objects: Compressing remote: 2370 pack-reused 21), (delta 68 reused 50), (delta 2587 Total remote: done. MiB/s, 20.32 | 42.68MiB (2587/2587), 100\% objects: Receiving done/ (1138/1138), 100\% deltas: Receiving frc-docs cd C:\Users\Example\Documents> PS C: \Users\Example\Documents\frc-docs> PS

## Lint בדיקת





# בדיקת קישורים <br>   

בדיקות גודל התמונות
will check This 500 KB . below are images all that verify to sizecheck make $\backslash$. run Please the to added are and basis case by case a on allowed are Exclusions fails. it if CI fail file. configuration the in list IMAGE_SIZE_EXCLUSIONS

בדיקת הפניות

.`source" $\square$
Run file. redirects the to files renamed/moved add automatically will writer redirect The .rediraffewritediff make\.
to it add not will writer redirect the changed, substantially and moved both is file a if : Clll updated. manually be to need will file redirects.txt the and file, redirects.txt the
the fail will This files. all for redirects valid are there that sure makes checker redirect The are files all verify to rediraffecheckdiff make\. run check, To pass. not does it if buildbot redirect files all that ensure to ran be to need may build HTML an Additionally, redirected. properly.
the in located is PDF The content. PDF generate to latexpdf make\. command the Type repository. the of root the at directory build/latex

EPUB 40.3 .4
the in located is EPUB The content. EPUB generate to epub make\. command the Type repository. the of root the at directory build/epub
libraries PartyThird- Python Adding 40.3.5
be must requirements.txt way, any in dependencies docsfrc- modifying After : source/ output-- requirements.txt f- export poetry running by regenerated repo. the of root the from hashes-without-- requirements.txt
reproducible. are builds sure make to dependencies its manage to Poetry uses docsfrc-

התקנת Poetry
.poetry install pip command: following the Run installed. is Poetry that Ensure

הוספת תלות
Make .pyproject.toml of section [tool. poetry.dependencies] the to dependency the Add lock poetry command: following the run Then, version. exact an specify to sure .update-no--
pyproject. of section [tool. poetry.dependencies] the in version dependency's the Update .update-no-- lock poetry command: following the run Then, .toml

## עדכון תלות נסתרת

.lock poetry command: following the Run
40.4 הנחיות שמירת Draw.io


#### Abstract

. in ends or folder, diagrams a in is that file any modify don't you sure Make : पर्या the breaking risk might you otherwise draw.io; than other program any in drawio.svg uneditable. it making file, the of metadata


 ㄴ (

export the using but metadata, embedded the with diagram a save to methods few a are There they otherwise diagram; the in images any embed to us allows it because preferred is menu docs. the on properly render not might

 ำ



40.5.1 זרימת עבודה


team. WPILib the with communication of means direct a is This !discussions GitHub Join 2. fashion. streamlined and fast a in questions us ask to this use can You


! Cl (

### 40.5.2 קישורים

the replace can you link, a translate To syntax. original their in preserved be must Links appropriate the with title) English the with replaced be will (this text ME TRANSLATE translation.
: $\operatorname{col}$ (
${ }_{4}$ FRC the Wiring`:doc: the see please instructions/diagrams, wiring complete For   TEXT TRANSLATED`:doc: the see please instructions/diagrams, wiring complete For . document> System Control FRC the <Wiring $\rightarrow$

docs/< TEXT TRANSLATED`:ref: the see please instructions/diagrams, wiring complete For `Robot> FRC an Wire to zero-to-robot/step-1/how-to-wire-a-simple-robot:How $\hookrightarrow$
40.5.3 פרסום התרגומים

40.5.4 דיוק


40.6.1 סינית

Dhc 8192 •
Zhang Atlus • Gong Jiangshan •

Keseterg •
Zhao Michael •
Huang Ningxi •
Xin Ran •
5308 Team •
Wu Tianrui •
Zhang Tianshuang •
Sun Xun •
Zhao Yitong •
Li Yuhao •

१०० •
느․
१०० •
느․
느․
Sherry ${ }^{-}$
40.6.2 צרפתית

Schneider Alexandra •
Theberge Andre •
Chang Andy •
Shalit Austin •
Smith Dalton •
Renaud Daniel •
Beaulac Étienne •
Giffard Félix •
Kenwell Kaitlyn •
Bedard Luna Laura •


> Sepúlveda Heber •
> Gutierrez Heriberto •
> Espino Hugo •
> Eng Lian •
> Luis_Hernández • Adame León De Angel Miguel • Gutiérrez Ariel Óscar • Maynez Paulina • Cote Pierre • Lozano Ranferi •
> Acosta Rodrigo • Fernandez Sofia • Moreno Zara •
> (10.5

Bilgin Hasan • Alkaya Müfit •

Özemre Esra • Oktemer Ceren •

T Demet •
Tumkaya Demet •
Aldeniz Melis •
Serdaroğlu Lal •
Uslu Çağan •
Ünlü Duru •
Ünay Arhan •
Akdoğan Doruk •
Zagyapan Ada •
Alkaya_3390 Müfit •
Şengel Mayra •
Hatipoğlu Duru •
Yiğit Ece •
Akın Elif •
Özer Tuna •
Köşkeroğlu Serra Nesrin •
40.6 .6 עברית

Radzin Aric •
Smith Dalton •
Ziv Itay •
Ashery Ofek •
Grossman Shai •
Starlight220•
Shlomi Yotam •


## Start Quick 41.1

using and publishing building, cloning, through you guide that instructions of list a is Below replacement a as intended not is start quick This project. robot a in binaries allwpilib local document. this in listed further is that information the for https://github.com/wpilibsuite/allwpilib. clone git with repository the Clone git you if cache-build-- build gradlew/. or build gradlew/. with repository the Build connection internet an have
publish gradlew/. running by locally artifacts the Publish
build.gradle project's robot your Update •

> ליבה Repository

NetworkTables

## G

```
1250,gain
1250,distribution Gaussian
1250,gradient
577,GradleRIO
```

H
1250 ,state hidden
I
577 , programming imperative
577 ,IMU
1250 ,input
J
577 ,Java
577 ,JSON
K
577 ,KOP
L
577 ,LabVIEW
1250 ,regression squaresleast-
1251 ,LQR

## M

577 ,mass
1251 ,measurement
1251 ,model
577 ,inertia of moment
578 ,mutable

## N

577 ,NetworkTables

## 0

```
1251 ,observer
1251,orthogonal
1251,output
```


## 575 ,EMFback-

1249 , control bangbang-
575 ,boolean

## C

$$
576 \text {,C++ }
$$

$$
575 \text {,stack call }
$$

$$
1249 \text {, system coordinate Cartesian }
$$

$$
575 \text {, theorem limit central }
$$

$$
1249 \text {,losses churning }
$$

$$
575 \text {,Mechanics Classical }
$$

$$
575 \text {,composition }
$$

$$
1249 \text {,effort control }
$$

1249, law control

$$
1249 \text {, signal control }
$$

$$
1249 \text {,controller }
$$

$$
1249 \text {,convolution }
$$

$$
1249 \text {,force electromotivecounter- }
$$

$$
575 \text {,CRTP }
$$

$$
1249 \text {, current }
$$

## D

576 ,programming declarative
576 ,injection dependency
1250 ,derivative
576 , pattern design
576 , DHCP
1250 ,dynamics

## E

576 ,encapsulation
576 ,entry
576 ,enumeration
1250 ,error
576 , programming drivenevent-
1250 ,search exponential
1250 ,smoothing exponential

## F

576 ,point floating
576 ,FMS
577 ,FPGA

```
P
578,motor DC magnetpermanent-
578,persistent
1251,portrait phase
1251 ,PID
1251,plant
578,pose
1251,variable process
578,property
578,publisher
R
1252,squaredr-
578,RAII
578,composition recursive
1252,reference
578,retained
578,reflectionretro-
1252,time rise
1252,RMSE
S
578,serialized
1252,setpoint
1252,time settling
1252,function signum
578,library software
579,valve solenoid
1252,state
579,machine state
1252,robust statistically
1252,error statesteady-
1252,input step
1253,response step
579,subscriber
1253 ,system
1253,identification system
1253,response system
T
579,telemetry
579,topic
579,torque
579,transitory
V
1253,drag viscous
1253 ,voltage
X
1253 ,dotx-
1253,hatx-
```



```
575 , ㅈำ
577 , ำด'
576 , ำำ
579 , ำापा
```





```
579 , ำापा
577 , KOP 릳
578 , ำ
```


[^0]:    . .quide Quickstart MAX SPARK

[^1]:     Blasts). mailE- or Updates Team Blog, (FRC channels communication usual our

[^2]:    >WPILib m
    WPILib: Mar
    wintill. Thn
    Select an opti
    Manage curre
    Check for upd
    Check for upd
    Install new lib
    Install new lib

[^3]:    name. new a specifying and header its on clickingright- by renamed be can widget A

[^4]:    ;edu.wpi.first.wpilibj.DataLogManager import ;edu.wpi.first.wpilibj.DriverStation import
    log data to recording Starts //
    (); startDataLogManager.

[^5]:    73
    74

[^6]:    u\{ piston]\&RunOnce([::cmd::condition.Get()).OnTrue(frc2 return \{ condition]\&Trigger([ kForward)));::DoubleSolenoid::piston.Set(frc $\hookrightarrow$

[^7]:    5

[^8]:    \{ override \&\& TransferOwnership() >Command<unique_ptr::std
    ));this*move(::(std>MyCommand<make_unique::std return

[^9]:    5

[^10]:    5

[^11]:    second per meters 2 is here speed relative field desired The
    per meters 2 and wall, station alliance s'opponent the toward rotation desired The boundary. field left the toward second

[^12]:    meters 3 forward, second per meter 1 speeds: chassis Example // second per radians 1.5 at rotation and left, the to second per // counterclockwise. //
    rad_per_s\};_1.5 mps,_3 mps,_1speeds\{ ChassisSpeeds::frc
    structured s'C++17 use can we Here, speeds. wheel to Convert // MecanumDriveWheelSpeeds the up split automatically to feature bindings // components individual s'it into struct //
    kinematics.ToWheelSpeeds(speeds); = br] bl, fr, [fl, auto

[^13]:    ,Java( Project Example RamseteCommand the from file constants the of parts relevant The below. seen be can )

[^14]:    torque (frictional) dependantvelocity- a as flywheel the to injected being ball a model we simulation, this For ${ }^{1}$ very a is This mark. second 5 the around right rotation, wheel a of quarter one for wheel the of spinning the fighting would It load. sudden a under behavior controller's the illustrate to sufficient is but ball, the model to way simplistic system. the for output in "pulldown" actual the or trajectory, ball's the predict to sufficient be not

[^15]:    ProfiledPIDController a Creates //
    second per meters 5 is velocity Max //
    second per meters 10 is acceleration Max //
    controller (>meters::units<ProfiledPIDController::frc
    kD, kI, kP,
    mps sq\}); $10 \mathrm{mps}, 5$ Constraints\{::>meters::units<TrapezoidProfile::frc

[^16]:    trajectory. original the of shape the changes methods these of Neither : ㄷㅐㅣ

[^17]:    (adjustedSpeeds); toSwerveModuleStateskinematics. = moduleStates ][SwerveModuleState
    ;]0[moduleStates = frontLeft SwerveModuleState
    ]1[moduleStates $=$ frontRight SwerveModuleState

[^18]:    voltages extra adds radiation electromagnetic Stray sources. of sorts all from comes noise robot, real a In ${ }^{1}$ causes lash gear units, measurement inertial off throw variations temperature and vibrations readings, sensor to by that, realize to important It's things. of sorts all change... directions when inaccuracies have to encoders be might them of Some pattern. any follow to guaranteed aren't "noise" of sources these of each themselves, loopsingle- or "pops" be might Others radio. the on heard probably you've vibrations random noise" "white the Central the However, robot. the on events with correlated strongly but zero, nominally be might Others errors. we as distributed, are noise of sources individual the how of regardless that mathematically shows Theorem Limit know not do we Since Gaussian. a like distributed is eventually effect combined their up them of more and more add
    function. Gaussian that indeed is make can we model a of choice best the noise, of sources individual exact the

[^19]:    m_poseEstimator.Update(m_gyro.GetRotation2d(),
    meter_t\{m_leftEncoder. GetDistance()\},: :units
    meter_t $\left\{\mathrm{m} \_\right.$rightEncoder. GetDistance() $\left.\}\right)$; : : units

[^20]:    the using before issue known following the on yourself familiarize to sure Be : 젤 Lockups System Causing I2C Onboard port: I2C onboard

[^21]:     application! safe a is It network! your

