
FIRST Robotics Competition

WPILib

Oct 13, 2023

Zero to Robot

1 Introduction 3

2 Step 1: Building your Robot 5

3 Step 2: Installing Software 53

4 Step 3: Preparing Your Robot 107

5 Step 4: Programming your Robot 129

6 Hardware Component Overview 147

7 Software Component Overview 177

8 What is WPILib? 193

9 2023 Overview 195

10 VS Code Overview 207

11 Dashboards 237

12 Telemetry 373

13 FRC LabVIEW Programming 385

14 Hardware APIs 431

15 CAN Devices 507

16 Basic Programming 521

17 Support Resources 571

18 FRC Glossary 573

19 Driver Station 579

20 RobotBuilder 637

i

21 Robot Simulation 727

22 OutlineViewer 763

23 Vision Processing 765

24 Command-Based Programming 855

25 Kinematics and Odometry 951

26 NetworkTables 971

27 Path Planning 1025

28 roboRIO 1089

29 Advanced GradleRIO 1107

30 Advanced Controls 1123

31 Convenience Features 1249

32 WPILib Example Projects 1255

33 Third Party Example Projects 1261

34 Hardware - Basics 1263

35 Hardware Tutorials 1319

36 Sensors 1321

37 Getting Started with Romi 1375

38 Networking Introduction 1409

39 Networking Utilities 1453

40 Contributing to frc-docs 1455

41 Developing with allwpilib 1475

Index 1477

ii

FIRST Robotics Competition

Welcome to the FIRST® Robotics Competition Control System Documentation! This site con-
tains everything you need to know for programming a competition robot!
Community translations can be found in a variety of languages in the bottom-left menu.
Returning Teams
If you are a returning team, please check out the overview of changes from 2022 to 2023 and
the known issues.
Changelog
Known Issues
New Teams
The Zero-to-Robot tutorial will guide you through preparation, wiring and programming a
basic robot!
Go to Zero-to-Robot
Hardware Overview
An overview of the hardware components available to teams.
Go to Hardware Overview
Software Overview
An overview of the software components and tools available to teams.
Go to Software Overview
Programming Basics
Documentation that is useful throughout a team’s programming process.
View articles
Advanced Programming
Documentation that is suited toward veteran teams. This includes content such as Path Plan-
ning and Kinematics.
View articles
Hardware
Hardware tutorials and content available for teams.
View articles
Romi Robot
The Romi Robot is a low-cost Raspberry Pi based platform for practicing WPILib program-
ming.
View articles
API Documentation
Java and C++ class documentation.
Java
C++
Software Tools
Essential tooling such as FRC Driver Station, Dashboards, roboRIO Imaging Tool and more.

1

https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://github.wpilib.org/allwpilib/docs/release/cpp/index.html

FIRST Robotics Competition

View articles
Example Projects
This section showcases the available example projects that teams can reference in VS Code.
View articles
Status Light Quick Reference
Quick reference guide for the status lights on a variety of FRC hardware.
View article
3rd Party libraries
Tutorial on adding 3rd party libraries such as CTRE and REV to your robot project.
View article

2

1
Introduction

Welcome to the official documentation home for the FIRST® Robotics Competition Control
System and WPILib software packages. This page is the primary resource documenting the
use of the FRC® Control System (including wiring, configuration and software) as well as the
WPILib libraries and tools.

1.1 New to Programming?

These pages cover the specifics of the WPILib libraries and the FRC Control System and
do not describe the basics of using the supported programming languages. If you would like
resources on learning the supported programming languages check out the recommendations
below:

Note: You can continue with this Zero-to-Robot section to get a functioning basic robot
without knowledge of the programming language. To go beyond that, you will need to be
familiar with the language you choose to program in.

3

FIRST Robotics Competition

1.1.1 Java

• Code Academy
• Head First Java 2nd Edition is a very beginner friendly introduction to programming in

Java (ISBN-10: 0596009208).

1.1.2 C++

• LearnCPP
• Programming: Principles and Practice Using C++ 2nd Edition is an introduction to C++

by the creator of the language himself (ISBN-10: 0321992784).
• C++ Primer Plus 6th Edition (ISBN-10: 0321776402).

1.1.3 LabVIEW

• NI Learn LabVIEW

1.2 Zero to Robot

The remaining pages in this tutorial are designed to be completed in order to go from zero to
a working basic robot. The documents will walk you through wiring your robot, installation
of all needed software, configuration of hardware, and loading a basic example program that
should allow your robot to operate. When you complete a page, simply click Next to navigate
to the next page and continue with the process. When you’re done, you can click Next to
continue to an overview of WPILib in C++/Java or jump back to the home page using the logo
at the top left to explore the rest of the content.

4 Chapter 1. Introduction

https://www.codecademy.com/learn/learn-java
https://www.amazon.com/dp/0596009208/
https://www.learncpp.com/
https://www.amazon.com/dp/B00KPTEH8C
https://www.amazon.com/dp/0321928423/
https://www.ni.com/getting-started/labview-basics/

2
Step 1: Building your Robot

An overview of the available control system hardware can be found here.

2.1 Introduction to FRC Robot Wiring

Note: This document details the wiring of a basic electronics board for the kitbot or to allow
basic drivetrain testing.
Some images shown in this section reflect the setup for a Robot Control System using SPARK
or SPARK MAX Motor Controllers. Wiring diagram and layout should be similar for other
motor controllers. Where appropriate, two sets of images are provided to show connections
using controllers with and without integrated wires.

2.1.1 Overview

REV
CTR

2.1.2 Gather Materials

Locate the following control system components and tools
• Kit Materials:

– Power Distribution Hub (PH) / Power Distribution Panel (PDP)
– roboRIO
– Pneumatics Hub (PH) / Pneumatics Control Module (PCM)
– Radio Power Module (RPM) / Voltage Regulator Module (VRM)
– OpenMesh radio (with power cable and Ethernet cable)
– Robot Signal Light (RSL)

5

FIRST Robotics Competition

Fig. 1: Diagram courtesy of FRC® Team 3161 and Stefen Acepcion.

6 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Fig. 2: Diagram courtesy of FRC® Team 3161 and Stefen Acepcion.

2.1. Introduction to FRC Robot Wiring 7

FIRST Robotics Competition

– 4x SPARK MAX or other motor controllers
– 2x PWM y-cables
– 120A Circuit breaker
– 4x 40A Circuit breaker
– 6 AWG (16 mm2) Red wire
– 10 AWG (6 mm2) Red/Black wire
– 18 AWG (1 mm2) Red/Black wire
– 22 AWG (0.5 mm2) Yellow/Green twisted CAN cable
– 8x Pairs of 10-12 AWG (4 - 6 mm2) (Yellow) quick disconnect terminals (16x ring

terminals if using integrated wire controllers)
– 2x Anderson SB50 battery connectors
– 6 AWG (16 mm2) Terminal lugs
– 12V Battery
– Red/Black Electrical tape
– Dual Lock material or fasteners
– Zip ties
– 1/4” or 1/2” (6-12 mm) plywood

• Tools Required:
– Wago Tool or small flat-head screwdriver
– Very small flat head screwdriver (eyeglass repair size)
– Wire cutters, strippers, and crimpers
– 7/16” (11 mm may work if imperial is unavailable) box end wrench or nut driver
– Additional 7/16” wrench/nut driver or Philips head screw driver
– For CTR PDP only: 5 mm Hex key (3/16” may work if metric is unavailable)
– For CTR PDP only: 1/16” Hex key

2.1.3 Create the Base for the Control System

For a test board, cut piece of 1/4” or 1/2” (6-12 mm) material (wood or plastic) approximately
24” x 16” (60 x 40 cm). For a Robot Quick Build control board see the supporting documen-
tation for the proper size board for the chosen chassis configuration.

8 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

2.1.4 Layout the Core Control System Components

REV

CTR

2.1. Introduction to FRC Robot Wiring 9

FIRST Robotics Competition

Lay out the components on the board. An example layout is shown in the image above.

10 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

2.1.5 Fasten Components

Using the Dual Lock or hardware, fasten all components to the board. Note that in many FRC
games robot-to-robot contact may be substantial and Dual Lock alone is unlikely to stand up
as a fastener for many electronic components. Teams may wish to use nut and bolt fasteners
or (as shown in the image above) cable ties, with or without Dual Lock to secure devices to
the board.

2.1.6 Attach Robot Side Battery Connector

REV
The next step will involve using the Wago connectors on the PDH. To use the Wago connectors,
open the lever, insert the wire, then close the lever. Two sizes of Wago connector are found
on the PDH:

• Main power connectors: Accept 4 - 18 AWG (.75 - 25 mm2), strip 20 mm (~3/4”)
• High current channel connectors: Accept 8 - 24 AWG (.25 - 10 mm2), strip 12 mm (~1/2”)

To maximize pullout force and minimize connection resistance wires should not be tinned
(and ideally not twisted) before inserting into the Wago connector.

2.1. Introduction to FRC Robot Wiring 11

FIRST Robotics Competition

Requires: Battery Connector, 6 AWG (16 mm2) terminal lugs, 7/16” (11 mm) Box end
Attach terminal lug to positive (red) wire of battery connector. Strip .75” off the black wire.
Lift the lever above the black main power input terminal on the PDH until it clicks into place.
Insert the wire. Pull the lever down to secure the wire.
Using a 7/16” (11 mm) box end wrench, remove the nut on the “Batt” side of the main breaker
and secure the positive terminal of the battery connector
CTR

12 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Battery Connector, 6 AWG (16 mm2) terminal lugs, 1/16” Allen, 5 mm Allen, 7/16”
(11 mm) Box end
Attach terminal lugs to battery connector.

1. Using a 1/16” Allen wrench, remove the two screws securing the PDP terminal cover.
2. Using a 5 mm Allen wrench (3/16”), remove the negative (-) bolt and washer from the

PDP and fasten the negative terminal of the battery connector.
3. Using a 7/16” (11 mm) box end wrench, remove the nut on the “Batt” side of the main

breaker and secure the positive terminal of the battery connector

2.1. Introduction to FRC Robot Wiring 13

FIRST Robotics Competition

2.1.7 Wire Breaker to Power Distribution

REV

Requires: 6 AWG (16 mm2) red wire, 1x 6 AWG (16 mm2) terminal lugs, 7/16” (11 mm) wrench
Secure one terminal lug to the end of the 6 AWG (16 mm2) red wire. Using the 7/16” (11 mm)
wrench, remove the nut from the “AUX” side of the 120A main breaker and place the terminal
over the stud. Loosely secure the nut (you may wish to remove it shortly to cut and strip the
other end of the wire). Measure out the length of wire required to reach the positive terminal
of the PDH.

1. Cut and strip the other end of the red wire.
2. Using the 7/16” (11 mm) wrench, secure the wire to the “AUX” side of the 120A main

breaker.
3. Lift the lever on the positive (red) input terminal of the PDH, insert the wire, then close

the terminal.
CTR

14 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: 6 AWG (16 mm2) red wire, 2x 6 AWG (16 mm2) terminal lugs, 5 mm Allen, 7/16” (11
mm) box end
Secure one terminal lug to the end of the 6 AWG (16 mm2) red wire. Using the 7/16” (11
mm) box end, remove the nut from the “AUX” side of the 120A main breaker and place the
terminal over the stud. Loosely secure the nut (you may wish to remove it shortly to cut, strip,
and crimp the other end of the wire). Measure out the length of wire required to reach the
positive terminal of the PDP.

1. Cut, strip, and crimp the terminal to the 2nd end of the red 6 AWG (16 mm2) wire.
2. Using the 7/16” (11 mm) box end, secure the wire to the “AUX” side of the 120A main

breaker.
3. Using the 5 mm Allen wrench, secure the other end to the PDP positive terminal.

2.1. Introduction to FRC Robot Wiring 15

FIRST Robotics Competition

2.1.8 Insulate power connections

REV

Requires: Electrical tape
Using electrical tape, insulate the two connections to the 120A breaker.
CTR

16 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: 1/16” Allen, Electrical tape

2.1. Introduction to FRC Robot Wiring 17

FIRST Robotics Competition

1. Using electrical tape, insulate the two connections to the 120A breaker. Also insulate
any part of the PDP terminals which will be exposed when the cover is replaced.

2. Using the 1/16” Allen wrench, replace the PDP terminal cover

2.1.9 Motor Controller Power

REV

18 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire Stripper Terminal Controllers only: 10 or 12 AWG (4 - 6 mm2) wire , 10 or 12
AWG (4 - 6 mm2) fork/ring terminals, wire crimper
For SPARK MAX or other wire integrated motor controllers (top image):

• Cut and strip the red and black power input wires, then insert into one of the Wago
terminal pairs.

For terminal motor controllers (bottom image):
1. Cut red and black wire to appropriate length to reach from one of the Wago terminal

pairs to the input side of the motor controller (with a little extra for the length that will
be inserted into the terminals on each end)

2. Strip one end of each of the wires, then insert into the Wago terminals.
3. Strip the other end of each wire, and crimp on a ring or fork terminal
4. Attach the terminal to the motor controller input terminals (red to +, black to -)

CTR
The next step will involve using the Wago connectors on the PDP. To use the Wago connectors,
insert a small flat blade screwdriver into the rectangular hole at a shallow angle then angle the
screwdriver upwards as you continue to press in to actuate the lever, opening the terminal.
Two sizes of Wago connector are found on the PDP:

• Small Wago connector: Accepts 10 - 24 AWG (0.25 - 6 mm2), strip 11-12 mm (~7/16”)

2.1. Introduction to FRC Robot Wiring 19

FIRST Robotics Competition

• Large Wago connector: Accepts 6 - 12 AWG (4 - 16 mm2), strip 12-13 mm (~1/2”)
To maximize pullout force and minimize connection resistance wires should not be tinned
(and ideally not twisted) before inserting into the Wago connector.

Requires: Wire Stripper, Small Flat Screwdriver, Terminal Controllers only: 10 or 12 AWG (4
- 6 mm2) wire, 10 or 12 AWG (4 - 6 mm2) fork/ring terminals, wire crimper

20 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

For SPARK MAX or other wire integrated motor controllers (top image):
• Cut and strip the red and black power input wires, then insert into one of the 40A (larger)

Wago terminal pairs.
For terminal motor controllers (bottom image):

1. Cut red and black wire to appropriate length to reach from one of the 40A (larger) Wago
terminal pairs to the input side of the motor controller (with a little extra for the length
that will be inserted into the terminals on each end)

2. Strip one end of each of the wires, then insert into the Wago terminals.
3. Strip the other end of each wire, and crimp on a ring or fork terminal
4. Attach the terminal to the motor controller input terminals (red to +, black to -)

2.1.10 Weidmuller Connectors

A number of the CAN and power connectors in the system use a Weidmuller LSF series wire-
to-board connector. There are a few things to keep in mind when using this connector for
best results:

• Wire should be 16 AWG (1.5 mm2) to 24 AWG (0.25 mm2) (consult rules to verify required
gauge for power wiring)

• Wire ends should be stripped approximately 5/16 (~8 mm)”
• To insert or remove the wire, press down on the corresponding “button” to open the

terminal
After making the connection check to be sure that it is clean and secure:

• Verify that there are no “whiskers” outside the connector that may cause a short circuit
• Tug on the wire to verify that it is seated fully. If the wire comes out and is the correct

gauge it needs to be inserted further and/or stripped back further. Occasionally the
terminal may remain stuck open with the wire inserted and the button released even if
the wire is stripped and inserted properly; in these cases wiggling the wire in and out a
small amount will often allow the connector to latch shut and grip the wire.

2.1.11 roboRIO Power

REV

2.1. Introduction to FRC Robot Wiring 21

FIRST Robotics Competition

22 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: 10A mini fuse, Wire stripper, very small flat screwdriver, 18 AWG (1 mm2) Red and
Black

1. Insert the 10A fuse into the PDH in one of the non-switchable fused channels (20-22).
2. Strip ~5/16” (~8 mm) on both the red and black 18 AWG (1 mm2) wire and connect to

the corresponding terminals on the PDH channel where the fuse was installed
3. Measure the required length to reach the power input on the roboRIO. Take care to leave

enough length to route the wires around any other components such as the battery and
to allow for any strain relief or cable management.

4. Cut and strip the wire.
5. Using a very small flat screwdriver connect the wires to the power input connector of

the roboRIO (red to V, black to C). Also make sure that the power connector is screwed
down securely to the roboRIO.

CTR

2.1. Introduction to FRC Robot Wiring 23

FIRST Robotics Competition

Requires: 10A/20A mini fuses, Wire stripper, very small flat screwdriver, 18 AWG (1 mm2)

24 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Red and Black
1. Insert the 10A and 20A mini fuses in the PDP in the locations shown on the silk screen

(and in the image above)
2. Strip ~5/16” (~8 mm) on both the red and black 18 AWG (1 mm2) wire and connect to

the “Vbat Controller PWR” terminals on the PDB
3. Measure the required length to reach the power input on the roboRIO. Take care to leave

enough length to route the wires around any other components such as the battery and
to allow for any strain relief or cable management.

4. Cut and strip the wire.
5. Using a very small flat screwdriver connect the wires to the power input connector of

the roboRIO (red to V, black to C). Also make sure that the power connector is screwed
down securely to the roboRIO.

2.1.12 Radio Power

REV

2.1. Introduction to FRC Robot Wiring 25

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), 18 AWG (1 mm2) red and black wire:
1. Insert the 10A fuse into the PDH in one of the non-switchable fused channels (20-22).
2. Strip ~5/16” (~8 mm) on the end of the red and black 18 AWG (1 mm2) wire and connect

the wire to the corresponding terminals on the PDH.
3. Measure the length required to reach the “12V Input” terminals on the Radio Power Mod-

ule. Take care to leave enough length to route the wires around any other components
such as the battery and to allow for any strain relief or cable management.

4. Cut and strip ~5/16” (~8 mm) from the end of the wire.
5. Connect the wire to the RPM 12V Input terminals.

CTR

26 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), 18 AWG (1 mm2) red and black wire:
1. Strip ~5/16” (~8 mm) on the end of the red and black 18 AWG (1 mm2) wire.
2. Connect the wire to one of the two terminal pairs labeled “Vbat VRM PCM PWR” on the

PDP.
3. Measure the length required to reach the “12Vin” terminals on the VRM. Take care to

leave enough length to route the wires around any other components such as the battery
and to allow for any strain relief or cable management.

4. Cut and strip ~5/16” (~8 mm) from the end of the wire.
5. Connect the wire to the VRM 12Vin terminals.

Warning: DO NOT connect the Rev passive POE injector cable directly to the roboRIO.
The roboRIO MUST connect to the socket end of the cable using an additional Ethernet
cable as shown in the next step.

2.1. Introduction to FRC Robot Wiring 27

FIRST Robotics Competition

28 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Small flat screwdriver (optional), Rev radio PoE cable
1. Insert the ferrules of the passive PoE injector cable into the corresponding colored ter-

minals on the 12V/2A section of the VRM.
2. Connect the RJ45 (Ethernet) plug end of the cable into the Ethernet port on the radio

closest to the barrel connector (labeled 18-24v POE)

2.1.13 Pneumatics Power (Optional)

REV

2.1. Introduction to FRC Robot Wiring 29

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), 18 AWG (1 mm2) red and black wire
The Pneumatics Hub can be wired to either a non-switchable fused port on the PDH with a
15A or smaller fuse or to a circuit breaker protected port with a breaker up to 20A.

1. Strip ~5/16” (~8 mm) on the end of the red and black 18 AWG (1 mm2) wire.
2. Connect the wire to the PDH in one of the two ways described above
3. Measure the length required to reach the red terminals on the short end of the PH labeled

+/-. Take care to leave enough length to route the wires around any other components
such as the battery and to allow for any strain relief or cable management.

4. Cut and strip ~5/16” (~8 mm) from the other end of the wire.
5. Connect the wire to the PH input terminals.

CTR

30 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), 18 AWG (1 mm2) red and black wire

2.1. Introduction to FRC Robot Wiring 31

FIRST Robotics Competition

1. Strip ~5/16” (~8 mm) on the end of the red and black 18 AWG (1 mm2) wire.
2. Connect the wire to one of the two terminal pairs labeled “Vbat VRM PCM PWR” on the

PDP.
3. Measure the length required to reach the “Vin” terminals on the PCM. Take care to leave

enough length to route the wires around any other components such as the battery and
to allow for any strain relief or cable management.

4. Cut and strip ~5/16” (~8 mm) from the end of the wire.
5. Connect the wire to the PCM 12Vin terminals.

2.1.14 Ethernet Cables

REV

32 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: 2x Ethernet cables
1. Connect an Ethernet cable from the RJ45 (Ethernet) socket of the roboRIO to the port

on the Radio Power Module labeled roboRIO.
2. Connect an Ethernet cable from the RJ45 socket of the radio closest to the barrel con-

nector socket (labeled 18-24v POE) to the socket labeled WiFi Radio on the RPM
CTR

2.1. Introduction to FRC Robot Wiring 33

FIRST Robotics Competition

Requires: Ethernet cable

34 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Connect an Ethernet cable from the RJ45 (Ethernet) socket of the Rev Passive POE cable to
the RJ45 (Ethernet) port on the roboRIO.

2.1.15 CAN Devices

roboRIO to Pneumatics CAN

REV

2.1. Introduction to FRC Robot Wiring 35

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable
1. Strip ~5/16” (~8 mm) off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the roboRIO (Yellow->YEL,

Green->GRN).
3. Measure the length required to reach the CAN terminals of the PCM (either of the two

available pairs). Cut and strip ~5/16” (~8 mm) off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PH. You may use

either of the Yellow/Green terminal pairs on the PH, there is no defined in or out.
CTR

36 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable

2.1. Introduction to FRC Robot Wiring 37

FIRST Robotics Competition

1. Strip ~5/16” (~8 mm) off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the roboRIO (Yellow->YEL,

Green->GRN).
3. Measure the length required to reach the CAN terminals of the PCM (either of the two

available pairs). Cut and strip ~5/16” (~8 mm) off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PCM. You may

use either of the Yellow/Green terminal pairs on the PCM, there is no defined in or out.

Pneumatics to PD CAN

REV

38 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable
1. Strip ~5/16” (~8 mm) off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the PH.
3. Measure the length required to reach the CAN terminals of the PDH (either of the two

available pairs). Cut and strip ~5/16” (~8 mm) off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PDH. You may

use either of the Yellow/Green terminal pairs on the PDH, there is no defined in or out.
CTR

2.1. Introduction to FRC Robot Wiring 39

FIRST Robotics Competition

Requires: Wire stripper, small flat screwdriver (optional), yellow/green twisted CAN cable

40 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

1. Strip ~5/16” (~8 mm) off of each of the CAN wires.
2. Insert the wires into the appropriate CAN terminals on the PCM.
3. Measure the length required to reach the CAN terminals of the PDP (either of the two

available pairs). Cut and strip ~5/16” (~8 mm) off this end of the wires.
4. Insert the wires into the appropriate color coded CAN terminals on the PDP. You may

use either of the Yellow/Green terminal pairs on the PDP, there is no defined in or out.

2.1.16 Motor Controller Signal Wires

PWM

2.1. Introduction to FRC Robot Wiring 41

FIRST Robotics Competition

42 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

This section details how to wire the SPARK MAX controllers using PWM signaling. This is
a recommended starting point as it is less complex and easier to troubleshoot than CAN
operation. The SPARK MAXs (and many other FRC motor controllers) can also be wired using
CAN which unlocks easier configuration, advanced functionality, better diagnostic data and
reduces the amount of wire needed.
Requires: 4x SPARK MAX PWM adapters (if using SPARK MAX), 4x PWM cables (if controllers
without integrated wires or adapters, otherwise optional), 2x PWM Y-cable (Optional)
Option 1 (Direct connect):

1. If using SPARK MAX, attach the PWM adapter to the SPARK MAX (small adapter with a
3 pin connector with black/white wires).

2. If needed, attach PWM extension cables to the controller or adapter. On the controller
side, match the colors or markings (some controllers may have green/yellow wiring,
green should connect to black).

3. Attach the other end of the cable to the roboRIO with the black wire towards the outside
of the roboRIO. It is recommended to connect the left side to PWM 0 and 1 and the right
side to PWM 2 and 3 for the most straightforward programming experience, but any
channel will work as long as you note which side goes to which channel and adjust the
code accordingly.

Option 2 (Y-cable):
1. If using SPARK MAX, attach the PWM adapter to the SPARK MAX (small adapter with a

3 pin connector with black/white wires).
2. If needed, attach PWM extension cables between the controller or adapter and the PWM

Y-cable. On the controller side, match the colors or markings (some controllers may have
green/yellow wiring, green should connect to black).

3. Connect 1 PWM Y-cable to the 2 PWM cables for the controllers controlling each side
of the robot. The brown wire on the Y-cable should match the black wire on the PWM
cable.

4. Connect the PWM Y-cables to the PWM ports on the roboRIO. The brown wire should be
towards the outside of the roboRIO. It is recommended to connect the left side to PWM 0
and the right side to PWM 1 for the most straightforward programming experience, but
any channel will work as long as you note which side goes to which channel and adjust
the code accordingly.

CAN
The Spark MAX controllers can also be wired using CAN. When wiring CAN the objective is
to create a single complete bus running from the roboRIO on one end and running through
all CAN devices on the robot. It is recommended to have either Power Distribution device at
the other end of the bus because they have built-in termination. If you do not wish to locate
one of these devices at the end of the bus see CAN Wiring Basics for info about terminating
yourself.
The Spark MAX controllers come with CAN cables that are pre-terminated with connectors.
You can chain these cables together directly, or buy or build extension cables to bridge larger
gaps. To connect to other CAN devices such as pneumatics controllers, power distribution
boards, or the roboRIO you will need to either cut off one of these pre-terminated connectors
on the controller, cut off a connector on an extension, or build your own extension with just a
single connector.
When chaining controllers together using the provided connectors, make sure to use the
provided retaining clip. If unavailable, secure the connection with a small ziptie, electrical

2.1. Introduction to FRC Robot Wiring 43

FIRST Robotics Competition

tape, or other similar method.

44 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

2.1. Introduction to FRC Robot Wiring 45

FIRST Robotics Competition

2.1.17 Robot Signal Light

46 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: Wire stripper, 2 pin cable, Robot Signal Light, 18 AWG (1 mm2) red wire, very small
flat screwdriver

1. Cut one end off of the 2 pin cable and strip both wires
2. Insert the black wire into the center, “N” terminal and tighten the terminal.
3. Strip the 18 AWG (1 mm2) red wire and insert into the “La” terminal and tighten the

terminal.
4. Cut and strip the other end of the 18 AWG (1 mm2) wire to insert into the “Lb” terminal
5. Insert the red wire from the two pin cable into the “Lb” terminal with the 18 AWG (1

mm2) red wire and tighten the terminal.
6. Connect the two-pin connector to the RSL port on the roboRIO. The black wire should

be closest to the outside of the roboRIO.

Tip: You may wish to temporarily secure the RSL to the control board using cable ties or
Dual Lock (it is recommended to move the RSL to a more visible location as the robot is being
constructed)

2.1.18 Circuit Breakers

REV

2.1. Introduction to FRC Robot Wiring 47

FIRST Robotics Competition

Requires: 4x 40A circuit breakers
Insert 40-amp Circuit Breakers into the positions on the PDH corresponding with the Wago
connectors the motor controllers are connected to. Note that the white graphic indicates
which breakers are associated with which terminal pairs.
If working on a Robot Quick Build, stop here and insert the board into the robot chassis before
continuing.
CTR

48 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

Requires: 4x 40A circuit breakers
Insert 40-amp Circuit Breakers into the positions on the PDP corresponding with the Wago
connectors the motor controllers are connected to. Note that, for all breakers, the breaker
corresponds with the nearest positive (red) terminal (see graphic above). All negative termi-
nals on the board are directly connected internally.
If working on a Robot Quick Build, stop here and insert the board into the robot chassis before
continuing.

2.1. Introduction to FRC Robot Wiring 49

FIRST Robotics Competition

2.1.19 Motor Power

Requires: Wire stripper, wire crimper, phillips head screwdriver, wire connecting hardware
For each CIM motor:

• Strip the ends of the red and black wires from the CIM
For integrated wire controllers including SPARK MAX (top image):

1. Strip the red and black wires (or white and green wires) from the controller (the SPARK
MAX white wire is unused for brushed motors such as the CIM, it should be secured and
the end should be insulated such with electrical tape or other insulation method).

2. Connect the motor wires to the matching controller output wires (for controllers with

50 Chapter 2. Step 1: Building your Robot

FIRST Robotics Competition

white/green, connect red to white and green to black). The images above show an ex-
ample using quick disconnect terminals which are provided in the Rookie KOP.

For the SPARK or other non-integrated-wire controllers (bottom image):
1. Crimp a ring/fork terminal on each of the motor wires.
2. Attach the wires to the output side of the motor controller (red to +, black to -)

2.1.20 STOP

Danger: Before plugging in the battery, make sure all connections have been made with
the proper polarity. Ideally have someone that did not wire the robot check to make sure
all connections are correct.

• Start with the battery and verify that the red wire is connected to the positive terminal
• Check that the red wire passes through the main breaker and to the + terminal of the

PDP and that the black wire travels directly to the - terminal.
• For each motor controller, verify that the red wire goes from the red PDP terminal to the

V+ terminal on the motor controller (not M+!!!!)

2.1. Introduction to FRC Robot Wiring 51

FIRST Robotics Competition

• For each non-motor controller device, verify that the red wire runs from a red terminal
on the PD connects to a red terminal on the component.

• Make sure that the PoE cable is plugged directly into the radio NOT THE roboRIO!

Tip: It is also recommended to put the robot on blocks so the wheels are off the ground
before proceeding. This will prevent any unexpected movement from becoming dangerous.

2.1.21 Manage Wires

Requires: Zip ties

Tip: Now may be a good time to add a few zip ties to manage some of the wires before
proceeding. This will help keep the robot wiring neat.

2.1.22 Connect Battery

Connect the battery to the robot side of the Anderson connector. Power on the robot by
moving the lever on the top of the 120A main breaker into the ridge on the top of the housing.
If stuff blinks, you probably did it right. If you hear any clicking, or see any smoke, power the
system off immediately, clicking is likely the sound of circuit breakers tripping.
Before moving on, if using SPARK MAX controllers, there is one more configuration step to
complete. The SPARK MAX motor controllers are configured to control a brushless motor by
default. You can verify this by checking that the light on the controller is blinking either cyan
or magenta (indicating brushless brake or brushless coast respectively). To change to brushed
mode, press and hold the mode button for 3-4 seconds until the status LED changes color.
The LED should change to either blue or yellow, indicating that the controller is in brushed
mode (brake or coast respectively). To change the brake or coast mode, which controls how
quickly the motor slows down when a neutral signal is applied, press the mode button briefly.

Tip: For more information on the SPARK MAX motor controllers, including how to test
your motors/controllers without writing any code by using the REV Hardware Client, see the
SPARK MAX Quickstart guide.

From here, you should connect to the roboRIO and try uploading your code!

52 Chapter 2. Step 1: Building your Robot

https://docs.revrobotics.com/sparkmax/gs-sm

3
Step 2: Installing Software

An overview of the available control system software can be found here.

3.1 Offline Installation Preparation

This article contains instructions/links to components you will want to gather if you need to
do offline installation of the FRC® Control System software.

Tip: This document compiles all the download links from the following documents to make
it easier to install on offline computers or on multiple computers. If you are you installing on
a single computer that is connected to the internet, you can skip this page.

Note: The order in which these tools are installed does not matter for Java and C++ teams.
LabVIEW should be installed before the FRC Game Tools or 3rd Party Libraries.

3.1.1 Documentation

This documentation can be downloaded for offline viewing. The link to download the PDF can
be found here.

3.1.2 Installers

All Teams

• 2023 FRC Game Tools (Note: Click on link for “Individual Offline Installers”)
• 2023 FRC Radio Configuration Utility or 2023 FRC Radio Configuration Utility Israel

Version
• (Optional - Veterans Only!) Classmate/Acer PC Image

53

https://buildmedia.readthedocs.org/media/pdf/frc-docs/stable/frc-docs.pdf
https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html#479842
https://firstfrc.blob.core.windows.net/frc2023/Radio/FRC_Radio_Configuration_23_0_2.zip
https://firstfrc.blob.core.windows.net/frc2023/Radio/FRC_Radio_Configuration_23_0_2_IL.zip
https://firstfrc.blob.core.windows.net/frc2023/Radio/FRC_Radio_Configuration_23_0_2_IL.zip
https://frc-events.firstinspires.org/services/DSImages/

FIRST Robotics Competition

LabVIEW Teams

• LabVIEW USB (from FIRST® Choice) or Download (Note: Click on link for “Individual
Offline Installers”)

Java/C++ Teams

• Java/C++ WPILib Installer
Once on the GitHub releases page, scroll to the assets section at the bottom of the page.

Then click on the correct binary for your OS and architecture to begin the download.

Note: After downloading the Java/C++ WPILib installer, run it once while connected to
the internet and select Install for this User then Create VS Code zip to share with other
computers/OSes for offline install and save the downloaded VS Code zip file for future offline
installations.

54 Chapter 3. Step 2: Installing Software

https://www.ni.com/en-us/support/downloads/drivers/download.labview-software-for-frc.html
https://github.com/wpilibsuite/allwpilib/releases/latest

FIRST Robotics Competition

3.1.3 3rd Party Libraries/Software

A directory of available 3rd party software that plugs in to WPILib can be found on 3rd Party
Libraries.

3.2 Installing LabVIEW for FRC (LabVIEW only)

Note: This installation is for teams programming in LabVIEW or using NI Vision Assistant
only. C++ and Java teams not using these features do not need to install LabVIEW and should
proceed to Installing the FRC Game Tools.

Download and installation times will vary widely with computer and internet connection spec-
ifications, however note that this process involves a large file download and installation and
will likely take at least an hour to complete.

3.2.1 Requirements

• Windows 10 or higher (Windows 10, 11). Windows 11 is not officially supported by NI,
but has been tested to work.

3.2.2 Uninstall Old Versions (Recommended)

Note: If you wish to keep programming cRIOs you will need to maintain an install of LabVIEW
for FRC® 2014. The LabVIEW for FRC 2014 license has been extended. While these versions
should be able to co-exist on a single computer, this is not a configuration that has been
extensively tested.

Before installing the new version of LabVIEW it is recommended to remove any old versions.
The new version will likely co-exist with the old version, but all testing has been done with
FRC 2023 only. Make sure to back up any team code located in the “User\LabVIEW Data”
directory before un-installing. Then click Start >> Add or Remove Programs. Locate the
entry labeled “NI Software”, and select Uninstall.

3.2. Installing LabVIEW for FRC (LabVIEW only) 55

FIRST Robotics Competition

Select Components to Uninstall

In the dialog box that appears, select all entries. The easiest way to do this is to de-select
the “Products Only” check-box and select the check-box to the left of “Name”. Click Remove.
Wait for the uninstaller to complete and reboot if prompted.

Warning: These instructions assume that no other NI software is installed. If you have
other NI software installed, it is necessary to uncheck the software that should not be
uninstalled.

56 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.2.3 Getting LabVIEW installer

Either locate and insert the LabVIEW USB Drive or download the LabVIEW for FRC 2023
installer from NI. Be sure to select the correct version from the drop-down.

If you wish to install on other machines offline, do not click the Download button, click Indi-
vidual Offline Installers and then click Download, to download the full installer.

Note: This is a large download (~9GB). It is recommended to use a fast internet connection
and to use the NI Downloader to allow the download to resume if interrupted.

3.2. Installing LabVIEW for FRC (LabVIEW only) 57

https://www.ni.com/en-us/support/downloads/software-products/download.labview-software-for-frc.html
https://www.ni.com/en-us/support/downloads/software-products/download.labview-software-for-frc.html

FIRST Robotics Competition

3.2.4 Installing LabVIEW

NI LabVIEW requires a license. Each season’s license is active until January 31st of the
following year (e.g. the license for the 2020 season expires on January 31, 2021)
Teams are permitted to install the software on as many team computers as needed, subject
to the restrictions and license terms that accompany the applicable software, and provided
that only team members or mentors use the software, and solely for FRC. Rights to use Lab-
VIEW are governed solely by the terms of the license agreements that are shown during the
installation of the applicable software.

Starting Install

Online Installer
Run the downloaded exe file to start the install process. Click Yes if a Windows Security
prompt
Offline Installer (Windows 10+)
Right click on the downloaded iso file and select mount. Run install.exe from the mounted
iso. Click “Yes” if a Windows Security prompt

Note: other installed programs may associate with iso files and the mount option may not
appear. If that software does not give the option to mount or extract the iso file, then install
7-Zip and use that to extract the iso.

58 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

NI Package Manager License

If you see this screen, click Next

3.2. Installing LabVIEW for FRC (LabVIEW only) 59

FIRST Robotics Competition

Disable Windows Fast Startup

If you see this screen, click Next

60 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

NI Package Manager Review

If you see this screen, click Next

3.2. Installing LabVIEW for FRC (LabVIEW only) 61

FIRST Robotics Competition

NI Package Manager Installation

Installation progress of the NI Package Manager will be tracked in this window

62 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Product List

Click Next

3.2. Installing LabVIEW for FRC (LabVIEW only) 63

FIRST Robotics Competition

Additional Packages

Click Next

64 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

License agreements

Check “I accept…” then Click Next

3.2. Installing LabVIEW for FRC (LabVIEW only) 65

FIRST Robotics Competition

Check “I accept…” then Click Next

66 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Product Information

Click Next

3.2. Installing LabVIEW for FRC (LabVIEW only) 67

FIRST Robotics Competition

Start Installation

Click Next

68 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Overall Progress

Overall installation progress will be tracked in this window

3.2.5 NI Update Service

You will be prompted whether to enable the NI update service. You can choose to not enable
the update service.

Warning: It is not recommended to install these updates unless directed by FRC through
our usual communication channels (FRC Blog, Team Updates or E-mail Blasts).

3.2. Installing LabVIEW for FRC (LabVIEW only) 69

FIRST Robotics Competition

NI Activation Wizard

Click the Log in to Activate button.

70 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Log into your ni.com account. If you don’t have an account, select Create account to create
a free account.

3.2. Installing LabVIEW for FRC (LabVIEW only) 71

FIRST Robotics Competition

From the drop-down, select enter a serial number

Enter the serial number in all the boxes. Click Activate.

72 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

If your products activate successfully, an “Activation Successful” message will appear. If the
serial number was incorrect, it will give you a text box and you can re-enter the number and
select Try Again. The items shown above are not expected to activate. If everything activated
successfully, click Finish.

3.2. Installing LabVIEW for FRC (LabVIEW only) 73

FIRST Robotics Competition

Restart

Select Reboot Now after closing any open programs.

3.3 Installing the FRC Game Tools

The FRC® Game Tools contains the following software components:
• LabVIEW Update
• FRC Driver Station
• FRC roboRIO Imaging Tool and Images

The LabVIEW runtime components required for the Driver Station and Imaging Tool are in-
cluded in this package.

Note: No components from the LabVIEW Software for FRC package are required for running
either the Driver Station or Imaging Tool.

74 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.3.1 Requirements

• Windows 10 or higher (Windows 10, 11).
• Download the FRC Game Tools from NI.

If you wish to install on other machines offline, click Individual Offline Installers before click-
ing Download to download the full installer.

3.3.2 Uninstall Old Versions (Recommended)

Important: LabVIEW teams have already completed this step, do not repeat it. LabVIEW
teams should skip to the Installation section.

Before installing the new version of the FRC Game Tools it is recommended to remove any
old versions. The new version will likely co-exist with the old version (note that the DS will
overwrite old versions), but all testing has been done with FRC 2022 only. Then click Start
>> Add or Remove Programs. Locate the entry labeled “NI Software”, and select Uninstall.

Note: It is only necessary to uninstall previous versions when installing a new year’s tools.
For example, uninstall the 2021 tools before installing the 2022 tools. It is not necessary to
uninstall before upgrading to a new update of the 2022 game tools.

3.3. Installing the FRC Game Tools 75

https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html#479842

FIRST Robotics Competition

Select Components to Uninstall

In the dialog box that appears, select all entries. The easiest way to do this is to de-select the
Products Only check-box and select the check-box to the left of “Name”. Click Remove. Wait
for the uninstaller to complete and reboot if prompted.

76 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.3.3 Installation

Important: The Game Tools installer may prompt that .NET Framework 4.6.2 needs to
be updated or installed. Follow prompts on-screen to complete the installation, including
rebooting if requested. Then resume the installation of the FRC Game Tools, restarting the
installer if necessary.

Extraction

Online
Run the downloaded executable file to start the install process. Click Yes if a Windows Secu-
rity prompt appears.
Offline (Windows 10+)
Right click on the downloaded iso file and select mount. Run install.exe from the mounted
iso. Click Yes if a Windows Security prompt appears.

3.3. Installing the FRC Game Tools 77

FIRST Robotics Competition

Note: Other installed programs may associate with iso files and the mount option may not
appear. If that software does not give the option to mount or extract the iso file, then install
7-Zip and use that to extract the iso.

78 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

NI Package Manager License

If you see this screen, click Next. This screen confirms that you agree to NI Package Manager
License agreement.

3.3. Installing the FRC Game Tools 79

FIRST Robotics Competition

Disable Windows Fast Startup

It is recommended to leave this screen as-is, as Windows Fast Startup can cause issues with
the NI drivers required to image the roboRIO. Go ahead and click Next.

80 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

NI Package Manager Review

If you see this screen, click Next.

3.3. Installing the FRC Game Tools 81

FIRST Robotics Competition

NI Package Manager Installation

Installation progress of the NI Package Manager will be tracked in this window.

82 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Additional Software

If you see this screen, click Next.

3.3. Installing the FRC Game Tools 83

FIRST Robotics Competition

License Agreements

Select I accept… then click Next

84 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Go ahead and press I accept… then click Next, confirming that you agree to the NI License
agreement.

3.3. Installing the FRC Game Tools 85

FIRST Robotics Competition

Review Summary

Click Next.

86 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Detail Progress

This screen showcases the installation process, go ahead and press Next when it’s finished.

3.3. Installing the FRC Game Tools 87

FIRST Robotics Competition

NI Activation Wizard

Log into your ni.com account. If you don’t have an account, select Create account to create
a free account.

88 Chapter 3. Step 2: Installing Software

https://ni.com

FIRST Robotics Competition

Enter the serial number. Click Activate.

Note: If this is the first time activating this year’s software on this account, you will see the
message shown above about a valid license not being found. You can ignore this.

3.3. Installing the FRC Game Tools 89

FIRST Robotics Competition

If your products activate successfully, an Activation Successful message will appear. If the
serial number was incorrect, it will give you a text box and you can re-enter the number and
select Try Again. If everything activated successfully, click Next.

90 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Click Close.

NI Update Service

You will be prompted whether to enable the NI update service. You can choose to not enable
the update service.

Warning: It is not recommended to install these updates unless directed by FRC through
our usual communication channels (FRC Blog, Team Updates or E-mail Blasts).

3.3. Installing the FRC Game Tools 91

FIRST Robotics Competition

3.3.4 Reboot to Complete Installation

If prompted, select Reboot Now after closing any open programs.

3.4 WPILib Installation Guide

This guide is intended for Java and C++ teams. LabVIEW teams can skip to Installing Lab-
VIEW for FRC (LabVIEW only). Additionally, the below tutorial shows Windows 10, but the
steps are identical for all operating systems. Notes differentiating operating systems will be
shown.

3.4.1 Prerequisites

Supported Operating Systems and Architectures:
• Windows 10 & 11, 64 bit only. 32 bit and Arm are not supported
• Ubuntu 22.04, 64 bit. Other Linux distributions with glibc >= 2.34 may work, but

are unsupported
• macOS 11 or higher, both Intel and Arm.

92 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Warning: The following OSes are no longer supported: macOS 10.15, Ubuntu 18.04 &
20.04, Windows 7, Windows 8.1, and any 32-bit Windows.

WPILib is designed to install to different folders for different years, so that it is not necessary
to uninstall a previous version before installing this year’s WPILib.

3.4.2 Downloading

WPILib Installer
WPILib 2023.4.3 Release - March 29, 2023 Downloads
Downloads for other platforms

Release Notes

You can download the latest release of the installer from GitHub.
Once on the GitHub releases page, scroll to the assets section at the bottom of the page.

Then click on the correct binary for your OS and architecture to begin the download.

3.4. WPILib Installation Guide 93

https://github.com/wpilibsuite/allwpilib/releases/tag/v2023.4.3
https://github.com/wpilibsuite/allwpilib/releases/tag/v2023.4.3
https://github.com/wpilibsuite/allwpilib/releases/latest/

FIRST Robotics Competition

3.4.3 Extracting the Installer

When you download the WPILib installer, it is distributed as a disk image file .iso for Win-
dows, .tar.gz for Linux, and distributed as a DMG for MacOS.
Windows 10+
Windows 10+ users can right click on the downloaded disk image and select Mount to open
it. Then launch WPILibInstaller.exe.

Note: Other installed programs may associate with iso files and the mount option may not

94 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

appear. If that software does not give the option to mount or extract the iso file, then follow
the directions below.

You can use 7-zip to extract the disk image by right-clicking, selecting 7-Zip and selecting
Extract to…. Windows 11 users may need to select Show more options at the bottom of the
context menu.

After opening the .iso file, launch the installer by opening WPILibInstaller.exe.

Note: After launching the installer, Windows may display a window titled “Windows pro-
tected your PC”. Click More info, then select Run anyway to run the installer.

macOS
For this release, macOS users will need to have the Xcode Command Line Tools installed
before running the installer; we are working on removing this requirement in a future release.
This can be done by running xcode-select --install in the Terminal.
macOS users can double click on the downloaded DMG and then select WPILibInstaller to
launch the application.

3.4. WPILib Installation Guide 95

https://www.7-zip.org/

FIRST Robotics Competition

Linux
Linux users should extract the downloaded .tar.gz and then launch WPILibInstaller.
Ubuntu treats executables in the file explorer as shared libraries, so double-clicking won’t
run them. Run the following commands in a terminal instead with <version> replaced with
the version you’re installing.

$ tar -xf WPILib_Linux-<version>.tar.gz
$ cd WPILib_Linux-<version>/
$./WPILibInstaller

3.4.4 Running the Installer

Upon opening the installer, you’ll be presented with the below screen. Go ahead and press
Start.

96 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.4. WPILib Installation Guide 97

FIRST Robotics Competition

This showcases a list of options included with the WPILib installation.
• Tools Only installs just the WPILib tools (Pathweaver, Shuffleboard, RobotBuilder, SysID,

Glass, and OutlineViewer) and JDK.
• Everything installs the full development environment (VS Code, extensions, all depen-

dencies), WPILib tools, and JDK.
You will notice two buttons, Install for this User and Install for all Users. Install for this
User only installs it on the current user account, and does not require administrator privi-
leges. However, Install for all Users installs the tools for all system accounts and will require
administrator access. Install for all Users is not an option for macOS and Linux.

Note: If you select Install for all Users, Windows will prompt for administrator access
through UAC during installation.

Select the option that is appropriate for you, and you’ll presented with the following installa-
tion screen.
This next screen involves downloading VS Code. Unfortunately, due to licensing reasons, VS
Code can not be bundled with the installer.

• Download for this computer only
– This downloads VS Code only for the current platform, which is also the smallest

download.
• Skip and don’t use VS Code

98 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

– Skips installing VS Code. Useful for advanced installations or configurations. Gen-
erally not recommended.

• Select existing VS Code zip for offline install on this computer
– Selecting this option will bring up a prompt allowing you to select a pre-existing zip

file of VS Code that has been downloaded by the installer previously. This option
does not let you select an already installed copy of VS Code on your machine.

• Create VS Code zip to share with other computers/OSes for offline install
– This option downloads and saves a copy of VS Code for all platforms, which is useful

for sharing the copy of the installer.
Go ahead and select Download for this computer only. This will begin the download process
and can take a bit depending on internet connectivity (it’s ~100MB). Once the download is
done, select Next. You should be presented with a screen that looks similar to the one below.

After installation is complete, you will be presented with the finished screen.

3.4. WPILib Installation Guide 99

FIRST Robotics Competition

Important: WPILib installs a separate version of VS Code. It does not use an already existing
installation. Each year has it’s own copy of the tools appended with the year. IE: WPILib VS
Code 2022. Please launch the WPILib VS Code and not a system installed copy!

Congratulations, the WPILib development environment and tooling is now installed on your
computer! Press Finish to exit the installer.

3.4.5 Post-Installation

Some operating systems require some final action to complete installation.
macOS
After installation, the installer opens the WPILib VS Code folder. Drag the VS Code application
to the dock. Eject WPILibInstaller image from the desktop.
Linux
Some versions of Linux (e.g. Ubuntu 20.04) require you to give the desktop shortcut the
ability to launch. Right click on the desktop icon and select Allow Launching.

100 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

Note: Installing desktop tools and rebooting will create a folder on the desktop called YYYY
WPILib Tools, where YYYY is the current year. Desktop tool shortcuts are not available on
Linux and macOS.

3.4.6 Additional C++ Installation for Simulation

C++ robot simulation requires that a native compiler to be installed. For Windows, this would
be Visual Studio 2022 (not VS Code), macOS requires Xcode 13 or later, and Linux (Ubuntu)
requires the build-essential package.
Ensure the Desktop Development with C++ option is checked in the Visual Studio installer
for simulation support.

3.4. WPILib Installation Guide 101

https://visualstudio.microsoft.com/vs/
https://apps.apple.com/us/app/xcode/id497799835

FIRST Robotics Competition

3.4.7 What is Installed?

The Offline Installer installs the following components:
• Visual Studio Code - The supported IDE for 2019 and later robot code development.

The offline installer sets up a separate copy of VS Code for WPILib development, even if
you already have VS Code on your machine. This is done because some of the settings
that make the WPILib setup work may break existing workflows if you use VS Code for
other projects.

• C++ Compiler - The toolchains for building C++ code for the roboRIO
• Gradle - The specific version of Gradle used for building/deploying C++ or Java robot

code
• Java JDK/JRE - A specific version of the Java JDK/JRE that is used to build Java robot

code and to run any of the Java based Tools (Dashboards, etc.). This exists side by side
with any existing JDK installs and does not overwrite the JAVA_HOME variable

• WPILib Tools - SmartDashboard, Shuffleboard, RobotBuilder, Outline Viewer, Path-
weaver, Glass, SysID

• WPILib Dependencies - OpenCV, etc.
• VS Code Extensions - WPILib extensions for robot code development in VS Code

102 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.4.8 Uninstalling

WPILib is designed to install to different folders for different years, so that it is not necessary
to uninstall a previous version before installing this year’s WPILib. However, the following
instructions can be used to uninstall WPILib if desired.
Windows

1. Delete the appropriate wpilib folder (c:\Users\Public\wpilib\YYYY where YYYY is the
year to uninstall)

2. Delete the desktop icons at C:\Users\Public\Public Desktop

3. Delete the path environment variables.
1. In the start menu, type environment and select “edit the system environment vari-

ables”
2. Click on the environment variables button (1).
3. In the user variables, select path (2) and then click on edit (3).
4. Select the path with roborio\bin (4) and click on delete (5).
5. Select the path with frccode and click on delete (5).
6. Repeat steps 3-6 in the Systems Variable pane.

3.4. WPILib Installation Guide 103

FIRST Robotics Competition

macOS
1. Delete the appropriate wpilib folder (~/wpilib/YYYY where YYYY is the year to uninstall)

Linux
1. Delete the appropriate wpilib folder (~/wpilib/YYYY where YYYY is the year to uninstall).

eg rm -rf ~/wpilib/YYYY

104 Chapter 3. Step 2: Installing Software

FIRST Robotics Competition

3.4.9 Troubleshooting

In case the installer fails, please open an issue on the installer repository. A link is available
here. The installer should give a message on the cause of the error, please include this in the
description of your issue.

3.5 Next Steps

Congratulations! You have completed step 2 and should now have a working software devel-
opment environment! Step 3 of this tutorial covers updating the hardware so that you can
program it, while Step 4 showcases programming a robot in the VS Code Integrated Develop-
ment Environment (IDE). For further information you can read through the VS Code section
to familiarize yourself with the IDE.
Specific articles that are advised to be read are:

• Visual Studio Code Basics
• WPILib Commands in Visual Studio Code
• Creating a Robot Program
• Building and Deploying Robot Code
• Installing 3rd Party Libraries

Additionally, you may need to do extra configuration that is applicable to your team’s robot.
Please utilize the search feature to find necessary documentation.

Note: It’s important that teams using 3rd-party CAN motor controllers look at the Installing
3rd Party Libraries article as extra steps are required to code for these devices.

3.5. Next Steps 105

https://github.com/wpilibsuite/wpilibinstaller-avalonia

FIRST Robotics Competition

106 Chapter 3. Step 2: Installing Software

4
Step 3: Preparing Your Robot

4.1 Imaging your roboRIO 2

Note: The imaging instructions for the NI roboRIO 1.0 are here.

The NI roboRIO 2.0 boots from a microSD card configured with an appropriate boot image
containing the NI Linux Real-Time OS, drivers, and libraries specific to FRC. The microSD
card must be imaged with a laptop and an SD burner application per the instructions on this
page.

Important: Imaging the roboRIO 2 directly with the roboRIO Imaging Tool is not supported.

4.1.1 microSD Requirements

The NI roboRIO 2.0 supports all microSD cards. It is recommended to use a card with 2GB
or more of capacity.

4.1.2 Operation Tips

The NI roboRIO 2.0 requires a fully inserted microSD card containing a valid image in order
to boot and operate as intended.
If the microSD card is removed while powered, the roboRIO will hang. Once the microSD
card is replaced, the roboRIO will need to be restarted using the reset button, or be power
cycled.
No damage will result from microSD card removal or insertion while powered, but best prac-
tice is to perform these operations while unpowered.

107

FIRST Robotics Competition

Warning: Before imaging your roboRIO, you must have completed installation of the
FRC Game Tools. You also must have the roboRIO power properly wired to the CTRE
Power Distribution Panel or REV Power Distribution Hub. Make sure the power wires to
the roboRIO are secure and that the connector is secure firmly to the roboRIO (4 total
screws to check).

4.1.3 Imaging Directly to the microSD Card

The image will be transferred to the microSD card using a specialized writing utility, some-
times called a burner. Several utilities are listed below, but most tools that can write arbitrary
images for booting a Raspberry Pi or similar dev boards will also produce a bootable SD card
for roboRIO 2.0.
Supported image files are named FRC_roboRIO2_YEAR_VERSION.img.zip. You can locate
them by clicking the SD button in the roboRIO Imaging tool and then navigating to the SD
Images folder. It is generally best to use the latest version of the image.
If using a non Windows OS you will need to copy this image file to that computer.

A microSD to USB dongle works well for writing to microSD cards.

Note: Raspberry Pi images will not boot on a roboRIO because the OS and drivers are incom-
patible. Similarly, a roboRIO image is not compatible with Raspberry Pi controller boards.

108 Chapter 4. Step 3: Preparing Your Robot

https://www.amazon.com/gp/product/B0779V61XB

FIRST Robotics Competition

Writing the image with balenaEtcher

• Download and install balenaEtcher.
• Launch
• Flash from file -> locate the image file you want to copy to the microSD card
• Select target -> select the destination microSD device
• Press Flash

Writing the image with Raspberry Pi Imager

• Download and install from Raspberry Pi Imager.
• Launch
• Choose OS -> Use Custom -> select the image file you want to copy to the microSD card
• Choose Storage -> select the destination microSD device
• Press Write

Warning: After writing the image, Windows may prompt to format the drive. Do not
reformat, or else you will need to write the image again.

Setting the roboRIO Team Number

The image writing process above does not set a team number. To fix this teams will need to
insert the microSD card in the robRIO and connect to the robot. With the roboRIO Imaging
Tool go to Edit Startup Settings. Next, fill out the Team Number box and hit Apply.

4.2 Imaging your roboRIO 1

Warning: Before imaging your roboRIO, you must have completed installation of the
FRC Game Tools. You also must have the roboRIO power properly wired to the Power
Distribution Panel. Make sure the power wires to the roboRIO are secure and that the
connector is secure firmly to the roboRIO (4 total screws to check).

Note: The imaging instructions for the NI roboRIO 2.0 are here.

4.2. Imaging your roboRIO 1 109

https://www.balena.io/etcher/
https://www.raspberrypi.com/software/

FIRST Robotics Competition

4.2.1 Configuring the roboRIO

The roboRIO Imaging Tool will be used to image your roboRIO with the latest software.

110 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

USB Connection

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

Connect a USB cable from the roboRIO USB Device port to the PC. This requires a USB Type
A male (standard PC end) to Type B male cable (square with 2 cut corners), most commonly
found as a printer USB cable.

Note: The roboRIO should only be imaged via the USB connection. It is not recommended
to attempt imaging using the Ethernet connection.

4.2. Imaging your roboRIO 1 111

FIRST Robotics Competition

Driver Installation

The device driver should install automatically. If you see a “New Device” pop-up in the bottom
right of the screen, wait for the driver install to complete before continuing.

4.2.2 Launching the Imaging Tool

The roboRIO imaging tool and latest image are installed with the NI FRC® Game Tools.
Launch the imaging tool by double clicking on the shortcut on the Desktop. If you have dif-
ficulties imaging your roboRIO, you may need to try right-clicking on the icon and selecting
Run as Administrator instead.

Note: The roboRIO imaging tool is also located at C:\Program Files (x86)\National
Instruments\LabVIEW 2020\project\roboRIO Tool

112 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.2.3 roboRIO Imaging Tool

After launching, the roboRIO Imaging Tool will scan for available roboRIOs and indicate any
found in the top left box. The bottom left box will show information and settings for the
roboRIO currently selected. The right hand pane contains controls for modifying the roboRIO
settings:

• Edit Startup Settings - This option is used when you want to configure the startup
settings of the roboRIO (the settings in the right pane), without imaging the roboRIO.

• Format Target - This option is used when you want to load a new image on the roboRIO
(or reflash the existing image). This is the most common option.

• Update Firmware - This option is used to update the roboRIO firmware. For this season,
the imaging tool will require roboRIO firmware to be version 5.0 or greater.

4.2. Imaging your roboRIO 1 113

FIRST Robotics Competition

Updating Firmware

roboRIO firmware must be at least v5.0 to work with the 2019 or later image. If your roboRIO
is at least version 5.0 (as shown in the bottom left of the imaging tool) you do not need to
update.
To update roboRIO firmware:

1. Make sure your roboRIO is selected in the top left pane.
2. Select Update Firmware in the top right pane
3. Enter a team number in the Team Number box
4. Select the latest firmware file in the bottom right
5. Click the Update button

114 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.2.4 Imaging the roboRIO

1. Make sure the roboRIO is selected in the top left pane
2. Select Format Target in the right pane
3. Enter your team number in the box
4. Select the latest image version in the box.
5. Click Reformat to begin the imaging process.

4.2. Imaging your roboRIO 1 115

FIRST Robotics Competition

4.2.5 Imaging Progress

The imaging process will take approximately 3-10 minutes. A progress bar in the bottom left
of the window will indicate progress.

4.2.6 Imaging Complete

When the imaging completes you should see the dialog above. Click Ok, then click the Close
button at the bottom right to close the imaging tool. Reboot the roboRIO using the Reset
button to have the new team number take effect.

116 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.2.7 Troubleshooting

If you are unable to image your roboRIO, troubleshooting steps include:
• Try running the roboRIO Imaging Tool as Administrator by right-clicking on the Desktop

icon to launch it.
• Try accessing the roboRIO webpage with a web-browser at http://172.22.11.2/ and/or

verify that the NI network adapter appears in your list of Network Adapters in the Control
Panel. If not, try re-installing the NI FRC Game Tools or try a different PC.

• Disable all other network adapters
• Make sure your firewall is turned off.
• Some teams have experienced an issue where imaging fails if the device name of the

computer you’re using has a dash (-) in it. Try renaming the computer (or using a dif-
ferent PC).

• Try booting the roboRIO into Safe Mode by pressing and holding the reset button for at
least 5 seconds.

• Try a different USB Cable
• Try a different PC

4.3 Programming your Radio

This guide will show you how to use the FRC® Radio Configuration Utility software to con-
figure your robot’s wireless bridge for use outside of FRC events.

4.3.1 Prerequisites

The FRC Radio Configuration Utility requires administrator privileges to configure the net-
work settings on your machine. The program should request the necessary privileges auto-
matically (may require a password if run from a non-administrator account), but if you are
having trouble, try running it from an administrator account.
Download the latest FRC Radio Configuration Utility Installer from the following links:
FRC Radio Configuration 23.0.2
FRC Radio Configuration 23.0.2 Israel Version

Note: The _IL version is for Israel teams and contains a version of the OM5PAC firmware
with restricted channels for use in Israel.

Before you begin using the software:
1. Disable all other network adapters
2. Plug directly from your computer into the wireless bridge ethernet port closest to the

power jack. Make sure no other devices are connected to your computer via ethernet. If
powering the radio via PoE, plug an Ethernet cable from the PC into the socket side of the
PoE adapter (where the roboRIO would plug in). If you experience issues configuring

4.3. Programming your Radio 117

https://firstfrc.blob.core.windows.net/frc2023/Radio/FRC_Radio_Configuration_23_0_2.zip
https://firstfrc.blob.core.windows.net/frc2023/Radio/FRC_Radio_Configuration_23_0_2_IL.zip

FIRST Robotics Competition

through the PoE adapter, you may try connecting the PC to the alternate port on the
radio.

Warning: The OM5P-AN and AC use the same power plug as the D-Link DAP1522, how-
ever they are 12V radios. Wire the radio to the 12V 2A terminals on the VRM (center-pin
positive).

4.3.2 Application Notes

By default, the Radio Configuration Utility will program the radio to enforce the 4Mbps band-
width limit on traffic exiting the radio over the wireless interface. In the home configuration
(AP mode) this is a total, not a per client limit. This means that streaming video to multiple
clients is not recommended.
The Utility has been tested on Windows 7, 8 and 10. It may work on other operating systems,
but has not been tested.

Programmed Configuration

The Radio Configuration Utility programs a number of configuration settings into the radio
when run. These settings apply to the radio in all modes (including at events). These include:

• Set a static IP of 10.TE.AM.1
• Set an alternate IP on the wired side of 192.168.1.1 for future programming
• Bridge the wired ports so they may be used interchangeably
• The LED configuration noted in the graphic above.
• 4Mb/s bandwidth limit on the outbound side of the wireless interface (may be disabled

for home use)

118 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

• QoS rules for internal packet prioritization (affects internal buffer and which packets to
discard if bandwidth limit is reached). These rules are:
– Robot Control and Status (UDP 1110, 1115, 1150)
– Robot TCP & NetworkTables (TCP 1735, 1740)
– Bulk (All other traffic). (disabled if BW limit is disabled)

• DHCP server enabled. Serves out:
– 10.TE.AM.11 - 10.TE.AM.111 on the wired side
– 10.TE.AM.138 - 10.TE.AM.237 on the wireless side
– Subnet mask of 255.255.255.0
– Broadcast address 10.TE.AM.255

• DNS server enabled. DNS server IP and domain suffix (.lan) are served as part of the
DHCP.

At home only:
• SSID may have a “Robot Name” appended to the team number to distinguish multiple

networks.
• Firewall option may be enabled to mimic the field firewall rules (open ports may be found

in the Game Manual)

Warning: It is not possible to modify the configuration manually.

4.3.3 Install the Software

Double click on FRC_Radio_Configuration_VERSION.exe to launch the installer. Follow the
prompts to complete the installation.
Part of the installation prompts will include installing Npcap if it is not already present. The
Npcap installer contains a number of checkboxes to configure the install. You should leave
the options as the defaults.

4.3.4 Launch the software

Use the Start menu or desktop shortcut to launch the program.

4.3. Programming your Radio 119

FIRST Robotics Competition

Note: If you need to locate the program, it is installed to C:\Program Files (x86)\FRC
Radio Configuration Utility. For 32-bit machines the path is C:\Program Files\FRC
Radio Configuration Utility

4.3.5 Allow the program to make changes, if prompted

A prompt may appear about allowing the configuration utility to make changes to the com-
puter. Click Yes if the prompt appears.

4.3.6 Select the network interface

Use the pop-up window to select the which ethernet interface the configuration utility will
use to communicate with the wireless bridge. On Windows machines, ethernet interfaces are
typically named “Local Area Connection”. The configuration utility can not program a bridge
over a wireless connection.

1. If no ethernet interfaces are listed, click Refresh to re-scan for available interfaces.
2. Select the interface you want to use from the drop-down list.
3. Click OK.

120 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.3.7 Open Mesh Firmware Note

For the FRC Radio Configuration Utility to program the OM5P-AN and OM5P-AC radio, the
radio must be running an FRC specific build of the OpenWRT firmware.
If you do not need to update or re-load the firmware, skip the next step.

Warning: Radios used in 2019/2020/2021/2022 do not need to be updated before con-
figuring, the 2023 tool uses the same 2019 firmware.

4.3.8 Loading FRC Firmware to Open Mesh Radio

If you need to load the FRC firmware (or reset the radio), you can do so using the FRC Radio
Configuration Utility.

1. Follow the instructions above to install the software, launch the program and select the
Ethernet interface.

2. Make sure the Open Mesh radio is selected in the Radio dropdown.
3. Make sure the radio is connected to the PC via Ethernet.

4.3. Programming your Radio 121

FIRST Robotics Competition

4. Unplug the power from the radio. (If using a PoE cable, this will also be unplugging the
Ethernet to the PC, this is fine)

5. Press the Load Firmware button
6. When prompted, plug in the radio power. The software should detect the radio, load the

firmware and prompt you when complete.

Warning: If you see an error about NPF name, try disabling all adapters other than the
one being used to program the radio. If only one adapter is found, the tool should attempt
to use that one. See the steps in Disabling Network Adapters for more info.
Teams may also see this error with Operating Systems configured for languages other
than US English. If you experience issues loading firmware or programming on a foreign
language OS, try using an English OS, such as on the KOP provided PC or setting the Locale
setting to “en_us” as described on this page.

4.3.9 Select Radio and Operating Mode

1. Select which radio you are configuring using the drop-down list.

122 Chapter 4. Step 3: Preparing Your Robot

https://www.java.com/en/download/help/locale.xml

FIRST Robotics Competition

2. Select which operating mode you want to configure. For most cases, the default selection
of 2.4GHz Access Point will be sufficient. If your computers support it, the 5GHz AP mode
is recommended, as 5GHz is less congested in many environments.

4.3.10 Select Options

The default values of the options have been selected to match the use case of most teams,
however, you may wish to customize these options to your specific scenario:

1. Robot Name: This is a string that gets appended to the SSID used by the radio. This
allows you to have multiple networks with the same team number and still be able to
distinguish them.

2. Firewall: If this box is checked, the radio firewall will be configured to attempt to mimic
the port blocking behavior of the firewall present on the FRC field. For a list of open
ports, please see the FRC Game Manual.

3. BWLimit: If this box is checked, the radio enforces a 4 Mbps bandwidth limit like it does
when programmed at events. Note that this is a total limit, not per client, so streaming
video to multiple clients simultaneously may cause undesired behavior.

Note: Firewall and BW Limit only apply to the Open Mesh radios. These options have no

4.3. Programming your Radio 123

FIRST Robotics Competition

effect on D-Link radios.

Warning: The “Firewall” option configures the radio to emulate the field firewall. This
means that you will not be able to deploy code wirelessly with this option enabled. This is
useful for simulating blocked ports that may exist at competitions.

4.3.11 Starting the Configuration Process

Follow the on-screen instructions for preparing your wireless bridge, entering the settings
the bridge will be configured with, and starting the configuration process. These on-screen
instructions update to match the bridge model and operating mode chosen.

124 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.3.12 Configuration Progress

Throughout the configuration process, the window will indicate:
1. The step currently being executed.
2. The overall progress of the configuration process.
3. All steps executed so far.

4.3. Programming your Radio 125

FIRST Robotics Competition

4.3.13 Configuration Completed

Once the configuration is complete:
1. Press OK on the dialog window.
2. Press OK on the main window to return to the settings screen.

126 Chapter 4. Step 3: Preparing Your Robot

FIRST Robotics Competition

4.3.14 Configuration Errors

If an error occurs during the configuration process, follow the instructions in the error mes-
sage to correct the problem.

4.3. Programming your Radio 127

FIRST Robotics Competition

4.3.15 Troubleshooting

• Disable all other network adapters.
• Make sure you wait long enough that the power light has stayed solid for 10 seconds.
• Make sure you have the correct network interface, and only one interface is listed in the

drop-down.
• Make sure your firewall is turned off.
• Plug directly from your computer into the wireless bridge and make sure no other devices

are connected to your computer via ethernet.
• Ensure the ethernet is plugged into the port closest to the power jack on the wireless

bridge.
• If using an Operating System configured for languages other than US English, try using

an English OS, such as on the KOP provided PC or setting the Locale setting to “en_us”
as described on this page.

• Some users have reported success after installing npcap 1.60. If this doesn’t resolve the
issue, it’s recommended to uninstall npcap and the radio tool and then reinstall the radio
tool in order to get back to a known configuration.

• If all else fails, try a different computer.

128 Chapter 4. Step 3: Preparing Your Robot

https://www.java.com/en/download/help/locale.xml
https://npcap.com/

5
Step 4: Programming your Robot

5.1 Creating your Test Drivetrain Program (LabVIEW)

Note: This document covers how to create, build and load a basic FRC® LabVIEW program
for a drivetrain onto a roboRIO. Before beginning, make sure that you have installed LabVIEW
for FRC and the FRC Game Tools and that you have configured and imaged your roboRIO as
described in the Zero-to-Robot tutorial.

129

FIRST Robotics Competition

5.1.1 Creating a Project

Launch LabVIEW and click the FRC roboRIO Robot Project link to display the Create New
FRC Robot Project dialog box.

130 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

5.1.2 Configuring Project

Fill in the Create New FRC Project Dialog:
1. Pick a name for your project
2. Select a folder to place the project in.
3. Enter your team number
4. Select a project type. If unsure, select Arcade Drive.
5. Click Finish

5.1. Creating your Test Drivetrain Program (LabVIEW) 131

FIRST Robotics Competition

5.1.3 Running the Program

Note: Note that a program deployed in this manner will not remain on the roboRIO after a
power cycle. To deploy a program to run every time the roboRIO starts follow the next step,
Deploying the program.

1. In the Project Explorer window, double-click the Robot Main.vi item to open the Robot
Main VI.

2. Click the Run button (White Arrow on the top ribbon) of the Robot Main VI to deploy
the VI to the roboRIO. LabVIEW deploys the VI, all items required by the VI, and the
target settings to memory on the roboRIO. If prompted to save any VIs, click Save on all
prompts.

3. Using the Driver Station software, put the robot in Teleop Mode. For more information on
configuring and using the Driver Station software, see the FRC Driver Station Software
article.

4. Click Enable.
5. Move the joysticks and observe how the robot responds.
6. Click the Abort button of the Robot Main VI. Notice that the VI stops. When you deploy a

program with the Run button, the program runs on the roboRIO, but you can manipulate
the front panel objects of the program from the host computer.

132 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

5.1.4 Deploying the Program

To run in the competition, you will need to deploy a program to your roboRIO. This allows the
program to survive across reboots of the controller, but doesn’t allow the same debugging
features (front panel, probes, highlight execution) as running from the front panel. To deploy
your program:

1. In the Project Explorer, click the + next to Build Specifications to expand it.
2. Right-click on FRC Robot Boot-up Deployment and select Build. Wait for the build to

complete.
3. Right-click again on FRC Robot Boot-Up Deployment and select Run as Startup. If you

receive a conflict dialog, click OK. This dialog simply indicates that there is currently a
program on the roboRIO which will be terminated/replaced.

4. Either check the box to close the deployment window on successful completion or click
the close button when the deployment completes.

5. The roboRIO will automatically start running the deployed code within a few seconds of
the dialog closing.

5.1. Creating your Test Drivetrain Program (LabVIEW) 133

FIRST Robotics Competition

5.2 Creating your Test Drivetrain Program (C++/Java)

Once everything is installed, we’re ready to create a robot program. WPILib comes with
several templates for robot programs. Use of these templates is highly recommended for
new users; however, advanced users are free to write their own robot code from scratch.
This article walks through creating a project from one of the provided examples which has
some code already written to drive a basic robot.

Important: This guide includes code examples that involve vendor hardware for the con-
venience of the user. In this document, PWM refers to the motor controller included in the
KOP. The CTRE tab references the Talon FX motor controller (Falcon 500 motor), but usage
is similar for TalonSRX and VictorSPX. The REV tab references the CAN SPARK MAX con-
trolling a brushless motor, but it’s similar for brushed motor. There is an assumption that
the user has already installed the required vendordeps and configured the device(s) (update
firmware, assign CAN IDs, etc) according to the manufacturer documentation (CTRE REV).

5.2.1 Creating a New WPILib Project

Bring up the Visual Studio Code command palette with Ctrl+Shift+P. Then, type “WPILib”
into the prompt. Since all WPILib commands start with “WPILib”, this will bring up the list
of WPILib-specific VS Code commands. Now, select the “Create a new project” command:

This will bring up the “New Project Creator Window:”

134 Chapter 5. Step 4: Programming your Robot

https://docs.ctr-electronics.com/
https://docs.revrobotics.com/sparkmax/gs-sm

FIRST Robotics Competition

The elements of the New Project Creator Window are explained below:
1. Project Type: The kind of project we wish to create. For this example, select Example
2. Language: This is the language (C++ or Java) that will be used for this project.
3. Project Base: This box is used to select the base class or example to generate the project

from. For this example, select Getting Started
4. Base Folder: This determines the folder in which the robot project will be located.
5. Project Name: The name of the robot project. This also specifies the name that the

5.2. Creating your Test Drivetrain Program (C++/Java) 135

FIRST Robotics Competition

project folder will be given if the Create New Folder box is checked.
6. Create a New Folder: If this is checked, a new folder will be created to hold the project

within the previously-specified folder. If it is not checked, the project will be located
directly in the previously-specified folder. An error will be thrown if the folder is not
empty and this is not checked. project folder will be given if the Create New Folder box
is checked.

7. Team Number: The team number for the project, which will be used for package names
within the project and to locate the robot when deploying code.

8. Enable Desktop Support: Enables unit test and simulation. While WPILib supports
this, third party software libraries may not. If libraries do not support desktop, then
your code may not compile or may crash. It should be left unchecked unless unit testing
or simulation is needed and all libraries support it. For this example, do not check this
box.

Once all the above have been configured, click “Generate Project” and the robot project will
be created.

Note: Any errors in project generation will appear in the bottom right-hand corner of the
screen.

5.2.2 Opening The New Project

After successfully creating your project, VS Code will give the option of opening the project
as shown above. We can choose to do that now or later by typing Ctrl+K then Ctrl+O (or just
Command+O on macOS) and select the folder where we saved our project.

136 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

Click Yes I trust the authors.
Once opened we will see the project hierarchy on the left. Double clicking on the file will
open that file in the editor.

5.2. Creating your Test Drivetrain Program (C++/Java) 137

FIRST Robotics Competition

5.2.3 C++ Configurations (C++ Only)

For C++ projects, there is one more step to set up IntelliSense. Whenever we open a project,
we should get a pop-up in the bottom right corner asking to refresh C++ configurations. Click
“Yes” to set up IntelliSense.

5.2.4 Imports/Includes

PWM
Java

7 import edu.wpi.first.wpilibj.TimedRobot;
8 import edu.wpi.first.wpilibj.Timer;
9 import edu.wpi.first.wpilibj.XboxController;

10 import edu.wpi.first.wpilibj.drive.DifferentialDrive;
11 import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;

138 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

C++

5 #include <frc/TimedRobot.h>
6 #include <frc/Timer.h>
7 #include <frc/XboxController.h>
8 #include <frc/drive/DifferentialDrive.h>
9 #include <frc/motorcontrol/PWMSparkMax.h>

CTRE
Java

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;
import com.ctre.phoenix.motorcontrol.can.WPI_TalonFX;

C++

#include <frc/Joystick.h>
#include <frc/TimedRobot.h>
#include <frc/Timer.h>
#include <frc/drive/DifferentialDrive.h>
#include <ctre/phoenix/motorcontrol/can/WPI_TalonFX.h>

REV
Java

import com.revrobotics.CANSparkMax;
import com.revrobotics.CANSparkMaxLowLevel.MotorType;

import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.XboxController;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;

C++

#include <frc/TimedRobot.h>
#include <frc/Timer.h>
#include <frc/XboxController.h>
#include <frc/drive/DifferentialDrive.h>
#include <frc/motorcontrol/PWMSparkMax.h>

#include <rev/CANSparkMax.h>

Our code needs to reference the components of WPILib that are used. In C++ this is accom-
plished using #include statements; in Java it is done with import statements. The program
references classes for Joystick (for driving), PWMSparkMax / WPI_TalonFX / CANSparkMax (for
controlling motors), ``TimedRobot (the base class used for the example), Timer (used for
autonomous), and DifferentialDrive (for connecting the joystick control to the motors).

5.2. Creating your Test Drivetrain Program (C++/Java) 139

FIRST Robotics Competition

5.2.5 Defining the variables for our sample robot

PWM
Java

19 public class Robot extends TimedRobot {
20 private final PWMSparkMax m_leftDrive = new PWMSparkMax(0);
21 private final PWMSparkMax m_rightDrive = new PWMSparkMax(1);
22 private final DifferentialDrive m_robotDrive = new DifferentialDrive(m_leftDrive, m_

↪→rightDrive);
23 private final XboxController m_controller = new XboxController(0);
24 private final Timer m_timer = new Timer();
25

26 /**
27 * This function is run when the robot is first started up and should be used for␣

↪→any
28 * initialization code.
29 */
30 @Override
31 public void robotInit() {
32 // We need to invert one side of the drivetrain so that positive voltages
33 // result in both sides moving forward. Depending on how your robot's
34 // gearbox is constructed, you might have to invert the left side instead.
35 m_rightDrive.setInverted(true);
36 }

C++

12 public:
13 Robot() {
14 // We need to invert one side of the drivetrain so that positive voltages
15 // result in both sides moving forward. Depending on how your robot's
16 // gearbox is constructed, you might have to invert the left side instead.
17 m_right.SetInverted(true);
18 m_robotDrive.SetExpiration(100_ms);
19 m_timer.Start();
20 }

50 private:
51 // Robot drive system
52 frc::PWMSparkMax m_left{0};
53 frc::PWMSparkMax m_right{1};
54 frc::DifferentialDrive m_robotDrive{m_left, m_right};
55

56 frc::XboxController m_controller{0};
57 frc::Timer m_timer;
58 };

CTRE
Java

public class Robot extends TimedRobot {
private final WPI_TalonFX m_leftDrive = new WPI_TalonFX(1);
private final WPI_TalonFX m_rightDrive = new WPI_TalonFX(2);
private final DifferentialDrive m_robotDrive = new DifferentialDrive(m_leftDrive,␣

↪→m_rightDrive);
(continues on next page)

140 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

(continued from previous page)
private final Joystick m_stick = new Joystick(0);
private final Timer m_timer = new Timer();

C++

public:
Robot() {

m_right.SetInverted(true);
m_robotDrive.SetExpiration(100_ms);
// We need to invert one side of the drivetrain so that positive voltages
// result in both sides moving forward. Depending on how your robot's
// gearbox is constructed, you might have to invert the left side instead.
m_timer.Start();

}

private:
// Robot drive system
ctre::phoenix::motorcontrol::can::WPI_TalonFX m_left{1};
ctre::phoenix::motorcontrol::can::WPI_TalonFX m_right{2};
frc::DifferentialDrive m_robotDrive{m_left, m_right};

frc::Joystick m_stick{0};
frc::Timer m_timer;

REV
Java

public class Robot extends TimedRobot {
private final CANSparkMax m_leftDrive = new CANSparkMax(1, MotorType.kBrushless);
private final CANSparkMax m_rightDrive = new CANSparkMax(2, MotorType.kBrushless);
private final DifferentialDrive m_robotDrive = new DifferentialDrive(m_leftDrive, m_

↪→rightDrive);
private final XboxController m_controller = new XboxController(0);
private final Timer m_timer = new Timer();

C++

Robot() {
// We need to invert one side of the drivetrain so that positive voltages
// result in both sides moving forward. Depending on how your robot's
// gearbox is constructed, you might have to invert the left side instead.
m_right.SetInverted(true);
m_robotDrive.SetExpiration(100_ms);
m_timer.Start();

}

private:
// Robot drive system
rev::CANSparkMax m_left{1, rev::CANSparkMax::MotorType::kBrushless};
rev::CANSparkMax m_right{2, rev::CANSparkMax::MotorType::kBrushless};
frc::DifferentialDrive m_robotDrive{m_left, m_right};

frc::XboxController m_controller{0};
frc::Timer m_timer;

The sample robot in our examples will have a joystick on USB port 0 for arcade drive and two

5.2. Creating your Test Drivetrain Program (C++/Java) 141

FIRST Robotics Competition

motors on PWM ports 0 and 1 (Vendor examples use CAN with IDs 1 and 2). Here we create
objects of type DifferentialDrive (m_robotDrive), Joystick (m_stick) and Timer (m_timer). This
section of the code does three things:

1. Defines the variables as members of our Robot class.
2. Initializes the variables.

Note: The variable initializations for C++ are in the private section at the bottom of the
program. This means they are private to the class (Robot). The C++ code also sets the Motor
Safety expiration to 0.1 seconds (the drive will shut off if we don’t give it a command every
.1 seconds) and starts the Timer used for autonomous.

5.2.6 Robot Initialization

Java

@Override
public void robotInit() {}

C++

void RobotInit() {}

The RobotInit method is run when the robot program is starting up, but after the constructor.
The RobotInit for our sample program doesn’t do anything. If we wanted to run something
here we could provide the code above to override the default).

5.2.7 Simple Autonomous Example

Java

38 /** This function is run once each time the robot enters autonomous mode. */
39 @Override
40 public void autonomousInit() {
41 m_timer.restart();
42 }
43

44 /** This function is called periodically during autonomous. */
45 @Override
46 public void autonomousPeriodic() {
47 // Drive for 2 seconds
48 if (m_timer.get() < 2.0) {
49 // Drive forwards half speed, make sure to turn input squaring off
50 m_robotDrive.arcadeDrive(0.5, 0.0, false);
51 } else {
52 m_robotDrive.stopMotor(); // stop robot
53 }
54 }

C++

142 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

22 void AutonomousInit() override { m_timer.Restart(); }
23

24 void AutonomousPeriodic() override {
25 // Drive for 2 seconds
26 if (m_timer.Get() < 2_s) {
27 // Drive forwards half speed, make sure to turn input squaring off
28 m_robotDrive.ArcadeDrive(0.5, 0.0, false);
29 } else {
30 // Stop robot
31 m_robotDrive.ArcadeDrive(0.0, 0.0, false);
32 }
33 }

The AutonomousInit method is run once each time the robot transitions to autonomous from
another mode. In this program, we restart the Timer in this method.
AutonomousPeriodic is run once every period while the robot is in autonomous mode. In
the TimedRobot class the period is a fixed time, which defaults to 20ms. In this example, the
periodic code checks if the timer is less than 2 seconds and if so, drives forward at half speed
using the ArcadeDrive method of the DifferentialDrive class. If more than 2 seconds has
elapsed, the code stops the robot drive.

5.2.8 Joystick Control for Teleoperation

Java

56 /** This function is called once each time the robot enters teleoperated mode. */
57 @Override
58 public void teleopInit() {}
59

60 /** This function is called periodically during teleoperated mode. */
61 @Override
62 public void teleopPeriodic() {
63 m_robotDrive.arcadeDrive(-m_controller.getLeftY(), -m_controller.getRightX());
64 }

C++

35 void TeleopInit() override {}
36

37 void TeleopPeriodic() override {
38 // Drive with arcade style (use right stick to steer)
39 m_robotDrive.ArcadeDrive(-m_controller.GetLeftY(),
40 m_controller.GetRightX());
41 }

Like in Autonomous, the Teleop mode has a TeleopInit and TeleopPeriodic function. In this
example we don’t have anything to do in TeleopInit, it is provided for illustration purposes
only. In TeleopPeriodic, the code uses the ArcadeDrive method to map the Y-axis of the
Joystick to forward/back motion of the drive motors and the X-axis to turning motion.

5.2. Creating your Test Drivetrain Program (C++/Java) 143

FIRST Robotics Competition

5.2.9 Test Mode

Java

66 /** This function is called once each time the robot enters test mode. */
67 @Override
68 public void testInit() {}
69

70 /** This function is called periodically during test mode. */
71 @Override
72 public void testPeriodic() {}

C++

43 void TestInit() override {}
44

45 void TestPeriodic() override {}

Test Mode is used for testing robot functionality. Similar to TeleopInit, the TestInit and
TestPeriodic methods are provided here for illustrative purposes only.

5.2.10 Deploying the Project to a Robot

Please see the instructions here for deploying the program onto a robot.

5.3 Running your Test Program

5.3.1 Overview

You should create and download a Test Program as described for your programming language:
C++/Java
LabVIEW

5.3.2 Tethered Operation

Running your test program while tethered to the Driver Station via ethernet or USB cable
will confirm the program was successfully deployed and that the driver station and roboRIO
are properly configured.
The roboRIO should be powered on and connected to the PC over Ethernet or USB.

144 Chapter 5. Step 4: Programming your Robot

FIRST Robotics Competition

5.3.3 Starting the FRC Driver Station

The FRC® Driver Station can be launched by double-clicking the icon on the Desktop or by
selecting Start->All Programs->FRC Driver Station.

5.3.4 Setting Up the Driver Station

The DS must be set to your team number in order to connect to your robot. In order to do
this click the Setup tab then enter your team number in the team number box. Press return
or click outside the box for the setting to take effect.
PCs will typically have the correct network settings for the DS to connect to the robot already,
but if not, make sure your Network adapter is set to DHCP.

5.3.5 Confirm Connectivity

Fig. 1: Tethered

Using the Driver Station software, click Diagnostics and confirm that the Enet Link (or Robot
Radio led, if operating wirelessly) and Robot leds are green.

5.3. Running your Test Program 145

FIRST Robotics Competition

Fig. 2: Wireless

5.3.6 Operate the Robot

Click the Operation Tab
1. Confirm that battery voltage is displayed
2. Communications, Robot Code, and Joysticks indicators are green.
3. Put the robot in Teleop Mode
4. Click Enable. Move the joysticks and observe how the robot responds.
5. Click Disable

5.3.7 Wireless Operation

Before attempting wireless operation, tethered operation should have been confirmed as de-
scribed in Tethered Operation. Running your test program while connected to the Driver
Station via WiFi will confirm that the access point is properly configured.

Configuring the Access Point

See the article Programming your radio for details on configuring the robot radio for use as
an access point.
After configuring the access point, connect the driver station wirelessly to the robot. The
SSID will be your team number (as entered in the Bridge Configuration Utility). If you set a
key when using the Bridge Configuration Utility you will need to enter it to connect to the
network. Make sure the computer network adapter is set to DHCP (“Obtain an IP address
automatically”).
You can now confirm wireless operation using the same steps in Confirm Connectivity and
Operate the Robot above.

146 Chapter 5. Step 4: Programming your Robot

6
Hardware Component Overview

The goal of this document is to provide a brief overview of the hardware components that
make up the FRC® Control System. Each component will contain a brief description of the
component function and a link to more documentation.

Note: For wiring instructions/diagrams, please see the Wiring the FRC Control System
document.

6.1 Overview of Control System

REV

147

FIRST Robotics Competition

Diagram courtesy of FRC® Team 3161 and Stefen Acepcion.
CTRE

Diagram courtesy of FRC® Team 3161 and Stefen Acepcion.

148 Chapter 6. Hardware Component Overview

FIRST Robotics Competition

6.2 NI roboRIO

The NI-roboRIO is the main robot controller used for FRC. The roboRIO serves as the “brain”
for the robot running team-generated code that commands all of the other hardware.

6.2. NI roboRIO 149

FIRST Robotics Competition

6.3 CTRE Power Distribution Panel

The CTRE Power Distribution Panel (PDP) is designed to distribute power from a 12VDC bat-
tery to various robot components through auto-resetting circuit breakers and a small number
of special function fused connections. The PDP provides 8 output pairs rated for 40A contin-
uous current and 8 pairs rated for 30A continuous current. The PDP provides dedicated 12V
connectors for the roboRIO, as well as connectors for the Voltage Regulator Module and Pneu-
matics Control Module. It also includes a CAN interface for logging current, temperature,
and battery voltage. For more detailed information, see the PDP User Manual.

150 Chapter 6. Hardware Component Overview

https://store.ctr-electronics.com/content/user-manual/PDP%20User%27s%20Guide.pdf

FIRST Robotics Competition

6.4 REV Power Distribution Hub

The REV Power Distribution Hub (PDH) is designed to distribute power from a 12VDC bat-
tery to various robot components. The PDH features 20 high-current (40A max) channels, 3
low-current (15A max), and 1 switchable low-current channel. The Power Distribution Hub
features toolless latching WAGO terminals, an LED voltage display, and the ability to connect
over CAN or USB-C to the REV Hardware Client for real-time telemetry.

6.4. REV Power Distribution Hub 151

https://docs.revrobotics.com/rev-11-1850/

FIRST Robotics Competition

6.5 CTRE Voltage Regulator Module

The CTRE Voltage Regulator Module (VRM) is an independent module that is powered by
12 volts. The device is wired to a dedicated connector on the PDP. The module has multiple
regulated 12V and 5V outputs. The purpose of the VRM is to provide regulated power for the
robot radio, custom circuits, and IP vision cameras. For more information, see the VRM User
Manual.

152 Chapter 6. Hardware Component Overview

https://store.ctr-electronics.com/content/user-manual/VRM%20User%27s%20Guide.pdf
https://store.ctr-electronics.com/content/user-manual/VRM%20User%27s%20Guide.pdf

FIRST Robotics Competition

6.6 REV Radio Power Module

The REV Radio Power Module is designed to keep one of the most critical system components,
the OpenMesh WiFi radio, powered in the toughest moments of the competition. The Radio
Power Module eliminates the need for powering the radio through a traditional barrel power
jack. Utilizing 18V Passive POE with two socketed RJ45 connectors, the Radio Power Module
passes signal between the radio and roboRIO while providing power directly to the radio.
After connecting the radio and roboRIO, easily add power to the Radio Power Module by
wiring it to the low-current channels on the Power Distribution Hub utilizing the color coded
push button WAGO terminals.

6.6. REV Radio Power Module 153

https://docs.revrobotics.com/rev-11-1856/

FIRST Robotics Competition

6.7 OpenMesh OM5P-AN or OM5P-AC Radio

Either the OpenMesh OM5P-AN or OpenMesh OM5P-AC wireless radio is used as the robot
radio to provide wireless communication functionality to the robot. The device can be con-
figured as an Access Point for direct connection of a laptop for use at home. It can also be
configured as a bridge for use on the field. The robot radio should be powered by one of the
12V/2A outputs on the VRM and connected to the roboRIO controller over Ethernet. For more
information, see Programming your Radio.
The OM5P-AN is no longer available for purchase. The OM5P-AC is slightly heavier, has more
cooling grates, and has a rough surface texture compared to the OM5P-AN.

154 Chapter 6. Hardware Component Overview

https://www.andymark.com/products/open-mesh-om5p-ac-dual-band-1-17-gbps-access-point-radio
https://www.firstinspires.org/robotics/frc/blog/radio-silence

FIRST Robotics Competition

6.8 120A Circuit Breaker

The 120A Main Circuit Breaker serves two roles on the robot: the main robot power switch
and a protection device for downstream robot wiring and components. The 120A circuit
breaker is wired to the positive terminals of the robot battery and Power Distribution boards.
For more information, please see the Cooper Bussmann 18X Series Datasheet (PN: 185120F)

6.8. 120A Circuit Breaker 155

https://www.mouser.com/datasheet/2/87/BUS_Tns_DS_18X_CIRCUITBREAKER-515519.pdf

FIRST Robotics Competition

6.9 Snap Action Circuit Breakers

The Snap Action circuit breakers, MX5 series and VB3 Series, are used with the Power Dis-
tribution Panel to limit current to branch circuits. The ratings on these circuit breakers are
for continuous current, temporary peak values can be considerably higher.

156 Chapter 6. Hardware Component Overview

http://www.snapaction.net/pdf/MX5%20Spec%20Sheet.pdf
http://www.snapaction.net/pdf/vb3.pdf

FIRST Robotics Competition

6.10 Robot Battery

The power supply for an FRC robot is a single 12V 18Ah Sealed Lead Acid (SLA) battery,
capable of meeting the high current demands of an FRC robot. For more information, see the
Robot Battery page.

Note: Multiple battery part numbers may be legal, consult the FRC Manual for a complete
list.

6.10. Robot Battery 157

https://www.firstinspires.org/resource-library/frc/competition-manual-qa-system

FIRST Robotics Competition

6.11 Robot Signal Light

The Robot Signal Light (RSL) is required to be the Allen-Bradley 855PB-B12ME522. It is
directly controlled by the roboRIO and will flash when enabled and stay solid while disabled.

158 Chapter 6. Hardware Component Overview

FIRST Robotics Competition

6.12 CTRE Pneumatics Control Module

The CTRE Pneumatics Control Module (PCM) contains all of the inputs and outputs required
to operate 12V or 24V pneumatic solenoids and the on board compressor. The PCM contains
an input for the pressure sensor and will control the compressor automatically when the robot
is enabled and a solenoid has been created in the code. For more information see the PCM
User Manual.

6.12. CTRE Pneumatics Control Module 159

https://store.ctr-electronics.com/content/user-manual/PCM%20User%27s%20Guide.pdf
https://store.ctr-electronics.com/content/user-manual/PCM%20User%27s%20Guide.pdf

FIRST Robotics Competition

6.13 REV Pneumatic Hub

The REV Pneumatic Hub is a standalone module that is capable of switching both 12V and 24V
pneumatic solenoid valves. The Pneumatic Hub features 16 solenoid channels which allow
for up to 16 single-acting solenoids, 8 double-acting solenoids, or a combination of the two
types. The user selectable output voltage is fully regulated, allowing even 12V solenoids to
stay active when the robot battery drops as low as 4.75V.
Digital and analog pressure sensor ports are built into the device, increasing the flexibility
and feedback functionality of the pneumatic system. The USB-C connection on the Hub works
with the REV Hardware Client, allowing users to test pneumatic systems without a need for
an additional robot controller.

160 Chapter 6. Hardware Component Overview

https://docs.revrobotics.com/rev-11-1852/

FIRST Robotics Competition

6.14 Motor Controllers

There are a variety of different motor controllers which work with the FRC Control System
and are approved for use. These devices are used to provide variable voltage control of the
brushed and brushless DC motors used in FRC. They are listed here in order of usage.

Note: 3rd Party CAN control is not supported from WPILib. See this section on Third-Party
CAN Devices for more information.

6.14.1 Talon SRX

The Talon SRX Motor Controller is a “smart motor controller” from Cross The Road Electron-
ics/VEX Robotics. The Talon SRX can be controlled over the CAN bus or PWM interface. When
using the CAN bus control, this device can take inputs from limit switches and potentiome-
ters, encoders, or similar sensors in order to perform advanced control. For more information
see the Talon SRX User’s Guide.

6.14. Motor Controllers 161

https://www.firstinspires.org/robotics/frc/blog/2021-beta-testing-usage-report
https://store.ctr-electronics.com/talon-srx/
https://store.ctr-electronics.com/content/user-manual/Talon%20SRX%20User's%20Guide.pdf

FIRST Robotics Competition

6.14.2 Victor SPX

The Victor SPX Motor Controller is a CAN or PWM controlled motor controller from Cross The
Road Electronics/VEX Robotics. The device is connectorized to allow easy connection to the
roboRIO PWM connectors or a CAN bus. The case is sealed to prevent debris from entering
the controller. For more information, see the Victor SPX User Guide.

162 Chapter 6. Hardware Component Overview

https://store.ctr-electronics.com/victor-spx/
https://store.ctr-electronics.com/content/user-manual/Victor%20SPX%20User's%20Guide.pdf

FIRST Robotics Competition

6.14.3 SPARK MAX Motor Controller

The SPARK MAX Motor Controller is an advanced brushed and brushless DC motor controller
from REV Robotics. When using CAN bus or USB control, the SPARK MAX uses input from
limit switches, encoders, and other sensors, including the integrated encoder of the REV NEO
Brushless Motor, to perform advanced control modes. The SPARK MAX can be controlled over
PWM, CAN or USB (for configuration/testing only). For more information, see the SPARK MAX
User’s Manual.

6.14. Motor Controllers 163

https://www.revrobotics.com/rev-11-2158/
https://docs.revrobotics.com/sparkmax/
https://docs.revrobotics.com/sparkmax/

FIRST Robotics Competition

6.14.4 TalonFX Motor Controller

The TalonFX Motor Controller is integrated into the Falcon 500 brushless motor. It features
an integrated encoder and all of the smart features of the Talon SRX and more! For more
information see the Falcon 500 User Guide.

164 Chapter 6. Hardware Component Overview

https://store.ctr-electronics.com/falcon-500-powered-by-talon-fx/
https://store.ctr-electronics.com/content/user-manual/Falcon%20500%20User%20Guide.pdf

FIRST Robotics Competition

6.14.5 SPARK Motor Controller

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The SPARK Motor Controller from REV Robotics is an inexpensive brushed DC motor con-
troller. The SPARK is controlled using the PWM interface. Limit switches may be wired
directly to the SPARK to limit motor travel in one or both directions. For more information,
see the SPARK User’s Manual.

6.14. Motor Controllers 165

https://www.revrobotics.com/rev-11-1200/
https://www.revrobotics.com/content/docs/REV-11-1200-UM.pdf

FIRST Robotics Competition

6.14.6 Victor SP

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The Victor SP Motor Controller is a PWM motor controller from Cross The Road Electron-
ics/VEX Robotics. The Victor SP has an electrically isolated metal housing for heat dissipa-
tion, making the use of the fan optional. The case is sealed to prevent debris from entering
the controller. The controller is approximately half the size of previous models.

166 Chapter 6. Hardware Component Overview

https://store.ctr-electronics.com/content/user-manual/Victor-SP-Quick-Start-Guide.pdf

FIRST Robotics Competition

6.14.7 Talon Motor Controller

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The Talon Motor Controller from Cross the Road Electronics is a PWM controlled brushed DC
motor controller with passive cooling.

6.14. Motor Controllers 167

https://files.andymark.com/Talon_User_Manual_1_3.pdf

FIRST Robotics Competition

6.14.8 Victor 888 Motor Controller / Victor 884 Motor Controller

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The Victor 884 and Victor 888 motor controllers from VEX Robotics are variable speed PWM
motor controllers for use in FRC. The Victor 888 replaces the Victor 884, which is also usable
in FRC.

168 Chapter 6. Hardware Component Overview

https://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf
https://content.vexrobotics.com/docs/217-2769-Victor888UserManual.pdf

FIRST Robotics Competition

6.14.9 Jaguar Motor Controller

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The Jaguar Motor Controller from VEX Robotics (formerly made by Luminary Micro and Texas
Instruments) is a variable speed motor controller for use in FRC. For FRC, the Jaguar may
only be controlled using the PWM interface.

6.14. Motor Controllers 169

https://www.ti.com/lit/an/spma033a/spma033a.pdf?ts=1607574399581

FIRST Robotics Competition

6.14.10 DMC-60 and DMC-60C Motor Controller

Warning: While this motor controller is still legal for FRC use, the manufacturer has
discontinued this product.

The DMC-60 is a PWM motor controller from Digilent. The DMC-60 features integrated ther-
mal sensing and protection including current-foldback to prevent overheating and damage,
and four multi-color LEDs to indicate speed, direction, and status for easier debugging. For
more information, see the DMC-60 reference manual
The DMC-60C adds CAN smart controller capabilities to the DMC-60 controller. Due to the
manufacturer discontinuing this product, the DMC-60C is only usable with PWM. For more
information see the DMC-60C Product Page

170 Chapter 6. Hardware Component Overview

https://reference.digilentinc.com/_media/dmc-60/dmc60_rm.pdf
https://reference.digilentinc.com/dmc-60c/start/

FIRST Robotics Competition

6.14.11 Venom Motor Controller

The Venom Motor Controller from Playing With Fusion is integrated into a motor based on the
original CIM. Speed, current, temperature, and position are all measured onboard, enabling
advanced control modes without complicated sensing and wiring schemes.

6.14. Motor Controllers 171

https://www.playingwithfusion.com/productview.php?pdid=99

FIRST Robotics Competition

6.14.12 Nidec Dynamo BLDC Motor with Controller

The Nidec Dynamo BLDC Motor with Controller is the first brushless motor and controller
legal in FRC. This motor’s controller is integrated into the back of the motor. The motor data
sheet provides more device specifics.

172 Chapter 6. Hardware Component Overview

https://www.andymark.com/products/dynamo-brushless-motor-controller
https://cdn.andymark.com/media/W1siZiIsIjIwMTkvMDUvMDkvMDkvNTEvNDQvZjQwYjliZDctYzdkOC00MWFlLWIzZmYtZTQyNTJhYjRkNmIyL2FtLTM3NDAgTmlkZWMgRHluYW1vIERNMzAxMi0xMDYzLUIgU3BlYy5wZGYiXV0/am-3740%20Nidec%20Dynamo%20DM3012-1063-B%20Spec.pdf?sha=eb03d3f578fe782e
https://cdn.andymark.com/media/W1siZiIsIjIwMTkvMDUvMDkvMDkvNTEvNDQvZjQwYjliZDctYzdkOC00MWFlLWIzZmYtZTQyNTJhYjRkNmIyL2FtLTM3NDAgTmlkZWMgRHluYW1vIERNMzAxMi0xMDYzLUIgU3BlYy5wZGYiXV0/am-3740%20Nidec%20Dynamo%20DM3012-1063-B%20Spec.pdf?sha=eb03d3f578fe782e

FIRST Robotics Competition

6.14.13 SD540B and SD540C Motor Controllers

The SD540B and SD540C Motor Controllers from Mindsensors are controlled using PWM.
CAN control is no longer available for the SD540C due to lack of manufacturer support. Limit
switches may be wired directly to the SD540 to limit motor travel in one or both directions.
For more information see the Mindsensors FRC page

6.15 Spike H-Bridge Relay

6.15. Spike H-Bridge Relay 173

http://www.mindsensors.com/68-frc

FIRST Robotics Competition

Warning: While this relay is still legal for FRC use, the manufacturer has discontinued
this product.

The Spike H-Bridge Relay from VEX Robotics is a device used for controlling power to motors
or other custom robot electronics. When connected to a motor, the Spike provides On/Off
control in both the forward and reverse directions. The Spike outputs are independently
controlled so it can also be used to provide power to up to 2 custom electronic circuits. The
Spike H-Bridge Relay should be connected to a relay output of the roboRIO and powered from
the Power Distribution Panel. For more information, see the Spike User’s Guide.

6.16 Servo Power Module

The Servo Power Module from Rev Robotics is capable of expanding the power available to
servos beyond what the roboRIO integrated power supply is capable of. The Servo Power
Module provides up to 90W of 6V power across 6 channels. All control signals are passed
through directly from the roboRIO. For more information, see the Servo Power Module web-
page.

174 Chapter 6. Hardware Component Overview

https://content.vexrobotics.com/docs/spike-blue-guide-sep05.pdf
https://www.revrobotics.com/rev-11-1144/
https://www.revrobotics.com/rev-11-1144/

FIRST Robotics Competition

6.17 Microsoft Lifecam HD3000

The Microsoft Lifecam HD3000 is a USB webcam that can be plugged directly into the robo-
RIO. The camera is capable of capturing up to 1280x720 video at 30 FPS. For more informa-
tion about the camera, see the Microsoft product page. For more information about using the
camera with the roboRIO, see the Vision Processing section of this documentation.

6.18 Image Credits

Image of roboRIO courtesy of National Instruments. Image of DMC-60 courtesy of Digi-
lent. Image of SD540 courtesy of Mindsensors. Images of Jaguar Motor Controller, Talon
SRX, Talon FX, Victor 888, Victor SP, Victor SPX, and Spike H-Bridge Relay courtesy of VEX
Robotics, Inc. Image of SPARK MAX, Power Distribution Hub, Radio Power Module, and Pneu-
matic Hub courtesy of REV Robotics. Lifecam, PDP, PCM, SPARK, and VRM photos courtesy
of FIRST®. All other photos courtesy of AndyMark Inc.

6.17. Microsoft Lifecam HD3000 175

https://www.microsoft.com/en/accessories/business/lifecam-hd-3000-for-business

FIRST Robotics Competition

176 Chapter 6. Hardware Component Overview

7
Software Component Overview

The FRC® software consists of a wide variety of mandatory and optional components. These
elements are designed to assist you in the design, development, and debugging of your robot
code as well as assist with control robot operation and to provide feedback when troubleshoot-
ing. For each software component this document will provide a brief overview of its purpose,
a link to the package download, if appropriate, and a link to further documentation where
available.

7.1 Operating System Compatibility

The primary supported OS for FRC components is Windows. All required FRC software com-
ponents have been tested on Windows 10 & 11.
Many of the tools for C++/Java programming are also supported and tested on macOS and
Linux. Teams programming in C++/Java should be able to develop using these systems, us-
ing a Windows system for the Windows-only operations such as the Driver Station, Radio
Configuration Utility, and roboRIO Imaging Tool.

177

FIRST Robotics Competition

7.2 LabVIEW FRC (Windows Only)

LabVIEW FRC, based on a recent version of LabVIEW Professional, is one of the three offi-
cially supported languages for programming an FRC robot. LabVIEW is a graphical, dataflow-
driven language. LabVIEW programs consist of a collection of icons, called VIs, wired to-
gether with wires which pass data between the VIs. The LabVIEW FRC installer is distributed
on a DVD found in the Kickoff Kit of Parts and is also available for download. A guide to get-
ting started with the LabVIEW FRC software, including installation instructions can be found
here.

178 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.3 Visual Studio Code

Visual Studio Code is the supported development environment for C++ and Java (the other
two supported languages). Both are object-oriented text based programming languages. A
guide to getting started with C++ or Java for FRC, including the installation and configuration
of Visual Studio Code can be found here.

7.4 FRC Driver Station Powered by NI LabVIEW (Windows
Only)

7.3. Visual Studio Code 179

FIRST Robotics Competition

This is the only software allowed to be used for the purpose of controlling the state of the robot
during competition. This software sends data to your robot from a variety of input devices.
It also contains a number of tools used to help troubleshoot robot issues. More information
about the FRC Driver Station Powered by NI LabVIEW can be found here.

7.5 Dashboard Options

7.5.1 LabVIEW Dashboard (Windows Only)

The LabVIEW Dashboard is automatically launched by the FRC Driver Station by default.
The purpose of the Dashboard is to provide feedback about the operation of the robot using
tabbed display with a variety of built in features. More information about the FRC Default
Dashboard software can be found here.

180 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.5.2 SmartDashboard

SmartDashboard allows you to view your robot data by automatically creating customizable
indicators specifically for each piece of data sent from your robot. Additional documentation
on SmartDashboard can be found here.

7.5. Dashboard Options 181

FIRST Robotics Competition

7.5.3 Shuffleboard

Shuffleboard has the same features as SmartDashboard. It also improves on the setup and
visualization of your data with new features and a modern design at the cost of being less
resource efficient. Additional documentation on Shuffleboard can be found here.

182 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.5.4 Glass

Glass is a Dashboard focused on being a programmer’s tool for debugging. The primary
advantages are the field view, pose visualization and advanced signal plotting tools.

7.5. Dashboard Options 183

FIRST Robotics Competition

7.6 LiveWindow

LiveWindow is a feature of SmartDashboard and Shuffleboard, designed for use with the Test
Mode of the Driver Station. LiveWindow allows the user to see feedback from sensors on the
robot and control actuators independent of the written user code. More information about
LiveWindow can be found here.

184 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.7 FRC roboRIO Imaging Tool (Windows Only)

This tool is used to format and setup a roboRIO for use in FRC. Installation instructions can
be found here. Additional instructions on imaging your roboRIO using this tool can be found
here.

7.7. FRC roboRIO Imaging Tool (Windows Only) 185

FIRST Robotics Competition

7.8 FRC Radio Configuration Utility (Windows Only)

The FRC Radio Configuration Utility is a tool used to configure the standard radio for practice
use at home. This tool sets the appropriate network settings to mimic the experience of the
FRC playing field. The FRC Radio Configuration Utility is installed by a standalone installer
that can be found here.

186 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.9 FRC Driver Station Log Viewer (Windows Only)

The FRC Driver Station Log Viewer is used to view logs created by the FRC Driver Station.
These logs contain a variety of information important for understanding what happened dur-
ing a practice session or FRC match. More information about the FRC Driver Station Log
Viewer and understanding the logs can be found here

7.10 RobotBuilder

7.9. FRC Driver Station Log Viewer (Windows Only) 187

FIRST Robotics Competition

RobotBuilder is a tool designed to aid in setup and structuring of a Command Based robot
project for C++ or Java. RobotBuilder allows you to enter in the various components of your
robot subsystems and operator interface and define what your commands are in a graphical
tree structure. RobotBuilder will then generate structural template code to get you started.
More information about RobotBuilder can be found here. More information about the Com-
mand Based programming architecture can be found here.

7.11 Robot Simulation

Robot Simulation offers a way for Java and C++ teams to verify their actual robot code is
working in a simulated environment. This simulation can be launched directly from VS Code
and includes a 2D field that users can visualize their robot’s movement on. For more infor-
mation see the Robot Simulation section.

188 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.12 FRC LabVIEW Robot Simulator (Windows Only)

The FRC Robot Simulator is a component of the LabVIEW programming environment that
allows you to operate a predefined robot in a simulated environment to test code and/or
Driver Station functions. Information on using the FRC Robot Simulator can be found here
or by opening the Robot Simulation Readme.html file in the LabVIEW Project Explorer.

7.12. FRC LabVIEW Robot Simulator (Windows Only) 189

https://forums.ni.com/t5/FIRST-Robotics-Competition/LabVIEW-Tutorial-10-Robot-Simulation/ta-p/3739702?profile.language=en

FIRST Robotics Competition

7.13 PathWeaver

PathWeaver allows teams to quickly generate and configure paths for advanced autonomous
routines. These paths have smooth curves allowing the team to quickly navigate their robot
between points on the field. For more information see the PathWeaver section.

7.14 System Identification

This tool helps teams automatically calculate constants that can be used to describe the phys-
ical properties of your robot for use in features like robot simulation, trajectory following, and
PID control. For more information see the System Identification section.

190 Chapter 7. Software Component Overview

FIRST Robotics Competition

7.15 OutlineViewer

OutlineViewer is a utility used to view, modify and add to all of the contents of the Network-
Tables for debugging purposes. LabVIEW teams can use the Variables tab of the LabVIEW
Dashboard to accomplish this functionality. For more information see the Outline Viewer
section.

7.15. OutlineViewer 191

FIRST Robotics Competition

192 Chapter 7. Software Component Overview

8
What is WPILib?

The WPI Robotics Library (WPILib) is the standard software library provided for teams to
write code for their FRC® robots. WPILib contains a set of useful classes and subroutines for
interfacing with various parts of the FRC control system (such as sensors, motor controllers,
and the driver station), as well as an assortment of other utility functions.

8.1 Supported languages

There are two versions of WPILib, one for each of the two officially-supported text-based
languages: WPILibJ for Java, and WPILibC for C++. A considerable effort is made to maintain
feature-parity between these two languages - library features are not added unless they can be
reasonably supported for both Java and C++, and when possible the class and method names
are kept identical or highly-similar. While unofficial community-built support is available for
some other languages, notably python, this documentation will only cover Java and C++.
Java and C++ were chosen for the officially-supported languages due to their appropriate
level-of-abstraction and ubiquity in both industry and high-school computer science classes.
In general, C++ offers better high-end performance, at the cost of increased user effort (mem-
ory must be handled manually, and the C++ compiler does not do much to ensure user code
will not crash at runtime). Java offers lesser performance, but much greater convenience.
New/inexperienced users are strongly encouraged to use Java.

8.2 Source code and documentation

WPILib is an open-source library - the entirety of its source code is available online on the
WPILib GitHub Page:

• Official WPILib GitHub
The Java and C++ source code can be found in the WPILibJ and WPILibC source directories:

• Java source code
• C++ source code

193

https://robotpy.readthedocs.io/en/stable/
https://github.com/wpilibsuite/allwpilib
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibj/src/main/java/edu/wpi/first/wpilibj
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibc/src/main/native/cpp

FIRST Robotics Competition

While users are strongly encouraged to read the source code to resolve detailed questions
about library functionality, more-concise documentation can be found on the official docu-
mentation pages for WPILibJ and WPILibC:

• Java documentation
• C++ documentation

194 Chapter 8. What is WPILib?

https://github.wpilib.org/allwpilib/docs/release/java/
https://github.wpilib.org/allwpilib/docs/release/cpp/

9
2023 Overview

9.1 Known Issues

This article details known issues (and workarounds) for FRC® Control System Software.

9.1.1 Open Issues

LabVIEW installation of RabbitMQ Fails

Issue: Some users have reported the following error during LabVIEW installation: An er-
ror occurred while installing a package: ni-skyline-rabbitmq-support (20.5.0.
49152-0+f0).
Workaround: NI has a support article with several potential workarounds. Alternately, you
can de-select NI Web Server Development Support for LabVIEW 2020 32-bit from the Addi-
tional items you may wish to install page to avoid installing the failing package.

roboRIO 2.0 Ethernet Settings

Issue: On the roboRIO 2.0, the Ethernet port is configured to DHCP only. This will work in
normal networking setups where the radio acts as a DHCP server, but will not communicate
when tethered directly to the Driver Station via Ethernet.
Workaround: Use the roboRIO Web Dashboard to change the Ethernet Adapter eth0 Con-
figure IPv4 Address to DHCP or Link Local.

195

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000kIbbSAE&l=en-US

FIRST Robotics Competition

Driver Station Reporting No Code

Issue: There is a rare occurrence in the roboRIO 2.0 that causes the roboRIO to not properly
start the robot program. This causes the Driver Station to report a successful connection but
no code, even though code is deployed on the roboRIO.
Workaround: We are currently investigating the root cause, but FIRST volunteers have been
made aware and the recommendation is to reboot the roboRIO when this occurs.

Note: Pressing the physical User button on the roboRIO for 5 seconds can also
cause the robot code to not start, but a reboot will not start the robot code. If
the robot code does not start after rebooting, press the User button. Ensure that
nothing on the robot is in contact with the User button.

Radio Second Port Sometimes Fails to Communicate

Issue: There is a rare occurrence in the OM5P Radios that causes the second Ethernet port
(the one farthest from the power plug) to not communicate.
Workaround: Generally, power cycling the radio will restablish communication with the
second port. Alternately, utilize a network switch such as the tp-link switch available from
FIRST Choice or the brainboxes SW-005 and plug all ethernet devices into the network switch
and then plug the switch into the radio’s first Ethernet port. This also allows easier tethering
while at competition.

Onboard I2C Causing System Lockups

Issue: Use of the onboard I2C port on the roboRIO 1 or 2, in any language, can result in
system lockups. The frequency of these lockups appears to be dependent on the specific
hardware (i.e. different roboRIOs will behave differently) as well as how the bus is being
used.
Workaround: The only surefire mitigation is to use the MXP I2C port or another device to
read the I2C data. Accessing the device less frequently and/or using a different roboRIO may
significantly reduce the likelihood/frequency of lockups, it will be up to each team to assess
their tolerance of the risk of lockup. This lockup can not be definitively identified on the
field and a field fault will not be called for a match where this behavior is believed to occur.
This lockup is a CPU/kernel hang, the roboRIO will completely stop responding and will not
be accessible via the DS, webpage or SSH. If you can access your roboRIO via any of these
methods, you are experiencing a different issue.
Several alternatives exist for accessing the REV color sensor without using the roboRIO I2C
port. A similar approach could be used for other I2C sensors.

• Use a Raspberry Pi Pico. Supports up to 2 REV color sensors, sends data to the roboRIO
via serial. The Pi Pico is low cost (less than $10) and readily available.

• Use a Raspberry Pi. Supports 1-4 color sensors, sends data to the roboRIO via Network-
Tables. Primarily useful for teams already using a Raspberry Pi as a coprocessor.

196 Chapter 9. 2023 Overview

https://firstchoicebyandymark.com/fc-cn-9024
https://www.brainboxes.com/product/industrial-ethernet-switches/fast-ethernet/sw-005
https://github.com/ThadHouse/picocolorsensor/
https://github.com/PeterJohnson/rpi-colorsensor/

FIRST Robotics Competition

Updating Properties on roboRIO 2.0 may be slow or hang

Issue: Updating the properties on a roboRIO 2.0 without reformatting using the Imaging
Tool (such as setting the team number) may be slow or hang.
Workaround: After a few minutes of the tool waiting the roboRIO should be able to be re-
booted and the new properties should be set.

Simulation crashes on Mac after updating WPILib

Issue: On macOS, after updating the project to use a newer version of WPILib, running
simulation immediately crashes without the GUI appearing.
Workaround: In VS Code, run WPILib | Run a command in Gradle, clean. Alternatively, run
./gradlew clean in the terminal or delete the build directory.

Invalid build due to missing GradleRIO

Issue: Rarely, a user’s Gradle cache will get broken and they will get shown errors similar to
the following:

Could not apply requested plugin [id: ‘edu.wpi.first.GradleRIO’, version: ‘2020.3.2’]␣
↪→as it does not provide a plugin with id ‘edu.wpi.first.GradleRIO’

Workaround:
Delete your Gradle cache located under ~$USER_HOME/.gradle. Windows machines may need
to enable the ability to view hidden files. This issue has only shown up on Windows so far.
Please report this issue if you get it on an alternative OS.

Chinese characters in Driver Station Log

Issue: Rarely, the driver station log will show Chinese characters instead of the English text.
This appears to only happen when Windows is set to a language other then English.

Workaround: There are two known workarounds:
1. Copy and paste the Chinese characters into notepad, and the English text will be shown.
2. Temporarily change the Windows language to English.

9.1. Known Issues 197

https://support.microsoft.com/en-us/windows/view-hidden-files-and-folders-in-windows-10-97fbc472-c603-9d90-91d0-1166d1d9f4b5
https://github.com/wpilibsuite/frc-docs/issues/new

FIRST Robotics Competition

C++ Intellisense - Files Open on Launch Don’t Work Properly

Issue: In C++, files open when VS Code launches will have issues with Intellisense showing
suggestions from all options from a compilation unit and not just the appropriate ones or not
finding header files. This is a bug in VS Code.
Workaround:

1. Close all files in VS Code, but leave VS Code open
2. Delete c_cpp_properties.json file in the .vscode folder, if it exists
3. Run the “Refresh C++ Intellisense” command in VS Code.
4. In the bottom right you should see something that looks like a platform (linuxathena or

windowsx86-64 etc). If it’s not linuxathena click it and set it to linuxathena (release)
5. Wait ~1 min
6. Open the main cpp file (not a header file). Intellisense should now be working

Issues with WPILib Dashboards and Simulation on Windows N Editions

Issue: WPILib code using CSCore (dashboards and simulated robot code) will have issues on
Education N editions of Windows.

• Shuffleboard will run, but not load cameras
• Smartdashbard will crash on start-up
• Robot Simulation will crash on start-up

Solution: Install the Media Feature Pack

9.1.2 Fixed in Game Tools 2023.1.0

Driver Station does not detect joysticks at startup

Issue: The Driver Station application does not detect already connected joysticks when it
starts up. Connecting joysticks after it is already running works.
Workaround: Connect joysticks after starting the DS, or use the joystick rescan button or
the F1 shortcut to rescan for joysticks.

9.1.3 Fixed in WPILib 2023.2.1

SysId - Robot program crash on startup when using CAN Spark Maxes

Issue: SysId 2023.1.1’s deployed robot program crashes on startup if it was configured to
use CAN Spark Maxes.
Solution: Install WPILib 2023.2.1 or newer.

198 Chapter 9. 2023 Overview

https://www.microsoft.com/en-us/software-download/mediafeaturepack

FIRST Robotics Competition

Manually flushing a client NetworkTableInstance does not work

Issue: Calling flush() on a NetworkTableInstance does not cause the data to be flushed to
remote subscribers immediately. This issue will be fixed in an upcoming WPILib release.
Workaround: Set the periodic option on the NetworkTable publishers that need a faster
update rate:
Java

// Get a DoubleEntry for myTopic and update it with a 10ms period.
DoubleEntry myEntry = table.getDoubleTopic("myTopic").getEntry(0, PubSubOption.
↪→periodic(0.01));

C++

// Get a DoubleEntry for myTopic and update it with a 10ms period.
nt::DoubleEntry entry = table.GetDoubleTopic("myTopic").GetEntry(0, { .periodic = 0.
↪→01 });

9.2 New for 2023

A number of improvements have been made to FRC® Control System software for 2023. This
article will describe and provide a brief overview of the new changes and features as well as
a more complete changelog for Java/C++ WPILib changes. This document only includes the
most relevant changes for end users, the full list of changes can be viewed on the various
WPILib GitHub repositories.
It’s recommended to also review the list of known issues.

9.2.1 Importing Projects from Previous Years

Due to internal GradleRIO changes, it is necessary to update projects from previous years.
After Installing WPILib for 2023, any 2022 projects must be imported to be compatible.

9.2.2 Major Changes (Java/C++)

These changes contain some of the major changes to the library that it’s important for the
user to recognize. This does not include all of the breaking changes, see the other sections
of this document for more changes.

• NetworkTables has been completely rewritten as version 4.0. This introduces pub/sub
semantics to NetworkTables and adds a number of new features, including timestamped
updates. Its wire protocol is also now WebSockets-based for easier use by browser ap-
plications. While most of the changes should be transparent to users who don’t use the
new features, there are several breaking changes. NetworkTables V3 clients are still
compatible, but V2 support has been dropped.

• Added support for on-robot telemetry recording into data logs
• LiveWindow telemetry is now disabled by default. This has been observed as a consistent

source of loop overruns. Use LiveWindow.enableAllTelemetry to restore the previous
behavior

9.2. New for 2023 199

https://github.com/wpilibsuite/

FIRST Robotics Competition

• AprilTag library has been added
• Bundled Java version has been bumped to 17 from 11
• GCC 12.1 with C++ 20 support. Visual Studio 2022 is required for running C++ Simu-

lation on Windows
• CameraServer now supports USB cameras on Mac operating systems

Supported Operating Systems and Architectures:
• Windows 10 & 11, 64 bit. 32 bit and Arm are not supported
• Ubuntu 22.04, 64 bit. Other Linux distributions with glibc >= 2.32 may work, but

are unsupported
• macOS 11 or later, Intel and Arm.

Warning: The following OSes are no longer supported: macOS 10.15, Ubuntu 18.04 &
20.04, Windows 7, Windows 8.1, and any 32-bit Windows.

9.2.3 WPILib

General Library

• Deprecated PerpetualCommand/perpetually(), use RepeatCommand/repeatedly() in-
stead

• Renamed withInterrupt(BooleanSupplier) to until()

• Added InterpolatedTreeMap

• Added RepeatCommand and matching repeatedly decorator
• Added unless(BooleanSupplier) decorator
• Added ignoringDisable(boolean) decorator to set the runsWhenDisabled property of

a command
• Added finallyDo(BooleanConsumer) and handleInterrupt(Runnable) decorators
• Added static command factories in Commands
• Added ComputerVisionUtil

• Added EventLoop and BooleanEvent, an expansion of the existing Trigger framework
encompassing non-commandbased

• Added BooleanEvent-returning factory methods to the HID classes
• Added command-based versions of HID classes (CommandXboxController etc.) with
Trigger-returning factory methods

• Added LTV unicycle controllers
• Added Rotation2d factory method that uses rotations and radians; fromRotations()

and fromRadians()

• HolonomicDriveController now uses continuous input on heading PID
• Added various 3d geometry classes

200 Chapter 9. 2023 Overview

FIRST Robotics Competition

– Pose3d

– Quaternion

– Rotation3d

– Transform3d

– Translation3d

– Twist3d

– CoordinateAxis

– CoordinateSystem

• Added various pneumatic sim classes
– CTREPCMSim

– DoubleSolenoidSim

– REVPHSim

– SolenoidSim

• Added getAngle() to Translation2d

• Deprecated Compressor.enable(). Use isEnabled instead
• Add missing PS4Controller triangle methods
• Add method to disable LW actuator control in test mode
• Enhanced Sendable representation of commands
• Deprecated CommandGroupBase; the static factories have been moved to Commands

• Refactor SelectCommand’s Supplier<Command> constructor and ProxyScheduleCom-
mand into ProxyCommand

• Remove isFinished check for default commands
• Add method to remove default commands
• Trigger and Button methods were renamed to be consistent and Button class depre-

cated.
– Trigger’s bindings are changed to use True/False terminology, as it should be un-

ambiguous. Each binding type has both True and False variants; for brevity, only
the True variants are listed here:

∗ onTrue (replaces whenActive and whenPressed): schedule on rising edge.
∗ whileTrue (replaces whileActiveOnce): schedule on rising edge, cancel on

falling edge.
∗ toggleOnTrue (replaces toggleWhenActive): on rising edge, schedule if un-

scheduled and cancel if scheduled.
– Two binding types are completely deprecated:

∗ cancelWhenActive: this is a fairly niche use case which is better described as
having the trigger’s rising edge (Trigger.rising()) as an end condition for the
command (using Command.until()).

9.2. New for 2023 201

FIRST Robotics Competition

∗ whileActiveContinuously: however common, this relied on the no-op be-
havior of scheduling an already-scheduled command. The more correct way
to repeat the command if it ends before the falling edge is using Command.
repeatedly/RepeatCommand or a RunCommand – the only difference is if the com-
mand is interrupted, but that is more likely to result in two commands perpet-
ually canceling each other than achieve the desired behavior. Manually imple-
menting a blindly-scheduling binding like whileActiveContinuously is still pos-
sible, though might not be intuitive.

• Precompile common template instantiations to improve C++ compile times.

Breaking Changes

Important: The 2023 release no longer includes the old command-based framework. Users
must refactor existing code to use the new command-based framework

Danger: Updated DifferentialDrive and MecanumDrive classes to use North-West-Up
axis conventions to match the rest of WPILib. The Z-axis (i.e. turning) will need to be
inverted to restore the old behavior.

• NetworkTables 4.0 (NT4) introduced several breaking changes. Shuffleboard classes
now return GenericEntry instead of NetworkTableEntry; as GenericEntry provides
nearly all the same methods, a simple textual replacement of the class name should
suffice. Also, the force setters have been removed. See the NT4 migration guide for
more information.

• Removed deprecated MakeMatrix() from StateSpaceUtil

• Removed deprecated KilloughDrive class
• Removed Vector2d, which was an implementation detail of MecanumDrive and Killough-

Drive. In Java, use Vector<N2> (edu.wpi.first.math.Vector) or Translation2d (edu.
wpi.first.math.geometry.Translation2d) instead. In C++, use Eigen::Vector2d
from <Eigen/Core> or Translation2d from <frc/geometry/Translation2d.h> instead.

• Removed deprecated SpeedController and SpeedControllerGroup classes. Use Mo-
torController and MotorControllerGroup instead

• Removed deprecated MatrixUtils class
• Removed various deprecated overloads that used above mentioned classes
• Removed various deprecated getInstance() functions. Static functions are available

instead
• Removed various deprecated functions in SimDevice

• Refactored command interruptible to be an enum property
(getInterruptionBehavior()) of the command object rather than a boolean flag
when scheduling; the withInterruptBehavior(InterruptBehavior) decorator can be
used to set this property

• Command lifecycle methods of command groups cannot be overridden
• [C++ only] Command Decorators changed to return CommandPtr – a new move-only value

type for holding commands

202 Chapter 9. 2023 Overview

FIRST Robotics Competition

• SwerveDriveOdometry and SwerveDrivePoseEstimator now use wheel distances in-
stead of wheel speeds; Use SwerveModulePosition to represent a swerve module’s angle
and distance driven.

• SwerveDriveOdometry and SwerveDrivePoseEstimator now take in the wheel distances
in an array rather than as a variadic parameter.

• MecanumDriveOdometry and MecanumDrivePoseEstimator now use wheel distances in-
stead of wheel speeds; Use MecanumDriveWheelPositions to represent the wheel dis-
tances.

• Constructors and resetPosition methods on all odometry and pose estimation classes
now have mandatory wheel distance parameters.

• Odometry and pose estimator constructor and function arguments have been rearranged
to be consistent between implementations. Users should consult the API documentation
for the particular class they’re using and update the method calls accordingly.

• Removed wpi versions of C++20 methods
– Use std::numbers instead of wpi::numbers (include <numbers>)
– Use std::span instead of wpi::span (include)

• Removed template argument from ElevatorFeedforward in C++.

9.2.4 Simulation

• Added precision setting for NetworkTables decimal values
• Added docking support for GUI elements
• Save secondary Y axis in plots

9.2.5 Shuffleboard

• Added vertical orientation option to number bar widget
• Fixed Field2d widget not auto populating
• Update PowerDistribution Widget to support 24 channels
• Added 2023 Charged Up field image
• Update PID widget to remove features no longer supported by PIDController (kF and

enable)

9.2.6 SmartDashboard

Important: SmartDashboard is not supported on Apple Silicon (Arm64) Macs.

• Update PowerDistribution Widget to support 24 channels
• Add option to clear all plots
• Update PID widget to remove features no longer supported by PIDController (kF and

enable)

9.2. New for 2023 203

FIRST Robotics Competition

9.2.7 Glass

• Added precision setting for NetworkTables decimal values
• Added docking support for GUI elements
• Save secondary Y axis in plots

9.2.8 PathWeaver

• Added 2023 Charged Up field image

9.2.9 GradleRIO

• Upgrade to Gradle 7.5.1
• Fixed issue where start-up scripts could get damaged if roboRIO powered off during

deploy

9.2.10 cscore

• Update to opencv 4.6.0
• Added ArUco module

9.2.11 OutlineViewer

• Added precision setting for NetworkTables decimal values

9.2.12 WPILib All in One Installer

• Apple Silicon (Arm64) Macs are now supported
• Update to VS Code 1.74
• Update to use .NET 7
• Add links to changelog and known issues

9.2.13 Visual Studio Code Extension

• Update templates to JUnit 5.8.2
• Add copy button from project versions dialog
• Allow importing Romi projects

204 Chapter 9. 2023 Overview

FIRST Robotics Competition

9.2.14 RobotBuilder

Important: With the removal of old command-based, the legacy RobotBuilder install has
been removed.

Warning: Due to project file changes, Robotbuilder will not import yaml save files from
2022 or earlier.

• Add support for DoubleSupplier and std::function<double> parameters
• Add option to put commands tied to Joystick Buttons to SmartDashboard
• Add PS4 Controller
• Validate Team Number

9.2.15 SysID

• Added Pigeon 2 support
• User can now specify a measurement delay of 0
• Fixed Override Units option not overriding units per rotations

9.2.16 Romi

• No major changes

9.2. New for 2023 205

FIRST Robotics Competition

206 Chapter 9. 2023 Overview

10
VS Code Overview

10.1 Visual Studio Code Basics and the WPILib Extension

Microsoft’s Visual Studio Code is the supported IDE for C++ and Java development in FRC.
This article introduces some of the basics of using Visual Studio Code and the WPILib exten-
sion.

207

FIRST Robotics Competition

10.1.1 Welcome Page

When Visual Studio Code first opens, you are presented with a Welcome page. On this page
you will find some quick links that allow you to customize Visual Studio Code as well as a
number of links to help documents and videos that may help you learn about the basics of the
IDE as well as some tips and tricks.
You may also notice a small WPILib logo way up in the top right corner. This is one way to
access the features provided by the WPILib extension (discussed further below).

208 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.1.2 User Interface

The most important link to take a look at is probably the basic User Interface document.
This document describes a lot of the basics of using the UI and provides the majority of the
information you should need to get started using Visual Studio Code for FRC.

10.1.3 Command Palette

The Command Palette can be used to access or run almost any function or feature in Visual
Studio Code (including those from the WPILib extension). The Command Palette can be ac-
cessed from the View menu or by pressing Ctrl+Shift+P (Cmd+Shift+P on macOS). Typing
text into the window will dynamically narrow the search to relevant commands and show
them in the dropdown.
In the following example “wpilib” is typed into the search box after activating the Command
Palette, and it narrows the list to functions containing WPILib.

10.1.4 WPILib Extension

10.1. Visual Studio Code Basics and the WPILib Extension 209

FIRST Robotics Competition

The WPILib extension provides the FRC® specific functionality related to creating projects
and project components, building and downloading code to the roboRIO and more. You can
access the WPILib commands one of two ways:

• By typing “WPILib” into the Command Palette
• By clicking on the WPILib icon in the top right of most windows. This will open the

Command Palette with “WPILib” pre-entered

Note: It is not recommended to install the Visual Studio IntelliCode plugin with the FRC
installation of VS Code as it is known to break IntelliSense in odd ways.

For more information about specific WPILib extension commands, see the other articles in
this chapter.

10.2 WPILib Commands in Visual Studio Code

This document contains a complete list of the commands provided by the WPILib VS Code
Extension and what they do.
To access these commands, press Ctrl+Shift+P to open the Command Palette, then begin
typing the command name as shown here to filter the list of commands. Click on the command
name to execute it.

• WPILib: Build Robot Code - Builds open project using GradleRIO
• WPILib: Create a new project - Create a new robot project
• WPILib C++: Refresh C++ Intellisense - Force an update to the C++ Intellisense

configuration.
• WPILib C++: Select Current C++ Toolchain - Select the toolchain to use for Intel-

lisense (i.e. desktop vs. roboRIO vs…). This is the same as clicking the current mode in
the bottom right status bar.

• WPILib C++: Select Enabled C++ Intellisense Binary Types - Switch Intellisense
between static, shared, and executable

• WPILib: Cancel currently running tasks - Cancel any tasks the WPILib extension is
currently running

• WPILib: Change Auto Save On Deploy Setting - Change whether files are saved
automatically when doing a Deploy. This defaults to Enabled.

• WPILib: Change Auto Start RioLog on Deploy Setting - Change whether RioLog
starts automatically on deploy. This defaults to Enabled.

• WPILib: Change Desktop Support Enabled Setting - Change whether building robot
code on Desktop is enabled. Enable this for test and simulation purposes. This defaults
to Desktop Support off.

• WPILib: Change Language Setting - Change whether the currently open project is
C++ or Java.

• WPILib: Change Run Commands Except Deploy/Debug in Offline Mode Setting
- Change whether GradleRIO is running in Online Mode for commands other then de-
ploy/debug (will attempt to automatically pull dependencies from online). Defaults to
enabled (online mode).

210 Chapter 10. VS Code Overview

https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode

FIRST Robotics Competition

• WPILib: Change Run Deploy/Debug Command in Offline Mode Setting - Change
whether GradleRIO is running in Online Mode for deploy/debug (will attempt to auto-
matically pull dependencies from online). Defaults to disabled (offline mode).

• WPILib: Change Select Default Simulate Extension Setting - Change whether sim-
ulation extensions are enabled by default (all simulation extensions defined in build.
gradle will be enabled)

• WPILib: Change Skip Tests On Deploy Setting - Change whether to skip tests on
deploy. Defaults to disabled (tests are run on deploy)

• WPILib: Change Stop Simulation on Entry Setting - Change whether to stop robot
code on entry when running simulation. Defaults to disabled (don’t stop on entry).

• WPILib: Change Use WinDbg Preview (From Store) as Windows Debugger Set-
ting - Change whether to use the VS Code debugger or WinDbg Preview (from Windows
Store).

• WPILib: Check for WPILib Updates - Check for an update to the WPILib GradleRIO
version for the project. This does not update the Visual Studio Code extension, tools, or
offline dependencies. Users are strongly recommended to use the offline wpilib installer

• WPILib: Debug Robot Code - Build and deploy robot code to roboRIO in debug mode
and start debugging

• WPILib: Deploy Robot Code - Build and deploy robot code to roboRIO
• WPILib: Hardware Sim Robot Code - This builds the current robot code project on

your PC and starts it running in simulation using hardware attached to the comupter
rather then pure software simulation. Requires vendor support.

• WPILib: Import a WPILib 2020/2021/2022 Gradle Project - Open a wizard to help
you create a new project from a existing VS Code Gradle project from 2020-2022. Fur-
ther documentation is at importing gradle project

• WPILib: Install tools from GradleRIO - Install the WPILib Java tools (e.g. Smart-
Dashboard, Shuffleboard, etc.). Note that this is done by default by the offline installer

• WPILib: Manage Vendor Libraries - Install/update 3rd party libraries
• WPILib: Open API Documentation - Opens either the WPILib Javadocs or C++ Doxy-

gen documentation
• WPILib: Open Project Information - Opens a widget with project information (Project

version, extension version, etc.)
• WPILib: Open WPILib Command Palette - This command is used to open a WPILib

Command Palette (equivalent of hitting Ctrl+Shift+P and typing WPILib)
• WPILib: Open WPILib Help - This opens a simple page which links to the WPILib

documentation (this site)
• WPILib: Reset Ask for WPILib Updates Flag - This will clear the flag on the current

project, allowing you to re-prompt to update a project to the latest WPILib version if you
previously chose to not update.

• WPILib: Run a command in Gradle - This lets you run an arbitrary command in the
GradleRIO command environment

• WPILib: Set Team Number - Used to modify the team number associated with a
project. This is only needed if you need to change the team number from the one initially
specified when creating the project.

10.2. WPILib Commands in Visual Studio Code 211

FIRST Robotics Competition

• WPILib: Set VS Code Java Home to FRC Home - Set the VS Code Java Home variable
to point to the Java Home discovered by the FRC extension. This is needed if not using
the offline installer to make sure the intellisense settings are in sync with the WPILib
build settings.

• WPILib: Show Log Folder - Shows the folder where the WPILib extension stores inter-
nal logs. This may be useful when debugging/reporting an extension issue to the WPILib
developers

• WPILib: Simulate Robot Code - This builds the current robot code project on your PC
and starts it running in simulation. This requires Desktop Support to be set to Enabled.

• WPILib: Start RioLog - This starts the RioLog display used to view console output from
a robot program

• WPILib: Start Tool - This allows you to launch WPILib tools (e.g. SmartDashboard,
Shuffleboard, etc.) from inside VS Code

• WPILib: Test Robot Code - This builds the current robot code project and runs any
created tests. This requires Desktop Support to be set to Enabled.

10.3 Creating a Robot Program

Once everything is installed, we’re ready to create a robot program. WPILib comes with
several templates for robot programs. Use of these templates is highly recommended for
new users; however, advanced users are free to write their own robot code from scratch.

10.3.1 Choosing a Base Class

To start a project using one of the WPILib robot program templates, users must first choose
a base class for their robot. Users subclass these base classes to create their primary Robot
class, which controls the main flow of the robot program. There are three choices available
for the base class:

TimedRobot

Documentation: Java - C++
Source: Java - C++
The TimedRobot class is the base class recommended for most users. It provides control of the
robot program through a collection of init(), periodic(), and exit() methods, which are
called by WPILib during specific robot states (e.g. autonomous or teleoperated). During these
calls, your code typically polls each input device and acts according to the data it receives. For
instance, you would typically determine the position of the joystick and state of the joystick
buttons on each call and act accordingly. The TimedRobot class also provides an example of
retrieving autonomous routines through SendableChooser (Java/ C++

Note: A TimedRobot Skeleton template is available that removes some informative com-
ments and the autonomous example. You can use this if you’re already familiar with Time-
dRobot. The example shown below is of TimedRobot Skeleton.

212 Chapter 10. VS Code Overview

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/TimedRobot.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_timed_robot.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibj/src/main/java/edu/wpi/first/wpilibj/TimedRobot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibc/src/main/native/cpp/TimedRobot.cpp
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/smartdashboard/SendableChooser.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_sendable_chooser.html

FIRST Robotics Competition

Java

7 import edu.wpi.first.wpilibj.TimedRobot;
8

9 /**
10 * The VM is configured to automatically run this class, and to call the functions␣

↪→corresponding to
11 * each mode, as described in the TimedRobot documentation. If you change the name of␣

↪→this class or
12 * the package after creating this project, you must also update the build.gradle␣

↪→file in the
13 * project.
14 */
15 public class Robot extends TimedRobot {
16 /**
17 * This function is run when the robot is first started up and should be used for␣

↪→any
18 * initialization code.
19 */
20 @Override
21 public void robotInit() {}
22

23 @Override
24 public void robotPeriodic() {}
25

26 @Override
27 public void autonomousInit() {}
28

29 @Override
30 public void autonomousPeriodic() {}
31

32 @Override
33 public void teleopInit() {}
34

35 @Override
36 public void teleopPeriodic() {}
37

38 @Override
39 public void disabledInit() {}
40

41 @Override
42 public void disabledPeriodic() {}
43

44 @Override
45 public void testInit() {}
46

47 @Override
48 public void testPeriodic() {}
49

50 @Override
51 public void simulationInit() {}
52

53 @Override
54 public void simulationPeriodic() {}
55 }

C++

10.3. Creating a Robot Program 213

FIRST Robotics Competition

5 #include "Robot.h"
6

7 void Robot::RobotInit() {}
8 void Robot::RobotPeriodic() {}
9

10 void Robot::AutonomousInit() {}
11 void Robot::AutonomousPeriodic() {}
12

13 void Robot::TeleopInit() {}
14 void Robot::TeleopPeriodic() {}
15

16 void Robot::DisabledInit() {}
17 void Robot::DisabledPeriodic() {}
18

19 void Robot::TestInit() {}
20 void Robot::TestPeriodic() {}
21

22 void Robot::SimulationInit() {}
23 void Robot::SimulationPeriodic() {}
24

25 #ifndef RUNNING_FRC_TESTS
26 int main() {
27 return frc::StartRobot<Robot>();
28 }
29 #endif

Periodic methods are called every 20 ms by default. This can be changed by calling the
superclass constructor with the new desired update rate.

Danger: Changing your robot rate can cause some unintended behavior (loop overruns).
Teams can also use Notifiers to schedule methods at a custom rate.

Java

public Robot() {
super(0.03); // Periodic methods will now be called every 30 ms.

}

C++

Robot() : frc::TimedRobot(30_ms) {}

RobotBase

Documentation: Java - C++
Source: Java - C++
The RobotBase class is the most minimal base-class offered, and is generally not recom-
mended for direct use. No robot control flow is handled for the user; everything must be
written from scratch inside the startCompetition() method. The template by default show-
cases how to process the different operation modes (teleop, auto, etc).

214 Chapter 10. VS Code Overview

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Notifier.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/RobotBase.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_robot_base.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibj/src/main/java/edu/wpi/first/wpilibj/RobotBase.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibc/src/main/native/cppcs/RobotBase.cpp

FIRST Robotics Competition

Note: A RobotBase Skeleton template is available that offers a blank startCompetition()
method.

Command Robot

The Command Robot framework adds to the basic functionality of a Timed Robot by automat-
ically polling inputs and converting the raw input data into events. These events are tied
to user code, which is executed when the event is triggered. For instance, when a button is
pressed, code tied to the pressing of that button is automatically called and it is not necessary
to poll or keep track of the state of that button directly. The Command Robot framework makes
it easier to write compact easy-to-read code with complex behavior, but requires an additional
up-front time investment from a programmer in order to understand how the Command Robot
framework works.
Teams using Command Robot should see the Command-Based Programming Tutorial.

Romi

Teams using a Romi should use the Romi - Timed or Romi - Command Bot template.

Romi - Timed

The Romi - Timed template provides a RomiDrivetrain class that exposes an arcad-
eDrive(double xaxisSpeed, double zaxisRotate) method. It’s up to the user to feed
this arcadeDrive function.
This class also provides functions for retrieving and resetting the Romi’s onboard encoders.

Romi - Command Bot

The Romi - Command Bot template provides a RomiDrivetrain subsystem that exposes an
arcadeDrive(double xaxisSpeed, double zaxisRotate) method. It’s up to the user to feed
this arcadeDrive function.
This subsystem also provides functions for retrieving and resetting the Romi’s onboard en-
coders.

Not Using a Base Class

If desired, users can omit a base class entirely and simply write their program in a main()
method, as they would for any other program. This is highly discouraged - users should not
“reinvent the wheel” when writing their robot code - but it is supported for those who wish
to have absolute control over their program flow.

Warning: Users should not modify the main() method of a robot program unless they
are absolutely sure of what they are doing.

10.3. Creating a Robot Program 215

FIRST Robotics Competition

10.3.2 Creating a New WPILib Project

Once we’ve decided on a base class, we can create our new robot project. Bring up the Vi-
sual Studio Code command palette with Ctrl+Shift+P. Then, type “WPILib” into the prompt.
Since all WPILib commands start with “WPILib”, this will bring up the list of WPILib-specific
VS Code commands. Now, select the Create a new project command:

This will bring up the “New Project Creator Window:”

216 Chapter 10. VS Code Overview

FIRST Robotics Competition

The elements of the New Project Creator Window are explained below:
1. Project Type: The kind of project we wish to create. This can be an example project,

or one of the project templates provided by WPILib. Templates exist for each of the
robot base classes. Additionally, a template exists for Command-based projects, which
are built on the TimedRobot base class but include a number of additional features - this
type of robot program is highly recommended for new teams.

2. Language: This is the language (C++ or Java) that will be used for this project.
3. Base Folder: If this is a template project, this specifies the type of template that will be

10.3. Creating a Robot Program 217

FIRST Robotics Competition

used.
4. Project Location: This determines the folder in which the robot project will be located.
5. Project Name: The name of the robot project. This also specifies the name that the

project folder will be given if the Create New Folder box is checked.
6. Create a New Folder: If this is checked, a new folder will be created to hold the project

within the previously-specified folder. If it is not checked, the project will be located
directly in the previously-specified folder. An error will be thrown if the folder is not
empty and this is not checked.

7. Team Number: The team number for the project, which will be used for package names
within the project and to locate the robot when deploying code.

8. Enable Desktop Support: Enables unit test and simulation. While WPILib supports
this, third party software libraries may not. If libraries do not support desktop, then
your code may not compile or may crash. It should be left unchecked unless unit testing
or simulation is needed and all libraries support it.

Once all the above have been configured, click “Generate Project” and the robot project will
be created.

Note: Any errors in project generation will appear in the bottom right-hand corner of the
screen.

An example after all options are selected is shown below.

218 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.3. Creating a Robot Program 219

FIRST Robotics Competition

10.3.3 Opening The New Project

After successfully creating your project, VS Code will give the option of opening the project
as shown below. We can choose to do that now or later by typing Ctrl+K then Ctrl+O (or just
Command+O on macOS) and select the folder where we saved our project.

Once opened we will see the project hierarchy on the left. Double clicking on the file will
open that file in the editor.

220 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.3.4 C++ Configurations (C++ Only)

For C++ projects, there is one more step to set up IntelliSense. Whenever we open a project,
we should get a pop-up in the bottom right corner asking to refresh C++ configurations. Click
“Yes” to set up IntelliSense.

10.4 3rd Party Libraries

Teams that are using non-PWM motor controllers or advanced sensors will most likely need
to install external vendor dependencies.

10.4.1 What Are Vendor Dependencies?

A vendor dependency is a way for vendors such as CTRE, REV, and others to add their software
library to robot projects. This library can interface with motor controllers and other devices.
This way, teams can interact with their devices via CAN and have access to more complex
and in-depth features than traditional PWM control.

10.4.2 Managing Vendor Dependencies

Vendor dependencies are installed on a per-project basis (so each robot project can have its
own set of vendor dependencies). Vendor dependencies can be installed “online” or “offline”.
The “online” functionality is done by downloading the dependencies over the internet, while
offline is typically provided by a vendor-specific installer.

Warning: If installing a vendor dependency via the “online” mode, make sure to recon-
nect the computer to the internet and rebuild about every 30 days otherwise the cache will
clear, completely deleting the downloaded library install.

Note: Vendors recommend using their offline installers when available, because the offline
installer is typically bundled with additional programs that are extremely useful when working
with their devices.

10.4. 3rd Party Libraries 221

FIRST Robotics Competition

How Does It Work?

How Does It Work? - Java/C++

For Java and C++, a JSON file describing the vendor library is installed on your system to ~/
wpilib/YYYY/vendordeps (where YYYY is the year and ~ is C:\Users\Public on Windows).
This can either be done by an offline installer or the file can be fetched from an online location
using the menu item in Visual Studio Code. This file is then used from VS Code to add to the
library to each individual project. Vendor library information is managed on a per-project
basis to make sure that a project is always pointing to a consistent version of a given vendor
library. The libraries themselves are placed in the Maven cache at C:\Users\Public\wpilib\
YYYY\maven. Vendors can place a local copy here with an offline installer (recommended) or
require users to be connected to the internet for an initial build to fetch the library from a
remote Maven location.
This JSON file allows specification of complex libraries with multiple components (Java, C++,
JNI, etc.) and also helps handle some complexities related to simulation. Vendors that choose
to provide a remote URL in the JSON also enable users to check for updates from within VS
Code.

How Does It Work? - LabVIEW

For LabVIEW teams, there might be a few new Third Party items on various palettes (specifi-
cally, one in Actuators, one in Actuators -> Motor Control labeled CANMotor, and one in Sen-
sors). These correspond to folders in C:\Program Files\National Instruments\LabVIEW
2020\vi.lib\Rock Robotics\WPI\Third Party

In order to install third party libraries for LabVIEW, download the VIs from the vendor (typ-
ically via some sort of installer). Then drag and drop the third party VIs into the respective
folder mentioned above just like any other VI.

Installing Libraries

VS Code

222 Chapter 10. VS Code Overview

FIRST Robotics Competition

To add a vendor library that has been installed by an offline installer, press Ctrl+Shift+P and
type WPILib or click on the WPILib icon in the top right to open the WPILib Command Palette
and begin typing Manage Vendor Libraries, then select it from the menu. Select the option
to Install new libraries (offline).

Select the desired libraries to add to the project by checking the box next to each, then click
OK. The JSON file will be copied to the vendordeps folder in the project, adding the library
as a dependency to the project.
In order to install a vendor library in online mode, press Ctrl+Shift+P and type WPILib or
click on the WPILib icon in the top right to open the WPILib Command Palette and begin
typing Manage Vendor Libraries and select it in the menu, and then click on Install new
libraries (online) instead and copy + paste the vendor JSON URL.

Checking for Updates (Offline)

Since dependencies are version managed on a per-project basis, even when installed offline,
you will need to Manage Vendor Libraries and select Check for updates (offline) for each
project you wish to update.

Checking for Updates (Online)

Part of the JSON file that vendors may optionally populate is an online update location. If a
library has an appropriate location specified, running Check for updates (online) will check
if a newer version of the library is available from the remote location.

Removing a Library Dependency

To remove a library dependency from a project, select Manage Current Libraries from the
Manage Vendor Libraries menu, check the box for any libraries to uninstall and click OK.
These libraries will be removed as dependencies from the project.

Command-Line

Adding a vendor library dependency from the vendor URL can also be done through the
command-line via a gradle task. Open a command-line instance at the project root, and enter
gradlew vendordep --url=<url> where <url> is the vendor JSON URL. This will add the
vendor library dependency JSON file to the vendordeps folder of the project. Vendor libraries
can be updated the same way.
The vendordep gradle task can also fetch vendordep JSONs from the user wpilib folder.
To do so, pass FRCLOCAL/Filename.json as the file URL. For example, gradlew ven-
dordep --url=FRCLOCAL/WPILibNewCommands.json will fetch the JSON for the command-
based framework.

10.4. 3rd Party Libraries 223

FIRST Robotics Competition

10.4.3 Libraries

Click these links to visit the vendor site to see whether they offer online installers, offline
installers, or both. URLs below are to plug in to the VS Code -> Install New Libraries (online)
feature.
2023 CTRE Phoenix Framework - Contains CANcoder, CANifier, CANdle, Pigeon
IMU, Pigeon 2.0, Talon FX, Talon SRX, and Victor SPX Libraries and Phoenix Tuner
program for configuring CTRE CAN devices

Phoenix (v5): https://maven.ctr-electronics.com/release/com/ctre/phoenix/
Phoenix5-frc2023-latest.json

Phoenix (Pro): https://maven.ctr-electronics.com/release/com/ctre/
phoenixpro/PhoenixPro-frc2023-latest.json

Phoenix (Pro and v5): https://maven.ctr-electronics.com/release/com/ctre/
phoenixpro/PhoenixProAnd5-frc2023-latest.json

Note: To get the 2023 version of the same Phoenix library as previous years, use the
first link above (Phoenix v5). Use one of the other json links if you’re using Phoenix Pro.

Warning: Only use ONE of the above Phoenix vendordep links within a project. If
you need both Phoenix v5 and Phoenix Pro in the same project, use the third option.

Playing With Fusion Driver - Library for all PWF devices including the Venom
motor/controller

https://www.playingwithfusion.com/frc/playingwithfusion2023.json

Kauai Labs - Libraries for NavX-MXP, NavX-Micro, and Sensor Fusion
https://dev.studica.com/releases/2023/NavX.json

REV Robotics REVLib - Library for all REV devices including SPARK MAX and Color
Sensor V3

https://software-metadata.revrobotics.com/REVLib-2023.json

Community Libraries

PhotonVision - Library for PhotonVision CV software
https://maven.photonvision.org/repository/internal/org/photonvision/
PhotonLib-json/1.0/PhotonLib-json-1.0.json

PathPlanner - Library for PathPlanner
https://3015rangerrobotics.github.io/pathplannerlib/PathplannerLib.json

224 Chapter 10. VS Code Overview

https://store.ctr-electronics.com/software/
https://www.playingwithfusion.com/docview.php?docid=1205
https://pdocs.kauailabs.com/navx-mxp/software/roborio-libraries/
https://docs.revrobotics.com/sparkmax/software-resources/spark-max-api-information
https://docs.photonvision.org/en/latest/docs/programming/photonlib/adding-vendordep.html
https://github.com/mjansen4857/pathplanner/wiki

FIRST Robotics Competition

WPILib Command Libraries

The WPILib new command library has been split into a vendor library. It is installed by the
WPILib installer for offline installation. It may also be installed with the following online link:
New Command Library
To remove a library dependency from a project, select Manage Current Libraries from the
Manage Vendor Libraries menu, check the box for any libraries to uninstall and click OK.
These libraries will be removed as dependencies from the project.

Romi Library

A Romi Library has been created to contain several helper classes that are a part of the
RomiReference example.
Romi Vendordep.

10.5 Building and Deploying Robot Code

Robot projects must be compiled (“built”) and deployed in order to run on the roboRIO. Since
the code is not compiled natively on the robot controller, this is known as “cross-compilation.”
To build and deploy a robot project, do one of:

1. Open the Command Palette and enter/select “Build Robot Code”
2. Open the shortcut menu indicated by the ellipses in the top right corner of the VS Code

window and select “Build Robot Code”
3. Right-click on the build.gradle file in the project hierarchy and select “Build Robot Code”

10.5. Building and Deploying Robot Code 225

https://raw.githubusercontent.com/wpilibsuite/allwpilib/main/wpilibNewCommands/WPILibNewCommands.json
https://raw.githubusercontent.com/wpilibsuite/romi-vendordep/main/RomiVendordep.json

FIRST Robotics Competition

Deploy robot code by selecting “Deploy Robot Code” from any of the three locations from
the previous instructions. That will build (if necessary) and deploy the robot program to the
roboRIO.

Warning: Avoid powering off the robot while deploying robot code. Interrupting the de-
ployment process can corrupt the roboRIO filesystem and prevent your code from working
until the roboRIO is re-imaged.

If successful, we will see a “Build Successful” message (1) and the RioLog will open with the
console output from the robot program as it runs (2).

226 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.6 Viewing Console Output

For viewing the console output of text based programs the roboRIO implements a NetConsole.
There are two main ways to view the NetConsole output from the roboRIO: The Console
Viewer in the FRC Driver Station and the Riolog plugin in VS Code.

Note: On the roboRIO, the NetConsole is only for program output. If you want to interact
with the system console you will need to use SSH or the Serial console.

10.6. Viewing Console Output 227

FIRST Robotics Competition

10.6.1 Console Viewer

Opening the Console Viewer

To open Console Viewer, first open the FRC® Driver Station. Then, click on the gear at the
top of the message viewer window (1) and select “View Console”.

Console Viewer Window

The Console Viewer window displays the output from our robot program in green. The gear
in the top right can clear the window and set the level of messages displayed.

228 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.6.2 Riolog VS Code Plugin

The Riolog plugin is a VS Code view that can be used to view the NetConsole output in VS
Code (credit for the original Eclipse version: Manuel Stoeckl, FRC1511).

Opening the RioLog View

By default, the RioLog view will open automatically at the end of each roboRIO deploy. To
launch the RioLog view manually, press Ctrl+Shift+P to open the command palette and start
typing “RioLog”, then select the WPILib: Start RioLog option.

Riolog Window

The RioLog view should appear in the top pane. The Riolog contains a number of controls for
manipulating the console:

• Pause/Resume Display - This will pause/resume the display. In the background, the
new packets will still be received and will be displayed when the resume button is clicked.

10.6. Viewing Console Output 229

FIRST Robotics Competition

• Discard/Accept Incoming - This will toggle whether to accept new packets. When
packets are being discarded the display will be paused and all packets received will be
discarded. Clicking the button again will resume receiving packets.

• Clear - This will clear the current contents of the display.
• Don’t Show/Show Prints - This shows or hides messages categorized as print state-

ments
• Switch to Viewer - This switches to viewer for saved log files
• Don’t Show/Show Warnings - This shows or hides messages categorized as warnings
• Disconnect/Reconnect - This disconnects or reconnects to the console stream
• Show/Don’t Show Timestamps - Shows or hides timestamps on messages in the win-

dow
• Save Log - Copies the log contents into a file you can save and view or open later with

the RioLog viewer (see Switch to Viewer above)
• Set Team Number - Sets the team number of the roboRIO to connect to the console

stream on, set automatically if RioLog is launched by the deploy process

10.7 Debugging a Robot Program

Inevitably, a program will not behave in the way we expect it to behave. When this occurs,
it becomes necessary to figure out why the program is doing what it is doing, so that we can
make it do what we want it to do, instead. Such an undesired program behavior is called a
“bug,” and this process is called “debugging.”
A debugger is a tool used to control program flow and monitor variables in order to assist in
debugging a program. This section will describe how to set up a debug session for an FRC®
robot program.

Note: For beginning users who need to debug their programs but do not know/have time to
learn how to use a debugger, it is often possible to debug a program simply by printing the
relevant program state to the console. However, it is strongly recommended that students
eventually learn to use a debugger.

10.7.1 Running the Debugger

Press Ctrl+Shift+P and type WPILib or click on the WPILib Menu Item to open the Command
palette with WPILib pre-populated. Type Debug and select the Debug Robot Code menu item
to start debugging. The code will download to the roboRIO and begin debugging.

230 Chapter 10. VS Code Overview

FIRST Robotics Competition

10.7.2 Breakpoints

A “breakpoint” is a line of code at which the debugger will pause the program execution so
that the user can examine the program state. This is extremely useful while debugging, as
it allows the user to pause the program at specific points in problematic code to determine
where exactly the program is deviating from the expected behavior.
The debugger will automatically pause at the first breakpoint it encounters.

Setting a Breakpoint

Click in the left margin of the source code window (to the left of the line number) to set a
breakpoint in your user program: A small red circle indicates the breakpoint has been set on
the corresponding line.

10.7.3 Debugging with Print Statements

Another way to debug your program is to use print statements in your code and view them
using the RioLog in Visual Studio Code or the Driver Station. Print statements should be
added with care as they are not very efficient especially when used in high quantities. They
should be removed for competition as they can cause loop overruns.
Java

System.out.print("example");

C++

wpi::outs() << "example\n";

10.7.4 Debugging with NetworkTables

NetworkTables can be used to share robot information with your debugging computer. Net-
workTables can be viewed with your favorite Dashboard or OutlineViewer. One advantage
of NetworkTables is that tools like Shuffleboard can be used to graphically analyze the data.
These same tools can then be used with same data to later provide an operator interface for
your drivers.

10.7. Debugging a Robot Program 231

FIRST Robotics Competition

10.7.5 Learn More

• To learn more about debugging with VS Code see this link.
• Some of the features mentioned in this VS Code article will help you understand and

diagnose problems with your code. The Quick Fix (yellow light bulb) feature can be very
helpful with a variety of problems including what to import.

• One of the best ways to prevent having to debug so many issues is to do Unit Testing.
• Verifying that your robot works in Simulation is also a great way to prevent having to do

complex debugging on the actual robot.

10.8 Importing a Gradle Project

Due to changes in the project, it is necessary to update the build files for a previous years
Gradle project. It is also necessary to import vendor libraries again, since last year’s vendor
libraries must be updated to be compatible with this year’s projects.

10.8.1 Automatic Import

To make it easy for teams to import previous years gradle projects into the current year’s
framework, WPILib includes a wizard for importing previous years projects into VS Code.
This will generate the necessary gradle components and load the project into VS Code. In
place upgrades are not supported.

Important: The import process copies your project source files from the current directory
to a new directory and completely regenerates the gradle files. Additionally, it updates the
code for the package changes made in 2022. If you made non-standard updates to the build.
gradle, you will need to make those changes again. For this reason, in place upgrades are
not supported. It is also necessary to import vendor libraries again, since last year’s vendor
libraries must be updated to be compatible with this year’s projects.

Launching the Import Wizard

When you open a previous year’s project, you will be prompted to import that project. Click
yes.
Alternately, you can chose to import it from the menu. Press Ctrl+Shift+P and type “WPILib”
or click the WPILib icon to locate the WPILib commands. Begin typing “Import a WPILib
2020/2021/2022 Gradle project” and select it from the dropdown as shown below.

232 Chapter 10. VS Code Overview

https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/editingevolved

FIRST Robotics Competition

You’ll be presented with the WPILib Project Importer window. This is similar to the process of
creating a new project and the window and the steps are shown below. This window contains
the following elements:

1. Gradle Project: Selects the project to be imported. Users should select the build.gradle
file in the root directory of the gradle project.

2. Project Location: This determines the folder in which the robot project will be located.
3. Project Name: The name of the robot project. This also specifies the name that the

project folder will be given if the Create New Folder box is checked. This must be a
different directory from the original location.

4. Create a New Folder: If this is checked, a new folder will be created to hold the project
within the previously-specified folder. If it is not checked, the project will be located

10.8. Importing a Gradle Project 233

FIRST Robotics Competition

directly in the previously-specified folder. An error will be thrown if the folder is not
empty and this is not checked.

5. Team Number: The team number for the project, which will be used for package names
within the project and to locate the robot when deploying code.

6. Enable Desktop Support: If this is checked, simulation and unit test support is enabled.
However, there are some cases where this will do some unexpected things. In addition,
all vendor libraries need desktop support which not all libraries do.

7. Import Romi Project: If this is checked, the project is imported using the Romi gradle
template. This should only be checked for Romi projects.

Click Import Project to begin the upgrade.
The gradle project will be upgraded and copied into the new project directory. You can then
either open the new project immediately using the pop-up below or open it later using the
Ctrl+O (or Command+O for macOS) shortcut.

Click Yes I trust the authors.

234 Chapter 10. VS Code Overview

FIRST Robotics Competition

C++ Configurations (C++ Only)

For C++ projects, there is one more step to set up IntelliSense. Whenever you open a project,
you should get a pop-up in the bottom right corner asking to refresh C++ configurations. Click
Yes to set up IntelliSense.

3rd Party Libraries

It is necessary to update and re-import 3rd party libraries. See 3rd Party Libraries for details.

10.8. Importing a Gradle Project 235

FIRST Robotics Competition

236 Chapter 10. VS Code Overview

11
Dashboards

Click on each dashboard below to get a description of its advantages and disadvantages.

11.1 Shuffleboard

Shuffleboard is a modern looking driveteam focused dashboard. It displays network tables
data using a variety of widgets that can be positioned and controlled with robot code. It
includes many extra features like: tabs, recording / playback, and advanced custom widgets.

11.1.1 Shuffleboard - Getting Started

Tour of Shuffleboard

Shuffleboard is a dashboard for FRC® based on newer technologies such as JavaFX that are
available to Java programs. It is designed to be used for creating dashboards for C++ and Java
programs. If you’ve used SmartDashboard in the past then you are already familiar with many
of the features of Shuffleboard since they fundamentally work the same way. But Shuffleboard
has many features that aren’t in SmartDashboard. Here are some of the highlights:

• Graphics is based on JavaFX, the Java graphics standard. Each of the components has
an associated style sheet so it becomes possible to have different “skins” or “themes”
for Shuffleboard. We supply default light and dark themes.

• Shuffleboard supports multiple sheets for the display of your data. In fact you can
create a new sheet (shown as a tab in the Shuffleboard window) and indicate if and which
data should be autopopulated on it. By default there is a Test tab and a SmartDashboard
tab that are autopopulated as data arrives. Other tabs might be for robot debugging vs.
driving.

• Graphical display elements (widgets) are laid out on a grid to keep the interface
clean and easy to read. You can change the grid size to have more or less resolution in
your layouts and visual cues are provided to help you change your layout using drag and
drop. Or you can choose to turn off the grid lines although the grid layout is preserved.

• Layouts are saved and the previous layout is instantiated by default when you run shuf-
fleboard again.

237

FIRST Robotics Competition

• There is a record and playback feature that lets you review the data sent by your robot
program after it finishes. That way you can carefully review the actions of the robot if
something goes wrong.

• Graph widgets are available for numeric data and you can drag data onto a graph
to see multiple points at the same time and on the same scale.

• You can extend Shuffleboard by writing your own widgets that are specific to your team’s
requirements. Documentation on extending it can be found in Custom Widgets.

1. Sources area: Here are data sources from which you can choose values from Network-
Tables or other sources to display by dragging a value into one of the tabs

2. Tab panes: This is where you data is displayed from the robot or other sources. In this
example it is Test-mode subsystems that are shown here in the LiveWindow tab. This
area can show any number of tabbed windows, and each window has it’s own set of
properties like grid size and auto-populate.

3. Record/playback controls: set of media-like controls where you can playback the cur-
rent session to see historical data

Starting Shuffleboard

You can start Shuffleboard in one of four ways:

238 Chapter 11. Dashboards

FIRST Robotics Competition

1. You can automatically start it when the Driver Station starts by setting the “Dashboard
Type” to Shuffleboard in the settings tab as shown in the picture above.

2. You can run it by double-clicking the Shuffleboard icon in the YEAR WPILib tools folder
on the Windows Desktop.

3. You can start from with Visual Studio Code by pressing Ctrl+Shift+P and type “WPILib”
or click the WPILib logo in the top right to launch the WPILib Command Palette. Select
Start Tool, then select Shuffleboard.

4. You can run it by double-clicking on the shuffleboard.XXX file (where XXX is .vbs on
Windows and .py on Linux or macOS) in ~/WPILib/YYYY/tools/ (where YYYY is the
year and ~ is C:\Users\Public on Windows). This is useful on a development system
that does not have the Driver Station installed such as a macOS or Linux system.

5. You can start it from the command line by typing the command: shuffleboard on Win-
dows or python shuffleboard.py on macOS or Linux from ~/WPILib/YYYY/tools di-
rectory (where YYYY is the year and ~ is C:\Users\Public on Windows). This is often
easiest on a development system that doesn’t have the Driver Station installed.

Note: The .vbs (Windows) and .py (macOS/Linux) scripts help launch the tools using the
correct JDK.

Getting robot data onto the dashboard

The easiest way to get data displayed on the dashboard is simply to use methods in the Smart-
Dashboard class. For example to write a number to Shuffleboard write:
Java

SmartDashboard.putNumber("Joystick X value", joystick1.getX());

to see a field displayed with the label “Joystick X value” and a value of the X value of the
joystick. Each time this line of code is executed, a new joystick value will be sent to Shuffle-
board. Remember: you must write the joystick value whenever you want to see an updated
value. Executing this line once at the start of the program will only display the value once at
the time the line of code was executed.

11.1. Shuffleboard 239

FIRST Robotics Competition

Displaying data from your robot

Your robot can display data in regular operating modes like Teleop and Autonomous modes
but you can also display the status and operate all the robot subsystems when the robot is
switched to Test mode. By default you’ll see two tabs when you start Shuffleboard, one for
Teleop/Autonomous and another for Test mode. The currently selected tab is underlined as
can be seen in the picture below.

Often debugging or monitoring the status of a robot involves writing a number of values to the
console and watching them stream by. With Shuffleboard you can put values to a GUI that is
automatically constructed based on your program. As values are updated, the corresponding
GUI element changes value - there is no need to try to catch numbers streaming by on the
screen.

240 Chapter 11. Dashboards

FIRST Robotics Competition

Displaying values in normal operating mode (autonomous or teleop)

Java

protected void execute() {
SmartDashboard.putBoolean("Bridge Limit", bridgeTipper.atBridge());
SmartDashboard.putNumber("Bridge Angle", bridgeTipper.getPosition());
SmartDashboard.putNumber("Swerve Angle", drivetrain.getSwerveAngle());
SmartDashboard.putNumber("Left Drive Encoder", drivetrain.getLeftEncoder());
SmartDashboard.putNumber("Right Drive Encoder", drivetrain.getRightEncoder());
SmartDashboard.putNumber("Turret Pot", turret.getCurrentAngle());
SmartDashboard.putNumber("Turret Pot Voltage", turret.getAverageVoltage());
SmartDashboard.putNumber("RPM", shooter.getRPM());

}

You can write Boolean, Numeric, or String values to Shuffleboard by simply calling the correct
method for the type and including the name and the value of the data, no additional code is
required.

• Numeric types such as char, int, long, float or double call
SmartDashboard.putNumber(“dashboard-name”, value).

• String types call SmartDashboard.putString(“dashboard-name”, value)
• Boolean types call SmartDashboard.putBoolean(“dashboard-name”, value)

11.1. Shuffleboard 241

FIRST Robotics Competition

Changing the display type of data

Depending on the data type of the values being sent to Shuffleboard you can often change
the display format. In the previous example you can see that number values were displayed
as either decimal numbers, a dial to better represent angles, and as a voltage view for the
turret potentiometer. To set the display type right-click on the tile and select “Show as…”.
You can choose display types from the list in the popup menu.

Displaying data in Test mode

You may add code to your program to display values for your sensors and actuators while the
robot is in Test mode. This can be selected from the Driver Station whenever the robot is not
on the field. The code to display these values is automatically generated by RobotBuilder or
manually added to your program and is described in the next article. Test mode is designed
to verify the correct operation of the sensors and actuators on a robot. In addition it can be
used for obtaining setpoints from sensors such as potentiometers and for tuning PID loops in
your code.

242 Chapter 11. Dashboards

FIRST Robotics Competition

Setting test mode

Enable Test Mode in the Driver Station by clicking on the “Test” button and setting “Enable”
on the robot. When doing this, Shuffleboard will display the status of any actuators and
sensors used by your program organized by subsystem.

Getting data from the Sources view

Normally NetworkTables data automatically appears on one of the tabs and you just rear-
range and use that data. Sometimes you might want to recover a value that was accidentally
deleted from the tab or display a value that is not part of the SmartDashboard / NetworkTa-
bles key. For these cases the values can be dragged onto a pane from NetworkTables view
under Sources on the left side of the window. Choose the value that you want to display and
just drag it to the pane and it will be automatically created with the default type of widget for
the data type.

Note: Sometimes the Sources view is not visible on the left - it is possible to drag the divider
between the tabbed panes and the Sources so the sources is not visible. If this happens move
the cursor over the left edge and look for a divider resizing cursor, then left click and drag
out the view. In the two images below you can see where to click and drag, and when finished
the divider is as shown in the second image.

11.1. Shuffleboard 243

FIRST Robotics Competition

244 Chapter 11. Dashboards

FIRST Robotics Competition

Displaying Camera Streams

Camera streams from the robot can be viewed on a tab in Shuffleboard. This is useful for view-
ing what the robot is seeing to give a less obstructed view for operators or helping visualize
the output from a vision algorithm running on the driver station computer or a coprocessor
on the robot. Any stream that is running using the CameraServer API can be viewed in a
camera stream widget.

Adding a Camera Stream

To add a camera to your dashboard select “Sources” and view the “CameraServer” source in
the left side panel in the Shuffleboard window as shown in the example below. A list of camera
streams will be shown, in this case there is only one camera called “Robot Front Camera”.
Drag that to the tab where it should be displayed. Alternatively the stream can also be placed
on the dashboard by right-clicking on the stream in the Sources list and selecting “Show as:
Camera Stream”.

Once the camera stream is added it will be displayed in the window. It can be resized and
moved where you would like it.

Note: Be aware that sending too much data from too high a resolution or too high a frame
rate will cause high CPU usage on both the roboRIO and the laptop.

11.1. Shuffleboard 245

FIRST Robotics Competition

Working with widgets

The visual displays that you manipulate on the screen in Shuffleboard are called widgets.
Widgets are generally automatically displayed from values that the robot program publishes
with NetworkTables.

Moving widgets

Widgets can be moved simply with drag and drop. Just move the cursor over the widget,
left-click and drag it to the new position. When dragging you can only place widgets on grid
squares and the size of the grid will effect the resolution of your display. When dragging a
red or green outline will be displayed. Green generally means that there is enough room at
the current location to drop the widget and red generally means that it will overlap or be too
big to drop. In the example below a widget is being moved to a location where it doesn’t fit.

246 Chapter 11. Dashboards

FIRST Robotics Competition

Resizing widgets

Widgets can be resized by clicking and dragging the edge or corner of the widget image. The
cursor will change to a resize-cursor when it is in the right position to resize the widget. As
with moving widgets, a green or red outline will be drawn indicating that the widget can be
resized or not. The example below shows a widget being resized to a larger area with the
green outline indicating that there is no overlap with surrounding widgets.

Changing the display type of widgets

Shuffleboard is very rich in display types depending on the data published from the robot. It
will automatically choose a default display type, but you might want to change it depending
on the application. To see what the possible displays are for any widget, right-click on the
widget and select the “Show as…” and from the popup menu, choose the desired type. In the
example below are two data values, one a number and the other a boolean. You can see the
different types of display options that are available to each. The boolean value has only two
possible values (true/false) it can be shown as a boolean box (the red/green color), or text, or
a toggle button or toggle switch. The. number value can be displayed as a graph, number
bar, number slider, dial, text, or a voltage view depending on the context of the value.

11.1. Shuffleboard 247

FIRST Robotics Competition

248 Chapter 11. Dashboards

FIRST Robotics Competition

Changing the title of widgets

You can change the title of widgets by double-clicking in their title bar and editing the title to
the new value. If a widget is contained in a layout, then right-click on the widget and select
the properties. From there you can change the widget title that is displayed.

Changing widget properties

You can change the appearance of a widget such as the range of values represented, colors
or some other visual element. In cases where this is possible right-click on the widget and
select “Edit properties” from the popup menu. In this boolean value widget shown below, the
widget title, true color and false color can all be edited.

Working with Lists

Lists in Shuffleboard are sets of tiles grouped together in a vertical layout, making it visually
obvious that those tiles are related. In addition, tiles in lists take up less screen space than
individual tiles:

• Tiles in lists don’t have individual header labels; they instead have smaller labels within
their list entries.

• Individual tiles placed together create gaps between one another; lists have smaller gaps
between tiles.

11.1. Shuffleboard 249

FIRST Robotics Competition

250 Chapter 11. Dashboards

FIRST Robotics Competition

Creating a list

A list can be created as follows:
1. Right-click on the tile that should be first in the list.
2. Select “Add to new layout…”, then “List Layout” from the popup menu.
3. A new list will be created labeled “List”, and the tile will be at the top of it.

Note that tiles in lists do not have header labels; their label is at the bottom of their list entry.

Adding tiles to/removing tiles from a list

A tile can be added to an existing list as follows:
1. Identify the list and the tile to be added.
2. Drag the new tile onto the list.
3. The tile will be added to the list. If the current list size is too small to show it, the tile

will be added to the list off-screen and a vertical scrollbar will be added if not already
present.

A tile can be removed from a list by following the process in reverse:
1. Identify the list and the tile within it to be removed.
2. Drag the tile out of the list and place it anywhere with free space.
3. The tile will be removed from the list and placed at that location.

11.1. Shuffleboard 251

FIRST Robotics Competition

Rearranging tiles in a list

Tiles in a list can be rearranged by right-clicking on the tile and selecting:
• Move up moves the tile towards the top of the list.
• Move down moves the tile towards the bottom of the list.
• Send to top moves the tile to the top of a list.
• Send to bottom moves the tile to the bottom of a list.
• There are two buttons labeled Remove, and each button does:

– The top Remove button (above the pinline; section of dropdown with grayed-out tile
label) deletes the tile from the Shuffleboard layout.

– The bottom Remove button (below the pinline; section of dropdown with grayed-out
list label) deletes the list and all tiles inside it from the Shuffleboard layout.

252 Chapter 11. Dashboards

FIRST Robotics Competition

– If you want to take an entry out of a list without deleting it, see Adding tiles
to/removing tiles from a list.

Renaming a list

You can rename a list by double-clicking on the list label and changing the name. Click outside
the label to save changes.

Creating and manipulating tabs

The tabbed layout the Shuffleboard uses help separate different “views” of your robot data
and make the displays more useful. You might have a tab the has the display for helping
debug the robot program and a different tab for use in competitions. There are a number
of options that make tabs very powerful. You can control which data from NetworkTables or
other sources appears in each of your tabs using the auto-populate options described later in
this article.

11.1. Shuffleboard 253

FIRST Robotics Competition

Default tabs

When you open Shuffleboard for the first time there are two tabs, labeled SmartDashboard
and LiveWindow. These correspond to the two views that SmartDashboard had depending on
whether your robot is running in Autonomous/Teleop or Test mode. In shuffleboard both of
these views are available any time.

On the SmartDashboard tab all the values that are written using the SmartDash-
board.putType() set of methods. On the LiveWindow tab all the autogenerated debugging
values are shown.

Switching between tabs

You can switch between tabs clicking on the tab label at the top of the window. In the case
above, simply click on SmartDashboard or LiveWindow to see the values that are associated
with each tab.

254 Chapter 11. Dashboards

FIRST Robotics Competition

Adding and Hiding Tabs

You can add additional tabs by clicking on the plus(+) symbol just to the right of the last tab.
Once you create a new tab you can set the label by double-clicking on the label in the tab
and editing it. You can also right-click on the tab or use the Tab menu to bring up the tab
preferences and from that window you can change the name by editing the Title field.

You can hide tabs by clicking the minus(-) symbol to the left of the selected tab name. Since
tabs are generated based on the relevant NetworkTable, it is not possible to permanently
delete them without deleting the table.

11.1. Shuffleboard 255

FIRST Robotics Competition

Setting the tab to auto-populate

One of the most powerful features with tabs is to have them automatically populate new values
based on a source prefix that is supplied in the tab Preferences pane. In the above example
the Preferences pane has a Source prefix of “SmartDashboard/Shooter” and Auto populate is
turned on. Any values that are written using the SmartDashboard class that specifies a sub-
key of Shooter will automatically appear on that tab. Note: keys that match more than one
Source prefix will appear in both tabs. Because those keys also start with SmartDashboard/
and that’s the Source prefix for the default SmartDashboard tab, those widgets will appear
in both panes. To only have values appear in one pane, you can use NetworkTables to write
labels and values and use a different path that is not under SmartDashboard. Alternatively
you could let everything appear in the SmartDashboard tab making it very cluttered, but have
specific tabs for your needs that will be better filtered.

Using the tab grid and spacing

Each tab can have it’s own Tile size (number of pixels per large square). So some tabs might
have coarser resolution for easier layout and others might have a fine grid. The Tile size in the
Tab preferences overrides any global settings in the Shuffleboard preferences. In addition,
you can specify the padding between the drawing in the widget and the edge of the of the
widget. If you program user interfaces these parameters are usually referred to as horizontal
and vertical gap (hgap, vgap).

Moving widgets between tabs

Currently there is no way to easily move widgets between tabs without deleting it from one
tab and dragging the field from the sources hierarchy on the left into the new pane. We hope
to have that capability in a subsequent update soon.

Working with Graphs

With Shuffleboard you can graph numeric values over time. Graphs are very useful to see
how sensor or motor values are changing as your robot is operating. For example the sensor
value can be graphed in a PID loop to see how it is responding during tuning.
To create a graph, choose a numeric value and right-click in the heading and select “Show
as…” and then choose graph

256 Chapter 11. Dashboards

FIRST Robotics Competition

The graph widget shows line plots of the value that you selected. It will automatically set
the scale and the default time interval that the graph will show will be 30 seconds. You can
change that in the setting for the graph (see below).

11.1. Shuffleboard 257

FIRST Robotics Competition

Adding Additional Data Values

For related values it is often desirable to show multiple values on the same graph. To do that,
simply drag additional values from the NetworkTables source view (left side of the Shuffle-
board window) and drop it onto the graph and that value will be added as shown below. You
can continue to drag additional values onto the graph.

You can resize the graph vertically to view the legend if it is not displayed as shown in the
image below. The legend shows all the sources that are used in the plot.

258 Chapter 11. Dashboards

FIRST Robotics Competition

Setting Graph Properties

You can set the number of seconds that are shown in the graph by changing the “Visible time”
in the graph widget properties. To access the properties, right-click on the graph and select
“Edit properties”.
In addition to setting the visible time the graph can selectively turn sources on and off by
turning the switch on and off for each of the sources shown in the properties window (see
below).

11.1. Shuffleboard 259

FIRST Robotics Competition

Recording and Playback

Shuffleboard can log all widget updates during a session. Later the log file can be “played
back” to see what happened during a match or a practice run. This is especially useful if
something doesn’t operate as intended during a match and you want to see what happened.
Each recording is captured in a recording file.

Creating a Recording

When shuffleboard starts it begins recording to all the NetworkTables values are recorded
and continues until stopped by hitting the record/stop button in the recorder controls as
shown below. If a new recording is desired, such as when a new piece of code or mechanical
system is being tested, stop the current recording if it is running, and click the record button.
Click the button again to stop recording and close the recording file. If the button is round (as
shown) then click it to start a recording. If the button is a square, then a recoding is currently
running so click it to stop the recording.

260 Chapter 11. Dashboards

FIRST Robotics Competition

Playing a Recording

Previous recordings can be played back by:
1. Selecting the “Recording” menu then click “Load playback”.
2. Choose a recording from the from the directory shown. Recordings are grouped by date

and the file names are the time the recording was made to help identify the correct one.
Select the correct recording from the list.

Controlling the Playback

Selecting the recoding file will begin playback of that file. While the recording is playing the
recording controls will show the current time within the recording as well as the option to
loop the recording while watching it. When the recording is being played back the “transport”
controls will allow the playback to be controlled.

The controls work as follows:
1. The left double-arrow button backs up the playback to the last changed data point
2. The play/pause controls starts and stops the playback
3. The square stop button stops playback and resumes showing current robot values
4. The right double-arrow skips forward to the next changed data value
5. The slider allows for direct positioning to any point in time to view different parts of the

recording
6. The loop switch turns on playback looping, that is, the playback will run over and over

until stopped
7. The time shows the current point within the recording and the total time of the recording

11.1. Shuffleboard 261

FIRST Robotics Competition

Converting to Different File Formats

Shuffleboard recordings are in a custom binary format for efficiency. To analyze recorded data
without playing it back through the app, Shuffleboard supports data converters to convert the
recordings to an arbitrary format. Only a simple CSV converter is shipped with the app, but
teams can write custom converters and include them in Shuffleboard plugins.

262 Chapter 11. Dashboards

FIRST Robotics Competition

Multiple recordings can be converted at once. Individual files can be selected with the “Add
Files” button, or all recording files in a directory can be selected at once with the “Add Di-
rectory” button.
Converted recordings will be generated in the ~/Shuffleboard/recordings directory, but
can be manually selected with the “Change” button.
Different converters can be selected with the dropdown in the top right. By default, only
the CSV converter is available. Custom converters from plugins will appear as options in the
dropdown.

Additional Notes

Graphs won’t display properly while scrubbing the timeline but if it is playing through where
the graph history can be captured by the graph then they will display as in the original run.

11.1. Shuffleboard 263

FIRST Robotics Competition

Setting global preferences for Shuffleboard

There are a number of settings that set the way Shuffleboard looks and behaves. Those are
on the Shuffleboard Preferences pane that can be accessed from the File menu.

Setting the theme

Shuffleboard supports two themes, Material Dark and Material Light and the setting depends
on your preferences. This uses css styles that apply to the entire application and can be
changed any time.

Setting the default tile size

Shuffleboard positions tiles on a grid when you are adding or moving them yourself or when
they are auto-populated. You can set the default tile size when for each tab or it can be
set globally for all the tabs created after the default setting is changed. Finer resolution in
the grid results in finer control over placement of tiles. This can be set in the Shuffleboard
Preferences window as shown below.

Working with the layout save files

You can save your layout using the File / Save and File / Save as… menu options. The pref-
erences window has options to cause the previous layout to be automatically applied when
Shuffleboard starts. In addition, Shuffleboard will display a “Save layout” window to remind
you to save the layout on exit, if the layout has changed. You can choose to turn off the auto-
matic prompt on exit, but be sure to save the layout manually in this case so you don’t loose
your changes.

264 Chapter 11. Dashboards

FIRST Robotics Competition

11.1. Shuffleboard 265

FIRST Robotics Competition

Setting the team number

In order for Shuffleboard to be able to find your NetworkTables server on your robot, specify
your team number in the “NetworkTables” tab on the Preferences pane. If you’re running
Shuffleboard with a running Driver Station, the Server field will be auto-populated with the
correct information. If you’re running on a computer without the Driver Station, you can
manually enter your team number or the robotRIO network address.

Shuffleboard FAQ, issues, and bugs

Warning: Shuffleboard as well as most of the other control system components were
developed with Java 11 and will not work with Java 8. Be sure before reporting problems
that your computer has Java 11 installed and is set as the default Java Environment.

Frequently Asked Questions

How do I report issues, bugs or feature requests with Shuffleboard?

Bugs, issues, and feature requests can be added on the Shuffleboard GitHub page by creating
an issue. We will try to address them as they are entered into the system. Please try to look at
existing issues before creating new ones to make sure you aren’t duplicating something that
has already been reported or work that is planned. You can find the issues on the Shuffleboard
GitHub page.

266 Chapter 11. Dashboards

https://github.com/wpilibsuite/shuffleboard
https://github.com/wpilibsuite/shuffleboard

FIRST Robotics Competition

How can I add my own widgets or other extensions to Shuffleboard?

CustomWidgets has a large amount of documentation on extending the program with custom
plugins. Sample plugin projects that can be used for additional custom widgets and themes
can be found on the Shuffleboard GitHub page.

How can I build Shuffleboard from the source code?

You can get the source code by downloading, cloning, or forking the repository on the GitHub
site. To build and run Shuffleboard from the source, make sure that the current directory is
the top level source code and use one of these commands:

Application Command (for Windows systems run the
gradlew.bat file)

Running Shuffleboard ./gradlew :app:run
Building the APIs and utility classes for plu-
gin creation

./gradlew :api:shadowJar

Building the complete application jar file ./gradlew :app:shadowJar

11.1.2 Shuffleboard - Layouts with Code

Using tabs

Shuffleboard is a tabbed interface. Each tab organizes widgets in a logical grouping. By
default, Shuffleboard has tabs for the legacy SmartDashboard and LiveWindow - but new tabs
can now be created in Shuffleboard directly from a robot program for better organization.
Creating a new tab
Java

ShuffleboardTab tab = Shuffleboard.getTab("Tab Title");

C++

ShuffleboardTab& tab = Shuffleboard::GetTab("Tab Title");

Creating a new tab is as simple as calling a single method on the Shuffleboard class, which
will create a new tab on Shuffleboard and return a handle for adding your data to the tab.
Calling getTab multiple times with the same tab title will return the same handle each time.

Selecting a tab

Java

Shuffleboard.selectTab("Tab Title");

C++

Shuffleboard::SelectTab("Tab Title");

11.1. Shuffleboard 267

https://github.com/wpilibsuite/shuffleboard/tree/main/example-plugins

FIRST Robotics Competition

This method lets a tab be selected by title. This is case-sensitive (so “Tab Title” and “Tab title”
are two individual tabs), and only works if a tab with that title exists at the time the method
is called, so calling selectTab("Example")will only have an effect if a tab named “Example”
has previously been defined.
This method can be used to select any tab in Shuffleboard, not just ones created by the robot
program.

Caveats

Tabs created from a robot program differ in a few important ways from normal tabs created
from the dashboard:

• Not saved in the Shuffleboard save file
• No support for autopopulation
• Users are expected to specify the tab contents in their robot program
• Have a special color to differentiate from normal tabs

Sending data

Unlike SmartDashboard, data cannot be sent directly to Shuffleboard without first specifying
what tab the data should be placed in.

Sending simple data

Sending simple data (numbers, strings, booleans, and arrays of these) is done by calling add
on a tab. This method will set the value if not already present, but will not overwrite an
existing value.
Java

Shuffleboard.getTab("Numbers")
.add("Pi", 3.14);

C++

Shuffleboard::GetTab("Numbers")
.Add("Pi", 3.14);

If data needs to be updated (for example, the output of some calculation done on the robot),
call getEntry() after defining the value, then update it when needed or in a periodic function
Java

class VisionCalculator {
private ShuffleboardTab tab = Shuffleboard.getTab("Vision");
private NetworkTableEntry distanceEntry =

tab.add("Distance to target", 0)
.getEntry();

public void calculate() {
double distance = ...;

(continues on next page)

268 Chapter 11. Dashboards

FIRST Robotics Competition

(continued from previous page)
distanceEntry.setDouble(distance);

}
}

Making choices persist between reboots

When configuring a robot from the dashboard, some settings may want to persist between
robot or driverstation reboots instead of having drivers remember (or forget) to configure the
settings before each match.
Simply using addPersistent instead of add will make the value saved on the roboRIO and
loaded when the robot program starts.

Note: This does not apply to sendable data such as choosers or motor controllers.

Java

Shuffleboard.getTab("Drive")
.addPersistent("Max Speed", 1.0);

Sending sensors, motors, etc

Analogous to SmartDashboard.putData, any Sendable object (most sensors, motor con-
trollers, and SendableChoosers) can be added to any tab
Java

Shuffleboard.getTab("Tab Title")
.add("Sendable Title", mySendable);

Retrieving data

Unlike SmartDashboard.getNumber and friends, retrieving data from Shuffleboard is also
done through the NetworkTableEntries, which we covered in the previous article.
Java

class DriveBase extends Subsystem {
private ShuffleboardTab tab = Shuffleboard.getTab("Drive");
private NetworkTableEntry maxSpeed =

tab.add("Max Speed", 1)
.getEntry();

private DifferentialDrive robotDrive = ...;

public void drive(double left, double right) {
// Retrieve the maximum speed from the dashboard
double max = maxSpeed.getDouble(1.0);
robotDrive.tankDrive(left * max, right * max);

(continues on next page)

11.1. Shuffleboard 269

FIRST Robotics Competition

(continued from previous page)
}

}

This basic example has a glaring flaw: the maximum speed can be set on the dashboard to
a value outside [0, 1] - which could cause the inputs to be saturated (always at maximum
speed), or even reversed! Fortunately, there is a way to avoid this problem - covered in the
next article.

Configuring widgets

Robot programs can specify exactly which widget to use to display a data point, as well as how
that widget should be configured. As there are too many widgets to be listed here, consult
the docs for details.

Specifying a widget

Call withWidget after add in the call chain:
Java

Shuffleboard.getTab("Drive")
.add("Max Speed", 1)
.withWidget(BuiltInWidgets.kNumberSlider) // specify the widget here
.getEntry();

C++

frc::Shuffleboard::GetTab("Drive")
.Add("Max Speed", 1)
.WithWidget(frc::BuiltInWidgets::kNumberSlider) // specify the widget here
.GetEntry();

In this example, we configure the “Max Speed” widget to use a slider to modify the values
instead of a basic text field.

270 Chapter 11. Dashboards

FIRST Robotics Competition

Setting widget properties

Since the maximum speed only makes sense to be a value from 0 to 1 (full stop to full speed),
a slider from -1 to 1 can cause problems if the value drops below zero. Fortunately, we can
modify that using the withProperties method
Java

Shuffleboard.getTab("Drive")
.add("Max Speed", 1)
.withWidget(BuiltInWidgets.kNumberSlider)
.withProperties(Map.of("min", 0, "max", 1)) // specify widget properties here
.getEntry();

C++

frc::Shuffleboard::GetTab("Drive")
.Add("Max Speed", 1)
.WithWidget(frc::BuiltInWidgets::kNumberSlider)
.WithProperties({ // specify widget properties here
{"min", nt::Value::MakeDouble(0)},
{"max", nt::Value::MakeDouble(1)}

})
.GetEntry();

11.1. Shuffleboard 271

FIRST Robotics Competition

Notes

Widgets can be specified by name; however, names are case- and whitespace-sensitive (“Num-
ber Slider” is different from “Number slider” and “NumberSlider”). For this reason, it is
recommended to use the built in widgets class to specify the widget instead of by raw name.
However, a custom widget can only be specified by name or by creating a custom WidgetType
for that widget.
Widget property names are neither case-sensitive nor whitespace-sensitive (“Max” and “max”
are the same). Consult the documentation on the widget in the BuiltInWidgets class for details
on the properties of that widget.

Organizing Widgets

Setting Widget Size and Position

Call withSize and withPosition to set the size and position of the widget in the tab.
withSize sets the number of columns wide and rows high the widget should be. For example,
calling withSize(1, 1) makes the widget occupy a single cell in the grid. Note that some
widgets have a minimum size that may be greater than the specified size, in which case the
widget will use the smallest supported size.
withPosition sets the row and column of the top-left corner of the widget. Rows and columns
are both 0-indexed, so the topmost row is number 0 and the leftmost column is also number
0. If the position of any widget in a tab is specified, every widget should also have its position
set to avoid overlapping widgets.
Java

272 Chapter 11. Dashboards

FIRST Robotics Competition

Shuffleboard.getTab("Pre-round")
.add("Auto Mode", autoModeChooser)
.withSize(2, 1) // make the widget 2x1
.withPosition(0, 0); // place it in the top-left corner

C++

frc::Shuffleboard::GetTab("Pre-round")
.Add("Auto Mode", autoModeChooser)
.WithSize(2, 1)
.WithPosition(0,0);

Adding Widgets to Layouts

If there are many widgets in a tab with related data, it can be useful to place them into smaller
subgroups instead of loose in the tab. Much like how the handle to a tab is retrieved with
Shuffleboard.getTab, a layout inside a tab (or even in another layout) can be retrieved with
ShuffleboardTab.getLayout.
Java

ShuffleboardLayout elevatorCommands = Shuffleboard.getTab("Commands")
.getLayout("Elevator", BuiltInLayouts.kList)
.withSize(2, 2)
.withProperties(Map.of("Label position", "HIDDEN")); // hide labels for commands

elevatorCommands.add(new ElevatorDownCommand());
elevatorCommands.add(new ElevatorUpCommand());
// Similarly for the claw commands

C++

wpi::StringMap<std::shared_ptr<nt::Value>> properties{
std::make_pair("Label position", nt::Value::MakeString("HIDDEN"))

};

frc::ShuffleboardLayout& elevatorCommands = frc::Shuffleboard::GetTab("Commands")
.GetLayout("Elevator", frc::BuiltInLayouts::kList)
.WithSize(2, 2)
.WithProperties(properties);

ElevatorDownCommand* elevatorDown = new ElevatorDownCommand();
ElevatorUpCommand* elevatorUp = new ElevatorUpCommand();

elevatorCommands.Add("Elevator Down", elevatorDown);
elevatorCommands.Add("Elevator Up", elevatorUp);

11.1. Shuffleboard 273

FIRST Robotics Competition

11.1.3 Shuffleboard - Advanced Usage

Commands and Subsystems

When using the command-based framework Shuffleboard makes it easier to understand what
the robot is doing by displaying the state of various commands and subsystems in real-time.

Displaying Subsystems

To see the status of a subsystem while the robot is operating in either autonomous or teleop-
erated modes, that is what its default command is and what command is currently using that
subsystem, send a subsystem instance to Shuffleboard:
Java

SmartDashboard.putData(subsystem-reference);

C++

SmartDashboard::PutData(subsystem-pointer);

Shuffleboard will display the subsystem name, the default command associated with this sub-
system, and the currently running command. In this example the default command for the
Elevator subsystem is called AutonomousCommand and it is also the current command that is
using the Elevator subsystem.

274 Chapter 11. Dashboards

FIRST Robotics Competition

Subsystems in Test Mode

In Test mode (Test/Enabled in the driver station) subsystems may be displayed in the LiveWin-
dow tab with the sensors and actuators of the subsystem. This is ideal for verifying of sensors
are working by seeing the values that they are returning. In addition, actuators can be op-
erated. For example, motors can be operated using sliders to set their commanded speed
and direction. For PIDSubsystems the P, I, D, and F constants are displayed along with the
setpoint and an enable control. This is useful for tuning PIDSubsystems by adjusting the
constants, putting in a setpoint, and enabling the embedded PIDController. Then the mech-
anism’s response can be observed. This cycle (change parameters, enable, and observe) can
be repeated until a reasonable set of parameters is found.

11.1. Shuffleboard 275

FIRST Robotics Competition

More information on tuning PIDSubsystems can be found here. Using RobotBuilder will au-
tomatically generate the code to get the subsystem displayed in Test mode. The code that is
necessary to have subsystems displayed is shown below where subsystem-name is a string
containing the name of the subsystem:

setName(subsystem-name);

Displaying Commands

Using commands and subsystems makes very modular robot programs that can easily be
tested and modified. Part of this is because commands can be written completely indepen-
dently of other commands and can therefore be easily run from Shuffleboard. To write a
command to Shuffleboard use the SmartDashboard.putData method as shown here:
Java

SmartDashboard.putData("ElevatorMove: up", new ElevatorMove(2.7));

276 Chapter 11. Dashboards

FIRST Robotics Competition

C++

SmartDashboard::PutData("ElevatorMove: up", new ElevatorMove(2.7));

Shuffleboard will display the command name and a button to execute the command. In this
way individual commands and command groups can easily be tested without needing special
test code in a robot program. In the image below there are a number of commands contained
in a Shuffleboard list. Pressing the button once runs the command and pressing it again stops
the command. To use this feature the robot must be enabled in teleop mode.

11.1. Shuffleboard 277

FIRST Robotics Competition

Testing and Tuning PID Loops

One challenge in using sensors to control mechanisms is to have a good algorithm to drive the
motors to the proper position or speed. The most commonly used control algorithm is called
PID control. There is a good set of videos (look for the robot controls playlist) that explain
the control algorithms described here. The PID algorithm converts sensor values into motor
speeds by:

1. Reading sensor values to determine how far the robot or mechanism from the desired
setpoint. The setpoint is the sensor value that corresponds to the expected goal. For
example, a robot arm with a wrist joint should be able to move to a specified angle very
quickly and stop at that angle as indicated by a sensor. A potentiometer is a sensor that
can measure. rotational angle. By connecting it to an analog input, the program can get
a voltage measurement that is directly proportional to the angle.

2. Compute an error (the difference between the sensor value and the desired value). The
sign of the error value indicates which side of the setpoint the wrist is on. For example
negative values might indicate that the measured wrist angle is larger than the desired
wrist angle. The magnitude of the error is how far the measured wrist angle is from
the actual wrist angle. If the error is zero, then the measured angle exactly matches
the desired angle. The error can be used as an input to the PID algorithm to compute a
motor speed.

3. The resultant motor speed is then used to drive the motor in the correct direction and a
speed that hopefully will reach the setpoint as quickly as possible without overshooting
(moving past the setpoint).

WPILib has a PIDController class that implements the PID algorithm and accepts constants
that correspond to the Kp, Ki, and Kd values. The PID algorithm has three components that
contribute to computing the motor speed from the error.

1. P (proportional) - this is a term that when multiplied by a constant (Kp) will generate a
motor speed that will help move the motor in the correct direction and speed.

2. I (integral) - this term is the sum of successive errors. The longer the error exists the
larger the integral contribution will be. It is simply a sum of all the errors over time. If
the wrist isn’t quite getting to the setpoint because of a large load it is trying to move,
the integral term will continue to increase (sum of the errors) until it contributes enough
to the motor speed to get it to move to the setpoint. The sum of the errors is multiplied
by a constant (Ki) to scale the integral term for the system.

3. D (differential) - this value is the rate of change of the errors. It is used to slow down
the motor speed if it’s moving too fast. It’s computed by taking the difference between
the current error value and the previous error value. It is also multiplied by a constant
(kd) to scale it to match the rest of the system.

Tuning the PID Controller

Tuning the PID controller consists of adjusting constants for accurate results. Shuffleboard
helps this process by displaying the details of a PID subsystem with a user interface for setting
constant values and testing how well it operates. This is displayed while the robot is operating
in test mode (done by setting “Test” in the driver station).

278 Chapter 11. Dashboards

https://wp.wpi.edu/wpilib/robotics-videos/

FIRST Robotics Competition

This is the test mode picture of a wrist subsystem that has a potentiometer as the sensor (pot)
and a motor controller connected to the motor. It has a number of areas that correspond to
the PIDSubsystem.

1. The analog input voltage value from the potentiometer. This is the sensor input value.

11.1. Shuffleboard 279

FIRST Robotics Competition

2. A slider that moves the wrist motor in either direction with 0 as stopped. The positive
and negative values correspond to moving up or down.

3. The PID constants as described above (F is a feedforward value that is used for speed
PID loops)

4. The setpoint value that corresponds the to the pot value when the wrist has reached the
desired value

5. Enables the PID controller - No longer working, see below.
Try various PID gains to get the desired motor performance. You can look at the video linked to
at the beginning of this article or other sources on the internet to get the desired performance.

Important: The enable option does not affect the PIDController introduced in 2020, as
the controller is updated every robot loop. See the example below on how to retain this
functionality.

Enable Functionality in the New PIDController

The following example demonstrates how to create a button on your dashboard that will en-
able/disable the PIDController.
Java

ShuffleboardTab tab = Shuffleboard.getTab("Shooter");
NetworkTableEntry shooterEnable = tab.add("Shooter Enable", false).getEntry();

// Command Example assumed to be in a PIDSubsystem
new NetworkButton(shooterEnable).onTrue(new InstantCommand(m_shooter::enable));

// Timed Robot Example
if (shooterEnable.getBoolean()) {
// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.set(pid.calculate(encoder.getDistance(), setpoint));

}

C++

frc::ShuffleboardTab& tab = frc::Shuffleboard::GetTab("Shooter");
nt::NetworkTableEntry shooterEnable = tab.Add("Shooter Enable", false).GetEntry();

// Command-based assumed to be in a PIDSubsystem
frc2::NetworkButton(shooterEnable).OnTrue(frc2::InstantCommand([&] { m_shooter.
↪→Enable(); }));

// Timed Robot Example
if (shooterEnable.GetBoolean()) {
// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.Set(pid.Calculate(encoder.GetDistance(), setpoint));

}

280 Chapter 11. Dashboards

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html

FIRST Robotics Competition

Viewing Hierarchies of Data

Dragging a key with other keys below it (deeper in the hierarchy) displays the hierarchy in a
tree, similar to the NetworkTables sources on the left.
Select the data source:

Click and drag the NetworkTables key into the preferred tab.

11.1. Shuffleboard 281

FIRST Robotics Competition

11.1.4 Shuffleboard - Custom Widgets

Built-in Plugins

Shuffleboard provides a number of built-in plugins that handle common tasks for FRC® use,
such as camera streams, all widgets, and NetworkTables connections.

Base Plugin

The base plugin defines all the data types, widgets, and layouts necessary for FRC use. It
does not define any of the source types, or any special data types or widgets for those source
types. Those are handled by the NetworkTables Plugin and the CameraServer Plugin. This
separation of concerns makes it easier for teams to create plugins for custom source types or
protocols (eg HTTP, ZeroMQ) for the FRC data types without needing a NetworkTables client.

CameraServer Plugin

The camera server plugin provides sources and widgets for viewing camerastreams from the
CameraServer WPILib class.
This plugin depends on the NetworkTables Plugin in order to discover the available camera
streams.

Stream discovery

CameraServer sources are automatically discovered by looking at the /CameraPublisherNet-
workTable.

/CameraPublisher
/<camera name>

streams=["url1", "url2", ...]

For example, a camera named “Camera” with a server at roborio-0000-frc.local would
have this table layout:

/CameraPublisher
/Camera

streams=["mjpeg:http://roborio-0000-frc.local:1181/?action=stream"]

This setup will automatically discover all camera streams hosted on a roboRIO by the Cam-
eraServer class in WPILib. Any non-WPILib projects that want to have camera streams appear
in shuffleboard will have to set the streams entry for the camera server.

282 Chapter 11. Dashboards

FIRST Robotics Competition

NetworkTables Plugin

The NetworkTables plugin provides data sources backed by ntcore. Since the LiveWindow,
SmartDashboard, and Shuffleboard classes in WPILib use NetworkTables to send the data
to the driver station, this plugin will need to be loaded in order to use those classes.
This plugin handles the connection and reconnection to NetworkTables automatically, users
of shuffleboard and writers of custom plugins will not have to worry about the intricacies of
the NetworkTables protocol.

Creating a Plugin

Overview

Plugins provide the ability to create custom widgets, layouts, data sources/types, and custom
themes. Shuffleboard provides the following built-in plugins.

• NetworkTables Plugin: To connect to data published over NetworkTables
• Base Plugin: To display custom FRC® data types in custom widgets
• CameraServer Plugin: To view streams from the CameraServer

Tip: An example custom Shuffleboard plugin which creates a custom data type and a simple
widget for displaying it can be found here.

Create a Custom Plugin

In order to define a plugin, the plugin class must be a subclass of
edu.wpi.first.shuffleboard.api.Plugin or one of its subclasses. An example of a plugin
class would be as following.
Java

import edu.wpi.first.shuffleboard.api.plugin.Description;
import edu.wpi.first.shuffleboard.api.plugin.Plugin;

@Description(group = "com.example", name = "MyPlugin", version = "1.2.3", summary =
↪→"An example plugin")
public class MyPlugin extends Plugin {

}

Additional explanations on how these attributes are used, including version numbers can be
found here.
Note the @Description annotation is needed to tell the plugin loader the properties of the
custom plugin class. Plugin classes are permitted to have a default constructor but it cannot
take any arguments.

11.1. Shuffleboard 283

https://github.com/wpilibsuite/shuffleboard/tree/main/example-plugins/custom-data-and-widget
https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/java/edu/wpi/first/shuffleboard/api/plugin/Plugin.java
https://semver.org/

FIRST Robotics Competition

Building plugin

The easiest way to build plugins is to utlize the example-plugins folder in the shuffle-
bloard source tree. Clone Shuffleboard with git clone https://github.com/wpilibsuite/
shuffleboard.git, and checkout the version that corresponds to the WPILib version you
have installed (e.g. 2023.2.1). git checkout v2023.2.1

Put your plugin in the example-plugins\PLUGIN-NAME directory. Copy the
custom-data-and-widget.gradle from example-plugins\custom-data-and-widget and
rename to match your plugin name. Edit settings.gradle in the shuffleboard root directory
to add include "example-plugins:PLUGIN-NAME"

Plugins are allowed to have dependencies on other plugins and libraries, however, they must
be included correctly in the maven or gradle build file. When a plugin depends on other
plugins, it is good practice to define those dependencies so the plugin does not load when the
dependencies do not load as well. This can be done using the @Requires annotation as shown
below:

@Requires(group = "com.example", name = "Good Plugin", minVersion = "1.2.3")
@Requires(group = "edu.wpi.first.shuffleboard", name = "Base", minVersion = "1.0.0")
@Description(group = "com.example", name = "MyPlugin", version = "1.2.3", summary =
↪→"An example plugin")
public class MyPlugin extends Plugin {

}

The minVersion specifies the minimum allowable version of the plugin that can be loaded.
For example, if the minVersion is 1.4.5, and the plugin with the version 1.4.7 is loaded, it
will be allowed to do so. However, if the plugin with the version 1.2.4 is loaded, it will not be
allowed to since it is less than the minVersion.

Deploying Plugin To Shuffleboard

In order to load a plugin in Shuffleboard, you will need to generate a jar file of the plugin
and put it in the ~/Shuffleboard/plugins folder. This can be done automatically by running
from the shuffleboard root gradlew :example-plugins:PLUGIN-NAME:installPlugin

After deploying, Shuffleboard will cache the path of the plugin so it can be automatically
loaded the next time Shuffleboard loads. It may be necessary to click on Clear Cache under
the plugins menu to remove a plugin or reload a plugin into Shuffleboard.

Manually Adding Plugin

The other way to add a plugin to Shuffleboard is to compile it to a jar file and add it from Shuf-
fleboard. The jar file is located in example-plugins\PLUGIN-NAME\build\libs after running
gradlew build in the shuffleboard root Open Shuffleboard, click on the file tab in the top
left, and choose Plugins from the drop down menu.

284 Chapter 11. Dashboards

FIRST Robotics Competition

From the plugins window, choose the “Load plugin” button in the bottom right, and select
your jar file.

Creating Custom Data Types

Widgets allow us to control and visualize different types of data. This data could be integers
and doubles or even Java Objects. In order to display these types of data using widgets, it is
helpful to create a container class for them. It is not necessary to create your own Data Class
if the widget will handle single fielded data types such as doubles, arrays, or strings.

Creating The Data Class

In this example, we will create a custom data type for a 2D Point and its x and y coordinates.
In order to create a custom data type class, it must extend the abstract class ComplexData.
Your custom data class must also implement the asMap() method that returns the represented
data as a simple map as noted below with the @Override annotation:

import edu.wpi.first.shuffleboard.api.data.ComplexData;

import java.util.Map;

public class MyPoint2D extends ComplexData<MyPoint2D> {

private final double x;
private final double y;

//Constructor should take all the different fields needed and assign them their␣
↪→corresponding instance variables.

public MyPoint2D(double x, double y) {
this.x = x;

(continues on next page)

11.1. Shuffleboard 285

https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/java/edu/wpi/first/shuffleboard/api/data/ComplexData.java

FIRST Robotics Competition

(continued from previous page)
this.y = y;

}

@Override
public Map<String, Object> asMap() {

return Map.of("x", x, "y", y);
}

}

It is also good practice to override the default equals and hashcode methods to ensure that
different objects are considered equivalent when their fields are the same. The asMap()
method should return the data represented in a simple Map object as it will be mapped to the
NetworkTables entry it corresponds to. In this case, we can represent the point as its X and
Y coordinates and return a Map containing them.

import edu.wpi.first.shuffleboard.api.data.ComplexData;

import java.util.Map;

public final class MyPoint2D extends ComplexData<MyPoint2D> {

private final double x;
private final double y;

// Constructor should take all the different fields needed and assign them to␣
↪→their corresponding instance variables.

public Point(double x, double y) {
this.x = x;
this.y = y;

}

@Override
public Map<String, Object> asMap() {

return Map.of("x", this.x, "y", this.y);
}

}

Other methods can be added to retrieve or edit fields and instance variables, however, it is
good practice to make these classes immutable to prevent changing the source data objects.
Instead, you can make a new copy object instead of manipulating the existing object. For
example, if we wanted to change the y coordinate of our point, we can define the following
method:

public MyPoint2D withY(double newY) {
return new MyPoint2D(this.x, newY);

}

This creates a new MyPoint2D object and returns it with the new y-coordinate. Same can be
done for changing the x coordinate.

286 Chapter 11. Dashboards

FIRST Robotics Competition

Creating a Data Type

There are two different data types that can be made: Simple data types that have only one
field (ie. a single number or string), and Complex data types that have multiple data fields
(ie. multiple strings, multiple numbers).
In order to define a simple data type, the class must extend the SimpleDataType<DataType>
class with the data type needed and implement the getDefaultValue() method. In this ex-
ample, we will use a double as our simple data type.

public final class MyDoubleDataType extends SimpleDataType<Double> {

private static final String NAME = "Double";

private MyDataType() {
super(NAME, Double.class);

}

@Override
public Double getDefaultValue() {

return 0.0;
}

}

The class constructor is set to private to ensure that only a single instance of the data type
will exist.
In order to define a complex data type, the class must extend the ComplexDataType class and
override the fromMap() and getDefaultValue() methods. We will use our MyPoint2D class
as an example to see what a complex data type class would look like.

public final class PointDataType extends ComplexDataType<MyPoint2D> {

private static final String NAME = "MyPoint2D";
public static final PointDataType Instance = new PointDataType();

private PointDataType() {
super(NAME, MyPoint2D.class);

}

@Override
public Function<Map<String, Object>, MyPoint2D> fromMap() {

return map -> {
return new MyPoint2D((double) map.getOrDefault("x", 0.0), (double) map.

↪→getOrDefault("y", 0.0));
};

}

@Override
public MyPoint2D getDefaultValue() {

// use default values of 0 for X and Y coordinates
return new MyPoint2D(0, 0);

}

}

The following code above works as noted:

11.1. Shuffleboard 287

FIRST Robotics Competition

The fromMap() method creates a new MyPoint2D using the values in the NetworkTables entry
it is bound to. The getOrDefault method will return 0.0 if it cannot get the entry values. The
getDefaultValue will return a new MyPoint2D object if no source is present.

Exporting Data Type To Plugin

In order to have the data type be recognized by Shuffleboard, the plugin must export them
by overriding the getDataTypes method. For example,

public class MyPlugin extends Plugin {

@Override
public List<DataType> getDataTypes() {

return List.of(PointDataType.Instance);
}

}

Creating A Widget

Widgets allow us to view, change, and interact with data published through different data
sources. The CameraServer, NetworkTables, and Base plugins provide the widgets to control
basic data types (including FRC-specific data types). However, custom widgets allow us to
control our custom data types we made in the previous sections or Java Objects.
The basic Widget interface inherits from the Component and Sourced interfaces. Component
is the most basic building block of components that be displayed in Shuffleboard. Sourced is
an interface for things that can handle and interface with data sources to display or modify
data. Widgets that don’t support data bindings but simply have child nodes would not use the
Sourced interface but simply the Component interface. Both are basic building blocks towards
making widgets and allows us to modify and display data.
A good widget allows the end-user to customize the widget to suit their needs. An example
could be to allow the user to control the range of the number slider, that is, its maximum
and minimum or the orientation of the slider itself. The view of the widget or how it looks
is defined using FXML. FXML is an XML based language that is useful for defining the static
layout of the widget (Panes, Labels and Controls).
More about FXML can be found here.

Defining a Widget’s FXML

In this example, we will create two sliders to help us control the X and Y coordinates of our
Point2D data type we created in previous sections. It is helpful to place the FXML file in the
same package as the Java class.
In order to create an empty, blank window for our widget, we need to create a Pane. A Pane is
a parent node that contains other child nodes, in this case, 2 sliders. There are many different
types of Pane, they are as noted:

• Stack Pane
– Stack Panes allow elements to be overlaid. Also, StackPanes by default center child

nodes.

288 Chapter 11. Dashboards

https://openjfx.io/javadoc/11/javafx.fxml/javafx/fxml/doc-files/introduction_to_fxml.html

FIRST Robotics Competition

• Grid Pane
– Grid Panes are extremely useful defining child elements using a coordinate system

by creating a flexible grid of rows and columns on the pane.
• Flow Pane

– Flow Panes wrap all child nodes at a boundary set. Child nodes can flow vertically
(wrapped at the height boundary for the pane) or horizontally (wrapped at the width
boundary of the pane).

• Anchor Pane
– Anchor Panes allow child elements to be placed in the top, bottom, left side, right

side, or center of the pane.
Layout panes are also extremely useful for placing child nodes in one horizontal row using a
HBox or one vertical column using a VBox.
The basic syntax for defining a Pane using FXML would be as the following:

<?import javafx.scene.layout.*?>
<StackPane xmlns:fx="http://javafx.com/fxml/1" fx:controller="/path/to/widget/class"␣
↪→fx:id="root">

...
</StackPane>

The fx:controller attribute contains the name of the widget class. An instance of this class
is created when the FXML file is loaded. For this to work, the controller class must have a
no-argument constructor.

Creating A Widget Class

Now that we have a Pane, we can now add child elements to that pane. In this example,
we can add two slider objects. Remember to add an fx:id to each element so they can be
referenced in our Java class we will make later on. We will use a VBox to position our slider
on top of each other.

<?import javafx.scene.layout.*?>
<StackPane xmlns:fx="http://javafx.com/fxml/1" fx:controller="/path/to/widget/class"␣
↪→fx:id="root">

<VBox>
<Slider fx:id = "xSlider"/>
<Slider fx:id = "ySlider"/>

</VBox>

</StackPane>

Now that we have finished creating our FXML file, we can now create a widget class. The
widget class should include a @Description annotation that states the supported data types
of the widget and the name of the widget. If a @Description annotation is not present, the
plugin class must implement the get() method to return its widgets.
It also must include a @ParametrizedController annotation that points to the FXML file
containing the layout of the widget. If the class that only supports one data source it must
extend the SimpleAnnotatedWidget class. If the class supports multiple data sources, it must
extend the ComplexAnnotatedWidget class. For more information, see Widget Types.

11.1. Shuffleboard 289

https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/layout/HBox.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/layout/VBox.html

FIRST Robotics Competition

import edu.wpi.first.shuffleboard.api.widget.Description;
import edu.wpi.first.shuffleboard.api.widget.ParametrizedController;
import edu.wpi.first.shuffleboard.api.widget.SimpleAnnotatedWidget;

/*
* If the FXML file and Java file are in the same package, that is the Java file is␣
↪→in src/main/java and the
* FXML file is under src/main/resources or your code equivalent package, the␣
↪→relative path will work
* However, if they are in different packages, an absolute path will be required.
*/

@Description(name = "MyPoint2D", dataTypes = MyPoint2D.class)
@ParametrizedController("Point2DWidget.fxml")
public final class Point2DWidget extends SimpleAnnotatedWidget<MyPoint2D> {

}

If you are not using a custom data type, you can reference any Java data type (ie. Double.
class), or if the widget does not need data binding you can pass NoneType.class.
Now that we have created our class we can create fields for the widgets we declared in our
FXML file using the @FXML annotation. For our two sliders, an example would be:

import edu.wpi.first.shuffleboard.api.widget.Description;
import edu.wpi.first.shuffleboard.api.widget.ParametrizedController;
import edu.wpi.first.shuffleboard.api.widget.SimpleAnnotatedWidget;
import javafx.fxml.FXML;

@Description(name = "MyPoint2D", dataTypes = MyPoint2D.class)
@ParametrizedController("Point2DWidget.fxml")
public final class Point2DWidget extends SimpleAnnotatedWidget<MyPoint2D> {

@FXML
private Pane root;

@FXML
private Slider xSlider;

@FXML
private Slider ySlider;

}

In order to display our pane on our custom widget we need to override the getView() method
and return our StackPane.

import edu.wpi.first.shuffleboard.api.widget.Description;
import edu.wpi.first.shuffleboard.api.widget.ParametrizedController;
import edu.wpi.first.shuffleboard.api.widget.SimpleAnnotatedWidget;
import javafx.fxml.FXML;

@Description(name = "MyPoint2D", dataTypes = MyPoint2D.class)
@ParametrizedController("Point2DWidget.fxml")
public final class Point2DWidget extends SimpleAnnotatedWidget<MyPoint2D> {

@FXML
private StackPane root;

(continues on next page)

290 Chapter 11. Dashboards

FIRST Robotics Competition

(continued from previous page)

@FXML
private Slider xSlider;

@FXML
private Slider ySlider;

@Override
public Pane getView() {

return root;
}

}

Binding Elements and Adding Listeners

Binding is a mechanism that allows JavaFX widgets to express direct relationships with the
data source. For example, changing a widget will change its related NetworkTableEntry and
vice versa.
An example, in this case, would be changing the X and Y coordinate of our 2D point by chang-
ing the values of xSlider and ySlider respectively.
A good practice is to set bindings in the initialize() method tagged with the @FXML anno-
tation which is required to call the method from FXML if the method is not public.

import edu.wpi.first.shuffleboard.api.widget.Description;
import edu.wpi.first.shuffleboard.api.widget.ParametrizedController;
import edu.wpi.first.shuffleboard.api.widget.SimpleAnnotatedWidget;
import javafx.fxml.FXML;

@Description(name = "MyPoint2D", dataTypes = MyPoint2D.class)
@ParametrizedController("Point2DWidget.fxml")
public final class Point2DWidget extends SimpleAnnotatedWidget<MyPoint2D> {

@FXML
private StackPane root;

@FXML
private Slider xSlider;

@FXML
private Slider ySlider;

@FXML
private void initialize() {

xSlider.valueProperty().bind(dataOrDefault.map(MyPoint2D::getX));
ySlider.valueProperty().bind(dataOrDefault.map(MyPoint2D::getY));

}

@Override
public Pane getView() {

return root;
}

(continues on next page)

11.1. Shuffleboard 291

FIRST Robotics Competition

(continued from previous page)

}

The above initialize method binds the slider’s value property to the MyPoint2D data class’
corresponding X and Y value. Meaning, changing the slider will change the coordinate and
vice versa. The dataOrDefault.map() method will get the data source’s value, or, if no source
is present, will return the default value.
Using a listener is another way to change values when the slider or data source has changed.
For example a listener for our slider would be:

xSlider.valueProperty().addListener((observable, oldValue, newValue) ->␣
↪→setData(getData().withX(newValue));

In this case, the setData() method sets the value in the data source of the widget to the
newValue.

Exploring Custom Components

Widgets are not automatically discovered when loading plugins; the defining plugin must
explicitly export it for it to be usable. This approach is taken to allow multiple plugins to be
defined in the same JAR.

@Override
public List<ComponentType> getComponents() {
return List.of(WidgetType.forAnnotatedWidget(Point2DWidget.class));

}

Set Default Widget For Data type

In order to set your widget as default for your custom data type, you can override the get-
DefaultComponents() in your plugin class that stores a Map for all default widgets as noted
below:

@Override
public Map<DataType, ComponentType> getDefaultComponents() {

return Map.of(Point2DType.Instance, WidgetType.forAnnotatedWidget(Point2DWidget.
↪→class));
}

Custom Themes

Since shuffleboard is a JavaFX application, it has support for custom themes via Cascading
Stylesheets (CSS for short). These are commonly used on webpages for making HTML look
nice, but JavaFX also has support, albeit for a different language subset (see here for docu-
mentation on how to use it).
Shuffleboard comes with three themes by default: Material Light, Material Dark, and Mid-
night. These are color variations on the same material design stylesheet. In addition, they
inherit from a base.css stylesheet that defines styles for the custom components ,defined in

292 Chapter 11. Dashboards

https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/doc-files/cssref.html

FIRST Robotics Competition

shuffleboard or libraries that it uses; the base material design stylesheet only applies to the
UI components built into JavaFX.
There are two ways to define a custom theme: place the stylesheets in a directory with the
name of the theme in ~/Shuffleboard/themes; for example, a theoretical “Yellow” theme
could be placed in

~/Shuffleboard/themes/Yellow/yellowtheme.css

All the stylesheets in the directory will be treated as part of the theme.

Loading Themes via Plugins

Custom themes can also be defined by plugins. This makes them easier to share and bundle
with custom widgets, but are slightly more difficult to define. The theme object will need a
reference to a class defined in the plugin so that the plugin loader can determine where the
stylesheets are located. If a class is passed that is not present in the JAR that the plugin is in,
the theme will not be able to be used.

@Description(group = "com.example", name = "My Plugin", version = "1.2.3", summary = "
↪→")
class MyPlugin extends Plugin {

private static final Theme myTheme = new Theme(MyPlugin.class, "My Theme Name", "/
↪→path/to/stylesheet", "/path/to/stylesheet", ...);

@Override
public List<Theme> getThemes() {

return ImmutableList.of(myTheme);
}

}

Modifying or Extending Shuffleboard’s Default Themes

Shuffleboard’s Material Light and Material Dark themes provide a lot of the framework for
light and dark themes, respectively, as well as many styles specific to shuffleboard, Con-
trolsFX, and Medusa UI components to fit with the material-style design.
Themes that want to modify these themes need to add import statements for these
stylesheets:

@import "/edu/wpi/first/shuffleboard/api/material.css"; /* Material design CSS for␣
↪→JavaFX components */
@import "/edu/wpi/first/shuffleboard/api/base.css"; /* Material design CSS for␣
↪→shuffleboard components */
@import "/edu/wpi/first/shuffleboard/app/light.css"; /* CSS for the Material Light␣
↪→theme */
@import "/edu/wpi/first/shuffleboard/app/dark.css"; /* CSS for the Material Dark␣
↪→theme */
@import "/edu/wpi/first/shuffleboard/app/midnight.css"; /* CSS for the Midnight␣
↪→theme */

11.1. Shuffleboard 293

FIRST Robotics Competition

Note that base.css internally imports material.css, and light.css, dark.css, and
midnight.css all import base.css, so importing light.css will implicitly import both base.
css and material.css as well.

Source Code for the CSS Files

• _material.css: https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/
resources/edu/wpi/first/shuffleboard/api/material.css

• _base.css: https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/
resources/edu/wpi/first/shuffleboard/api/base.css

• _light.css: https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/
resources/edu/wpi/first/shuffleboard/app/light.css

• _dark.css: https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/
resources/edu/wpi/first/shuffleboard/app/dark.css

• _midnight.css: https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/
resources/edu/wpi/first/shuffleboard/app/midnight.css

Material Design Color Swatches

The material design CSS uses color swatch variables for almost everything. These variables
can be set from custom CSS files, reducing the amount of custom code needed.
The -swatch-<100|200|300|400|500> variables define progressively darker shades of the
same primary color. The light theme uses the default shades of blue set in material.css, but
the dark theme overrides these with shades of red. -swatch-<|light|dark>-gray defines
three levels of gray to use for various background or text colors.

Overriding the Swatch Colors

Replacing blue with red (light)

@import "/edu/wpi/first/shuffleboard/app/light.css"

.root {
-swatch-100: hsb(0, 80%, 98%);
-swatch-200: hsb(0, 80%, 88%);
-swatch-300: hsb(0, 80%, 78%);
-swatch-400: hsb(0, 80%, 68%);
-swatch-500: hsb(0, 80%, 58%);

}

294 Chapter 11. Dashboards

https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/resources/edu/wpi/first/shuffleboard/api/material.css
https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/resources/edu/wpi/first/shuffleboard/api/material.css
https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/resources/edu/wpi/first/shuffleboard/api/base.css
https://github.com/wpilibsuite/shuffleboard/blob/main/api/src/main/resources/edu/wpi/first/shuffleboard/api/base.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/light.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/light.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/dark.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/dark.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/midnight.css
https://github.com/wpilibsuite/shuffleboard/blob/main/app/src/main/resources/edu/wpi/first/shuffleboard/app/midnight.css

FIRST Robotics Competition

Replacing red with blue (dark)

@import "/edu/wpi/first/shuffleboard/app/dark.css"

.root {
-swatch-100: #BBDEFB;
-swatch-200: #90CAF9;
-swatch-300: #64BEF6;
-swatch-400: #42A5F5;
-swatch-500: #2196F3;

}

Widget Types

While Widget is pretty straightforward as far as the interface is concerned, there are several
intermediate implementations to make it easier to define the widget.

Class Description
AbstractWidget Implements getProperties(), getSources(), and titleProperty()
SingleTypeWid-
get<T>

Adds properties for widgets that only support a single data type

AnnotatedWidget Adds default implementations for getName() and getDataTypes() for
widgets with a @Description annotation

Single-
SourceWidget

For widgets with only a single source (by default, widgets support mul-
tiple sources)

SimpleAnnotat-
edWidget<T>

Combines SingleTypeWidget<T>, AnnotatedWidget, and Single-
SourceWidget

There are also two annotations to help define widgets:

Name Description
@ParametrizedCon-
troller

Allows widgets to be FXML controllers for JavaFX views defined
via FXML

@Description Lets the name and supported data types be defined in a single
line

AbstractWidget

This class implements getProperties(), getSources(), addSource(), and titleProp-
erty(). It also defines a method exportProperties(Property<?>...) method so subclasses
can easy add custom widget properties, or properties for the JavaFX components in the wid-
get. Most of the widgets in the base plugin use this.

11.1. Shuffleboard 295

https://github.com/wpilibsuite/shuffleboard/tree/main/plugins/base/src/main/java/edu/wpi/first/shuffleboard/plugin/base/widget

FIRST Robotics Competition

SingleTypeWidget

A type of widget that only supports a single data type. This interface is parametrized and has
methods for setting or getting the data, as well as a method for getting the (single) data type
of the widget.

AnnotatedWidget

This interface implements getDataTypes() and getName() by looking at the @Description
annotation on the implementing class. This requires the annotation to be present, or the
widget will not be able to be loaded and used.

// No @Description annotation!
public class WrongImplementation implements AnnotatedWidget {
// ...

}

@Description(name = ..., dataTypes = ...)
public class CorrectImplementation implements AnnotatedWidget {
// ...

}

SingleSourceWidget

A type of widget that only uses a single source.

SimpleAnnotatedWidget

A combination of SingleTypeWidget<T>, AnnotatedWidget, and SingleSourceWidget. Most
widgets in the base plugin extend from this class. This also has a protected field called
dataOrDefault that lets subclasses use a default data value if the widget doesn’t have a
source, or if the source is providing null.

@ParametrizedController

This annotation can be placed on a widget class to let shuffleboard know that it’s an FXML
controller for a JavaFX view defined via FXML. The annotation takes a single parameter that
defines where the FXML file in relation to the class on which it is placed. For example, a
widget in the directory src/main/java/com/acme that is an FXML controller for a FXML file
in src/main/resources/com/acme can use the annotation as either

@ParametrizedController("MyWidget.fxml")

or as

@ParametrizedController("/com/acme/MyWidget.fxml")

296 Chapter 11. Dashboards

FIRST Robotics Competition

@Description

This allows widgets to have their name and supported data types defined by a single annota-
tion, when used alongside AnnotatedWidget.

11.2 SmartDashboard

SmartDashboard is a simple and efficient dashboard that uses relatively few computer re-
sources. It does not have the fancy look or some of the features Shuffleboard has, but it
displays network tables data with a variety of widgets without bogging down the driver sta-
tion computer.

11.2.1 SmartDashboard Introduction

The SmartDashboard is a Java program that will display robot data in real time. The Smart-
Dashboard helps you with these things:

• Displays robot data of your choice while the program is running. It can be displayed as
simple text fields or more elaborately in many other display types like graphs, dials, etc.

• Displays the state of the robot program such as the currently executing commands and
the status of any subsystems

11.2. SmartDashboard 297

FIRST Robotics Competition

• Displays buttons that you can press to cause variables to be set on your robot
• Allows you to choose startup options on the dashboard that can be read by the robot

program
The displayed data is automatically formatted in real-time as the data is sent from the robot,
but you can change the format or the display widget types and then save the new screen
layouts to be used again later. And with all these options, it is still extremely simple to use.
To display some data on the dashboard, simply call one of the SmartDashboard methods with
the data and its name and the value will automatically appear on the dashboard screen.

Installing the SmartDashboard

The SmartDashboard is packaged with the WPILib Installer and can be launched directly from
the Driver Station by selecting the SmartDashboard button on the Setup tab.

Configuring the Team Number

The first time you launch the SmartDashboard you should be prompted for your team number.
To change the team number after this: click File > Preferences to open the Preferences dia-

298 Chapter 11. Dashboards

FIRST Robotics Competition

log. Double-click the box to the right of Team Number and enter your FRC® Team Number,
then click outside the box to save.

Note: SmartDashboard will take a moment to configure itself for the team number, do not
be alarmed.

Setting a Custom NetworkTables Server Location

By default, SmartDashboard will look for NetworkTables instances running on a connected
RoboRIO, but it’s sometimes useful to look for NetworkTables at a different IP address. To
connect to SmartDashboard from a host other than the roboRIO, open SmartDashboard pref-
erences under the File menu and in the Team Number field, enter the IP address or hostname
of the NetworkTables host.
This option is incredibly useful for using SmartDashboard with WPILib simulation. Simply
add localhost to the Team Number field and SmartDashboard will detect your locally-hosted
robot!

11.2. SmartDashboard 299

FIRST Robotics Competition

Locating the Save File

Users may wish to customize the save location of the SmartDashboard. To do this click the box
next to Save File then browse to the folder where you would like to save the configuration.
Files saved in the installation directories for the WPILib components will likely be overwritten
on updates to the tools.

Adding a Connection Indicator

It is often helpful to see if the SmartDashboard is connected to the robot. To add a connec-
tion indicator, select View > Add > Connection Indicator. This indicator will be red when
disconnected and green when connected. To move or resize this indicator, select View > Ed-
itable to toggle the SmartDashboard into editable mode, then drag the center of the indicator
to move it or the edges to resize. Select the Editable item again to lock it in place.

300 Chapter 11. Dashboards

FIRST Robotics Competition

Adding Widgets to the SmartDashboard

Widgets are automatically added to the SmartDashboard for each “key” sent by the robot
code. For instructions on adding robot code to write to the SmartDashboard see Displaying
Expressions from Within the Robot Program.

11.2.2 Displaying Expressions from a Robot Program

Note: Often debugging or monitoring the status of a robot involves writing a number of
values to the console and watching them stream by. With SmartDashboard you can put values
to a GUI that is automatically constructed based on your program. As values are updated,
the corresponding GUI element changes value - there is no need to try to catch numbers
streaming by on the screen.

Writing Values to SmartDashboard

Java

protected void execute() {
SmartDashboard.putBoolean("Bridge Limit", bridgeTipper.atBridge());
SmartDashboard.putNumber("Bridge Angle", bridgeTipper.getPosition());
SmartDashboard.putNumber("Swerve Angle", drivetrain.getSwerveAngle());
SmartDashboard.putNumber("Left Drive Encoder", drivetrain.getLeftEncoder());
SmartDashboard.putNumber("Right Drive Encoder", drivetrain.getRightEncoder());
SmartDashboard.putNumber("Turret Pot", turret.getCurrentAngle());
SmartDashboard.putNumber("Turret Pot Voltage", turret.getAverageVoltage());
SmartDashboard.putNumber("RPM", shooter.getRPM());

}

C++

void Command::Execute() {
frc::SmartDashboard::PutBoolean("Bridge Limit", BridgeTipper.AtBridge());
frc::SmartDashboard::PutNumber("Bridge Angle", BridgeTipper.GetPosition());
frc::SmartDashboard::PutNumber("Swerve Angle", Drivetrain.GetSwerveAngle());
frc::SmartDashboard::PutNumber("Left Drive Encoder", Drivetrain.GetLeftEncoder());
frc::SmartDashboard::PutNumber("Right Drive Encoder", Drivetrain.GetRightEncoder());
frc::SmartDashboard::PutNumber("Turret Pot", Turret.GetCurrentAngle());
frc::SmartDashboard::PutNumber("Turret Pot Voltage", Turret.GetAverageVoltage());
frc::SmartDashboard::PutNumber("RPM", Shooter.GetRPM());

}

You can write Boolean, Numeric, or String values to the SmartDashboard by simply calling the
correct method for the type and including the name and the value of the data, no additional
code is required. Any time in your program that you write another value with the same
name, it appears in the same UI element on the screen on the driver station or development
computer. As you can imagine this is a great way of debugging and getting status of your
robot as it is operating.

11.2. SmartDashboard 301

FIRST Robotics Competition

Creating Widgets on SmartDashboard

Widgets are populated on the SmartDashboard automatically, no user intervention is re-
quired. Note that the widgets are only populated when the value is first written, you may
need to enable your robot in a particular mode or trigger a particular code routine for an
item to appear. To alter the appearance of the widget, see the next two sections Changing
the Display Properties of a Value and Changing the Display Widget Type for a Value.

Stale Data

SmartDashboard uses NetworkTables for communicating values between the robot and the
driver station laptop. NetworkTables acts as a distributed table of name and value pairs.
If a name/value pair is added to either the client (laptop) or server (robot) it is replicated
to the other. If a name/value pair is deleted from, say, the robot but the SmartDashboard
or OutlineViewer are still running, then when the robot is restarted, the old values will still
appear in the SmartDashboard and OutlineViewer because they never stopped running and
continue to have those values in their tables. When the robot restarts, those old values will
be replicated to the robot.
To ensure that the SmartDashboard and OutlineViewer are showing current values, it is nec-
essary to restart the NetworkTables clients and robot at the same time. That way, old values
that one is holding won’t get replicated to the others.
This usually isn’t a problem if the program isn’t constantly changing, but if the program is in
development and the set of keys being added to NetworkTables is constantly changing, then
it might be necessary to do the restart of everything to accurately see what is current.

11.2.3 Changing the display properties of a value

Each value displayed with SmartDashboard has a set of properties that effect the way it’s
displayed.

Setting the SmartDashboard display into editing mode

302 Chapter 11. Dashboards

FIRST Robotics Competition

The SmartDashboard has two modes it can operate in, display mode and edit mode. In edit
mode you can move around widgets on the screen and edit their properties. To put the Smart-
Dashboard into edit mode, click the “View” menu, then select “Editable” to turn on edit mode.

Getting the properties editor of a widget

Once in edit mode, you can display and edit the properties for a widget. Right-click on the
widget and select “Properties…”.

Editing the properties on a field

11.2. SmartDashboard 303

FIRST Robotics Competition

A dialog box will be shown in response to the “Properties…” menu item on the widgets right-
click context menu.

Editing the widgets background color

To edit a property value, say, Background color, click the background color shown (in this
case grey), and choose a color from the color editor that pops up. This will be used as the
widgets background color.

304 Chapter 11. Dashboards

FIRST Robotics Competition

Edit properties of other widgets

Different widget types have different sets of editable properties to change the appearance.
In this example, the upper and lower limits of the dial and the tick interval are changeable
parameters.

11.2.4 Changing the Display Widget Type for a Value

One can change the type of widget that displays values with the SmartDashboard. The allow-
able widgets depend on the type of the value being displayed.

11.2. SmartDashboard 305

FIRST Robotics Competition

Setting Edit Mode

Make sure that the SmartDashboard is in edit mode. This is done by selecting Editable from
the View menu.

Choosing Widget Type

Right-click on the widget and select Change to.... Then, pick the type of widget to use for
the particular value. In this case we choose LinePlot.

306 Chapter 11. Dashboards

FIRST Robotics Competition

Showing New Widget Type

The new widget type is displayed. In this case, a Line Plot, will show the values of the Arm
angle value over time. You can set the properties of the graph to make it better fit your data
by right-clicking and selecting Properties.... See: Changing the display properties of a
value.

11.2.5 Choosing an Autonomous Program

Often teams have more than one autonomous program, either for competitive reasons or
for testing new software. Programs often vary by adding things like time delays, different
strategies, etc. The methods to choose the strategy to run usually involves switches, joystick
buttons, knobs or other hardware based inputs.
With the SmartDashboard you can simply display a widget on the screen to choose the au-
tonomous program that you would like to run. And with command based programs, that
program is encapsulated in one of several commands. This article shows how to select an
autonomous program with only a few lines of code and a nice looking user interface, with
examples for both TimedRobot and Command-Based Robots.

11.2. SmartDashboard 307

FIRST Robotics Competition

TimedRobot

Note: The code snippets shown below are part of the TimedRobot template (Java, C++):

Creating SendableChooser Object

In Robot.java / Robot.h, create a variable to hold a reference to a SendableChooser object.
Two or more auto modes can be added by creating strings to send to the chooser. Using
the SendableChooser, one can choose between them. In this example, Default and My Auto
are shown as options. You will also need a variable to store which auto has been chosen,
m_autoSelected.
Java

private static final String kDefaultAuto = "Default";
private static final String kCustomAuto = "My Auto";
private String m_autoSelected;
private final SendableChooser<String> m_chooser = new SendableChooser<>();

C++

frc::SendableChooser<std::string> m_chooser;
const std::string kAutoNameDefault = "Default";
const std::string kAutoNameCustom = "My Auto";
std::string m_autoSelected;

Setting Up Options

The chooser allows you to pick from a list of defined elements, in this case the strings we
defined above. In robotInit, add your options created as strings above using setDefault-
Option or addOption. setDefaultOption will be the one selected by default when the dash-
board starts. The putData function will push it to the dashboard on your driver station com-
puter.
Java

public void robotInit() {
m_chooser.setDefaultOption("Default Auto", kDefaultAuto);
m_chooser.addOption("My Auto", kCustomAuto);
SmartDashboard.putData("Auto choices", m_chooser);

}

C++

void Robot::RobotInit() {
m_chooser.SetDefaultOption(kAutoNameDefault, kAutoNameDefault);
m_chooser.AddOption(kAutoNameCustom, kAutoNameCustom);
frc::SmartDashboard::PutData("Auto Modes", &m_chooser);

}

308 Chapter 11. Dashboards

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/timed
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/templates/timed

FIRST Robotics Competition

Running Autonomous Code

Now, in autonomousInit and autonomousPeriodic, you can use the m_autoSelected variable
to read which option was chosen, and change what happens during the autonomous period.
Java

@Override
public void autonomousInit() {

m_autoSelected = m_chooser.getSelected();
System.out.println("Auto selected: " + m_autoSelected);

}

/** This function is called periodically during autonomous. */
@Override
public void autonomousPeriodic() {

switch (m_autoSelected) {
case kCustomAuto:

// Put custom auto code here
break;

case kDefaultAuto:
default:

// Put default auto code here
break;

}
}

C++

void Robot::AutonomousInit() {
m_autoSelected = m_chooser.GetSelected();
fmt::print("Auto selected: {}\n", m_autoSelected);

if (m_autoSelected == kAutoNameCustom) {
// Custom Auto goes here

} else {
// Default Auto goes here

}
}

void Robot::AutonomousPeriodic() {
if (m_autoSelected == kAutoNameCustom) {

// Custom Auto goes here
} else {

// Default Auto goes here
}

}

11.2. SmartDashboard 309

FIRST Robotics Competition

Command-Based

Note: The code snippets shown below are part of the HatchbotTraditional example project
(Java, C++):

Creating the SendableChooser Object

In RobotContainer, create a variable to hold a reference to a SendableChooser object. Two
or more commands can be created and stored in new variables. Using the SendableChooser,
one can choose between them. In this example, SimpleAuto and ComplexAuto are shown as
options.
Java

// A simple auto routine that drives forward a specified distance, and then stops.
private final Command m_simpleAuto =

new DriveDistance(
AutoConstants.kAutoDriveDistanceInches, AutoConstants.kAutoDriveSpeed, m_

↪→robotDrive);

// A complex auto routine that drives forward, drops a hatch, and then drives␣
↪→backward.
private final Command m_complexAuto = new ComplexAuto(m_robotDrive, m_

↪→hatchSubsystem);

// A chooser for autonomous commands
SendableChooser<Command> m_chooser = new SendableChooser<>();

C++ (using raw pointers)

// The autonomous routines
DriveDistance m_simpleAuto{AutoConstants::kAutoDriveDistanceInches,

AutoConstants::kAutoDriveSpeed, &m_drive};
ComplexAuto m_complexAuto{&m_drive, &m_hatch};

// The chooser for the autonomous routines
frc::SendableChooser<frc2::Command*> m_chooser;

C++ (using CommandPtr)

// The autonomous routines
frc2::CommandPtr m_simpleAuto = autos::SimpleAuto(&m_drive);
frc2::CommandPtr m_complexAuto = autos::ComplexAuto(&m_drive, &m_hatch);

// The chooser for the autonomous routines
frc::SendableChooser<frc2::Command*> m_chooser;

310 Chapter 11. Dashboards

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional

FIRST Robotics Competition

Setting up SendableChooser

Imagine that you have two autonomous programs to choose between and they are encapsu-
lated in commands SimpleAuto and ComplexAuto. To choose between them:
In RobotContainer, create a SendableChooser object and add instances of the two com-
mands to it. There can be any number of commands, and the one added as a default
(setDefaultOption), becomes the one that is initially selected. Notice that each command
is included in an setDefaultOption() or addOption() method call on the SendableChooser
instance.
Java

// Add commands to the autonomous command chooser
m_chooser.setDefaultOption("Simple Auto", m_simpleAuto);
m_chooser.addOption("Complex Auto", m_complexAuto);

C++ (using raw pointers)

// Add commands to the autonomous command chooser
m_chooser.SetDefaultOption("Simple Auto", &m_simpleAuto);
m_chooser.AddOption("Complex Auto", &m_complexAuto);

C++ (using CommandPtr)

// Add commands to the autonomous command chooser
// Note that we do *not* move ownership into the chooser
m_chooser.SetDefaultOption("Simple Auto", m_simpleAuto.get());
m_chooser.AddOption("Complex Auto", m_complexAuto.get());

Then, publish the chooser to the dashboard:
Java

// Put the chooser on the dashboard
SmartDashboard.putData(m_chooser);

C++

// Put the chooser on the dashboard
frc::SmartDashboard::PutData(&m_chooser);

Starting an Autonomous Command

In Robot.java, when the autonomous period starts, the SendableChooser object is polled to
get the selected command and that command must be scheduled.
Java

public Command getAutonomousCommand() {
return m_chooser.getSelected();

}

public void autonomousInit() {
m_autonomousCommand = m_robotContainer.getAutonomousCommand();

(continues on next page)

11.2. SmartDashboard 311

FIRST Robotics Competition

(continued from previous page)
// schedule the autonomous command (example)
if (m_autonomousCommand != null) {
m_autonomousCommand.schedule();

}
}

C++ (Source)

frc2::Command* RobotContainer::GetAutonomousCommand() {
// Runs the chosen command in autonomous
return m_chooser.GetSelected();

}

void Robot::AutonomousInit() {
m_autonomousCommand = m_container.GetAutonomousCommand();

if (m_autonomousCommand != nullptr) {
m_autonomousCommand->Schedule();

}
}

Running the Scheduler during Autonomous

In Robot.java, this will run the scheduler every driver station update period (about every
20ms) and cause the selected autonomous command to run.

Note: Running the scheduler can occur in the autonomousPeriodic() function or robotPe-
riodic(), both will function similarly in autonomous mode.

Java

40 @Override
41 public void robotPeriodic() {
42 CommandScheduler.getInstance().run();
43 }

C++ (Source)

29 void Robot::RobotPeriodic() {
30 frc2::CommandScheduler::GetInstance().Run();
31 }

312 Chapter 11. Dashboards

FIRST Robotics Competition

Canceling the Autonomous Command

In Robot.java, when the teleop period begins, the autonomous command will be canceled.
Java

78 @Override
79 public void teleopInit() {
80 // This makes sure that the autonomous stops running when
81 // teleop starts running. If you want the autonomous to
82 // continue until interrupted by another command, remove
83 // this line or comment it out.
84 if (m_autonomousCommand != null) {
85 m_autonomousCommand.cancel();
86 }
87 }

C++ (Source)

56 void Robot::TeleopInit() {
57 // This makes sure that the autonomous stops running when
58 // teleop starts running. If you want the autonomous to
59 // continue until interrupted by another command, remove
60 // this line or comment it out.
61 if (m_autonomousCommand != nullptr) {
62 m_autonomousCommand->Cancel();
63 m_autonomousCommand = nullptr;
64 }
65 }

SmartDashboard Display

When the SmartDashboard is run, the choices from the SendableChooser are automatically
displayed. You can simply pick an option before the autonomous period begins and the cor-
responding command will run.

11.2. SmartDashboard 313

FIRST Robotics Competition

11.2.6 Displaying the Status of Commands and Subsystems

If you are using the command-based programming features of WPILib, you will find that they
are very well integrated with SmartDashboard. It can help diagnose what the robot is doing
at any time and it gives you control and a view of what’s currently running.

Overview of Command and Subsystem Displays

With SmartDashboard you can display the status of the commands and subsystems in your
robot program in various ways. The outputs should significantly reduce the debugging time
for your programs. In this picture you can see a number of displays that are possible. Dis-
played here are:

• The Scheduler currently with No commands running. In the next example you can see
what it looks like with a few commands running showing the status of the robot.

• A subsystem, ExampleSubsystem that indicates that there are currently no commands
running that are “requiring” it. When commands are running, it will indicate the name
of the commands that are using the subsystem.

• A command written to SmartDashboard that shows a start button that can be pressed
to run the command. This is an excellent way of testing your commands one at a time.

• And a few data values written to the dashboard to help debug the code that’s running.
In the following examples, you’ll see what the screen would look like when there are com-
mands running, and the code that produces this display.

Displaying the Scheduler Status

Java

SmartDashboard.putData(CommandScheduler.getInstance());

C++

frc::SmartDashboard::PutData(frc2::CommandScheduler::GetInstance());

You can display the status of the Scheduler (the code that schedules your commands to run).
This is easily done by adding a single line to the RobotInit method in your RobotProgram as
shown here. In this example the Scheduler instance is written using the putData method to
SmartDashboard. This line of code produces the display in the previous image.

314 Chapter 11. Dashboards

FIRST Robotics Competition

This is the scheduler status when there are two commands running, ExampleCommand and
newCommand. This replaces the No commands running. message from the previous screen
image. You can see commands displayed on the dashboard as the program runs and various
commands are triggered.

Displaying Subsystem Status

Java

SmartDashboard.putData(exampleSubsystem);

C++

frc::SmartDashboard::PutData(&exampleSubsystem);

In this example we are writing the command instance, exampleSubsystem and instance of the
ExampleSubsystem class to the SmartDashboard. This causes the display shown in the previ-
ous image. The text field will either contain a few dashes, --- indicating that no command is
current using this subsystem, or the name of the command currently using this subsystem.

11.2. SmartDashboard 315

FIRST Robotics Competition

Running commands will “require” subsystems. That is the command is reserving the subsys-
tem for its exclusive use. If you display a subsystem on SmartDashboard, it will display which
command is currently using it. In this example, ExampleSubsystem is in use by ExampleCom-
mand.

Activating Commands with a Button

Java

SmartDashboard.putData("Autonomous Command", exampleCommand);

C++

frc::SmartDashboard::PutData("Autonomous Command", &exampleCommand);

This is the code required to create a button for the command on SmartDashboard. Press-
ing the button will schedule the command. While the command is running, the button label
changes from start to cancel and pressing the button will cancel the command.

316 Chapter 11. Dashboards

FIRST Robotics Competition

In this example you can see a button labeled Autonomous Command. Pressing this button
will run the associated command and is an excellent way of testing commands one at a time
without having to add throw-away test code to your robot program. Adding buttons for each
command makes it simple to test the program, one command at a time.

11.2.7 Verifying SmartDashboard is working

Connection Indicator

SmartDashboard will automatically include the connection status and IP address of the Net-
workTables source in the title of the window.

11.2. SmartDashboard 317

FIRST Robotics Competition

Connection Indicator Widget

SmartDashboard includes a connection indicator widget which will turn red or green depend-
ing on the connection to NetworkTables, usually provided by the roboRIO. For instructions to
add this widget, look at Adding a Connection Indicator in the SmartDashboard Intro.

Robot Program Example

Java

public class Robot extends TimedRobot {
double counter = 0.0;

public void teleopPeriodic() {
SmartDashboard.putNumber("Counter", counter++);

}
}

C++

#include "Robot.h"
float counter = 0.0;

void Robot::TeleopPeriodic() {
frc::SmartDashboard::PutNumber("Counter", counter++);

}

This is a minimal robot program that writes a value to the SmartDashboard. It simply incre-
ments a counter 50 times per second to verify that the connection is working. However, to
minimize bandwidth usage, NetworkTables by default will throttle the updates to 10 times
per second.

318 Chapter 11. Dashboards

FIRST Robotics Competition

SmartDashboard Output for the Sample Program

The SmartDashboard display should look like this after about 6 seconds of the robot being
enabled in Teleop mode. If it doesn’t, then you need to check that the connection is correctly
set up.

11.2. SmartDashboard 319

FIRST Robotics Competition

Verifying the IP address in SmartDashboard

If the display of the value is not appearing, verify that the team number is correctly set as
shown in this picture. The preferences dialog can be viewed by selecting File, then Prefer-
ences.

Verifying Program using OutlineViewer

You can verify that the robot program is generating SmartDashboard values by using the
OutlineViewer program. This is a Java program, OutlineViewer.jar, that is located in ~/
wpilib/YYYY/tools (where YYYY is the year and ~ is C:\Users\Public on Windows).
OutlineViewer is downloaded as part of the WPILib Offline Installer. For more information, see
the Windows/macOS/Linux installation guides. In Visual Studio Code, press Ctrl+Shift+P
and type “WPILib” or click the WPILib logo in the top right to launch the WPILib Command
Palette. Select Start Tool, and then select OutlineViewer.
In the “Server Location” box, enter your team number with no leading zeroes. Then, click
Start.

320 Chapter 11. Dashboards

FIRST Robotics Competition

Look at the second row in the table, the value SmartDashboard/Counter is the variable written
to the SmartDashboard via NetworkTables. As the program runs you should see the value
increasing (41.0 in this case). If you don’t see this variable in the OutlineViewer, look for
something wrong with the robot program or the network configuration.

11.2.8 SmartDashboard Namespace

SmartDashboard uses NetworkTables to send data between the robot and the Dashboard
(Driver Station) computer. NetworkTables sends data as name, value pairs, like a distributed
hashtable between the robot and the computer. When a value is changed in one place, its
value is automatically updated in the other place. This mechanism and a standard set of
name (keys) is how data is displayed on the SmartDashboard.
There is a hierarchical structure in the name space creating a set of tables and subtables.
SmartDashboard data is in the SmartDashboard subtable and LiveWindow data is in the
LiveWindow subtable as shown below.
For informational purposes, the names and values can be displayed using the OutlineViewer
application that is installed in the same location as the SmartDashboard. It will display all
the NetworkTables keys and values as they are updated.

11.2. SmartDashboard 321

FIRST Robotics Competition

SmartDashboard Data Values

SmartDashboard values are created with key names that begin with SmartDashboard/. The
above values viewed with OutlineViewer correspond to data put to the SmartDashboard with
the following statements:

chooser = new SendableChooser();
chooser.setDefaultOption("defaultAuto", new AutonomousCommand());
chooser.addOption("secondAuto", new AutonomousCommand());
chooser.addOption("thirdAuto", new AutonomousCommand());
SmartDashboard.putData("Chooser", chooser);
SmartDashboard.putNumber("Arm position in degrees", 52.0);
SmartDashboard.putString("Program Version", "V1.2");

The Arm position is created with the putNumber() call. The AutonomousCommand is writ-
ten with a putData("Autonomous Command", command) that is not shown in the above code
fragment. The chooser is created as a SendableChooser object and the string value, Program
Version is created with the putString() call.

View of SmartDashboard

The code from the previous step generates the table values as shown and the SmartDashboard
display as shown here. The numbers correspond to the NetworkTables variables shown in the
previous step.

322 Chapter 11. Dashboards

FIRST Robotics Competition

LiveWindow Data Values

LiveWindow data is automatically grouped by subsystem. The data is viewable in the Smart-
Dashboard when the robot is in Test mode (set on the Driver Station). If you are not writing
a command based program, you can still cause sensors and actuators to be grouped for easy
viewing by specifying the subsystem name. In the above display you can see the key names
and the resultant output in Test mode on the SmartDashboard. All the strings start with /
LiveWindow then the Subsystem name, then a group of values that are used to display each
element. The code that generates this LiveWindow display is shown below:

drivetrainLeft = new PWMVictorSPX(1);
drivetrainLeft.setName("Drive train", "Left");

drivetrainRight = new PWMVictorSPX(1);
drivetrainRight.setName("Drive train", "Right";

drivetrainRobotDrive = new DifferentialDrive(drivetrainLeft, drivetrainRight);
drivetrainRobotDrive.setSafetyEnabled(false);
drivetrainRobotDrive.setExpiration(0.1);

drivetrainUltrasonic = new AnalogInput(3);
drivetrainUltrasonic.setName("Drive train", "Ultrasonic");

elevatorMotor = new PWMVictorSPX(6);
elevatorMotor.setName("Elevator", "Motor");

elevatorPot = new AnalogInput(4);
elevatorPot.setName("Elevator", "Pot");

wristPot = new AnalogInput(2);
wristPot.setName("Wrist", "Pot");

wristMotor = new PWMVictorSPX(3);
wristMotor.setName("Wrist", "Motor");

(continues on next page)

11.2. SmartDashboard 323

FIRST Robotics Competition

(continued from previous page)

clawMotor = new PWMVictorSPX(5);
clawMotor.setName("Claw", "Motor");

Values that correspond to actuators are not only displayed, but can be set using sliders created
in the SmartDashboard in Test mode.

11.2.9 SmartDashboard: Test Mode and Live Window

Displaying LiveWindow Values

LiveWindow will automatically add your sensors and actuators for you. There is no need to
do it manually. LiveWindow values may also be displayed by writing the code yourself and
adding it to your robot program. This allows you to customize the names and group them
in subsystems. This is a convenient method of displaying whether they are actual command
based program subsystems or just a grouping that you decide to use in your program.

Adding the Necessary Code to your Program

For each sensor or actuator that is created, set the subsystem name and display name by
calling setName (SetName in C++). When the SmartDashboard is put into LiveWindow mode,
it will display the sensors and actuators.
Java

Ultrasonic ultrasonic = new Ultrasonic(1, 2);
SendableRegistry.setName(ultrasonic, "Arm", "Ultrasonic");

Jaguar elbow = new Jaguar(1);
SendableRegistry.setName(elbow, "Arm", "Elbow");

Victor wrist = new Victor(2);
SendableRegistry.setName(wrist, "Arm", "Wrist");

C++

frc::Ultrasonic ultrasonic{1, 2};
SendableRegistry::SetName(ultrasonic, "Arm", "Ultrasonic");

frc::Jaguar elbow{1};
SendableRegistry::SetName(elbow, "Arm", "Elbow");

frc::Victor wrist{2};
SendableRegistry::SetName(wrist, "Arm", "Wrist");

If your objects are in a Subsystem, this can be simplified using the addChild method of Sub-
systemBase

Java

Ultrasonic ultrasonic = new Ultrasonic(1, 2);
addChild("Ultrasonic", ultrasonic);

(continues on next page)

324 Chapter 11. Dashboards

FIRST Robotics Competition

(continued from previous page)

Jaguar elbow = new Jaguar(1);
addChild("Elbow", elbow);

Victor wrist = new Victor(2);
addChild("Wrist", wrist);

C++

frc::Ultrasonic ultrasonic{1, 2};
AddChild("Ultrasonic", ultrasonic);

frc::Jaguar elbow{1};
AddChild("Elbow", elbow);

frc::Victor wrist{2};
AddChild("Wrist", wrist);

Viewing the Display in SmartDashboard

The sensors and actuators added to the LiveWindow will be displayed grouped by subsystem.
The subsystem name is just an arbitrary grouping the helping to organize the display of the
sensors. Actuators can be operated by operating the slider for the two motor controllers.

11.2. SmartDashboard 325

FIRST Robotics Competition

Enabling Test mode (LiveWindow)

You may add code to your program to display values for your sensors and actuators while the
robot is in Test mode. This can be selected from the Driver Station whenever the robot is
not on the field. The code to display these values is automatically generated by RobotBuilder
and is described in the next article. Test mode is designed to verify the correct operation of
the sensors and actuators on a robot. In addition it can be used for obtaining setpoints from
sensors such as potentiometers and for tuning PID loops in your code.

Setting Test mode with the Driver Station

Enable Test Mode in the Driver Station by clicking on the “Test” button and setting “En-
able” on the robot. When doing this, the SmartDashboard display will switch to test mode
(LiveWindow) and will display the status of any actuators and sensors used by your program.

Explicitly vs. implicit test mode display

Java

PWMSparkMax leftDrive;
PWMSparkMax rightDrive;
PWMVictorSPX arm;
BuiltInAccelerometer accel;

@Override
public void robotInit() {
leftDrive = new PWMSparkMax(0);
rightDrive = new PWMSparkMax(1);
arm = new PWMVictorSPX(2);
accel = new BuiltInAccelerometer();
SendableRegistry.setName(arm, "SomeSubsystem", "Arm");
SendableRegistry.setName(accel, "SomeSubsystem", "Accelerometer");

}

C++

frc::PWMSparkMax leftDrive{0};
frc::PWMSparkMax rigthDrive{1};
frc::BuiltInAccelerometer accel{};
frc::PWMVictorSPX arm{3};

void Robot::RobotInit() {
wpi::SendableRegistry::SetName(&arm, "SomeSubsystem", "Arm");

(continues on next page)

326 Chapter 11. Dashboards

FIRST Robotics Competition

(continued from previous page)
wpi::SendableRegistry::SetName(&accel, "SomeSubsystem", "Accelerometer");

}

All sensors and actuators will automatically be displayed on the SmartDashboard in test mode
and will be named using the object type (such as PWMSparkMax, PWMVictorSPX, BuiltI-
nAccelerometer, etc.) with channel number with which the object was created. In addi-
tion, the program can explicitly add sensors and actuators to the test mode display, in which
case programmer-defined subsystem and object names can be specified making the program
clearer. This example illustrates explicitly defining those sensors and actuators.

Understanding what is displayed in Test mode

This is the output in the SmartDashboard display when the robot is placed into test mode. In
the display shown above the objects listed as Ungrouped were implicitly created by WPILib
when the corresponding objects were created. These objects are contained in a subsystem
group called “Ungrouped” (1) and are named with the device type (PWMSparkMax in this
case), and the channel numbers. The objects shown in the “SomeSubsystem” (2) group are
explicitly created by the programmer from the code example in the previous section. These
are named in the calls to SendableRegistry.setName(). Explicitly created sensors and ac-
tuators will be grouped by the specified subsystem.

11.2. SmartDashboard 327

FIRST Robotics Competition

PID Tuning with SmartDashboard

The PID (Proportional, Integral, Differential) is an algorithm for determining the motor speed
based on sensor feedback to reach a setpoint as quickly as possible. For example, a robot with
an elevator that moves to a predetermined position should move there as fast as possible
then stop without excessive overshoot leading to oscillation. Getting the PID controller to
behave this way is called “tuning”. The idea is to compute an error value that is the difference
between the current value of the mechanism feedback element and the desired (setpoint)
value. In the case of the arm, there might be a potentiometer connected to an analog channel
that provides a voltage that is proportional to the position of the arm. The desired value is
the voltage that is predetermined for the position the arm should move to, and the current
value is the voltage for the actual position of the arm.

Finding the setpoint values with LiveWindow

Create a PID Subsystem for each mechanism with feedback. The PID Subsystems contain the
actuator (motor) and the feedback sensor (potentiometer in this case). You can use Test mode
to display the subsystem sensors and actuators. Using the slider manually adjust the actuator
to each desired position. Note the sensor values (2) for each of the desired positions. These
will become the setpoints for the PID controller.

Viewing the PIDController in LiveWindow

328 Chapter 11. Dashboards

FIRST Robotics Competition

In Test mode, the PID Subsystems display their P, I, and D parameters that are set in the code.
The P, I, and D values are the weights applied to the computed error (P), sum of errors over
time (I), and the rate of change of errors (D). Each of those terms is multiplied by the weights
and added together to form the motor value. Choosing the optimal P, I, and D values can be
difficult and requires some amount of experimentation. The Test mode on the robot allows
the values to be modified, and the mechanism response observed.

Important: The enable option does not affect the PIDController introduced in 2020, as the
controller is updated every robot loop. See the example here on how to retain this function-
ality.

Tuning the PIDController

Tuning the PID controller can be difficult and there are many articles that describe techniques
that can be used. It is best to start with the P value first. To try different values fill in a low
number for P, enter a setpoint determined earlier in this document, and note how fast the
mechanism responds. If it responds too slowly, perhaps never reaching the setpoint, increase
P. If it responds too quickly, perhaps oscillating, reduce the P value. Repeat this process until
you get a response that is as fast as possible without oscillation. It’s possible that having a P
term is all that’s needed to achieve adequate control of your mechanism. Further information
is located in the Tuning a Flywheel Velocity Controller document.
Once you have determined P, I, and D values they can be inserted into the program. You’ll
find them either in the properties for the PIDSubsystem in RobotBuilder or in the constructor
for the PID Subsystem in your code.
The F (feedforward) term is used for controlling velocity with a PID controller.
More information can be found at PID Control in WPILib.

11.2. SmartDashboard 329

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html

FIRST Robotics Competition

11.3 Glass

Glass is a new dashboard and robot data visualization tool. Its GUI is extremely similar to
that of the Simulation GUI. In its current state, it is meant to be used as a programmer’s tool
rather than a proper dashboard in a competition environment.

Note: Glass will not be available within the list of dashboards in the NI Driver Station.

11.3.1 Introduction to Glass

Glass is a new dashboard and robot data visualization tool. It supports many of the same
widgets that the Simulation GUI supports, including robot pose visualization and advanced
plotting. In its current state, it is meant to be used as a programmer’s tool for debugging and
not as a dashboard for competition use.

Opening Glass

Glass can be launched by selecting the ellipsis menu (…) in VS Code, clicking on Start Tool
and then choosing Glass.

330 Chapter 11. Dashboards

FIRST Robotics Competition

Note: You can also launch Glass directly by navigating to ~/wpilib/YYYY/tools and running
Glass.py (Linux and macOS) or by using the shortcut inside the WPILib Tools desktop folder
(Windows).

Changing View Settings

The View menu item contains Zoom and Style settings that can be customized. The Zoom
option dictates the size of the text in the application whereas the Style option allows you to
select between the Classic, Light, and Dark modes.
An example of the Dark style setting is below:

Clearing Application Data

Application data for Glass, including widget sizes and positions as well as other custom infor-
mation for widgets is stored in a glass.ini file. The location of this file varies based on your
operating system:

• On Windows, the configuration file is located in %APPDATA%.
• On macOS, the configuration file is located in ~/Library/Preferences.
• On Linux, the configuration file is located in $XDG_CONFIG_HOME or ~/.config if the for-

mer does not exist.
The glass.ini configuration file can simply be deleted to restore Glass to a “clean slate”.

11.3. Glass 331

FIRST Robotics Competition

11.3.2 Establishing NetworkTables Connections

Glass uses the NetworkTables protocol to establish a connection with your robot program. It
is also used to transmit and receive data to and from the robot.

Connecting to a Robot

When Glass is first launched, you will see two widgets – NetworkTables Settings and Net-
workTables. To connect to a robot, select Client under Mode in the NetworkTables Settings
widget, enter your team number and click on Apply.

You can also connect to a robot that is running in simulation on your computer (including
Romi robots) by typing in localhost into the Team/IP box.

332 Chapter 11. Dashboards

FIRST Robotics Competition

Important: The NetworkTables connection status is always visible on the title bar of the
Glass application.

Viewing NetworkTables Entries

The NetworkTables widget can be used to view all entries that are being sent over Network-
Tables. These entries are hierarchically arranged by main table, sub-table, and so on.

11.3. Glass 333

FIRST Robotics Competition

Furthermore, you can view all connected NetworkTables clients under the Connections pane
of the widget.

11.3.3 Glass Widgets

Specialized widgets are available for certain types that exist in robot code. These include
objects that are manually sent over NetworkTables such as SendableChooser instances, or
hardware that is automatically sent over LiveWindow.

Note: Widget support in Glass is still in its infancy – therefore, there are only a handful of
widgets available. This list will grow as development work continues.

Note: A widget can be renamed by right-clicking on its header and specifying a new name.

334 Chapter 11. Dashboards

FIRST Robotics Competition

Hardware Widgets

Widgets for specific hardware (such as motor controllers) are usually available via LiveWin-
dow. These can be accessed by selecting the NetworkTables menu option, clicking on
LiveWindow and choosing the desired widget.

The list of hardware (sent over LiveWindow automatically) that has widgets is below:
• DigitalInput

• DigitalOutput

• SpeedController

• Gyro

Here is an example of the widget for gyroscopes:

11.3. Glass 335

FIRST Robotics Competition

Sendable Chooser Widget

The Sendable Chooser widget represents a SendableChooser instance from robot code. It
is often used to select autonomous modes. Like other dashboards, your SendableChooser
instance simply needs to be sent using a NetworkTables API. The simplest is to use something
like SmartDashboard:
Java

SmartDashboard.putData("Auto Selector", m_selector);

C++

frc::SmartDashboard::PutData("Auto Selector", &m_selector);

Note: For more information on creating a SendableChooser, please see this document.

336 Chapter 11. Dashboards

FIRST Robotics Competition

The Sendable Chooser widget will appear in the NetworkTables menu and underneath the
main table name that the instance was sent over. From the example above, the main table
name would be SmartDashboard.

PID Controller Widget

The PID Controller widget allows you to quickly tune PID values for a certain controller. A
PIDController instance must be sent using a NetworkTables API. The simplest is to use
something like SmartDashboard:
Java

SmartDashboard.putData("Elevator PID Controller", m_elevatorPIDController);

C++

frc::SmartDashboard::PutData("Elevator PID Controller", &m_elevatorPIDController);

This allows you to quickly tune P, I, and D values for various setpoints.

11.3. Glass 337

FIRST Robotics Competition

FMSInfo Widget

The FMSInfowidget is created by default when Glass connects to a robot. This widget displays
basic information about the robot’s enabled state, whether a Driver Station is connected,
whether an FMS is connected, the game-specific data, etc. It can be viewed by selecting the
NetworkTables menu item and clicking on FMSInfo.

11.3.4 Widgets for the Command-Based Framework

Glass also has several widgets that are specific to the command-based framework. These
include widgets to schedule commands, view actively running commands on a specific sub-
system, or view the state of the command scheduler.

Command Selector Widget

TheCommand Selector widget allows you to start and cancel a specific instance of a command
(sent over NetworkTables) from Glass. For example, you can create an instance of MyCommand
and send it to SmartDashboard:
Java

MyCommand command = new MyCommand(...);
SmartDashboard.putData("My Command", command);

C++

#include <frc/smartdashboard/SmartDashboard.h>

...

MyCommand command{...};
frc::SmartDashboard::PutData("My Command", &command);

338 Chapter 11. Dashboards

FIRST Robotics Competition

Note: The MyCommand instance can also be sent using a lower-level NetworkTables API or
using the Shuffleboard API. In this case, the SmartDashboard API was used, meaning that the
Command Selector widget will appear under the SmartDashboard table name.

The widget has two states. When the command is not running, a Run button will appear
– clicking it will schedule the command. When the command is running, a Cancel button,
accompanied by Running… text, will appear (as shown above). This will cancel the command.

Subsystem Widget

The Subsystem widget can be used to see the default command and the currently scheduled
command on a specific subsystem. If you are using the SubsystemBase base class, your sub-
system will be automatically sent to NetworkTables over LiveWindow. To view this widget,
look under the LiveWindow main table name in the NetworkTables menu.

11.3. Glass 339

FIRST Robotics Competition

Command Scheduler Widget

The Command Scheduler widget allows you to see all currently scheduled commands. In
addition, any of these commands can be canceled from the GUI.

The CommandScheduler instance is automatically sent to NetworkTables over LiveWindow. To
view this widget, look under the LiveWindow main table name in the NetworkTables menu.

11.3.5 The Field2d Widget

Glass supports displaying your robot’s position on the field using the Field2d widget. An
instance of the Field2d class should be created, sent over NetworkTables, and updated peri-
odically with the latest robot pose in your robot code.

Sending Robot Pose from User Code

To send your robot’s position (usually obtained by odometry or a pose estimator), a Field2d
instance must be created in robot code and sent over NetworkTables. The instance must then
be updated periodically with the latest robot pose.
Java

private final Field2d m_field = new Field2d();

public Drivetrain() {
...
SmartDashboard.putData("Field", m_field);

}

...

public void periodic() {
...
m_field.setRobotPose(m_odometry.getPoseMeters());

}

340 Chapter 11. Dashboards

FIRST Robotics Competition

C++

#include <frc/smartdashboard/Field2d.h>
#include <frc/smartdashboard/SmartDashboard.h>

frc::Field2d m_field;

Drivetrain() {
...
frc::SmartDashboard::PutData("Field", &m_field);

}

...

void Periodic() {
...
m_field.SetRobotPose(m_odometry.GetPose());

}

Note: The Field2d instance can also be sent using a lower-level NetworkTables API or
using the Shuffleboard API. In this case, the SmartDashboard API was used, meaning that the
Field2d widget will appear under the SmartDashboard table name.

Sending Trajectories to Field2d

Visualizing your trajectory is a great debugging step for verifying that your trajectories are
created as intended. Trajectories can be easily visualized in Field2d using the setTrajec-
tory()/SetTrajectory() functions.
Java

44 public void robotInit() {
45 // Create the trajectory to follow in autonomous. It is best to initialize
46 // trajectories here to avoid wasting time in autonomous.
47 m_trajectory =
48 TrajectoryGenerator.generateTrajectory(
49 new Pose2d(0, 0, Rotation2d.fromDegrees(0)),
50 List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
51 new Pose2d(3, 0, Rotation2d.fromDegrees(0)),
52 new TrajectoryConfig(Units.feetToMeters(3.0), Units.feetToMeters(3.0)));
53

54 // Create and push Field2d to SmartDashboard.
55 m_field = new Field2d();
56 SmartDashboard.putData(m_field);
57

58 // Push the trajectory to Field2d.
59 m_field.getObject("traj").setTrajectory(m_trajectory);
60 }

C++

18 void AutonomousInit() override {
19 // Start the timer.
20 m_timer.Start();

(continues on next page)

11.3. Glass 341

FIRST Robotics Competition

(continued from previous page)
21

22 // Send Field2d to SmartDashboard.
23 frc::SmartDashboard::PutData(&m_field);
24

25 // Reset the drivetrain's odometry to the starting pose of the trajectory.
26 m_drive.ResetOdometry(m_trajectory.InitialPose());
27

28 // Send our generated trajectory to Field2d.
29 m_field.GetObject("traj")->SetTrajectory(m_trajectory);
30 }

Viewing Trajectories with Glass

The sent trajectory can be viewed with Glass through the dropdown NetworkTables -> Smart-
Dashboard -> Field2d.

Note: The above example which uses the RamseteController (Java)/RamseteController
(C++) will not show the sent trajectory until autonomous is enabled at least once.

342 Chapter 11. Dashboards

https://github.com/wpilibsuite/allwpilib/blob/a610379965680a8f9214d5f0db3a8e1bc20d4712/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecontroller/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/a610379965680a8f9214d5f0db3a8e1bc20d4712/wpilibcExamples/src/main/cpp/examples/RamseteController/cpp/Robot.cpp
https://github.com/wpilibsuite/allwpilib/blob/a610379965680a8f9214d5f0db3a8e1bc20d4712/wpilibcExamples/src/main/cpp/examples/RamseteController/cpp/Robot.cpp

FIRST Robotics Competition

Viewing the Robot Pose in Glass

After sending the Field2d instance over NetworkTables, the Field2d widget can be added to
Glass by selecting NetworkTables in the menu bar, choosing the table name that the instance
was sent over, and then clicking on the Field button.

Once the widget appears, you can resize and place it on the Glass workspace as you desire.
Right-clicking the top of the widget will allow you to customize the name of the widget, select
a custom field image, select a custom robot image, and choose the dimensions of the field and
robot.
When selecting Choose image… you can choose to either select an image file or a PathWeaver
JSON file as long as the image file is in the same directory. Choosing the JSON file will
automatically import the correct location of the field in the image and the correct size of the
field.

Note: You can retrieve the latest field image and JSON files from here. This is the same
image and JSON that are used when generating paths using PathWeaver.

11.3. Glass 343

https://github.com/wpilibsuite/allwpilib/tree/main/fieldImages/src/main/native/resources/edu/wpi/first/fields

FIRST Robotics Competition

Modifying Pose Style

Poses can be customized in a plethora of ways by right clicking on the Field2d menu bar.
Examples of customization are: line width, line weight, style, arrow width, arrow weight,
color, etc.

344 Chapter 11. Dashboards

FIRST Robotics Competition

One usage of customizing the pose style is converting the previously shown traj pose object
to a line, rather than a list of poses. Click on the Style dropdown box and select Line. You
should notice an immediate change in how the trajectory looks.

Now, uncheck the Arrows checkbox. This will cause our trajectory to look like a nice and fluid
line!

11.3. Glass 345

FIRST Robotics Competition

11.3.6 The Mechanism2d Widget

Glass supports displaying stick-figure representations of your robot’s mechanisms using the
Mechanism2d widget. It supports combinations of ligaments that can rotate and / or ex-
tend or retract, such as arms and elevators and they can be combined for more complicated
mechanisms. An instance of the Mechanism2d class should be created and populated, sent
over NetworkTables, and updated periodically with the latest mechanism states in your robot
code. It can also be used with the Physics Simulation to visualize and program your robot’s
mechanisms before the robot is built.

346 Chapter 11. Dashboards

FIRST Robotics Competition

Creating and Configuring the Mechanism2d Instance

The Mechanism2d object is the “canvas” where the mechanism is drawn. The root node is
where the mechanism is anchored to Mechanism2d. For a single jointed arm this would the
pivot point. For an elevator, this would be where it’s attached to the robot’s base. To get
a root node (represented by a MechanismRoot2d object), call getRoot(name, x, y) on the
container Mechanism2d object. The name is used to name the root within NetworkTables, and
should be unique, but otherwise isn’t important. The x / y coordinate system follows the
same orientation as Field2d - (0,0) is bottom left.
In the examples below, an elevator is drawn, with a rotational wrist on top of the elevator.
The full Mechanism2d example is available in Java / C++
Java

43 // the main mechanism object
44 Mechanism2d mech = new Mechanism2d(3, 3);
45 // the mechanism root node
46 MechanismRoot2d root = mech.getRoot("climber", 2, 0);

C++

59 // the main mechanism object
60 frc::Mechanism2d m_mech{3, 3};
61 // the mechanism root node
62 frc::MechanismRoot2d* m_root = m_mech.GetRoot("climber", 2, 0);

Each MechanismLigament2d object represents a stage of the mechanism. It has a three re-
quired parameters, a name, an initial length to draw (relative to the size of the Mechanism2d
object), and an initial angle to draw the ligament in degrees. Ligament angles are relative to
the parent ligament, and follow math notation - the same as Rotation2d (counterclockwise-
positive). A ligament based on the root with an angle of zero will point right. Two optional
parameters let you change the width (also relative to the size of the Mechanism2d object) and
the color. Call append()/Append() on a root node or ligament node to add another node to
the figure. In Java, pass a constructed MechanismLigament2d object to add it. In C++, pass
the construction parameters in order to construct and add a ligament.
Java

48 // MechanismLigament2d objects represent each "section"/"stage" of the mechanism,␣
↪→and are based

49 // off the root node or another ligament object
50 m_elevator = root.append(new MechanismLigament2d("elevator",␣

↪→kElevatorMinimumLength, 90));
51 m_wrist =
52 m_elevator.append(
53 new MechanismLigament2d("wrist", 0.5, 90, 6, new Color8Bit(Color.

↪→kPurple)));

C++

63 // MechanismLigament2d objects represent each "section"/"stage" of the
64 // mechanism, and are based off the root node or another ligament object
65 frc::MechanismLigament2d* m_elevator =
66 m_root->Append<frc::MechanismLigament2d>("elevator", 1, 90_deg);
67 frc::MechanismLigament2d* m_wrist =
68 m_elevator->Append<frc::MechanismLigament2d>(
69 "wrist", 0.5, 90_deg, 6, frc::Color8Bit{frc::Color::kPurple});

11.3. Glass 347

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mechanism2d/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/Mechanism2d/cpp/Robot.cpp

FIRST Robotics Competition

Then, publish the Mechanism2d object to NetworkTables:
Java

55 // post the mechanism to the dashboard
56 SmartDashboard.putData("Mech2d", mech);

C++

36 // publish to dashboard
37 frc::SmartDashboard::PutData("Mech2d", &m_mech);

Note: The Mechanism2d instance can also be sent using a lower-level NetworkTables API or
using the Shuffleboard API. In this case, the SmartDashboard API was used, meaning that the
Mechanism2d widget will appear under the SmartDashboard table name.

To manipulate a ligament angle or length, call setLength() or setAngle() on the Mechanism-
Ligament2d object. When manipulating ligament length based off of sensor measurements,
make sure to add the minimum length to prevent 0-length (and therefore invisible) ligaments.
Java

59 @Override
60 public void robotPeriodic() {
61 // update the dashboard mechanism's state
62 m_elevator.setLength(kElevatorMinimumLength + m_elevatorEncoder.getDistance());
63 m_wrist.setAngle(m_wristPot.get());
64 }

C++

40 void RobotPeriodic() override {
41 // update the dashboard mechanism's state
42 m_elevator->SetLength(kElevatorMinimumLength +
43 m_elevatorEncoder.GetDistance());
44 m_wrist->SetAngle(units::degree_t{m_wristPotentiometer.Get()});
45 }

Viewing the Mechanism2d in Glass

After sending the Mechanism2d instance over NetworkTables, the Mechanism2d widget can
be added to Glass by selecting NetworkTables in the menu bar, choosing the table name that
the instance was sent over, and then clicking on the Field button.

Once the widget appears as shown below, you can resize and place it on the Glass workspace
as you desire. Right-clicking the top of the widget will allow you to customize the name of

348 Chapter 11. Dashboards

FIRST Robotics Competition

the widget. As the wrist potentiometer and elevator encoder changes, the mechanism will
update in the widget.

Next Steps

As mentioned above, the Mechanism2d visualization can be combined with Physics Simulation
to help you program mechanisms before your robot is built. The ArmSimulation (Java / C++)
and ElevatorSimulation (Java / C++) examples combine physics simulation and Mechanism2d
visualization so that you can practice programming a single jointed arm and elevator without
a robot.

11.3.7 Plots

Glass excels at high-performance, comprehensive plotting of data from NetworkTables. Some
features include resizable plots, plots with multiple y axes and the ability to pause, examine,
and resume plots.

11.3. Glass 349

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armsimulation/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/ArmSimulation/cpp/Robot.cpp
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatorsimulation/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/ElevatorSimulation/cpp/Robot.cpp

FIRST Robotics Competition

Creating a Plot

A new plot widget can be created by selecting the Plot button on the main menu bar and then
clicking on New Plot Window. Several individual plots can be added to each plot window. To
add a plot within a plot window, click the Add plot button inside the widget. Then you can
drag various sources from the NetworkTables widget into the plot:

350 Chapter 11. Dashboards

FIRST Robotics Competition

Manipulating Plots

You can click and drag on the plot to move around and scroll on top of the plot to zoom the y
axes in and out. Double clicking on the graph will autoscale it so that the zoom and axis limits
fit all of the data it is plotting. Furthermore, right-clicking on the plot will present you with
a plethora of options, including whether you want to display secondary and tertiary y axes, if
you wish to lock certain axes, etc.

If you choose to make secondary and tertiary y axes available, you can drag data sources onto
those axes to make their lines correspond with your desired axis:

11.3. Glass 351

FIRST Robotics Competition

Then, you can lock certain axes so that their range always remains constant, regardless of
panning. In this example, the secondary axis range (with the /SmartDashboard/Kp entry) was
locked between 9 and 12.

352 Chapter 11. Dashboards

FIRST Robotics Competition

11.4 LabVIEW Dashboard

The LabVIEW Dashboard is easy to use and provides a lot of features straight out of the box
like: camera streams, autonomous selection, and joystick feedback. It can be customized
using LabVIEW by creating a new Dashboard project. While it can be used by Java or C++
teams, they generally prefer SmartDashboard or Shuffleboard which can be customized in
their respective language.

11.4.1 FRC LabVIEW Dashboard

The Dashboard application installed and launched by the FRC® Driver Station is a LabVIEW
program designed to provide teams with basic feedback from their robot, with the ability to
expand and customize the information to suit their needs. This Dashboard application uses
NetworkTables and contains a variety of tools that teams may find useful.

LabVIEW Dashboard

The Dashboard is broken into two main sections. The left pane is for displaying a camera
image. The right pane contains:

• Drive tab that contains indicators for joystick and drive motor values (hooked up by
default when used with LabVIEW robot code), a gyro indicator, an Autonomous selection
text box, a connection indicator and some controls and indicators for the camera

• Basic tab that contains some default controls and indicators
• Camera tab that contains a secondary camera viewer, similar to the viewer in the left

pane
• Custom tab for customizing the dashboard using LabVIEW
• Test tab for use with Test Mode in the LabVIEW framework
• Commands tab for use with the new LabVIEW C&C Framework
• Checklist tab that can be used to create task lists to complete before and/or between

matches

11.4. LabVIEW Dashboard 353

FIRST Robotics Competition

• Variables tab that displays the raw NetworkTables variables in a tree view format
The LabVIEW Dashboard also includes Record/Playback functionality, located in the bottom
right. More detail about this feature is included below under Record/Playback.

Camera Image and Controls

The left pane is used to display a video feed from acamera located on the robot. There are
also some controls and indicators related to the camera below the tab area:

1. Camera Image Display
2. Mode Selector - This drop-down allows you to select the type of camera display to use.

The choices are Camera Off, USB Camera SW (software compression), USB Camera HW
(hardware compression) and IP Camera (Axis camera). Note that the IP Camera setting
will not work when your PC is connected to the roboRIO over USB.

3. Camera Settings - This control allows you to change the resolution, framerate and com-
pression of the image stream to the dashboard, click the control to pop-up the configu-
ration.

4. Bandwidth Indicator - Indicates approximate bandwidth usage of the image stream. The
indicator will display green for “safe” bandwidth usage, yellow when teams should use
caution and red if the stream bandwidth is beyond levels that will work on the competi-
tion field.

5. Framerate - Indicates the approximate received framerate of the image stream.

354 Chapter 11. Dashboards

FIRST Robotics Competition

Tip: The bandwidth indicator indicates the combined bandwidth for all camera streams
open.

Drive

The center pane contains a section that provides feedback on the joysticks and drive com-
mands when used with the LabVIEW framework and a section that displays the NetworkTa-
bles status and autonomous selector:

1. Displays X,Y and Throttle information and button values for up to 2 joysticks when using
the LabVIEW framework

2. Displays values being sent to motor controllers when using LabVIEW framework
3. Displays a connection indicator for the NetworkTables data from the robot
4. Displays a Gyro value
5. Displays a text box that can be used to select Autonomous modes. Each language’s code

templates have examples of using this box to select from multiple autonomous programs.
These indicators (other than the Gyro) are hooked up to appropriate values by default when
using the LabVIEW framework. For information on using them with C++/Java code see Using
the LabVIEW Dashboard with C++/Java Code.

11.4. LabVIEW Dashboard 355

FIRST Robotics Competition

Camera

Tip: The left pane can only display a single camera output, so use the camera tab on the
right pane to display a second camera output if needed.

The camera tab is used to display a video feed from a camera located on the robot. There are
also some controls and indicators related to the camera below the tab area:

1. Camera Image Display
2. Mode Selector - This drop-down allows you to select the type of camera display to use.

The choices are Camera Off, USB Camera SW (software compression), USB Camera HW
(hardware compression) and IP Camera (Axis camera). Note that the IP Camera setting
will not work when your PC is connected to the roboRIO over USB.

3. Camera Settings - This control allows you to change the resolution, framerate and com-
pression of the image stream to the dashboard, click the control to pop-up the configu-
ration.

4. Bandwidth Indicator - Indicates approximate bandwidth usage of the image stream. The
indicator will display green for “safe” bandwidth usage, yellow when teams should use
caution and red if the stream bandwidth is beyond levels that will work on the competi-
tion field.

5. Framerate - Indicates the approximate received framerate of the image stream.

Tip: The bandwidth indicator indicates the combined bandwidth for all camera streams
open.

356 Chapter 11. Dashboards

FIRST Robotics Competition

Basic

The Basic tab contains a variety of pre-populated bi-directional controls/indicators which can
be used to control the robot or display information from the robot. The SmartDashboard key
names associated with each item are labeled next to the indicator with the exception of the
Strings which follow the same naming pattern and increment from DB/String 0 to DB/String
4 on the left and DB/String 5 to DB/String 9 on the right. The LabVIEW framework contains
an example of reading from the Buttons and Sliders in Teleop. It also contains an example
of customizing the labels in Begin. For more detail on using this tab with C++Java code, see
Using the LabVIEW Dashboard with C++/Java Code.

11.4. LabVIEW Dashboard 357

FIRST Robotics Competition

Custom

The Custom tab allows you to add additional controls/indicators to the dashboard using Lab-
VIEW without removing any existing functionality. To customize this tab you will need to
create a Dashboard project in LabVIEW.

358 Chapter 11. Dashboards

FIRST Robotics Competition

Test

The Test tab is for use with Test mode for teams using LabVIEW (Java and C++ teams should
use SmartDashboard or Shuffleboard when using Test Mode). For many items in the libraries,
Input/Output info will be populated here automatically. All items which have ** next to them
are outputs that can be controlled by the dashboard. To control an output, click on it to select
it, drag the slider to set the value then press and hold the green button to enable the output.
As soon as the green button is released, the output will be disabled. This tab can also be used
to run and monitor tests on the robot. An example test is provided in the LabVIEW framework.
Selecting this test from the dropdown box will show the status of the test in place of the slider
and enable controls.

11.4. LabVIEW Dashboard 359

FIRST Robotics Competition

Commands

The Commands tab can be used with the Robot in Test mode to see which commands are
running and to manually run commands for test purposes.

360 Chapter 11. Dashboards

FIRST Robotics Competition

Checklist

The Checklist tab can be used by teams to create a list of tasks to perform before or between
matches. Instructions for using the Checklist tab are pre-populated in the default checklist
file.

11.4. LabVIEW Dashboard 361

FIRST Robotics Competition

Variables

The Variables tab of the left pane shows all NetworkTables variables in a tree display. The
Variable Name (Key), Value and data type are shown for each variable. Information about
the NetworkTables bandwidth usage is also displayed in this tab. Entries will be shown with
black diamonds if they are not currently synced with the robot.

362 Chapter 11. Dashboards

FIRST Robotics Competition

Record/Playback

The LabVIEW Dashboard includes a Record/Playback feature that allows you to record video
and NetworkTables data (such as the state of your Dashboard indicators) and play it back
later.

11.4. LabVIEW Dashboard 363

FIRST Robotics Competition

Recording

To begin recording, click the red circular Record button. The background of the right pane
will turn red to indicate you are recording. To stop recording, press the red square Stop
button.

364 Chapter 11. Dashboards

FIRST Robotics Competition

Playback

To play a recording back, click the green triangle Play button. The background of the right
pane will begin pulsing green and playback controls will appear at the bottom of the camera
pane.

1. File Selector - The dropdown allows you to select a log file to play back. The log files
are named using the date and time and the dropdown will also indicate the length of the
file. Selecting a logfile will immediately begin playing that file.

2. Play/Pause button - This button allows you to pause and resume playback of the log file.
3. Playback Speed - This dropdown allows you to adjust playback speed from 1/10 speed to

10x speed, the default is real-time (1x)
4. Time Control Slider - This slider allows you to fast-forward or rewind through the logfile

by clicking on the desired location or dragging the slider.
5. Settings - With a log file selected, this dropdown allows you to rename or delete a file or

open the folder containing the logs in Windows Explorer (Typically C:\Users\Public\
Documents\FRC\Log Files\Dashboard)

11.4. LabVIEW Dashboard 365

FIRST Robotics Competition

11.4.2 Using the LabVIEW Dashboard with C++/Java Code

The default LabVIEW Dashboard utilizes NetworkTables to pass values and is therefore com-
patible with C++ and Java robot programs. This article covers the keys and value ranges to
use to work with the Dashboard.

Drive Tab

The Select Autonomous… dropdown can be used so show the available autonomous routines
and choose one to run for the match.
Java

SmartDashboard.putStringArray("Auto List", {"Drive Forwards", "Drive Backwards",
↪→"Shoot"});

// At the beginning of auto
String autoName = SmartDashboard.getString("Auto Selector", "Drive Forwards") // This␣
↪→would make "Drive Forwards the default auto
switch(autoName) {

(continues on next page)

366 Chapter 11. Dashboards

FIRST Robotics Competition

(continued from previous page)
case "Drive Forwards":
// auto here

case "Drive Backwards":
// auto here

case "Shoot":
// auto here

}

C++

frc::SmartDashboard::PutStringArray("Auto List", {"Drive Forwards", "Drive Backwards",
↪→ "Shoot"});

// At the beginning of auto
String autoName = SmartDashboard.GetString("Auto Selector", "Drive Forwards") // This␣
↪→would make "Drive Forwards the default auto
switch(autoName) {

case "Drive Forwards":
// auto here

case "Drive Backwards":
// auto here

case "Shoot":
// auto here

}

Sending to the “Gyro” NetworkTables entry will populate the gyro here.
Java

SmartDashboard.putNumber("Gyro", drivetrain.getHeading());

C++

frc::SmartDashboard::PutNumber("Gyro", Drivetrain.GetHeading());

There are four outputs that show the motor power to the drivetrain. This is configured for 2
motors per side and a tank style drivetrain. This is done by setting “RobotDrive Motors” like
the example below.
Java

SmartDashboard.putNumberArray("RobotDrive Motors", {drivetrain.getLeftFront(),␣
↪→drivetrain.getRightFront(), drivetrain.getLeftBack(), drivetrain.getRightBack()});

C++

frc::SmartDashboard::PutNumberArray("Gyro", {drivetrain.GetLeftFront(), drivetrain.
↪→GetRightFront(), drivetrain.GetLeftBack(), drivetrain.GetRightBack()});

11.4. LabVIEW Dashboard 367

FIRST Robotics Competition

Basic Tab

The Basic tab uses a number of keys in the a “DB” sub-table to send/receive Dashboard data.
The LED’s are output only, the other fields are all bi-directional (send or receive).

368 Chapter 11. Dashboards

FIRST Robotics Competition

Strings

The strings are labeled top-to-bottom, left-to-right from “DB/String 0” to “DB/String 9”. Each
String field can display at least 21 characters (exact number depends on what characters).
To write to these strings:
Java

SmartDashboard.putString("DB/String 0", "My 21 Char TestString");

C++

frc::SmartDashboard::PutString("DB/String 0", "My 21 Char TestString");

To read string data entered on the Dashboard:
Java

String dashData = SmartDashboard.getString("DB/String 0", "myDefaultData");

C++

std::string dashData = frc::SmartDashboard::GetString("DB/String 0", "myDefaultData");

Buttons and LEDs

11.4. LabVIEW Dashboard 369

FIRST Robotics Competition

The Buttons and LEDs are boolean values and are labeled top-to-bottom from “DB/Button 0”
to “DB/Button 3” and “DB/LED 0” to “DB/LED 3”. The Buttons are bi-directional, the LEDs
are only able to be written from the Robot and read on the Dashboard. To write to the Buttons
or LEDs:
Java

SmartDashboard.putBoolean("DB/Button 0", true);

C++

frc::SmartDashboard::PutBoolean("DB/Button 0", true);

To read from the Buttons: (default value is false)
Java

boolean buttonValue = SmartDashboard.getBoolean("DB/Button 0", false);

C++

bool buttonValue = frc::SmartDashboard::GetBoolean("DB/Button 0", false);

Sliders

The Sliders are bi-directional analog (double) controls/indicators with a range from 0 to 5. To
write to these indicators:
Java

SmartDashboard.putNumber("DB/Slider 0", 2.58);

C++

frc::SmartDashboard::PutNumber("DB/Slider 0", 2.58);

To read values from the Dashboard into the robot program: (default value of 0.0)
Java

double dashData = SmartDashboard.getNumber("DB/Slider 0", 0.0);

C++

370 Chapter 11. Dashboards

FIRST Robotics Competition

double dashData = frc::SmartDashboard::GetNumber("DB/Slider 0", 0.0);

11.4.3 Troubleshooting Dashboard Connectivity

We have received a number of reports of Dashboard connectivity issues from events. This
document will help explain how to recognize if the Dashboard is not connected to your robot,
steps to troubleshoot this condition and a code modification you can make.

LabVIEW Dashboard

This section discusses connectivity between the robot and LabVIEW dashboard

Recognizing LabVIEW Dashboard Connectivity

If you have an indicator on your dashboard that you expect to be changing it may be fairly
trivial to recognize if the Dashboard is connected. If not, there is a way to check without
making any changes to your robot code. On the Variables tab of the Dashboard, the variables
are shown with a black diamond when they are not synced with the robot. Once the Dashboard
connects to the robot and these variables are synced, the diamond will disappear.

Troubleshooting LabVIEW Dashboard Connectivity

If the Dashboard does not connect to the Robot (after the Driver Station has connected to the
robot) the recommended troubleshooting steps are:

1. Close the Driver Station and Dashboard, then re-open the Driver Station (which should
launch the Dashboard).

2. If that doesn’t work, restart the Robot Code using the Restart Robot Code button on the
Diagnostics tab of the Driver Station

11.4. LabVIEW Dashboard 371

FIRST Robotics Competition

Recognizing Connectivity

This section discusses connectivity between the robot and SmartDashboard

Recognizing SmartDashboard Connectivity

The typical way to recognize connectivity with the SmartDashboard is to add a Connection
Indicator widget and to make sure your code is writing at least one key during initialization
or disabled to trigger the connection indicator. The connection indicator can be moved or
re-sized if the Editable checkbox is checked.

Recognizing Shuffleboard Connectivity

Shuffleboard indicates if it is connected or not in the bottom right corner of the application
as shown in the image above.

Recognizing Glass Connectivity

Glass displays if it is connected or not in the bar across the top. See this page for more on
configuring the connection.

Troubleshooting Connectivity

If the Dashboard does not connect to the Robot (after the Driver Station has connected to the
robot) the recommended troubleshooting steps are:

1. Restart the Dashboard (there is no need to restart the Driver Station software)
2. If that doesn’t work, restart the Robot Code using the Restart Robot Code button on the

Diagnostics tab of the Driver Station
3. If it still doesn’t connect, verify that the Team Number / Server is set properly in the

Dashboard and that your Robot Code writes a value during initialization or disabled

372 Chapter 11. Dashboards

12
Telemetry

12.1 Telemetry: Recording and Sending Real-Time Data

Recording and viewing telemetry data is a crucial part of the engineering process - accu-
rate telemetry data helps you tune your robot to perform optimally, and is indispensable for
debugging your robot when it fails to perform as expected.
By default, no telemetry data is recorded (saved) on the robot. However, recording data
on the robot can provide benefits over recording on a dashboard, namely that more data
can be recorded (there are no bandwidth limitations), and all the recorded data can be very
accurately timestamped. WPILib has integrated support for on-robot recording of telemetry
data via the DataLogManager and DataLog classes and provides a tool for downloading data
log files and converting them to CSV.

Note: In addition to on-robot recording of telemetry data, teams can record their telemetry
data on their driver station computer with Shuffleboard recordings.

12.1.1 Adding Telemetry to Robot Code

WPILib supports several different ways to record and send telemetry data from robot code.
At the most basic level, the Riolog provides support for viewing print statements from robot
code. This is useful for on-the-fly debugging of problematic code, but does not scale as console
interfaces are not suitable for rich data streams.
WPILib supports several dashboards that allow users to more easily send rich telemetry data
to the driver-station computer. All WPILib dashboards communicate with the NetworkTables
protocol, and so they are to some degree interoperable (telemetry logged with one dashboard
will be visible on the others, but the specific widgets/formatting will generally not be compat-
ible). NetworkTables (and thus WPILib all dashboards) currently support the following data
types:

• boolean

• boolean[]

• double

373

FIRST Robotics Competition

• double[]

• string

• string[]

• byte[]

Telemetry data can be sent to a WPILib dashboard using an associated WPILib method (for
more details, see the documentation for the individual dashboard in question), or by directly
publishing to NetworkTables.
While NetworkTables does not yet support serialization of complex data types (this is tenta-
tively scheduled for 2023), mutable types from user code can be easily extended to interface
directly with WPILib dashboards via the Sendable interface, whose usage is described in the
next article.

12.2 Robot Telemetry with Sendable

While the WPILib dashboard APIs allow users to easily send small pieces of data from their
robot code to the dashboard, it is often tedious to manually write code for publishing telemetry
values from the robot code’s operational logic.
A cleaner approach is to leverage the existing object-oriented structure of user code to mark
important data fields for telemetry logging in a declarative programming style. The WPILib
framework can then handle the tedious/tricky part of correctly reading from (and, potentially,
writing to) those fields for you, greatly reducing the total amount of code the user has to write
and improving readability.
WPILib provides this functionality with the Sendable interface. Classes that implement Send-
able are able to register value listeners that automatically send data to the dashboard - and,
in some cases, receive values back. These classes can be declaratively sent to any of the
WPILib dashboards (as one would an ordinary data field), removing the need for teams to
write their own code to send/poll for updates.

12.2.1 What is Sendable?

Sendable (Java, C++) is an interface provided by WPILib to facilitate robot telemetry. Classes
that implement Sendable can declaratively send their state to the dashboard - once declared,
WPILib will automatically send the telemetry values every robot loop. This removes the need
for teams to handle the iteration-to-iteration logic of sending and receiving values from the
dashboard, and also allows teams to separate their telemetry code from their robot logic.
Many WPILib classes (such as Commands) already implement Sendable, and so can be sent
to the dashboard without any user modification. Users are also able to easily extend their
own classes to implement Sendable.
The Sendable interface contains only one method: initSendable. Implementing classes over-
ride this method to perform the binding of in-code data values to structured JSON data, which
is then automatically sent to the robot dashboard via NetworkTables. Implementation of the
Sendable interface is discussed in the next article.

374 Chapter 12. Telemetry

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/util/sendable/Sendable.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classwpi_1_1_sendable.html

FIRST Robotics Competition

12.2.2 Sending a Sendable to the Dashboard

Note: Unlike simple data types, Sendables are automatically kept up-to-date on the dash-
board by WPILib, without any further user code - “set it and forget it”. Accordingly, they
should usually be sent to the dashboard in an initialization block or constructor, not in a
periodic function.

To send a Sendable object to the dashboard, simply use the dashboard’s putData method.
For example, an “arm” class that uses a PID Controller can automatically log telemetry from
the controller by calling the following in its constructor:
Java

SmartDashboard.putData("Arm PID", armPIDController);

C++

frc::SmartDashboard::PutData("Arm PID", &armPIDController);

Additionally, some Sendable classes bind setters to the data values sent from the dashboard
to the robot, allowing remote tuning of robot parameters.

12.3 On-Robot Telemetry Recording Into Data Logs

By default, no telemetry data is recorded (saved) on the robot. The DataLogManager class
provides a convenient wrapper around the lower-level DataLog class for on-robot recording
of telemetry data into data logs. The WPILib data logs are binary for size and speed reasons.
In general, the data log facilities provided by WPILib have minimal overhead to robot code,
as all file I/O is performed on a separate thread–the log operation consists of mainly a mutex
acquisition and copying the data.

12.3.1 Structure of Data Logs

Similar to NetworkTables, data logs have the concept of entries with string identifiers (keys)
with a specified data type. Unlike NetworkTables, the data type cannot be changed after
the entry is created, and entries also have metadata–an arbitrary (but typically JSON) string
that can be used to convey additional information about the entry such as the data source
or data schema. Also unlike NetworkTables, data log operation is unidirectional–the Data-
Log class can only write data logs (it does not support read-back of written values) and the
DataLogReader class can only read data logs (it does not support changing values in the data
log).
Data logs consist of a series of timestamped records. Control records allow starting, finishing,
or changing the metadata of entries, and data records record data value changes. Timestamps
are stored in integer microseconds; when running on the RoboRIO, the FPGA timestamp is
used (the same timestamp returned by Timer.getFPGATimestamp()).

12.3. On-Robot Telemetry Recording Into Data Logs 375

FIRST Robotics Competition

12.3.2 Standard Data Logging using DataLogManager

The DataLogManager class (Java, C++) provides a centralized data log that provides auto-
matic data log file management. It automatically cleans up old files when disk space is low
and renames the file based either on current date/time or (if available) competition match
number. The data file will be saved to a USB flash drive if one is attached, or to /home/
lvuser otherwise.
Log files are initially named FRC_TBD_{random}.wpilog until the DS connects. After the DS
connects, the log file is renamed to FRC_yyyyMMdd_HHmmss.wpilog (where the date/time is
UTC). If the FMS is connected and provides a match number, the log file is renamed to
FRC_yyyyMMdd_HHmmss_{event}_{match}.wpilog.
On startup, all existing log files where a DS has not been connected will be deleted. If there
is less than 50 MB of free space on the target storage, FRC_ log files are deleted (oldest to
newest) until there is 50 MB free OR there are 10 files remaining.
The most basic usage of DataLogManager only requires a single line of code (typically this
would be called from robotInit). This will record all NetworkTables changes to the data log.
Java

import edu.wpi.first.wpilibj.DataLogManager;

// Starts recording to data log
DataLogManager.start();

C++

#include "frc/DataLogManager.h"

// Starts recording to data log
frc::DataLogManager::Start();

DataLogManager provides a convenience function (DataLogManager.log()) for logging of
text messages to the messages entry in the data log. The message is also printed to standard
output, so this can be a replacement for System.out.println().
DataLogManager also records the current roboRIO system time (in UTC) to the data log every
~5 seconds to the systemTime entry in the data log. This can be used to (roughly) synchronize
the data log with other records such as DS logs or match video.
For custom logging, the managed DataLog can be accessed via DataLogManager.getLog().

Logging Joystick Data

DataLogManager by default does not record joystick data. The DriverStation class provides
support for logging of DS control and joystick data via the startDataLog() function:
Java

import edu.wpi.first.wpilibj.DataLogManager;
import edu.wpi.first.wpilibj.DriverStation;

// Starts recording to data log
DataLogManager.start();

(continues on next page)

376 Chapter 12. Telemetry

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DataLogManager.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_data_log_manager.html

FIRST Robotics Competition

(continued from previous page)
// Record both DS control and joystick data
DriverStation.startDataLog(DataLogManager.getLog());

// (alternatively) Record only DS control data
DriverStation.startDataLog(DataLogManager.getLog(), false);

C++

#include "frc/DataLogManager.h"
#include "frc/DriverStation.h"

// Starts recording to data log
frc::DataLogManager::Start();

// Record both DS control and joystick data
DriverStation::StartDataLog(DataLogManager::GetLog());

// (alternatively) Record only DS control data
DriverStation::StartDataLog(DataLogManager::GetLog(), false);

12.3.3 Custom Data Logging using DataLog

The DataLog class (Java, C++) and its associated LogEntry classes (e.g. BooleanLogEntry,
DoubleLogEntry, etc) provides low-level access for writing data logs.
The LogEntry classes can be used in conjunction with DataLogManager to record values only
to a data log and not to NetworkTables:
Java

import edu.wpi.first.util.datalog.BooleanLogEntry;
import edu.wpi.first.util.datalog.DataLog;
import edu.wpi.first.util.datalog.DoubleLogEntry;
import edu.wpi.first.util.datalog.StringLogEntry;
import edu.wpi.first.wpilibj.DataLogManager;

BooleanLogEntry myBooleanLog;
DoubleLogEntry myDoubleLog;
StringLogEntry myStringLog;

public void robotInit() {
// Starts recording to data log
DataLogManager.start();

// Set up custom log entries
DataLog log = DataLogManager.getLog();
myBooleanLog = new BooleanLogEntry(log, "/my/boolean");
myDoubleLog = new DoubleLogEntry(log, "/my/double");
myStringLog = new StringLogEntry(log, "/my/string");

}

public void teleopPeriodic() {
if (...) {

// Only log when necessary
myBooleanLog.append(true);

(continues on next page)

12.3. On-Robot Telemetry Recording Into Data Logs 377

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/util/datalog/DataLog.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classwpi_1_1log_1_1_data_log.html

FIRST Robotics Competition

(continued from previous page)
myDoubleLog.append(3.5);
myStringLog.append("wow!");

}
}

C++

#include "frc/DataLogManager.h"
#include "wpi/DataLog.h"

wpi::log::BooleanLogEntry myBooleanLog;
wpi::log::DoubleLogEntry myDoubleLog;
wpi::log::StringLogEntry myStringLog;

void RobotInit() {
// Starts recording to data log
frc::DataLogManager::Start();

// Set up custom log entries
wpi::log::DataLog& log = frc::DataLogManager::GetLog();
myBooleanLog = wpi::Log::BooleanLogEntry(log, "/my/boolean");
myDoubleLog = wpi::log::DoubleLogEntry(log, "/my/double");
myStringLog = wpi::log::StringLogEntry(log, "/my/string");

}

void TeleopPeriodic() {
if (...) {

// Only log when necessary
myBooleanLog.Append(true);
myDoubleLog.Append(3.5);
myStringLog.Append("wow!");

}
}

12.3.4 Downloading Data Logs from the Robot

If data log files are being stored to the roboRIO integrated flash memory instead of a remov-
able USB flash drive, it’s important to periodically download and delete data logs to avoid the
storage from filling up.
To facilitate this, the DataLogTool desktop application integrates a SFTP client for download-
ing data log files from a network device (e.g. roboRIO or coprocessor) to the local computer.
This process consists of four steps:

1. Connect to roboRIO or coprocessor
2. Navigate to remote directory and select what files to download
3. Select download folder
4. Download files and optionally delete remote files after downloading

378 Chapter 12. Telemetry

FIRST Robotics Competition

Connecting to RoboRIO

Note: The downloader uses SSH, so it will not be able to connect wirelessly if the radio
firewall is enabled (e.g. when the robot is on the competition field).

Either a team number, IP address, or hostname can be entered into the Team Number / Ad-
dress field. This field specifies the remote host to connect to. If a team number is entered,
roborio-TEAM-frc.local is used as the connection address.
The remote username and password are also entered here. For the roboRIO, the username
should be lvuser with a blank password.
The tool also supports connecting to network devices other than the roboRIO, such as copro-
cessors, as long as the device supports SFTP password-based authentication.
Click Connect to connect to the remote device. This will attempt to connect to the device.
The connection attempt can be aborted at any time by clicking Disconnect. If the application
is unable to connect to the remote device, an error will be displayed above the Team Number
/ Address field and a new connection can be attempted.

Downloading Files

After the connection is successfully established, a simplified file browser will be displayed.
This is used to navigate the remote filesystem and select which files to download. The first
text box shows the current directory. A specific directory can be navigated to by typing it
in this text box and pressing Enter. Alternatively, directory navigation can be performed by
clicking on one of the directories that are listed below the remote dir textbox. Following the
list of directories is a table of files. Only files with a .wpilog extension are shown, so the table
will be empty if there are no log files in the current directory. The checkbox next to each data
log file indicates whether the file should be downloaded.

12.3. On-Robot Telemetry Recording Into Data Logs 379

FIRST Robotics Competition

Click Select Download Folder… to bring up a file browser for the local computer.
If you want to delete the files from the remote device after they are downloaded, check the
Delete after download checkbox.
Once a download folder is selected, Download will appear. After clicking this button, the
display will change to a download progress display. Any errors will be shown next to each
file. Click Download complete! to return to the file browser.

12.3.5 Converting Data Logs to CSV

As data logs are binary files, the DataLogTool desktop application provides functionality to
convert data logs into CSV files for further processing or analysis. Multiple data logs may
be simultaneously loaded into the tool for batch processing, and partial data exports can be
performed by selecting only the data that is desired to be output.

380 Chapter 12. Telemetry

FIRST Robotics Competition

The conversion process is started by opening data log files in the “Input Files” window. Files
are opened by clicking Open File(s)…. Summary status on each file (e.g. number of records
and entries) is displayed. Clicking X in the table row closes the file.
After at least one file is loaded, the “Entries” window displays a tree view of the entries
(this can be changed to a flat view by right clicking on the “Entries” window title bar and
unchecking Tree View). Individual entries or entire subtrees can be checked or unchecked to
indicate whether they should be included in the export. The data type information and initial
metadata for each entry is also shown in the table. As the “Entries” view shows a merged
view of all entries across all input files, if more than one input file is open, hovering over an
entry’s name will highlight what input files contain that entry.
The output window is used to specify the output folder (via Select Output Folder…) as well
as the output style (list or table). The list output style outputs a CSV file with 3 columns
(timestamp, entry name, and value) and a row for every value change (for every exported
entry). The table output style outputs a CSV file with a timestamp column and a column for
every exported entry; a row is output for every value change (for every exported entry), but
the value is placed in the correct column for that entry. Clicking Export CSV will create a
.csv file in the output folder corresponding to each input file.

12.3.6 Data Log Visualization

AdvantageScope is a third-party tool allowing users to play back and visualize data stored
in WPILib data logs, with support for line graphs, field displays, video synchronization, etc.
More details are available in the AdvantageScope documentation. Note that WPILib offers
no support for third-party projects.

12.3. On-Robot Telemetry Recording Into Data Logs 381

https://github.com/Mechanical-Advantage/AdvantageScope
https://github.com/Mechanical-Advantage/AdvantageScope/blob/main/docs/INDEX.md

FIRST Robotics Competition

12.3.7 Custom Processing of Data Logs

For more advanced processing of data logs (e.g. for processing of binary values that can’t
be converted to CSV), WPILib provides a DataLogReader class for reading data logs in Java,
C++, or Python. For other languages, the data log format is also documented.
DataLogReader provides a low-level view of a data log, in that it supports iterating over a data
log’s control and data records and decoding of common data types, but does not provide any
higher level abstractions such as a NetworkTables-like map of entries. The printlog example
in Java and C++ (and the Python datalog.py) demonstrates basic usage.

12.4 Writing Your Own Sendable Classes

Since the Sendable interface only has one method, writing your own classes that implement
Sendable (and thus automatically log values to and/or consume values from the dashboard)
is extremely easy: just provide an implementation for the overridable initSendable method,
in which setters and getters for your class’s fields are declaratively bound to key values (their
display names on the dashboard).
For example, here is the implementation of initSendable from WPILib’s BangBangCon-
troller:
Java

150 @Override
151 public void initSendable(SendableBuilder builder) {

(continues on next page)

382 Chapter 12. Telemetry

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/util/datalog/DataLogReader.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classwpi_1_1log_1_1_data_log_reader.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpiutil/examples/printlog/datalog.py
https://github.com/wpilibsuite/allwpilib/blob/main/wpiutil/doc/datalog.adoc
https://github.com/wpilibsuite/allwpilib/blob/main/wpiutil/src/printlog/java/printlog/PrintLog.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpiutil/examples/printlog/printlog.cpp

FIRST Robotics Competition

(continued from previous page)
152 builder.setSmartDashboardType("BangBangController");
153 builder.addDoubleProperty("tolerance", this::getTolerance, this::setTolerance);
154 builder.addDoubleProperty("setpoint", this::getSetpoint, this::setSetpoint);
155 builder.addDoubleProperty("measurement", this::getMeasurement, null);
156 builder.addDoubleProperty("error", this::getError, null);
157 builder.addBooleanProperty("atSetpoint", this::atSetpoint, null);
158 }

C++

58 void BangBangController::InitSendable(wpi::SendableBuilder& builder) {
59 builder.SetSmartDashboardType("BangBangController");
60 builder.AddDoubleProperty(
61 "tolerance", [this] { return GetTolerance(); },
62 [this](double tolerance) { SetTolerance(tolerance); });
63 builder.AddDoubleProperty(
64 "setpoint", [this] { return GetSetpoint(); },
65 [this](double setpoint) { SetSetpoint(setpoint); });
66 builder.AddDoubleProperty(
67 "measurement", [this] { return GetMeasurement(); }, nullptr);
68 builder.AddDoubleProperty(
69 "error", [this] { return GetError(); }, nullptr);
70 builder.AddBooleanProperty(
71 "atSetpoint", [this] { return AtSetpoint(); }, nullptr);
72 }

To enable the automatic updating of values by WPILib “in the background”, Sendable data
names are bound to getter and setter functions rather than specific data values. If a field that
you wish to log has no defined setters and getters, they can be defined inline with a lambda
expression.

12.4.1 The SendableBuilder Class

As seen above, the initSendable method takes a single parameter, builder, of type Send-
ableBuilder (Java, C++). This builder exposes methods that allow binding of getters and
setters to dashboard names, as well as methods for safely ensuring that values consumed
from the dashboard do not cause unsafe robot behavior.

Databinding with addProperty Methods

Like all WPILib dashboard code, Sendable fields are ultimately transmitted over NetworkTa-
bles, and thus the databinding methods provided by SendableBuilder match the supported
NetworkTables data types:

• boolean: addBooleanProperty
• boolean[]: addBooleanArrayProperty
• double: addDoubleProperty
• double[]: addDoubleArrayProperty
• string: addStringProperty
• string[]: addStringArrayProperty

12.4. Writing Your Own Sendable Classes 383

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/util/sendable/SendableBuilder.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classwpi_1_1_sendable_builder.html

FIRST Robotics Competition

• byte[]: addRawProperty

Ensuring Safety with setSafeState and setActuator

Since Sendable allows users to consume arbitrary values from the dashboard, it is possible
for users to pipe dashboard controls directly to robot actuations. This is extremely unsafe
if not done with care; dashboards are not a particularly good interface for controlling robot
movement, and users generally do not expect the robot to move in response to a change on
the dashboard.
To help users ensure safety when interfacing with dashboard values, SendableBuilder ex-
poses a setSafeState method, which is called to place any Sendable mechanism that ac-
tuates based on dashboard input into a safe state. Any potentially hazardous user-written
Sendable implementation should call setSafeState with a suitable safe state implementa-
tion. For example, here is the implementation from the WPILib PWMMotorController class:
Java

118 @Override
119 public void initSendable(SendableBuilder builder) {
120 builder.setSmartDashboardType("Motor Controller");
121 builder.setActuator(true);
122 builder.setSafeState(this::disable);
123 builder.addDoubleProperty("Value", this::get, this::set);

C++

56 void PWMMotorController::InitSendable(wpi::SendableBuilder& builder) {
57 builder.SetSmartDashboardType("Motor Controller");
58 builder.SetActuator(true);
59 builder.SetSafeState([=, this] { Disable(); });
60 builder.AddDoubleProperty(
61 "Value", [=, this] { return Get(); },
62 [=, this](double value) { Set(value); });

Additionally, users may call builder.setActuator(true) to mark any mechanism that might
move as a result of Sendable input as an actuator. Currently, this is used by Shuffleboard to
disable actuator widgets when not in LiveWindow mode.

12.5 Third-Party Telemetry Libraries

Tip: Is your library not listed here when it should be? Open a pull request to add it!

Several third-party logging utilities and frameworks exist that provide functionality beyond
what is currently provided by WPILib:

• AdvantageScope: Data visualization tool for NetworkTables, WPILib data logs, and
Driver Station logs.

• AdvantageKit (Java only): “Log everything”-based logging framework with hooks for
replaying logged data in simulation.

• Oblog (Java only): Minimalistic annotation-based API for Shuffleboard (or plain Net-
workTables) telemetry.

384 Chapter 12. Telemetry

https://github.com/Mechanical-Advantage/AdvantageScope
https://github.com/Mechanical-Advantage/AdvantageKit
https://github.com/Oblarg/Oblog

13
FRC LabVIEW Programming

13.1 Creating Robot Programs

13.1.1 Tank Drive Tutorial

Question: How do I get my robot to drive with two joysticks using tank drive?
Solution: There are four components to consider when setting up tank drive for your robot.
The first thing you will want to do is make sure the tank drive.vi is used instead of the arcade
drive.vi or whichever drive VI you were utilizing previously. The second item to consider is
how you want your joysticks to map to the direction you want to drive. In tank drive, the
left joystick is used to control the left motors and the right joystick is used to control the
right motors. For example, if you want to make your robot turn right by pushing up on the
left joystick and down on the right joystick you will need to set your joystick’s accordingly in
LabVIEW (this is shown in more detail below). Next, you will want to confirm the PWM lines
that you are wired into, are the same ones your joysticks will be controlling. Lastly, make sure
your motor controllers match the motor controllers specified in LabVIEW. The steps below will
discuss these ideas in more detail:

1. Open LabVIEW and double click FRC roboRIO Project.

385

FIRST Robotics Competition

2. Give your project a name, add your team number, and select Arcade Drive Robot ro-
boRIO. You can select another option, however, this tutorial will discuss how to setup
tank drive for this project.

3. In the Project Explorer window, open up the Robot Main.vi.
4. Push Ctrl+E to see the block diagram. It should look like the following image:

386 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

5. Double click the “Teleop” vi inside of the Teleop Enabled case structure. Look at its block
diagram. You will want to make two changes here:

• Replace Arcade Drive with the tank drive.vi. This can be found by right clicking on the
block diagram >> WPI Robotics Library >> Robot Drive >> and clicking the Tank Drive
VI.

• Find the Index Array function that is after the Get Values.vi. You will need to create two
numeric constants and wire each into one of the index inputs. You can determine what
the values of each index should be by looking at the USB Devices tab in the FRC® Driver
Station. Move the two joysticks to determine which number (index) they are tied to. You
will likely want to use the Y-axis index for each joystick. This is because it is intuitive to
push up on the joystick when you want the motors to go forward, and down when you
when them to go in reverse. If you select the X-axis index for each, then you will have
to move the joystick left or right (x-axis directions) to get the robot motors to move. In
my setup, I’ve selected index 1 for my left motors Y-axis control and index 5 as the right
motors Y-axis control. You can see the adjustments in LabVIEW in the following image:

13.1. Creating Robot Programs 387

FIRST Robotics Competition

6. Next you will want to go back to your “Robot Main.vi” and double click on the “Begin.vi.”
7. The first thing to confirm in this VI is that your left and right motors are connected to

the same PWM lines in LabVIEW as they are on your PDP (Power Distribution Panel).
8. The second thing to confirm in this VI is that the “Open 2 Motor.vi” has the correct motor

controller selected (Talon, Jaguar, Victor, etc.).
For example, I am using Jaguar motor controllers and my motors are wired into
PWM 8 and 9. The image below shows the changes I need to make:

388 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

9. Save all of the Vis that you have made adjustments to and you are now able to drive a
robot with tank drive!

13.1.2 Command and Control Tutorial

Introduction

Command and Control is a new LabVIEW template added for the 2016 season which organizes
robot code into commands and controllers for a collection of robot-specific subsystems. Each
subsystem has an independent control loop or state machine running at the appropriate rate
for the mechanism and high-level commands that update desired operations and set points.
This makes it very easy for autonomous code to build synchronous sequences of commands.
Meanwhile, TeleOp benefits because it can use the same commands without needing to wait
for completion, allowing for easy cancellation and initiation of new commands according to
the drive team input. Each subsystem has a panel displaying its sensor and control values
over time, and command tracing to aid in debugging.

13.1. Creating Robot Programs 389

FIRST Robotics Competition

What is Command and Control?

Command and Control recognizes that FRC® robots tend to be built up of relatively indepen-
dent mechanisms such as Drive, Shooter, Arm, etc. Each of these is referred to as a subsystem
and needs code that will coordinate the various sensors and actuators of the subsystem in or-
der to complete requested commands, or actions, such as “Close Gripper” or “Lower Arm”.
One of the key principles of this framework is that subsystems will each have an indepen-
dent controller loop that is solely responsible for updating motors and other actuators. Code
outside of the subsystem controller can issue commands which may change the robot’s out-
put, but should not directly change any outputs. The difference is very subtle but this means
that outputs can only possibly be updated from one location in the project. This speeds up
debugging a robot behaving unexpectedly by giving you the ability to look through a list of
commands sent to the subsystem rather than searching your project for where an output may
have been modified. It also becomes easier to add an additional sensor, change gearing, or
disable a mechanism without needing to modify code outside of the controller.
Game code, primarily consisting of Autonomous and TeleOp, will typically need to update set
points and react to the state of certain mechanisms. For Autonomous, it is very common to
define the robot’s operation as a sequence of operations – drive here, pick that up, carry it
there, shoot it, etc. Commands can be wired sequentially with additional logic to quickly build
complex routines. For teleOp, the same commands can execute asynchronously, allowing the
robot to always process the latest driver inputs, and if implemented properly, new commands
will interrupt, allowing the drive team to quickly respond to field conditions while also taking
advantage of automated commands and command sequences.

Why should I use Command and Control?

Command and Control adds functionality to the existing LabVIEW project templates, allowing
code to scale better with more sophisticated robots and robot code. Subsystems are used to
abstract the details of the implementation, and game code is built from sequences of high
level command VIs. The commands themselves are VIs that can update set points, perform
numerical scaling/mapping between engineering units and mechanism units, and offer syn-
chronization options. If physical changes are made to the robot, such as changing a gearing
ratio, changes can be made to just a few command Vis to reflect this change across the entire
code base.
I/O encapsulation makes for more predictable operation and quicker debugging when re-
source conflicts do occur. Because each command is a VI, you are able to single step through
commands or use the built in Trace functionality to view a list of all commands sent to each
subsystem.The framework uses asynchronous notification and consistent data propagation
making it easy to program a sequence of commands or add in simple logic to determine the
correct command to run.

390 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Part 1: Project Explorer

The Project Explorer provides organization for all of the Vis and files you will use for your
robot system. Below is a description of the major components in the Project Explorer to help
with the expansion of our system. The most frequently used items have been marked in bold.

13.1. Creating Robot Programs 391

FIRST Robotics Competition

392 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

My Computer
The items that define operation on the computer that the project was loaded on. For a
robot project, this is used as a simulation target and is populated with simulation files.

Sim Support Files
The folder containing 3D CAD models and description files for the simulated robot.

Robot Simulation Readme.html
Documents the PWM channels and robot info you will need in order to write robot code
that matches the wiring of the simulated robot.

Dependencies
Shows the files used by the simulated robot’s code. This will populate when you desig-
nate the code for the simulated robot target.

Build Specifications
This will contain the files that define how to build and deploy code for the simulated
robot target.

Target (roboRIO-TEAM-FRC.local)
The items that define operation on the roboRIO located at (address).

Drive
The subsystem implementation and commands for the robot drive base. This serves as
a custom replacement for the WPILib RobotDrive VIs.

Framework
VIs used for robot code that is not part of a subsystem that are not used very often.
Begin

Called once when robot code first starts. This is useful for initialization code that
doesn’t belong to a particular subsystem.

Disabled
Called once for each disabled packet and can be used to debug sensors when you
don’t want the robot to move.

Finish
During development, this may be called when robot code finishes. Not called on
abort or when power is turned off.

Periodic Tasks
A good place for ad hoc periodic loops for debugging or monitoring

Robot Global Data
Useful for sharing robot information that doesn’t belong to a subsystem.

Support Code
Debugging and code development aids.

Vision
Subsystem and commands for the camera and image processing.

Robot Main.vi
Top level VI that you will run while developing code.

Autonomous.vi
VI that runs during autonomous period.

Teleop.vi
VI that is called for each TeleOp packet.

13.1. Creating Robot Programs 393

FIRST Robotics Competition

Test.vi
VI that runs when driver station is in test mode.

SubSystems.vi
VI that contains and starts all subsystems.

Dependencies
Shows the files used by the robot code.

Build Specifications
Used to build and run the code as a startup application once code works correctly.

394 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Drive Subsystem Project Explorer

Commands:
This folder contains the command VIs that request the controller carry out an operation.
It also contains templates for creating additional drive commands.

Note: After creating a new command, you may need to edit Drive Setpoints.ctl to add
or update fields that controller uses to define the new operation. You also need to go into the
Drive Controller.vi and modify the case structure to add a case for every value.

Implementation

These are the VIs and Controls used to build the subsystem.
Infrastructure VIs

• Drive Check for New Command: It is called each iteration of the controller loop.
It checks for new commands, updates timing data, and upon completion notifies a
waiting command.

• Drive Command Helper.vi: Commands call this VI to notify the controller that a new
command has been issued.

• Drive Controller Initialization.vi: It allocates the notifier and combines the timing,
default command, and other information into a single data wire.

• Drive Controller.vi: This VI contains the control/state machine loop. The panel may also
contain displays useful for debugging.

• Drive Operation.ctl: This typedef defines the operational modes of the controller. Many
commands can share an operation.

13.1. Creating Robot Programs 395

FIRST Robotics Competition

• Drive Setpoint.ctl: It contains the data fields used by all operating modes of the Drive
subsystem.

• Drive Published Globals.vi: A useful place for publishing global information about the
drive subsystem.

Part 2: Initializing the Drive Subsystem

There are green comments on the controller’s block diagram that point out key areas that
you will want to know how to edit.
The area to the left of the control loop will execute once when the subsystem starts up. This
is where you will typically allocate and initialize all I/O and state data. You may publish the
I/O refnums, or you may register them for Test Mode Only to keep them private so that other
code cannot update motors without using a command.

Note: Initializing the resources for each subsystem in their respective Controller.vi rather
than in Begin.vi improves I/O encapsulation, reducing potential resource conflicts and sim-
plifies debugging.

396 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Part of the initialization is to select the default operation and set point values when no other
operation is being processed.

13.1. Creating Robot Programs 397

FIRST Robotics Competition

Inside the control loop is a case statement where operations are actually implemented. Set
point values, iteration delay, iteration count, and sensors can all have influence on how the
subsystem operates. This case structure has a value for each operation state of the subsystem.

398 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Each iteration of the controller loop will optionally update the Trace VI. The framework al-
ready incorporates the subsystem name, operation, and description, and you may find it help-
ful to format additional set point values into the trace information. Open the Trace VI and
click Enable while the robot code is running to current setpoints and commands sent to each
subsystem.
The primary goal of the controller is to update actuators for the subsystem. This can occur
within the case structure, but many times, it is beneficial to do it downstream of the structure
to ensure that values are always updated with the correct value and in only one location in
the code.

13.1. Creating Robot Programs 399

FIRST Robotics Competition

Part 3: Drive Subsystem Shipped Commands

There are 3 shipped example commands for each new subsystem:

Drive For Time.vi

This VI sets the motors to run for a given number of seconds. It optionally synchronizes with
the completion of the command.
The Drive for Time case will operate the motors at the set point until the timer elapses or
a new command is issued. If the motors have the safety timeout enabled, it is necessary to
update the motors at least once every 100ms. This is why the code waits for the smaller of
the remaining time and 50ms.

Drive Immediate.vi

Gets the desired left and right speeds for the motors and will set the motors immediately to
those set points.
The Immediate case updates the motors to the set point defined by the command. The com-
mand is not considered finished since you want the motors to maintain this value until a new
command comes in or until a timeout value. The timeout is useful anytime a command in-
cludes a dead band. Small values will not be requested if smaller than the dead band, and
will result in growling or creeping unless the command times out.

400 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Stop Driving.vi

Zero the drive motors, making the robot stationary.
The Reserve command turns off the motors and waits for a new command. When used with a
named command sequence, reserve identifies that the drive subsystem is part of a sequence,
even if not currently moving the robot. This helps to arbitrate subsystem resource between
simultaneously running commands.

13.1. Creating Robot Programs 401

FIRST Robotics Competition

Part 4: Creating New Commands

The Command and Control framework allows users to easily create new commands for a
subsystem. To Create a new command open the subsystem folder/Commands In the project
explorer window, choose one of the VI Templates to use as the starting point of your new
command, right click, and select New From Template.

• Immediate: This VI notifies the subsystem about the new setpoint.
• Immediate with deadband: This VI compares the input value to the deadband and op-

tionally notifies the subsystem about the new setpoint. This is very useful when joystick
continuous values are being used.

• With duration: This VI notifies the subsystem to perform this command for the given
duration, and then return to the default state. Synchronization determines whether this
VI Starts the operation and returns immediately, or waits for the operation to complete.
The first option is commonly used for TeleOp, and the second for Autonomous sequenc-
ing.

In this example we will add the new command “Drive for Distance”.

402 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

First, save the new VI with a descriptive name such as “Drive for Distance”. Next, determine
whether the new command needs a new value added the Drive Operations enum typedef. The
initial project code already has an enum value of Drive for Distance, but the following image
shows how you would add one if needed.

13.1. Creating Robot Programs 403

FIRST Robotics Competition

If a command needs additional information to execute, add it to the setpoints control. By de-
fault, the Drive subsystem has fields for the Left Setpoint, Right Setpoint, and Duration along
with the operation to be executed. The Drive for Distance command could reuse Duration
as distance, but let’s go ahead and add a numeric control to the Drive Setpoints.ctl called
Distance (feet).

404 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Once that we have all of the fields needed to specify our command, we can modify the newly
created Drive for Distance.vi. As shown below, select Drive for Distance from the enum’s
drop down menu and add a VI parameters to specify distance, speeds, etc. If the units do not
match, the command VI is a great place to map between units.

13.1. Creating Robot Programs 405

FIRST Robotics Competition

Next, add code to the Drive Controller to define what happens when the Drive for Distance
command executes. Right click on the Case Structure and Duplicate or Add Case for Every
Value. This will create a new “Drive for Distance” case.

In order to access new setpoint fields, grow the “Access Cmd setpoints” unbundle node. Open

406 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

your encoder(s) on the outside, to the left of the loop. In the new diagram of the case structure,
we added a call to reset the encoder on the first loop iteration and read it otherwise. There
is also some simple code that compares encoder values and updates the motor power. If new
controls are added to the setpoints cluster, you should also consider adding them to the Trace.
The necessary changes are shown in the image below.

Part 5: Creating a Subsystem

In order to create a new subsystem, right click on the roboRIO target and select New» Sub-
system. In the pop up dialog box, enter the name of the subsystem, list the operational modes,
and specify the color of the icon.

13.1. Creating Robot Programs 407

FIRST Robotics Competition

When you click OK, the subsystem folder will be generated and added to the project disk
folder and tree. It will contain a base implementation of the VIs and controls that make
up a subsystem. A call to the new controller will be inserted into the Subsystems VI. The
controller VI will open, ready for you to add I/O and implement state machine or control
code. Generated VI icons will use the color and name provided in the dialog. The generated
code will use typedefs for set point fields and operations.

408 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Below is the block diagram of the newly created subsystem. This code will be generated
automatically when you create the subsystem.

13.1. Creating Robot Programs 409

FIRST Robotics Competition

13.2 LabVIEW Resources

13.2.1 LabVIEW Resources

Note: To learn more about programming in LabVIEW and specifically programming FRC®
robots in LabVIEW, check out the following resources.

LabVIEW Basics

NI provides tutorials on the basics of LabVIEW. These tutorials can help you get acquainted
with the LabVIEW environment and the basics of the graphical, dataflow programming model
used in LabVIEW.

NI FRC Tutorials

NI also hosts many FRC specific tutorials and presentations ranging from basic to advanced.
For an in-depth single resource check out the FRC Basic and Advanced Training Classes linked
near the bottom of the page.

Installed Tutorials and Examples

There are also tutorials and examples for all sorts of tasks and components provided as part
of your LabVIEW installation. To access the tutorials, from the LabVIEW Splash screen (the
screen that appears when the program is first launched) click on the Tutorials tab on the
left side. Note that the tutorials are all in one document, so once it is open you are free to
browse to other tutorials without returning to the splash screen.
To access the examples either click the Support tab, then Find FRC Examples or anytime
you’re working on a program open the Help menu, select Find Examples and open the FRC
Robotics folder.

Third Party Resources

• FRC Control and Trajectory Library
• Secret Book Of FRC LabVIEW 2

13.2.2 Waiting for Target to Respond - Recovering from bad loops

Note: If you download LabVIEW code which contains an unconstrained loop (a loop with no
delay) it is possible to get the roboRIO into a state where LabVIEW is unable to connect to
download new code. This document explains the process required to load new, fixed, code to
recover from this state.

410 Chapter 13. FRC LabVIEW Programming

https://www.ni.com/getting-started/labview-basics/
https://forums.ni.com/t5/FIRST-Robotics-Competition/Archived-2015-FRC-LabVIEW-Additional-Resources/ta-p/3528790?profile.language=en
https://github.com/jsimpso81/WPIlibMathLabVIEW
https://github.com/jsimpso81/FRC_Secret_Book_Of_FRC_LabVIEW_2

FIRST Robotics Competition

The Symptom

The primary symptom of this issue is attempts to download new robot code hang at the “Wait-
ing for the target (Target) to respond” step as shown above. Note that there are other possible
causes of this symptom (such as switching from a C++Java program to LabVIEW program)
but the steps described here should resolve most or all of them.
Click Cancel to close the download dialog.

The Problem

One common source of this issue is unconstrained loops in your LabVIEW code. An uncon-
strained loop is a loop which does not contain any delay element (such as the one on the left).
If you are unsure where to begin looking, Disabled.VI, Periodic Tasks.VI and Vision Process-
ing.VI are the common locations for this type of loop. To fix the issue with the code, add a
delay element such as the Wait (ms) VI from the Timing palette, found in the right loop.

13.2. LabVIEW Resources 411

FIRST Robotics Competition

Set No App

Using the roboRIO webserver (see the article on the roboRIOWebDashboard Startup Settings
for more details). Check the box to “Disable RT Startup App”.

Reboot

Reboot the roboRIO, either using the Reset button on the device or by click Restart in the top
right corner of the webpage.

Clear No App

Using the roboRIO webserver (see the article on the roboRIOWebDashboard Startup Settings
for more details). Uncheck the box to “Disable RT Startup App”.

412 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Load LabVIEW Code

Load LabVIEW code (either using the Run button or Run as Startup). Make sure to set Lab-
VIEW code to Run as Startup before rebooting the roboRIO or you will need to follow the
instructions above again.

13.2.3 How To Toggle Between Two Camera Modes

This code shows how to use a button to toggle between two distinct camera modes. The code
consists of four stages.
In the first stage, the value of a button on the joystick is read.
Next, the current reading is compared to the previous reading using a Feedback Node and
some Boolean arithmetic. Together, these ensure that the camera mode is only toggled when
the button is initially pressed rather than toggling back and forth multiple times while the
button is held down.
After that, the camera mode is toggled by masking the result of the second stage over the
current camera mode value. This is called bit masking and by doing it with the XOR function
the code will toggle the camera mode when the second stage returns true and do nothing
otherwise.
Finally, you can insert the code for each camera mode in the case structure at the end. Each
time the code is run, this section will run the code for the current camera mode.

13.2.4 LabVIEW Examples and Tutorials

Popular Tutorials

Autonomous Timed Movement Tutorial
• Move your robot autonomously based on different time intervals
• See more on Autonomous Movement

Basic Motor Control Tutorial
• Setup your roboRIO motor hardware and software
• Learn to setup the FRC® Control System and FRC Robot Project

13.2. LabVIEW Resources 413

https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2016-Autonomous-Timed-Movement-Tutorial/ta-p/3535608?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/Autonomous-Timed-Movement-Tutorial/ta-p/3732667?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2014-Basic-Motor-Control-Tutorial/ta-p/3504064?profile.language=en

FIRST Robotics Competition

• See more on Motor Control
Image Processing Tutorial

• Learn basic Image Processing techniques and how to use NI Vision Assistant
• See more on Cameras and Image Processing

PID Control Tutorial
• What is PID Control and how can I implement it?

Command and Control Tutorial
• What is Command and Control?
• How do I implement it?

Driver Station Tutorial
• Get to know the FRC Driver Station

Test Mode Tutorial
• Learn to setup and use Test Mode

Looking for more examples and discussions? Search through more documents or post your
own discussion, example code, or tutorial by clicking here! Don’t forget to mark your posts
with a tag!

13.2.5 Add an Independent Motor to a Project

Once your drive that controls the wheels is all set, you might need to add an additional motor
to control something completely independent of the wheels, such as an arm. Since this motor
will not be part of your tank, arcade, or mecanum drive, you’ll definitely want independent
control of it.
These VI Snippets show how to set up a single motor in a project that may already contain
a multi-motor drive. If you see the HAND>ARROW>LABVIEW symbol, just drag the image
into your block diagram, and voila: code! Ok, here’s how you do it.
FIRST, create a motor reference in the Begin.vi, using the Motor Control Open VI and Mo-
tor Control Refnum Registry Set VI. These can be found by right-clicking in the block di-
agram and going to WPI Robotics Library>>RobotDrive>>Motor Control. Choose your
PWM line and name your motor. I named mine “Lift Motor” and connected it to PWM 7. (I
also included and enabled the Motor Control Safety Config VI, which automatically turns off
the motor if it loses connection.)

Now, reference your motor (the name has to be exact) in the Teleop.vi using the Motor
Control Refnum Registry Get VI and tell it what to do with the Motor Control Set Output
VI. These are in the same place as the above VIs.

414 Chapter 13. FRC LabVIEW Programming

https://forums.ni.com/t5/FIRST-Robotics-Competition/Basic-Motor-Control-Tutorial/ta-p/3733426?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-Image-Processing-Tutorial/ta-p/3490518?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/Image-Processing-in-LabVIEW-for-FRC/ta-p/3732677?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-PID-Tutorial/ta-p/3535805?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/Command-and-Control-Tutorial/ta-p/3534946?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/Archived-FRC-2015-Driver-Station-Tutorial/ta-p/3535650?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-Test-Mode-Tutorial/ta-p/3535797?profile.language=en
https://forums.ni.com/t5/FIRST-Robotics-Competition/tkb-p/3019?profile.language=en

FIRST Robotics Competition

For example, the next snippet tells the Lift Motor to move forward if button 4 is pressed on
Joystick 0 and to remain motionless otherwise. For me, button 4 is the left bumper on my
Xbox style controller (“Joystick 0”). For much more in-depth joystick button options, check
out How to Use Joystick Buttons to Control Motors or Solenoids.

Finally, we need to close the references in the Finish.vi (just like we do with the drive and
joystick), using the Motor Control Refnum Registry Get VI and Motor Control Close VI.
While this picture shows the Close VI in a flat sequence structure by itself, we really want all
of the Close VIs in the same frame. You can just put these two VIs below the other Get VIs
and Close VIs (for the joystick and drive).

I hope this helps you program the best robot ever! Good luck!

13.2.6 Keyboard Navigation with the roboRIO

This example provides some suggestions for controlling the robot using keyboard navigation
in place of a joystick or other controller. In this case, we use the A, W, S, and D keys to control
two drive motors in a tank drive configuration.
The first VI Snippet is the code that will need to be included in the Dashboard Main VI. You can
insert this code into the True case of Loop 1. The code opens a connection to the keyboard
before the loop begins, and on each iteration it reads the pressed key. This information is
converted to a string, which is then passed to the Teleop VI in the robot project. When Loop
1 stops running, the connection to the keyboard is closed.

13.2. LabVIEW Resources 415

FIRST Robotics Competition

The second VI Snippet is code that should be included in the Teleop VI. This reads the string
value from the Dashboard that indicates which key was pressed. A Case Structure then de-
termines which values should be written to the left and right motors, depending on the key.
In this case, W is forward, A is left, D is right, and S is reverse. Each case in this example
runs the motors at half speed. You can keep this the same in your code, change the values,
or add additional code to allow the driver to adjust the speed, so you can drive fast or slow
as necessary. Once the motor values are selected, they are written to the drive motors, and
motor values are published to the dashboard.

13.2.7 Making a One-Shot Button Press

When using the Joystick Get Values function, pushing a joystick button will cause the button
to read TRUE until the button is released. This means that you will most likely read multiple
TRUE values for each press. What if you want to read only one TRUE value each time the
button is pressed? This is often called a “One-Shot Button”. The following tutorial will show
you how to create a subVI that you can drop into your Teleop.vi to do this.
First, create a new VI in the Support Code folder of your project.

416 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Now on the block diagram of the new VI, drop in the following code snippet.

This code uses a function called the Feedback Node. We have wired the current value of
the button into the left side of the feedback node. The wire coming out of the arrow of the
feedback node represents the previous value of the button. If the arrow on your feedback
node is going the opposite direction as shown here, right click to find the option to reverse
the direction.
When a button is pressed, the value of the button goes from FALSE to TRUE. We want the
output of this VI to be TRUE only when the current value of the button is TRUE, and the
previous value of the button is FALSE.
Next we need to connect the boolean control and indicator to the inputs and outputs of the

13.2. LabVIEW Resources 417

FIRST Robotics Competition

VI. To do this, first click the block on the connector pane, then click the button to connect the
two (see the diagram below). Repeat this for the indicator.

Next, we need to change the properties of this VI so that we can use multiples of this VI
in our TeleOp.vi. Right click the VI Icon and go to VI Properties. Then select the category
“Execution” and select “Preallocated clone reentrant execution”.

418 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Lastly, we should change the VI Icon to be more descriptive of the VI’s function. Right click
the Icon and go to Edit Icon. Create a new Icon.

13.2. LabVIEW Resources 419

FIRST Robotics Competition

Finally, save the VI with a descriptive name. You can now drag and drop this VI from the
Support Files folder into your TeleOp.vi. Here is a copy of the completed VI: Button_Press.
vi

Here’s an example of how you could use this VI.

420 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

13.2.8 Adding Safety Features to Your Robot Code

A common problem with complex projects is making sure that all of your code is executing
when you expect it to. Problems can arise when tasks with high priority, long execution
times, or frequent calls hog processing power on the roboRIO. This leads to what is known
as “starvation” for the tasks that are not able to execute due to the processor being busy. In
most cases this will simply slow the reaction time to your input from the joysticks and other
devices. However, this can also cause the drive motors of your robot to stay on long after
you try to stop them. To avoid any robotic catastrophes from this, you can implement safety
features that check for task input starvation and automatically shut down potentially harmful
operations.
There are built-in functions for the motors that allow easy implementation of safety checks.
These functions are:

• Robot Drive Safety Configuration
• Motor Drive Safety Configuration
• Relay Safety Configuration
• PWM Safety Configuration
• Solenoid Safety Configuration
• Robot Drive Delay and Update Safety

In all of the Safety Configuration functions, you can enable and disable the safety checks
while your programming is running and configure what timeout you think is appropriate. The
functions keep a cache of all devices that have the safety enabled and will check if any of
them have exceeded their time limit. If any has, all devices in the cache will be disabled and
the robot will come to an immediate stop or have its relay/PWM/solenoid outputs turned off.
The code below demonstrates how to use the Drive Safety Configuration functions to set a
maximum time limit that the motors will receive no input before being shut off.

To test the safety shut-off, try adding a Wait function to the loop that is longer than your
timeout!

13.2. LabVIEW Resources 421

FIRST Robotics Competition

The final function that relates to implementing safety checks–Robot Drive Delay and Update
Safety–allows you to put the roboRIO in Autonomous Mode without exceeding the time limit.
It will maintain the current motor output without making costly calls to the Drive Output
functions, and will also make sure that the safety checks are regularly updated so that the
motors will not suddenly stop.
Overall, it is highly recommended that some sort of safety check is implemented in your
project to make sure that your robot is not unintentionally left in a dangerous state!

13.2.9 How to Use Joystick Buttons to Control Motors or Solenoids

As we all get our drive systems working, we are moving on to connecting our auxiliary devices
such as motors and solenoids. With this, we will generally use joystick buttons to control these
devices. To get started with this, we’ll go through several ways to control devices with joystick
buttons.
Did you know that you can click and drag a VI Snippet from a document like this right into
your LabVIEW code? Try it with the snippets in this document.

Setup:

No matter what the configuration, you’ll need to add one, two, or more (if you’re really excited)
joysticks to the “Begin.vi”. The first example uses 2 joysticks and the others only use one.
Give each one a unique name so we can use it in other places, like the snippet below. I named
them “LeftStick” and “RightStick” because they are on the left and right sides of my desk. If
your joysticks are already configured, great! You can skip this step.

The rest of the code in this document will be placed in the “Teleop.VI” This is where we will
be programming our joystick buttons to control different aspects of our motors or solenoids.

422 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Scenario 1

“I want a motor to move one way when I press one button and the other way when I
press a different button.”
This code uses button 0 on two different joysticks to control the same motor. If button 0 on
LeftStick is pressed, the motor moves backward, and if button 0 on RightStick is pressed, the
motor moves forward. If both buttons are pressed or neither button is pressed, the motor
doesn’t move. Here I named my motor reference “Motor5”, but you can name your motor
whatever you want in the “Begin.vi”

You may want to use multiple buttons from the same joystick for control. For an example of
this, look at the following VI snippet or the VI snippet in Scenario 2.

Here I used joystick buttons 0 and 2, but feel free to use whatever buttons you need.

13.2. LabVIEW Resources 423

FIRST Robotics Competition

Scenario 2

“I want different joystick buttons move at various speeds.”
This example could be helpful if you need to have one motor do different things based on the
buttons you press. For instance, let’s say my joystick has a trigger (button 0) and 4 buttons
on top (buttons 1 through 4). In this case, the following buttons should have the following
functions:

• button 1 - move backward at half speed
• button 2 - move forward at half speed
• button 3 - move backward at 1/4 speed
• button 4 - move forward at 1/4 speed
• trigger - full speed ahead! (forward at full speed)

We would then take the boolean array from the “JoystickGetValues.vi” and wire it to a “Boolean
Array to Number” node (Numeric Palette-Conversion Palette). This converts the boolean ar-
ray to a number that we can use. Wire this numeric to a case structure.
Each case corresponds to a binary representation of the values in the array. In this example,
each case corresponds to a one-button combination. We added six cases: 0 (all buttons off),
1 (button 0 on), 2 (button 1 on), 4 (button 2 on), 8 (button 3 on), and 16 (button 4 on). Notice
we skipped value 3. 3 would correspond to buttons 0 and 1 pressed at the same time. We did
not define this in our requirements so we’ll let the default case handle it.
It might be helpful to review the LabVIEW 2014 Case Structure Help document here:
https://zone.ni.com/reference/en-XX/help/371361L-01/glang/case_structure/
There are also 3 Community Tutorials on case structures here:
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-1/ta-p/
3505945?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-2/ta-p/
3505933?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-3/ta-p/
3505979?profile.language=en

Since our requirements were simple, we only need a single constant in each case. For case
1 (full ahead) we use a 1, for case 2 (half back) we use a -0.5, etc. We can use any constant
value between 1 and -1. I left case 0 as the default so if multiple buttons are pressed (any

424 Chapter 13. FRC LabVIEW Programming

https://zone.ni.com/reference/en-XX/help/371361L-01/glang/case_structure/
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-1/ta-p/3505945?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-1/ta-p/3505945?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-2/ta-p/3505933?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-2/ta-p/3505933?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-3/ta-p/3505979?profile.language=en
https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-3/ta-p/3505979?profile.language=en

FIRST Robotics Competition

undefined state was reached) the motor will stop. You of course are free to customize these
states however you want.

Scenario 3

“I want to control a solenoid with my joystick buttons.”
By now, we are familiar with how the joystick outputs the buttons in an array of booleans.
We need to index this array to get the button we are interested in, and wire this boolean to
a select node. Since the “Solenoid Set.vi” requires a Enum as an input, the easiest way to
get the enum is to right click the “Value” input of the “Solenoid Set.vi” and select “Create
Constant”. Duplicate this constant and wire one copy to the True terminal and one to the
False terminal of the select node. Then wire the output of the select node to the “Value” input
of the solenoid VI.

Happy Roboting!

13.2.10 Local and Global Variables in LabVIEW for FRC

This example serves as an introduction to local and global variables, how they are used in
the default LabVIEW for FRC® Robot Project, and how you might want to use them in your
project.
Local variables and global variables may be used to transfer data between locations within the
same VI (local variables) or within different VI’s (global variables), breaking the conventional
Data Flow Paradigm for which LabVIEW is famous. Thus, they may be useful when, for
whatever reason, you cannot wire the value directly to the node to another.
Note: One possible reason may be that you need to pass data between consecutive loop
iterations; Miro_T covered this in this post. It should also be noted that the feedback node
in LabVIEW may be used as an equivalent to the shift register, although that may be a topic
for another day!

Introduction to Local and Global Variables

Local variables may be used within the same VI. Create a local variable by right-clicking a
control or indicator on your Front Panel:

13.2. LabVIEW Resources 425

https://www.ni.com/getting-started/labview-basics/dataflow
https://forums.ni.com/t5/FIRST-Robotics-Competition/Use-of-Shift-Registers-to-Pass-Data-Between-Loop-Iterations/ta-p/3498415?profile.language=en
https://zone.ni.com/reference/en-XX/help/371361L-01/lvconcepts/block_diagram_feedback/

FIRST Robotics Competition

You may create a local variable from the Structures palette on the block diagram as well.
When you have multiple local variables in one VI, you can left-click to choose which variable
it is:

Global variables are created slightly differently. Add one to the block diagram from the Struc-
tures palette, and notice that when you double-click it, it opens a separate front panel. This
front panel does not have a block diagram, but you add as many entities to the front panel as
you wish and save it as a *.vi file:

426 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

Note: Be very careful to avoid race conditions when using local and global variables! Es-
sentially, make sure that you are not accidentally writing to the same variable in multiple
locations without a way to know to which location it was last written. For a more thorough
explanation, see this help document

How They are Used in the Default LabVIEW for FRC Robot Project

Global variables for “Enable Vision” and “Image Size” are written to during each iteration of
the Robot Main VI…

13.2. LabVIEW Resources 427

https://zone.ni.com/reference/en-XX/help/371361L-01/lvconcepts/using_local_and_global/

FIRST Robotics Competition

… And then read in each iteration of the Vision Processing VI:

This allows the user, when deploying to Robot Main VI from the LabVIEW Development Envi-
ronment, to enable/disable vision and change the image size from Robot Main’s Front Panel.

428 Chapter 13. FRC LabVIEW Programming

FIRST Robotics Competition

How Can You Use Them in Your Project?

Check out the block diagram for the Periodic Tasks VI. Perhaps there is some value, such as
a boolean, that may be written to a global variable in the Teleop VI, and then read from in the
Periodic Tasks VI. You can then decide what code or values to use in the Periodic Tasks VI,
depending on the boolean global variable:

13.2.11 Using the Compressor in LabVIEW

This snippet shows how to set up your roboRIO project to use the Pneumatic Control Module
(PCM). The PCM automatically starts and stops the compressor when specific pressures are
measured in the tank. In your roboRIO program, you will need to add the following VIs.
For more information, check out the following links:
FRC Pneumatics Manual

PCM User’s Guide
Pneumatics Step by Step for the roboRIO

Begin VI

Place this snippet in the Begin.vi.

13.2. LabVIEW Resources 429

https://store.ctr-electronics.com/content/user-manual/PCM%20User%27s%20Guide.pdf
http://team358.org/files/pneumatic/Pneumatics-StepByStep-roboRIO.pdf

FIRST Robotics Competition

Teleop VI

Place this snippet in the Teleop.vi. This portion is only required if you are using the outputs
for other processes.

Finish VI

Place this snippet in Close Refs, save data, etc. frame of the Finish.vi.

430 Chapter 13. FRC LabVIEW Programming

14
Hardware APIs

This section discusses the control of motors and pneumatics through motor controllers,
solenoids and pneumatics, and their interface with Java and C++ WPILib.

14.1 Motors APIs

Programming your motors are absolutely essential to a moving robot! This section showcases
some helpful classes and examples for getting your robot up and moving!

14.1.1 Using Motor Controllers in Code

Motor controllers come in two main flavors: CAN and PWM. A CAN controller can send more
detailed status information back to the roboRIO, whereas a PWM controller can only be set
to a value. For information on using these motors with the WPI drivetrain classes, see Using
the WPILib Classes to Drive your Robot.

Using PWM Motor Controllers

PWM motor controllers can be controlled in the same way as a CAN motor controller. For a
more detailed background on how they work, see PWM Motor Controllers in Depth. To use
a PWM motor controller, simply use the appropriate motor controller class provided by WPI
and supply it the port the motor controller(s) are plugged into on the roboRIO. All approved
motor controllers have WPI classes provided for them.

Note: The Spark and VictorSP classes are used here as an example; other PWM motor
controller classes have exactly the same API.

Java

Spark spark = new Spark(0); // 0 is the RIO PWM port this is connected to

spark.set(-0.75); // the % output of the motor, between -1 and 1
(continues on next page)

431

FIRST Robotics Competition

(continued from previous page)

VictorSP victor = new VictorSP(0); // 0 is the RIO PWM port this is connected to

victor.set(0.6); // the % output of the motor, between -1 and 1

C++

frc::Spark spark{0}; // 0 is the RIO PWM port this is connected to

spark.Set(-0.75); // the % output of the motor, between -1 and 1

frc::VictorSP victor{0}; // 0 is the RIO PWM port this is connected to

victor.Set(0.6); // the % output of the motor, between -1 and 1

Python

spark = wpilib.Spark(0) # 0 is the RIO PWM port this is connected to

spark.set(-0.75) # the % output of the motor, between -1 and 1

victor = wpilib.VictorSP(0) # 0 is the RIO PWM port this is connected to

victor.set(0.6) # the % output of the motor, between -1 and 1

CAN Motor Controllers

A handful of CAN motor controllers are available through vendors such as CTR Electronics
and REV Robotics.

SPARK MAX

For information regarding the SPARK MAX CAN Motor Controller, which can be used in either
CAN or PWM mode, please refer to the SPARK MAX software resources and example code.

CTRE CAN Motor Controllers

Please refer to the third party CTRE documentation on the Phoenix software for more detailed
information. The documentation is available here.

14.1.2 PWM Motor Controllers in Depth

Hint: WPILib has extensive support for motor control. There are a number of classes that
represent different types of motor controllers and servos. There are currently two classes of
motor controllers, PWM based motor controllers and CAN based motor controllers. WPILib
also contains composite classes (like DifferentialDrive) which allow you to control multiple
motors with a single object. This article will cover the details of PWM motor controllers; CAN
controllers and composite classes will be covered in separate articles.

432 Chapter 14. Hardware APIs

https://www.revrobotics.com/sparkmax-software/
https://github.com/REVrobotics/SPARK-MAX-Examples
https://docs.ctr-electronics.com/

FIRST Robotics Competition

PWM Controllers, brief theory of operation

The acronym PWM stands for Pulse Width Modulation. For motor controllers, PWM can refer
to both the input signal and the method the controller uses to control motor speed. To control
the speed of the motor the controller must vary the perceived input voltage of the motor.
To do this the controller switches the full input voltage on and off very quickly, varying the
amount of time it is on based on the control signal. Because of the mechanical and electrical
time constants of the types of motors used in FRC® this rapid switching produces an effect
equivalent to that of applying a fixed lower voltage (50% switching produces the same effect
as applying ~6V).
The PWM signal the controllers use for an input is a little bit different. Even at the bounds
of the signal range (max forward or max reverse) the signal never approaches a duty cycle of
0% or 100%. Instead the controllers use a signal with a period of either 5ms or 10ms and a
midpoint pulse width of 1.5ms. Many of the controllers use the typical hobby RC controller
timing of 1ms to 2ms.

Raw vs Scaled output values

In general, all of the motor controller classes in WPILib take a scaled -1.0 to 1.0 value as the
output to an actuator. The PWM module in the FPGA on the roboRIO is capable of generating
PWM signals with periods of 5, 10, or 20ms and can vary the pulse width in 2000 steps of
~.001ms each around the midpoint (1000 steps in each direction around the midpoint). The
raw values sent to this module are in this 0-2000 range with 0 being a special case which holds
the signal low (disabled). The class for each motor controller contains information about what
the typical bound values (min, max and each side of the deadband) are as well as the typical
midpoint. WPILib can then use these values to map the scaled value into the proper range for
the motor controller. This allows for the code to switch seamlessly between different types of
controllers and abstracts out the details of the specific signaling.

Calibrating Motor Controllers

So if WPILib handles all this scaling, why would you ever need to calibrate your motor con-
troller? The values WPILib uses for scaling are approximate based on measurement of a num-
ber of samples of each controller type. Due to a variety of factors, the timing of an individual
motor controller may vary slightly. In order to definitively eliminate “humming” (midpoint
signal interpreted as slight movement in one direction) and drive the controller all the way
to each extreme, calibrating the controllers is still recommended. In general, the calibration
procedure for each controller involves putting the controller into calibration mode then driv-
ing the input signal to each extreme, then back to the midpoint. For examples on how to use
these motor controllers in your code, see Using Motor Controllers in Code/Using PWMMotor
Controllers

14.1. Motors APIs 433

FIRST Robotics Competition

14.1.3 Using the WPILib Classes to Drive your Robot

WPILib includes many classes to help make your robot get driving faster.

Standard drivetrains

434 Chapter 14. Hardware APIs

FIRST Robotics Competition

Differential Drive Robots

14.1. Motors APIs 435

FIRST Robotics Competition

These drive bases typically have two or more in-line traction or omni wheels per side (e.g.,
6WD or 8WD) and may also be known as “skid-steer”, “tank drive”, or “West Coast Drive”. The
Kit of Parts drivetrain is an example of a differential drive. These drivetrains are capable of
driving forward/backward and can turn by driving the two sides in opposite directions causing
the wheels to skid sideways. These drivetrains are not capable of sideways translational
movement.

Mecanum Drive

Mecanum drive is a method of driving using specially designed wheels that allow the robot
to drive in any direction without changing the orientation of the robot. A robot with a con-
ventional drivetrain (all wheels pointing in the same direction) must turn in the direction it
needs to drive. A mecanum robot can move in any direction without first turning and is called
a holonomic drive. The wheels (shown on this robot) have rollers that cause the forces from
driving to be applied at a 45 degree angle rather than straight forward as in the case of a
conventional drive.
When viewed from the top, the rollers on a mecanum drivetrain should form an ‘X’ pattern.
This results in the force vectors (when driving the wheel forward) on the front two wheels
pointing forward and inward and the rear two wheels pointing forward and outward. By
spinning the wheels in different directions, various components of the force vectors cancel
out, resulting in the desired robot movement. A quick chart of different movements has
been provided below, drawing out the force vectors for each of these motions may help in
understanding how these drivetrains work. By varying the speeds of the wheels in addition
to the direction, movements can be combined resulting in translation in any direction and
rotation, simultaneously.

436 Chapter 14. Hardware APIs

FIRST Robotics Competition

Drive Class Conventions

Motor Inversion

As of 2022, the right side of the drivetrain is no longer inverted by default. It is the respon-
sibility of the user to manage proper inversions for their drivetrain. Users can invert motors
by calling setInverted()/SetInverted() on their motor objects.
Java

PWMSparkMax m_motorRight = new PWMSparkMax(0);

@Override
public void robotInit() {

m_motorRight.setInverted(true);
}

C++

frc::PWMSparkMax m_motorLeft{0};

public:
void RobotInit() override {

m_motorRight.SetInverted(true);
}

Python

def robotInit(self):
self.motorRight = wpilib.PWMSparkMax(0)
self.motorRight.setInverted(True)

Squaring Inputs

When driving robots, it is often desirable to manipulate the joystick inputs such that the robot
has finer control at low speeds while still using the full output range. One way to accomplish
this is by squaring the joystick input, then reapplying the sign. By default the Differential
Drive class will square the inputs. If this is not desired (e.g. if passing values in from a
PIDController), use one of the drive methods with the squaredInputs parameter and set it to
false.

Input Deadband

By default, the Differential Drive class applies an input deadband of 0.02. This means that
input values with a magnitude below 0.02 (after any squaring as described above) will be
set to 0. In most cases these small inputs result from imperfect joystick centering and are
not sufficient to cause drivetrain movement, the deadband helps reduce unnecessary motor
heating that may result from applying these small values to the drivetrain. To change the
deadband, use the setDeadband() method.

14.1. Motors APIs 437

FIRST Robotics Competition

Maximum Output

Sometimes drivers feel that their drivetrain is driving too fast and want to limit the output.
This can be accomplished with the setMaxOutput() method. This maximum output is multi-
plied by result of the previous drive functions like deadband and squared inputs.

Motor Safety

Motor Safety is a mechanism in WPILib that takes the concept of a watchdog and breaks it
out into one watchdog (Motor Safety timer) for each individual actuator. Note that this pro-
tection mechanism is in addition to the System Watchdog which is controlled by the Network
Communications code and the FPGA and will disable all actuator outputs if it does not receive
a valid data packet for 125ms.
The purpose of the Motor Safety mechanism is the same as the purpose of a watchdog timer,
to disable mechanisms which may cause harm to themselves, people or property if the code
locks up and does not properly update the actuator output. Motor Safety breaks this concept
out on a per actuator basis so that you can appropriately determine where it is necessary
and where it is not. Examples of mechanisms that should have motor safety enabled are
systems like drive trains and arms. If these systems get latched on a particular value they
could cause damage to their environment or themselves. An example of a mechanism that
may not need motor safety is a spinning flywheel for a shooter. If this mechanism gets latched
on a particular value it will simply continue spinning until the robot is disabled. By default
Motor Safety is enabled for DifferentialDrive and MecanumDrive objects and disabled for all
other motor controllers and servos.
The Motor Safety feature operates by maintaining a timer that tracks how long it has been
since the feed() method has been called for that actuator. Code in the Driver Station class
initiates a comparison of these timers to the timeout values for any actuator with safety en-
abled every 5 received packets (100ms nominal). The set() methods of each motor controller
class and the set() and setAngle() methods of the servo class call feed() to indicate that the
output of the actuator has been updated.
The Motor Safety interface of motor controllers can be interacted with by the user using the
following methods:
Java

exampleJaguar.setSafetyEnabled(true);
exampleJaguar.setSafetyEnabled(false);
exampleJaguar.setExpiration(.1);
exampleJaguar.feed()

C++

exampleJaguar->SetSafetyEnabled(true);
exampleJaguar->SetSafetyEnabled(false);
exampleJaguar->SetExpiration(.1);
exampleJaguar->Feed();

Python

exampleJaguar.setSafetyEnabled(True)
exampleJaguar.setSafetyEnabled(False)
exampleJaguar.setExpiration(.1)
exampleJaguar.feed()

438 Chapter 14. Hardware APIs

FIRST Robotics Competition

By default all Drive objects enable Motor Safety. Depending on the mechanism and the struc-
ture of your program, you may wish to configure the timeout length of the motor safety (in
seconds). The timeout length is configured on a per actuator basis and is not a global setting.
The default (and minimum useful) value is 100ms.

Axis Conventions

The drive classes use the NWU axes convention (North-West-Up as external reference in the
world frame). The positive X axis points ahead, the positive Y axis points left, and the positive
Z axis points up. We use NWU here because the rest of the library, and math in general, use
NWU axes convention.
Joysticks follow NED (North-East-Down) convention, where the positive X axis points ahead,
the positive Y axis points right, and the positive Z axis points down. However, it’s important
to note that axes values are rotations around the respective axes, not translations. When
viewed with each axis pointing toward you, CCW is a positive value and CW is a negative
value. Pushing forward on the joystick is a CW rotation around the Y axis, so you get a
negative value. Pushing to the right is a CCW rotation around the X axis, so you get a positive
value.

Using the DifferentialDrive class to control Differential Drive robots

Note: WPILib provides separate Robot Drive classes for the most common drive train con-
figurations (differential and mecanum). The DifferentialDrive class handles the differential
drivetrain configuration. These drive bases typically have two or more in-line traction or omni
wheels per side (e.g., 6WD or 8WD) and may also be known as “skid-steer”, “tank drive”, or
“West Coast Drive” (WCD). The Kit of Parts drivetrain is an example of a differential drive.
There are methods to control the drive with 3 different styles (“Tank”, “Arcade”, or “Curva-
ture”), explained in the article below.

DifferentialDrive is a method provided for the control of “skid-steer” or “West Coast” drive-
trains, such as the Kit of Parts chassis. Instantiating a DifferentialDrive is as simple as so:
Java

public class Robot {
Spark m_left = new Spark(1);
Spark m_right = new Spark(2);
DifferentialDrive m_drive = new DifferentialDrive(m_left, m_right);

public void robotInit() {
m_left.setInverted(true); // if you want to invert motor outputs, you must do␣

↪→so here
}

C++ (Header)

class Robot {
private:

frc::Spark m_left{1};
frc::Spark m_right{2};
frc::DifferentialDrive m_drive{m_left, m_right};

14.1. Motors APIs 439

FIRST Robotics Competition

C++ (Source)

void Robot::RobotInit() {
m_left.SetInverted(true); // if you want to invert motor outputs, you must do so␣

↪→here
}

Python

def robotInit(self):
left = wpilib.Spark(1)
left.setInverted(True) # if you want to invert motor outputs, you can do so here
right = wpilib.Spark(2)
self.drive = wpilib.drive.DifferentialDrive(left, right)

Multi-Motor DifferentialDrive with MotorControllerGroups

Many FRC® drivetrains have more than 1 motor on each side. In order to use these with
DifferentialDrive, the motors on each side have to be collected into a single MotorController,
using the MotorControllerGroup class. The examples below show a 4 motor (2 per side)
drivetrain. To extend to more motors, simply create the additional controllers and pass them
all into the MotorController group constructor (it takes an arbitrary number of inputs).
Java

public class Robot {
Spark m_frontLeft = new Spark(1);
Spark m_rearLeft = new Spark(2);
MotorControllerGroup m_left = new MotorControllerGroup(m_frontLeft, m_rearLeft);

Spark m_frontRight = new Spark(3);
Spark m_rearRight = new Spark(4);
MotorControllerGroup m_right = new MotorControllerGroup(m_frontRight, m_

↪→rearRight);
DifferentialDrive m_drive = new DifferentialDrive(m_left, m_right);

public void robotInit() {
m_left.setInverted(true); // if you want to invert the entire side you can do␣

↪→so here
}

C++ (Header)

class Robot {
public:

frc::Spark m_frontLeft{1};
frc::Spark m_rearLeft{2};
frc::MotorControllerGroup m_left{m_frontLeft, m_rearLeft};

frc::Spark m_frontRight{3};
frc::Spark m_rearRight{4};
frc::MotorControllerGroup m_right{m_frontRight, m_rearRight};

frc::DifferentialDrive m_drive{m_left, m_right};

C++ (Source)

440 Chapter 14. Hardware APIs

FIRST Robotics Competition

void Robot::RobotInit() {
m_left.SetInverted(true); // if you want to invert the entire side you can do so␣

↪→here
}

Python

def robotInit(self):
frontLeft = wpilib.Spark(1)
rearLeft = wpilib.Spark(2)
left = wpilib.MotorControllerGroup(frontLeft, rearLeft)
left.setInverted(True) # if you want to invert the entire side you can do so here

frontRight = wpilib.Spark(3)
rearRight = wpilib.Spark(4)
right = wpilib.MotorControllerGroup(frontLeft, rearLeft)

self.drive = wpilib.drive.DifferentialDrive(left, right)

Drive Modes

Note: The DifferentialDrive class contains three different default modes of driving your
robot’s motors.

• Tank Drive, which controls the left and right side independently
• Arcade Drive, which controls a forward and turn speed
• Curvature Drive, a subset of Arcade Drive, which makes your robot handle like a car

with constant-curvature turns.

The DifferentialDrive class contains three default methods for controlling skid-steer or WCD
robots. Note that you can create your own methods of controlling the robot’s driving and
have them call tankDrive() with the derived inputs for left and right motors.
The Tank Drive mode is used to control each side of the drivetrain independently (usually with
an individual joystick axis controlling each). This example shows how to use the Y-axis of two
separate joysticks to run the drivetrain in Tank mode. Construction of the objects has been
omitted, for above for drivetrain construction and here for Joystick construction.
The Arcade Drive mode is used to control the drivetrain using speed/throttle and rotation
rate. This is typically used either with two axes from a single joystick, or split across joysticks
(often on a single gamepad) with the throttle coming from one stick and the rotation from
another. This example shows how to use a single joystick with the Arcade mode. Construction
of the objects has been omitted, for above for drivetrain construction and here for Joystick
construction.
Like Arcade Drive, the Curvature Drive mode is used to control the drivetrain using
speed/throttle and rotation rate. The difference is that the rotation control input controls
the radius of curvature instead of rate of heading change, much like the steering wheel of
a car. This mode also supports turning in place, which is enabled when the third boolean
parameter is true.
Java

14.1. Motors APIs 441

FIRST Robotics Competition

public void teleopPeriodic() {
// Tank drive with a given left and right rates
myDrive.tankDrive(-leftStick.getY(), -rightStick.getY());

// Arcade drive with a given forward and turn rate
myDrive.arcadeDrive(-driveStick.getY(), -driveStick.getX());

// Curvature drive with a given forward and turn rate, as well as a button for␣
↪→turning in-place.

myDrive.curvatureDrive(-driveStick.getY(), -driveStick.getX(), driveStick.
↪→getButton(1));
}

C++

void TeleopPeriodic() override {
// Tank drive with a given left and right rates
myDrive.TankDrive(-leftStick.GetY(), -rightStick.GetY());

// Arcade drive with a given forward and turn rate
myDrive.ArcadeDrive(-driveStick.GetY(), -driveStick.GetX());

// Curvature drive with a given forward and turn rate, as well as a quick-turn␣
↪→button

myDrive.CurvatureDrive(-driveStick.GetY(), -driveStick.GetX(), driveStick.
↪→GetButton(1));
}

Python

def teleopPeriodic(self):
Tank drive with a given left and right rates
self.myDrive.tankDrive(-self.leftStick.getY(), -self.rightStick.getY())

Arcade drive with a given forward and turn rate
self.myDrive.arcadeDrive(-self.driveStick.getY(), -self.driveStick.getX())

Curvature drive with a given forward and turn rate, as well as a button for␣
↪→turning in-place.

self.myDrive.curvatureDrive(-self.driveStick.getY(), -self.driveStick.getX(),␣
↪→self.driveStick.getButton(1))

Using the MecanumDrive class to control Mecanum Drive robots

MecanumDrive is a method provided for the control of holonomic drivetrains with Mecanum
wheels, such as the Kit of Parts chassis with the mecanum drive upgrade kit, as shown above.
Instantiating a MecanumDrive is as simple as so:
Java

24 @Override
25 public void robotInit() {
26 PWMSparkMax frontLeft = new PWMSparkMax(kFrontLeftChannel);
27 PWMSparkMax rearLeft = new PWMSparkMax(kRearLeftChannel);
28 PWMSparkMax frontRight = new PWMSparkMax(kFrontRightChannel);

(continues on next page)

442 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
29 PWMSparkMax rearRight = new PWMSparkMax(kRearRightChannel);
30

31 // Invert the right side motors.
32 // You may need to change or remove this to match your robot.
33 frontRight.setInverted(true);
34 rearRight.setInverted(true);
35

36 m_robotDrive = new MecanumDrive(frontLeft, rearLeft, frontRight, rearRight);
37

38 m_stick = new Joystick(kJoystickChannel);
39 }

C++

31 private:
32 static constexpr int kFrontLeftChannel = 0;
33 static constexpr int kRearLeftChannel = 1;
34 static constexpr int kFrontRightChannel = 2;
35 static constexpr int kRearRightChannel = 3;
36

37 static constexpr int kJoystickChannel = 0;
38

39 frc::PWMSparkMax m_frontLeft{kFrontLeftChannel};
40 frc::PWMSparkMax m_rearLeft{kRearLeftChannel};
41 frc::PWMSparkMax m_frontRight{kFrontRightChannel};
42 frc::PWMSparkMax m_rearRight{kRearRightChannel};
43 frc::MecanumDrive m_robotDrive{m_frontLeft, m_rearLeft, m_frontRight,
44 m_rearRight};

Python

21 def robotInit(self):
22 self.frontLeft = wpilib.PWMSparkMax(self.kFrontLeftChannel)
23 self.rearLeft = wpilib.PWMSparkMax(self.kRearLeftChannel)
24 self.frontRight = wpilib.PWMSparkMax(self.kFrontRightChannel)
25 self.rearRight = wpilib.PWMSparkMax(self.kRearRightChannel)
26

27 # invert the right side motors
28 # you may need to change or remove this to match your robot
29 self.frontRight.setInverted(True)
30 self.rearRight.setInverted(True)
31

32 self.robotDrive = wpilib.drive.MecanumDrive(
33 self.frontLeft, self.rearLeft, self.frontRight, self.rearRight
34)
35

36 self.stick = wpilib.Joystick(self.kJoystickChannel)

14.1. Motors APIs 443

FIRST Robotics Competition

Mecanum Drive Modes

Note: The drive axis conventions are different from common joystick axis conventions. See
the Axis Conventions above for more information.

The MecanumDrive class contains two different default modes of driving your robot’s motors.
• driveCartesian: Angles are measured clockwise from the positive X axis. The robot’s

speed is independent from its angle or rotation rate.
• drivePolar: Angles are measured counter-clockwise from straight ahead. The speed at

which the robot drives (translation) is independent from its angle or rotation rate.
Java

public void teleopPeriodic() {
// Drive using the X, Y, and Z axes of the joystick.
m_robotDrive.driveCartesian(-m_stick.getY(), -m_stick.getX(), -m_stick.getZ());
// Drive at 45 degrees relative to the robot, at the speed given by the Y axis of␣

↪→the joystick, with no rotation.
m_robotDrive.drivePolar(-m_stick.getY(), Rotation2d.fromDegrees(45), 0);

}

C++

void TeleopPeriodic() override {
// Drive using the X, Y, and Z axes of the joystick.
m_robotDrive.driveCartesian(-m_stick.GetY(), -m_stick.GetX(), -m_stick.GetZ());
// Drive at 45 degrees relative to the robot, at the speed given by the Y axis of␣

↪→the joystick, with no rotation.
m_robotDrive.drivePolar(-m_stick.GetY(), 45_deg, 0);

}

Python

def teleopPeriodic(self):
// Drive using the X, Y, and Z axes of the joystick.
self.robotDrive.driveCartesian(-self.stick.getY(), -self.stick.getX(), -self.

↪→stick.getZ())
// Drive at 45 degrees relative to the robot, at the speed given by the Y axis of␣

↪→the joystick, with no rotation.
self.robotDrive.drivePolar(-self.stick.getY(), Rotation2d.fromDegrees(45), 0)

Field-Oriented Driving

A 4th parameter can be supplied to the driveCartesian(double ySpeed, double xSpeed,
double zRotation, double gyroAngle) method, the angle returned from a Gyro sensor.
This will adjust the rotation value supplied. This is particularly useful with mecanum drive
since, for the purposes of steering, the robot really has no front, back or sides. It can go in
any direction. Adding the angle in degrees from a gyro object will cause the robot to move
away from the drivers when the joystick is pushed forwards, and towards the drivers when it
is pulled towards them, regardless of what direction the robot is facing.
The use of field-oriented driving makes often makes the robot much easier to drive, especially
compared to a “robot-oriented” drive system where the controls are reversed when the robot

444 Chapter 14. Hardware APIs

FIRST Robotics Competition

is facing the drivers.
Just remember to get the gyro angle each time driveCartesian() is called.

Note: Many teams also like to ramp the joysticks inputs over time to promote a smooth
acceleration and reduce jerk. This can be accomplished with a Slew Rate Limiter.

14.1.4 Repeatable Low Power Movement - Controlling Servos with
WPILib

Servo motors are a type of motor which integrates positional feedback into the motor in order
to allow a single motor to perform repeatable, controllable movement, taking position as the
input signal. WPILib provides the capability to control servos which match the common hobby
input specification (Pulse Width Modulation (PWM) signal, 0.6 ms - 2.4 ms pulse width)

Constructing a Servo object

Java

Servo exampleServo = new Servo(1);

C++

frc::Servo exampleServo {1};

Python

exampleServo = wpilib.Servo(1)

A servo object is constructed by passing a channel.

Setting Servo Values

Java

exampleServo.set(.5);
exampleServo.setAngle(75);

C++

exampleServo.Set(.5);
exampleServo.SetAngle(75);

Python

exampleServo.set(.5)
exampleServo.setAngle(75)

There are two methods of setting servo values in WPILib:
• Scaled Value - Sets the servo position using a scaled 0 to 1.0 value. 0 corresponds to one

extreme of the servo and 1.0 corresponds to the other

14.1. Motors APIs 445

FIRST Robotics Competition

• Angle - Set the servo position by specifying the angle, in degrees from 0 to 180. This
method will work for servos with the same range as the Hitec HS-322HD servo . Any
values passed to this method outside the specified range will be coerced to the boundary.

14.2 Pneumatics APIs

14.2.1 Operating pneumatic cylinders

Using the FRC Control System to control Pneumatics

There are two options for operating solenoids to control pneumatic cylinders, the CTRE Pneu-
matics Control Module and the REV Robotics Pneumatics Hub.

The CTRE Pneumatics Control Module (PCM) is a CAN-based device that provides control
over the compressor and up to 8 solenoids per module.

446 Chapter 14. Hardware APIs

FIRST Robotics Competition

The REV Pneumatic Hub (PH) is a CAN-based device that provides control over the compres-
sor and up to 16 solenoids per module.
These devices are integrated into WPILib through a series of classes that make them simple
to use. The closed loop control of the Compressor and Pressure switch is handled by the PCM
hardware and the Solenoids are handled by the Solenoid class that controls the solenoid
channels. These modules are responsible for regulating the robot’s pressure using a pressure
switch and a compressor and switching solenoids on and off. They communicate with the
roboRIO over CAN. For more information, see Hardware Component Overview

Module Numbers

CAN Devices are identified by their Node ID. The default Node ID for PCMs is 0. The default
Node ID for PHs is 1. If using a single module on the bus it is recommended to leave it at the
default Node ID. Additional modules can be used where the modules corresponding solenoids
are differentiated by the module number in the constructors of the Solenoid and Compressor
classes.

14.2. Pneumatics APIs 447

FIRST Robotics Competition

Generating and Storing Pressure

Pressure is created using a pneumatic compressor and stored in pneumatic tanks. The com-
pressor doesn’t necessarily have to be on the robot, but must be powered by the robot’s
pneumatics module. The “Closed Loop” mode on the Compressor is enabled by default, and
it is not recommended that teams change this setting. When closed loop control is enabled
the pneumatic module will automatically turn the compressor on when the digital pressure
switch is closed (below the pressure threshold) and turn it off when the pressure switch is
open (~120PSI). When closed loop control is disabled the compressor will not be turned on.
Using the Compressor (Java / C++) class, users can query the status of the compressor. The
state (currently on or off), pressure switch state, and compressor current can all be queried
from the Compressor object.

Note: The Compressor object is only needed if you want the ability to turn off the compressor,
change the pressure sensor (PH only), or query compressor status.

Java

Compressor pcmCompressor = new Compressor(0, PneumaticsModuleType.CTREPCM);
Compressor phCompressor = new Compressor(1, PneumaticsModuleType.REVPH);

pcmCompressor.enableDigital();
pcmCompressor.disable();

boolean enabled = pcmCompressor.enabled();
boolean pressureSwitch = pcmCompressor.getPressureSwitchValue();
double current = pcmCompressor.getCompressorCurrent();

C++

frc::Compressor pcmCompressor{0, frc::PneumaticsModuleType::CTREPCM};
frc::Compressor phCompressor{1, frc::PneumaticsModuleType::REVPH};

pcmCompressor.EnableDigital();
pcmCompressor.Disable();

bool enabled = pcmCompressor.Enabled();
bool pressureSwitch = pcmCompressor.GetPressureSwitchValue();
double current = pcmCompressor.GetCompressorCurrent();

The Pneumatic Hub also has methods for enabling compressor control using the REV Analog
Pressure Sensor (enableAnalog method).

Solenoid Control

FRC teams can use a solenoid valve as part of performing a variety of tasks, including shifting
gearboxes and moving robot mechanisms. A solenoid valve is used to electronically switch a
pressurized air line “on” or “off”. Solenoids are controlled by a robot’s Pneumatics Control
Module, or Pneumatic Hub, which is in turn connected to the robot’s roboRIO via CAN. The
easiest way to see a solenoid’s state is via the LEDs on the PCM or PH (which indicates if the
valve is “on” or not). When un-powered, solenoids can be manually actuated with the small
button on the valve body.

448 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Compressor.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_compressor.html

FIRST Robotics Competition

Single acting solenoids apply or vent pressure from a single output port. They are typically
used either when an external force will provide the return action of the cylinder (spring, grav-
ity, separate mechanism) or in pairs to act as a double solenoid. A double solenoid switches
air flow between two output ports (many also have a center position where neither output
is vented or connected to the input). Double solenoid valves are commonly used when you
wish to control both the extend and retract actions of a cylinder using air pressure. Double
solenoid valves have two electrical inputs which connect back to two separate channels on
the solenoid breakout.

Single Solenoids in WPILib

Single solenoids in WPILib are controlled using the Solenoid class (Java / C++). To construct
a Solenoid object, simply pass the desired port number (assumes default CAN ID) and pneu-
matics module type or CAN ID, pneumatics module type, and port number to the constructor.
To set the value of the solenoid call set(true) to enable or set(false) to disable the solenoid
output.
Java

Solenoid exampleSolenoidPCM = new Solenoid(PneumaticsModuleType.CTREPCM, 1);
Solenoid exampleSolenoidPH = new Solenoid(PneumaticsModuleType.REVPH, 1);

exampleSolenoidPCM.set(true);
exampleSolenoidPCM.set(false);

C++

frc::Solenoid exampleSolenoidPCM{frc::PneumaticsModuleType::CTREPCM, 1};
frc::Solenoid exampleSolenoidPH{frc::PneumaticsModuleType::REVPH, 1};

exampleSolenoidPCM.Set(true);
exampleSolenoidPCM.Set(false);

Double Solenoids in WPILib

Double solenoids are controlled by the DoubleSolenoid class in WPILib (Java / C++). These
are constructed similarly to the single solenoid but there are now two port numbers to pass
to the constructor, a forward channel (first) and a reverse channel (second). The state of
the valve can then be set to kOff (neither output activated), kForward (forward channel en-
abled) or kReverse (reverse channel enabled). Additionally, the CAN ID can be passed to the
DoubleSolenoid if teams have a non-standard CAN ID.
Java

// Using "import static an.enum.or.constants.inner.class.*;" helps reduce verbosity
// this replaces "DoubleSolenoid.Value.kForward" with just kForward
// further reading is available at https://www.geeksforgeeks.org/static-import-java/
import static edu.wpi.first.wpilibj.DoubleSolenoid.Value.*;

DoubleSolenoid exampleDoublePCM = new DoubleSolenoid(PneumaticsModuleType.CTREPCM, 1,␣
↪→2);
DoubleSolenoid exampleDoublePH = new DoubleSolenoid(9, PneumaticsModuleType.REVPH, 4,␣
↪→5);

(continues on next page)

14.2. Pneumatics APIs 449

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Solenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_solenoid.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DoubleSolenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_double_solenoid.html

FIRST Robotics Competition

(continued from previous page)

exampleDoublePCM.set(kOff);
exampleDoublePCM.set(kForward);
exampleDoublePCM.set(kReverse);

C++

frc::DoubleSolenoid exampleDoublePCM{frc::PneumaticsModuleType::CTREPCM, 1, 2};
frc::DoubleSolenoid exampleDoublePH{9, frc::PneumaticsModuleType::REVPH, 4, 5};

exampleDoublePCM.Set(frc::DoubleSolenoid::Value::kOff);
exampleDoublePCM.Set(frc::DoubleSolenoid::Value::kForward);
exampleDoublePCM.Set(frc::DoubleSolenoid::Value::kReverse);

Toggling Solenoids

Solenoids can be switched from one output to the other (known as toggling) by using the
.toggle() method.

Note: Since a DoubleSolenoid defaults to off, you will have to set it before it can be toggled.

Java

Solenoid exampleSingle = new Solenoid(PneumaticsModuleType.CTREPCM, 0);
DoubleSolenoid exampleDouble = new DoubleSolenoid(PneumaticsModuleType.CTREPCM, 1, 2);

// Initialize the DoubleSolenoid so it knows where to start. Not required for single␣
↪→solenoids.
exampleDouble.set(kReverse);

if (m_controller.getYButtonPressed()) {
exampleSingle.toggle();
exampleDouble.toggle();

}

C++

frc::Solenoid exampleSingle{frc::PneumaticsModuleType::CTREPCM, 0};
frc::DoubleSolenoid exampleDouble{frc::PneumaticsModuleType::CTREPCM, 1, 2};

// Initialize the DoubleSolenoid so it knows where to start. Not required for single␣
↪→solenoids.
exampleDouble.Set(frc::DoubleSolenoid::Value::kReverse);

if (m_controller.GetYButtonPressed()) {
exampleSingle.Toggle();
exampleDouble.Toggle();

}

450 Chapter 14. Hardware APIs

FIRST Robotics Competition

Pressure Transducers

A pressure transducer is a sensor where analog voltage is proportial to the measured pres-
sure.

Pneumatic Hub

The Pneumatic Hub has analog inputs that may be used to read a pressure transducer using
the Compressor class.
Java

Compressor phCompressor = new Compressor(1, PneumaticsModuleType.REVPH);

double current = phCompressor.getPressure();

C++

#include <units/pressure.h>

frc::Compressor phCompressor{1, frc::PneumaticsModuleType::REVPH};

units::pounds_per_square_inch_t current = phCompressor.GetPressure();

roboRIO

A pressure transducer can be connected to the Analog Input ports on the roboRIO, and can
be read by the AnalogInput or AnalogPotentiometer classes in WPILib.
Java

import edu.wpi.first.wpilibj.AnalogInput;
import edu.wpi.first.wpilibj.AnalogPotentiometer;

// product-specific voltage->pressure conversion, see product manual
// in this case, 250(V/5)-25
// the scale parameter in the AnalogPotentiometer constructor is scaled from 1␣
↪→instead of 5,
// so if r is the raw AnalogPotentiometer output, the pressure is 250r-25
double scale = 250, offset = -25;
AnalogPotentiometer pressureTransducer = new AnalogPotentiometer(/* the AnalogIn␣
↪→port*/ 2, scale, offset);

// scaled values in psi units
double psi = pressureTransducer.get();

C++

// product-specific voltage->pressure conversion, see product manual
// in this case, 250(V/5)-25
// the scale parameter in the AnalogPotentiometer constructor is scaled from 1␣
↪→instead of 5,
// so if r is the raw AnalogPotentiometer output, the pressure is 250r-25
double scale = 250, offset = -25;

(continues on next page)

14.2. Pneumatics APIs 451

FIRST Robotics Competition

(continued from previous page)
frc::AnalogPotentiometer pressureTransducer{/* the AnalogIn port*/ 2, scale, offset};

// scaled values in psi units
double psi = pressureTransducer.Get();

14.3 Sensors

Sensors are an integral way of having your robot hardware and software communicate with
each other. This section highlights interfacing with those sensors at a software level.

14.3.1 Sensor Overview - Software

Note: This section covers using sensors in software. For a guide to sensor hardware, see
Sensor Overview - Hardware.

Note: While cameras may definitely be considered “sensors”, vision processing is a
sufficiently-complicated subject that it is covered in its own section, rather than here.

In order to be effective, it is often vital for robots to be able to gather information about their
surroundings. Devices that provide feedback to the robot on the state of its environment are
called “sensors.” WPILib innately supports a large variety of sensors through classes included
in the library. This section will provide a guide to both using common sensor types through
WPILib, as well as writing code for sensors without official support.

What sensors does WPILIB support?

The roboRIO includes an FPGA which allows accurate real-time measuring of a variety of
sensor input. WPILib, in turn, provides a number of classes for accessing this functionality.
WPILib provides native support for:

• Accelerometers
• Gyroscopes
• Ultrasonic rangefinders
• Potentiometers
• Counters
• Quadrature encoders
• Limit switches

Additionally, WPILib includes lower-level classes for interfacing directly with the FPGA’s dig-
ital and analog inputs and outputs.

452 Chapter 14. Hardware APIs

FIRST Robotics Competition

14.3.2 Accelerometers - Software

Note: This section covers accelerometers in software. For a hardware guide to accelerom-
eters, see Accelerometers - Hardware.

An accelerometer is a device that measures acceleration.
Accelerometers generally come in two types: single-axis and 3-axis. A single-axis accelerom-
eter measures acceleration along one spatial dimension; a 3-axis accelerometer measures
acceleration along all three spatial dimensions at once.
WPILib supports single-axis accelerometers through the AnalogAccelerometer class.
Three-axis accelerometers often require more complicated communications protocols (such
as SPI or I2C) in order to send multi-dimensional data. WPILib has native support for the
following 3-axis accelerometers:

• ADXL345_I2C
• ADXL345_SPI
• ADXL362
• BuiltInAccelerometer

AnalogAccelerometer

The AnalogAccelerometer class (Java, C++) allows users to read values from a single-axis
accelerometer that is connected to one of the roboRIO’s analog inputs.
Java

// Creates an analog accelerometer on analog input 0
AnalogAccelerometer accelerometer = new AnalogAccelerometer(0);

// Sets the sensitivity of the accelerometer to 1 volt per G
accelerometer.setSensitivity(1);

// Sets the zero voltage of the accelerometer to 3 volts
accelerometer.setZero(3);

// Gets the current acceleration
double accel = accelerometer.getAcceleration();

C++

// Creates an analog accelerometer on analog input 0
frc::AnalogAccelerometer accelerometer{0};

// Sets the sensitivity of the accelerometer to 1 volt per G
accelerometer.SetSensitivity(1);

// Sets the zero voltage of the accelerometer to 3 volts
accelerometer.SetZero(3);

// Gets the current acceleration
double accel = accelerometer.GetAcceleration();

14.3. Sensors 453

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogAccelerometer.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_accelerometer.html

FIRST Robotics Competition

If users have a 3-axis analog accelerometer, they can use three instances of this class, one for
each axis.

The Accelerometer interface

All 3-axis accelerometers in WPILib implement the Accelerometer interface (Java, C++). This
interface defines functionality and settings common to all supported 3-axis accelerometers.
The Accelerometer interface contains getters for the acceleration along each cardinal direc-
tion (x, y, and z), as well as a setter for the range of accelerations the accelerometer will
measure.

Warning: Not all accelerometers are capable of measuring all ranges.

Java

// Sets the accelerometer to measure between -8 and 8 G's
accelerometer.setRange(Accelerometer.Range.k8G);

C++

// Sets the accelerometer to measure between -8 and 8 G's
accelerometer.SetRange(Accelerometer::Range::kRange_8G);

ADXL345_I2C

The ADXL345_I2C class (Java, C++) provides support for the ADXL345 accelerometer over
the I2C communications bus.
Java

// Creates an ADXL345 accelerometer object on the MXP I2C port
// with a measurement range from -8 to 8 G's
Accelerometer accelerometer = new ADXL345_I2C(I2C.Port.kMXP, Accelerometer.Range.k8G);

C++

// Creates an ADXL345 accelerometer object on the MXP I2C port
// with a measurement range from -8 to 8 G's
frc::ADXL345_I2C accelerometer{I2C::Port::kMXP, Accelerometer::Range::kRange_8G};

ADXL345_SPI

The ADXL345_SPI class (Java, C++) provides support for the ADXL345 accelerometer over
the SPI communications bus.
Java

// Creates an ADXL345 accelerometer object on the MXP SPI port
// with a measurement range from -8 to 8 G's
Accelerometer accelerometer = new ADXL345_SPI(SPI.Port.kMXP, Accelerometer.Range.k8G);

454 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/interfaces/Accelerometer.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_accelerometer.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADXL345_I2C.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_x_l345___i2_c.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADXL345_SPI.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_x_l345___s_p_i.html

FIRST Robotics Competition

C++

// Creates an ADXL345 accelerometer object on the MXP SPI port
// with a measurement range from -8 to 8 G's
frc::ADXL345_SPI accelerometer{SPI::Port::kMXP, Accelerometer::Range::kRange_8G};

ADXL362

The ADXL362 class (Java, C++) provides support for the ADXL362 accelerometer over the SPI
communications bus.
Java

// Creates an ADXL362 accelerometer object on the MXP SPI port
// with a measurement range from -8 to 8 G's
Accelerometer accelerometer = new ADXL362(SPI.Port.kMXP, Accelerometer.Range.k8G);

C++

// Creates an ADXL362 accelerometer object on the MXP SPI port
// with a measurement range from -8 to 8 G's
frc::ADXL362 accelerometer{SPI::Port::kMXP, Accelerometer::Range::kRange_8G};

BuiltInAccelerometer

The BuiltInAccelerometer class (Java, C++) provides access to the roboRIO’s own built-in
accelerometer:
Java

// Creates an object for the built-in accelerometer
// Range defaults to +- 8 G's
Accelerometer accelerometer = new BuiltInAccelerometer();

C++

// Creates an object for the built-in accelerometer
// Range defaults to +- 8 G's
frc::BuiltInAccelerometer accelerometer{};

Third-party accelerometers

While WPILib provides native support for a number of accelerometers that are available in
the kit of parts or through FIRST Choice, there are a few popular AHRS (Attitude and Heading
Reference System) devices commonly used in FRC that include accelerometers. These are
generally controlled through vendor libraries, though if they have a simple analog output they
can be used with the AnalogAccelerometer class.

14.3. Sensors 455

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADXL362.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_x_l362.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/BuiltInAccelerometer.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_built_in_accelerometer.html

FIRST Robotics Competition

Using accelerometers in code

Note: Accelerometers, as their name suggests, measure acceleration. Precise accelerome-
ters can be used to determine position through double-integration (since acceleration is the
second derivative of position), much in the way that gyroscopes are used to determine head-
ing. However, the accelerometers available for use in FRC are not nearly high-enough quality
to be used this way.

It is recommended to use accelerometers in FRC® for any application which needs a rough
measurement of the current acceleration. This can include detecting collisions with other
robots or field elements, so that vulnerable mechanisms can be automatically retracted. They
may also be used to determine when the robot is passing over rough terrain for an autonomous
routine (such as traversing the defenses in FIRST Stronghold).
For detecting collisions, it is often more robust to measure the jerk than the acceleration.
The jerk is the derivative (or rate of change) of acceleration, and indicates how rapidly the
forces on the robot are changing - the sudden impulse from a collision causes a sharp spike in
the jerk. Jerk can be determined by simply taking the difference of subsequent acceleration
measurements, and dividing by the time between them:
Java

double prevXAccel = 0;
double prevYAccel = 0;

Accelerometer accelerometer = new BuiltInAccelerometer();

@Override
public void robotPeriodic() {

// Gets the current accelerations in the X and Y directions
double xAccel = accelerometer.getX();
double yAccel = accelerometer.getY();

// Calculates the jerk in the X and Y directions
// Divides by .02 because default loop timing is 20ms
double xJerk = (xAccel - prevXAccel)/.02;
double yJerk = (yAccel - prevYAccel)/.02;

prevXAccel = xAccel;
prevYAccel = yAccel;

}

C++

double prevXAccel = 0;
double prevYAccel = 0;

frc::BuiltInAccelerometer accelerometer{};

void Robot::RobotPeriodic() {
// Gets the current accelerations in the X and Y directions
double xAccel = accelerometer.GetX();
double yAccel = accelerometer.GetY();

// Calculates the jerk in the X and Y directions
(continues on next page)

456 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
// Divides by .02 because default loop timing is 20ms
double xJerk = (xAccel - prevXAccel)/.02;
double yJerk = (yAccel - prevYAccel)/.02;

prevXAccel = xAccel;
prevYAccel = yAccel;

}

Most accelerometers legal for FRC use are quite noisy, and it is often a good idea to combine
them with the LinearFilter class (Java, C++) to reduce the noise:
Java

Accelerometer accelerometer = new BuiltInAccelerometer();

// Create a LinearFilter that will calculate a moving average of the measured X␣
↪→acceleration over the past 10 iterations of the main loop

LinearFilter xAccelFilter = LinearFilter.movingAverage(10);

@Override
public void robotPeriodic() {

// Get the filtered X acceleration
double filteredXAccel = xAccelFilter.calculate(accelerometer.getX());

}

C++

frc::BuiltInAccelerometer accelerometer;

// Create a LinearFilter that will calculate a moving average of the measured X␣
↪→acceleration over the past 10 iterations of the main loop
auto xAccelFilter = frc::LinearFilter::MovingAverage(10);

void Robot::RobotPeriodic() {
// Get the filtered X acceleration
double filteredXAccel = xAccelFilter.Calculate(accelerometer.GetX());

}

14.3.3 Gyroscopes - Software

Note: This section covers gyros in software. For a hardware guide to gyros, see Gyroscopes
- Hardware.

A gyroscope, or “gyro,” is an angular rate sensor typically used in robotics to measure and/or
stabilize robot headings. WPILib natively provides specific support for the ADXRS450 gyro
available in the kit of parts, as well as more general support for a wider variety of analog
gyros through the AnalogGyro class. Most common 3rd party gyros inherit from the Gyro
interface making them easily usable too!

14.3. Sensors 457

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/filter/LinearFilter.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_linear_filter.html

FIRST Robotics Competition

The Gyro interface

All natively-supported gyro objects in WPILib implement the Gyro interface (Java, C++). This
interface provides methods for getting the current angular rate and heading, zeroing the
current heading, and calibrating the gyro.

Note: It is crucial that the robot remain stationary while calibrating a gyro.

ADIS16448

The ADIS16448 uses the ADIS16448_IMU class (Java, C++). See the Analog Devices
ADIS16448 documentation for additional information and examples.

Warning: The Analog Devices documentation linked above contains outdated instructions
for software installation as the ADIS16448 is now built into WPILib.

Java

// ADIS16448 plugged into the MXP port
ADIS16448_IMU gyro = new ADIS16448_IMU();

C++

// ADIS16448 plugged into the MXP port
ADIS16448_IMU gyro;

ADIS16470

The ADIS16470 uses the ADIS16470_IMU class (Java, C++). See the Analog Devices
ADIS16470 documentation for additional information and examples.

Warning: The Analog Devices documentation linked above contains outdated instructions
for software installation as the ADIS16470 is now built into WPILib.

Java

// ADIS16470 plugged into the MXP port
ADIS16470_IMU gyro = new ADIS16470_IMU();

C++

// ADIS16470 plugged into the MXP port
ADIS16470_IMU gyro;

458 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/interfaces/Gyro.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_gyro.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADIS16448_IMU.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_i_s16448___i_m_u.html
https://wiki.analog.com/first/adis16448_imu_frc
https://wiki.analog.com/first/adis16448_imu_frc
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADIS16470_IMU.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_i_s16470___i_m_u.html
https://wiki.analog.com/first/adis16470_imu_frc
https://wiki.analog.com/first/adis16470_imu_frc

FIRST Robotics Competition

ADXRS450_Gyro

The ADXRS450_Gyro class (Java, C++) provides support for the Analog Devices ADXRS450
gyro available in the kit of parts, which connects over the SPI bus.

Note: ADXRS450 Gyro accumulation is handled through special circuitry in the FPGA; ac-
cordingly only a single instance of ADXRS450_Gyro may be used.

Java

// Creates an ADXRS450_Gyro object on the onboard SPI port
ADXRS450_Gyro gyro = new ADXRS450_Gyro();

C++

// Creates an ADXRS450_Gyro object on the onboard SPI port
frc::ADXRS450_Gyro gyro;

AnalogGyro

The AnalogGyro class (Java, C++) provides support for any single-axis gyro with an analog
output.

Note: Gyro accumulation is handled through special circuitry in the FPGA; accordingly,
AnalogGyro`s may only be used on analog ports 0 and 1.

Java

// Creates an AnalogGyro object on port 0
AnalogGyro gyro = new AnalogGyro(0);

C++

// Creates an AnalogGyro object on port 0
frc::AnalogGyro gyro{0};

navX

The navX uses the AHRS class and implements the Gyro interface. See the navX documentation
for additional connection types.
Java

// navX MXP using SPI
AHRS gyro = new AHRS(SPI.Port.kMXP);

C++

// navX MXP using SPI
AHRS gyro{SPI::Port::kMXP};

14.3. Sensors 459

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/ADXRS450_Gyro.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_a_d_x_r_s450___gyro.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogGyro.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_gyro.html
https://pdocs.kauailabs.com/navx-mxp/guidance/selecting-an-interface/

FIRST Robotics Competition

Pigeon

The Pigeon should use the WPI_PigeonIMU class that implements Gyro. The Pigeon can either
be connected with CAN or by data cable to a TalonSRX. The Pigeon IMU User’s Guide contains
full details on using the Pigeon.
Java

WPI_PigeonIMU gyro = new WPI_PigeonIMU(0); // Pigeon is on CAN Bus with device ID 0
// OR (choose one or the other based on your connection)
TalonSRX talon = new TalonSRX(0); // TalonSRX is on CAN Bus with device ID 0
WPI_PigeonIMU gyro = new WPI_PigeonIMU(talon); // Pigeon uses the talon created above

C++

WPI_PigeonIMU gyro{0}; // Pigeon is on CAN Bus with device ID 0
// OR (choose one or the other based on your connection)
TalonSRX talon{0}; // TalonSRX is on CAN Bus with device ID 0
WPI_PigeonIMU gyro{talon}; // Pigeon uses the talon created above

Using gyros in code

Note: As gyros measure rate rather than position, position is inferred by integrating (adding
up) the rate signal to get the total change in angle. Thus, gyro angle measurements are always
relative to some arbitrary zero angle (determined by the angle of the gyro when either the
robot was turned on or a zeroing method was called), and are also subject to accumulated
errors (called “drift”) that increase in magnitude the longer the gyro is used. The amount of
drift varies with the type of gyro.

Gyros are extremely useful in FRC for both measuring and controlling robot heading. Since
FRC matches are generally short, total gyro drift over the course of an FRC match tends to
be manageably small (on the order of a couple of degrees for a good-quality gyro). Moreover,
not all useful gyro applications require the absolute heading measurement to remain accurate
over the course of the entire match.

Displaying the robot heading on the dashboard

Shuffleboard includes a widget for displaying heading data from a Gyro in the form of a com-
pass. This can be helpful for viewing the robot heading when sight lines to the robot are
obscured:
Java

// Use gyro declaration from above here

public void robotInit() {
// Places a compass indicator for the gyro heading on the dashboard
Shuffleboard.getTab("Example tab").add(gyro);

}

C++

460 Chapter 14. Hardware APIs

https://store.ctr-electronics.com/content/user-manual/Pigeon%20IMU%20User's%20Guide.pdf

FIRST Robotics Competition

// Use gyro declaration from above here

void Robot::RobotInit() {
// Places a compass indicator for the gyro heading on the dashboard
frc::Shuffleboard.GetTab("Example tab").Add(gyro);

}

Stabilizing heading while driving

A very common use for a gyro is to stabilize robot heading while driving, so that the robot
drives straight. This is especially important for holonomic drives such as mecanum and
swerve, but is extremely useful for tank drives as well.
This is typically achieved by closing a PID controller on either the turn rate or the heading,
and piping the output of the loop to one’s turning control (for a tank drive, this would be a
speed differential between the two sides of the drive).

Warning: Like with all control loops, users should be careful to ensure that the sensor
direction and the turning direction are consistent. If they are not, the loop will be unstable
and the robot will turn wildly.

Example: Tank drive stabilization using turn rate

The following example shows how to stabilize heading using a simple P loop closed on the
turn rate. Since a robot that is not turning should have a turn rate of zero, the setpoint for
the loop is implicitly zero, making this method very simple.
Java

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

MotorControllerGroup leftMotors = new MotorControllerGroup(left1, left2);
MotorControllerGroup rightMotors = new MotorControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {

rightMotors.setInverted(true);
}

@Override
(continues on next page)

14.3. Sensors 461

FIRST Robotics Competition

(continued from previous page)
public void autonomousPeriodic() {

// Setpoint is implicitly 0, since we don't want the heading to change
double error = -gyro.getRate();

// Drives forward continuously at half speed, using the gyro to stabilize the␣
↪→heading

drive.tankDrive(.5 + kP * error, .5 - kP * error);
}

C++

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::MotorControllerGroup leftMotors{left1, left2};
frc::MotorControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::RobotInit() {
rightMotors.SetInverted(true);

}

void Robot::AutonomousPeriodic() {
// Setpoint is implicitly 0, since we don't want the heading to change
double error = -gyro.GetRate();

// Drives forward continuously at half speed, using the gyro to stabilize the␣
↪→heading

drive.TankDrive(.5 + kP * error, .5 - kP * error);
}

More-advanced implementations can use a more-complicated control loop. When closing the
loop on the turn rate for heading stabilization, PI loops are particularly effective.

Example: Tank drive stabilization using heading

The following example shows how to stabilize heading using a simple P loop closed on the
heading. Unlike in the turn rate example, we will need to set the setpoint to the current
heading before starting motion, making this method slightly more-complicated.
Java

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 1;

(continues on next page)

462 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)

// The heading of the robot when starting the motion
double heading;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

MotorControllerGroup leftMotors = new MotorControllerGroup(left1, left2);
MotorControllerGroup rightMotors = new MotorControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {

rightMotors.setInverted(true);
}

@Override
public void autonomousInit() {

// Set setpoint to current heading at start of auto
heading = gyro.getAngle();

}

@Override
public void autonomousPeriodic() {

double error = heading - gyro.getAngle();

// Drives forward continuously at half speed, using the gyro to stabilize the␣
↪→heading

drive.tankDrive(.5 + kP * error, .5 - kP * error);
}

C++

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 1;

// The heading of the robot when starting the motion
double heading;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::MotorControllerGroup leftMotors{left1, left2};
frc::MotorControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};
(continues on next page)

14.3. Sensors 463

FIRST Robotics Competition

(continued from previous page)

void Robot::RobotInit() {
rightMotors.SetInverted(true);

}

void Robot::AutonomousInit() {
// Set setpoint to current heading at start of auto
heading = gyro.GetAngle();

}

void Robot::AutonomousPeriodic() {
double error = heading - gyro.GetAngle();

// Drives forward continuously at half speed, using the gyro to stabilize the␣
↪→heading

drive.TankDrive(.5 + kP * error, .5 - kP * error);
}

More-advanced implementations can use a more-complicated control loop. When closing the
loop on the heading for heading stabilization, PD loops are particularly effective.

Turning to a set heading

Another common and highly-useful application for a gyro is turning a robot to face a specified
direction. This can be a component of an autonomous driving routine, or can be used during
teleoperated control to help align a robot with field elements.
Much like with heading stabilization, this is often accomplished with a PID loop - unlike with
stabilization, however, the loop can only be closed on the heading. The following example
code will turn the robot to face 90 degrees with a simple P loop:
Java

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 0.05;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

MotorControllerGroup leftMotors = new MotorControllerGroup(left1, left2);
MotorControllerGroup rightMotors = new MotorControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {

rightMotors.setInverted(true);
}

(continues on next page)

464 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
@Override
public void autonomousPeriodic() {

// Find the heading error; setpoint is 90
double error = 90 - gyro.getAngle();

// Turns the robot to face the desired direction
drive.tankDrive(kP * error, -kP * error);

}

C++

// Use gyro declaration from above here

// The gain for a simple P loop
double kP = 0.05;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::MotorControllerGroup leftMotors{left1, left2};
frc::MotorControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::RobotInit() {
rightMotors.SetInverted(true);

}

void Robot::AutonomousPeriodic() {
// Find the heading error; setpoint is 90
double error = 90 - gyro.GetAngle();

// Turns the robot to face the desired direction
drive.TankDrive(kP * error, -kP * error);

}

As before, more-advanced implementations can use more-complicated control loops.

Note: Turn-to-angle loops can be tricky to tune correctly due to static friction in the drive-
train, especially if a simple P loop is used. There are a number of ways to account for this;
one of the most common/effective is to add a “minimum output” to the output of the control
loop. Another effective strategy is to cascade to well-tuned velocity controllers on each side
of the drive.

14.3. Sensors 465

FIRST Robotics Competition

14.3.4 Ultrasonics - Software

Note: This section covers ultrasonics in software. For a hardware guide to ultrasonics, see
Ultrasonics - Hardware.

An ultrasonic sensor is commonly used to measure distance to an object using high-frequency
sound. Generally, ultrasonics measure the distance to the closest object within their “field of
view.”
There are two primary types of ultrasonics supported natively by WPILib:

• Ping-response ultrasonics
• Analog ultrasonics

Ping-response ultrasonics

The Ultrasonic class (Java, C++) provides support for ping-response ultrasonics. As ping-
response ultrasonics (per the name) require separate pins for both sending the ping and
measuring the response, users must specify DIO pin numbers for both output and input when
constructing an Ultrasonic instance:
Java

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
Ultrasonic m_rangeFinder = new Ultrasonic(1, 2);

C++

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
frc::Ultrasonic m_rangeFinder{1, 2};

The measurement can then be retrieved in either inches or millimeters in Java; in C++ the
units library is used to automatically convert to any desired length unit:
Java

// We can read the distance in millimeters
double distanceMillimeters = m_rangeFinder.getRangeMM();
// ... or in inches
double distanceInches = m_rangeFinder.getRangeInches();

C++

// We can read the distance
units::meter_t distance = m_rangeFinder.GetRange();
// units auto-convert
units::millimeter_t distanceMillimeters = distance;
units::inch_t distanceInches = distance;

466 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Ultrasonic.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_ultrasonic.html

FIRST Robotics Competition

Analog ultrasonics

Some ultrasonic sensors simply return an analog voltage corresponding to the measured dis-
tance. These sensors can may simply be used with the AnalogPotentiometer class.

Third-party ultrasonics

Other ultrasonic sensors offered by third-parties may use more complicated communications
protocols (such as I2C or SPI). WPILib does not provide native support for any such ultrason-
ics; they will typically be controlled with vendor libraries.

Using ultrasonics in code

Ultrasonic sensors are very useful for determining spacing during autonomous routines. For
example, the following code from the UltrasonicPID example project (Java, C++)will move
the robot to 1 meter away from the nearest object the sensor detects:
Java

public class Robot extends TimedRobot {
// distance the robot wants to stay from an object
// (one meter)
static final double kHoldDistanceMillimeters = 1.0e3;

// proportional speed constant
// negative because applying positive voltage will bring us closer to the target
private static final double kP = -0.001;
// integral speed constant
private static final double kI = 0.0;
// derivative speed constant
private static final double kD = 0.0;

static final int kLeftMotorPort = 0;
static final int kRightMotorPort = 1;

static final int kUltrasonicPingPort = 0;
static final int kUltrasonicEchoPort = 1;

// Ultrasonic sensors tend to be quite noisy and susceptible to sudden outliers,
// so measurements are filtered with a 5-sample median filter
private final MedianFilter m_filter = new MedianFilter(5);

private final Ultrasonic m_ultrasonic = new Ultrasonic(kUltrasonicPingPort,␣
↪→kUltrasonicEchoPort);
private final PWMSparkMax m_leftMotor = new PWMSparkMax(kLeftMotorPort);
private final PWMSparkMax m_rightMotor = new PWMSparkMax(kRightMotorPort);
private final DifferentialDrive m_robotDrive = new DifferentialDrive(m_leftMotor, m_

↪→rightMotor);
private final PIDController m_pidController = new PIDController(kP, kI, kD);

@Override
public void autonomousInit() {

// Set setpoint of the pid controller
m_pidController.setSetpoint(kHoldDistanceMillimeters);

(continues on next page)

14.3. Sensors 467

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ultrasonicpid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/UltrasonicPID

FIRST Robotics Competition

(continued from previous page)
}

@Override
public void autonomousPeriodic() {

double measurement = m_ultrasonic.getRangeMM();
double filteredMeasurement = m_filter.calculate(measurement);
double pidOutput = m_pidController.calculate(filteredMeasurement);

// disable input squaring -- PID output is linear
m_robotDrive.arcadeDrive(pidOutput, 0, false);

}
}

C++ (Header)

class Robot : public frc::TimedRobot {
public:
void AutonomousInit() override;
void AutonomousPeriodic() override;

// distance the robot wants to stay from an object
static constexpr units::millimeter_t kHoldDistance = 1_m;

static constexpr int kLeftMotorPort = 0;
static constexpr int kRightMotorPort = 1;
static constexpr int kUltrasonicPingPort = 0;
static constexpr int kUltrasonicEchoPort = 1;

private:
// proportional speed constant
// negative because applying positive voltage will bring us closer to the
// target
static constexpr double kP = -0.001;
// integral speed constant
static constexpr double kI = 0.0;
// derivative speed constant
static constexpr double kD = 0.0;

// Ultrasonic sensors tend to be quite noisy and susceptible to sudden
// outliers, so measurements are filtered with a 5-sample median filter
frc::MedianFilter<units::millimeter_t> m_filter{5};

frc::Ultrasonic m_ultrasonic{kUltrasonicPingPort, kUltrasonicEchoPort};
frc::PWMSparkMax m_left{kLeftMotorPort};
frc::PWMSparkMax m_right{kRightMotorPort};
frc::DifferentialDrive m_robotDrive{m_left, m_right};
frc2::PIDController m_pidController{kP, kI, kD};

};

C++ (Source)

void Robot::AutonomousInit() {
// Set setpoint of the pid controller
m_pidController.SetSetpoint(kHoldDistance.value());

}

(continues on next page)

468 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
void Robot::AutonomousPeriodic() {
units::millimeter_t measurement = m_ultrasonic.GetRange();
units::millimeter_t filteredMeasurement = m_filter.Calculate(measurement);
double pidOutput = m_pidController.Calculate(filteredMeasurement.value());

// disable input squaring -- PID output is linear
m_robotDrive.ArcadeDrive(pidOutput, 0, false);

}

Additionally, ping-response ultrasonics can be sent to Shuffleboard, where they will be dis-
played with their own widgets:
Java

// Add the ultrasonic on the "Sensors" tab of the dashboard
// Data will update automatically
Shuffleboard.getTab("Sensors").add(m_rangeFinder);

C++

// Add the ultrasonic on the "Sensors" tab of the dashboard
// Data will update automatically
frc::Shuffleboard::GetTab("Sensors").Add(m_rangeFinder);

14.3.5 Counters

The Counter class (Java, C++) is a versatile class that allows the counting of pulse edges on
a digital input. Counter is used as a component in several more-complicated WPILib classes
(such as Encoder and Ultrasonic), but is also quite useful on its own.

Note: There are a total of 8 counter units in the roboRIO FPGA, meaning no more than 8
Counter objects may be instantiated at any one time, including those contained as resources
in other WPILib objects. For detailed information on when a Counter may be used by another
object, refer to the official API documentation.

14.3. Sensors 469

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Counter.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_counter.html

FIRST Robotics Competition

Configuring a counter

The Counter class can be configured in a number of ways to provide differing functionalities.

Counter Modes

The Counter object may be configured to operate in one of four different modes:
1. Two-pulse mode: Counts up and down based on the edges of two different channels.
2. Semi-period mode: Measures the duration of a pulse on a single channel.
3. Pulse-length mode: Counts up and down based on the edges of one channel, with the

direction determined by the duration of the pulse on that channel.
4. External direction mode: Counts up and down based on the edges of one channel, with

a separate channel specifying the direction.

Note: In all modes except semi-period mode, the counter can be configured to increment
either once per edge (2X decoding), or once per pulse (1X decoding). By default, counters
are set to two-pulse mode, though if only one channel is specified the counter will only count
up.

Two-pulse mode

In two-pulse mode, the Counter will count up for every edge/pulse on the specified “up chan-
nel,” and down for every edge/pulse on the specified “down channel.” A counter can be
initialized in two-pulse with the following code:
Java

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.k2Pulse);

@Override
public void robotInit() {

// Set up the input channels for the counter
counter.setUpSource(1);
counter.setDownSource(2);

// Set the decoding type to 2X
counter.setUpSourceEdge(true, true);
counter.setDownSourceEdge(true, true);

}

C++

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::k2Pulse};

void Robot::RobotInit() {
// Set up the input channels for the counter
counter.SetUpSource(1);

(continues on next page)

470 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
counter.SetDownSource(2);

// Set the decoding type to 2X
counter.SetUpSourceEdge(true, true);
counter.SetDownSourceEdge(true, true);

Semi-period mode

In semi-period mode, the Counter will count the duration of the pulses on a channel, either
from a rising edge to the next falling edge, or from a falling edge to the next rising edge. A
counter can be initialized in semi-period mode with the following code:
Java

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kSemiperiod);

@Override
public void robotInit() {

// Set up the input channel for the counter
counter.setUpSource(1);

// Set the encoder to count pulse duration from rising edge to falling edge
counter.setSemiPeriodMode(true);

}

C++

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kSemiperiod};

void Robot() {
// Set up the input channel for the counter
counter.SetUpSource(1);

// Set the encoder to count pulse duration from rising edge to falling edge
counter.SetSemiPeriodMode(true);

To get the pulse width, call the getPeriod() method:
Java

// Return the measured pulse width in seconds
counter.getPeriod();

C++

// Return the measured pulse width in seconds
counter.GetPeriod();

14.3. Sensors 471

FIRST Robotics Competition

Pulse-length mode

In pulse-length mode, the counter will count either up or down depending on the length of
the pulse. A pulse below the specified threshold time will be interpreted as a forward count
and a pulse above the threshold is a reverse count. This is useful for some gear tooth sensors
which encode direction in this manner. A counter can be initialized in this mode as follows:
Java

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kPulseLength);

@Override
public void robotInit() {

// Set up the input channel for the counter
counter.setUpSource(1);

// Set the decoding type to 2X
counter.setUpSourceEdge(true, true);

// Set the counter to count down if the pulses are longer than .05 seconds
counter.setPulseLengthMode(.05)

}

C++

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kPulseLength};

void Robot::RobotInit() {
// Set up the input channel for the counter
counter.SetUpSource(1);

// Set the decoding type to 2X
counter.SetUpSourceEdge(true, true);

// Set the counter to count down if the pulses are longer than .05 seconds
counter.SetPulseLengthMode(.05)

External direction mode

In external direction mode, the counter counts either up or down depending on the level on
the second channel. If the direction source is low, the counter will increase; if the direction
source is high, the counter will decrease (to reverse this, see the next section). A counter can
be initialized in this mode as follows:
Java

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kExternalDirection);

@Override
public void robotInit() {

// Set up the input channels for the counter
counter.setUpSource(1);

(continues on next page)

472 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
counter.setDownSource(2);

// Set the decoding type to 2X
counter.setUpSourceEdge(true, true);

}

C++

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kExternalDirection};

void RobotInit() {
// Set up the input channels for the counter
counter.SetUpSource(1);
counter.SetDownSource(2);

// Set the decoding type to 2X
counter.SetUpSourceEdge(true, true);

Configuring counter parameters

Note: The Counter class does not make any assumptions about units of distance; it will
return values in whatever units were used to calculate the distance-per-pulse value. Users
thus have complete control over the distance units used. However, units of time are always
in seconds.

Note: The number of pulses used in the distance-per-pulse calculation does not depend on
the decoding type - each “pulse” should always be considered to be a full cycle (rising and
falling).

Apart from the mode-specific configurations, the Counter class offers a number of additional
configuration methods:
Java

// Configures the counter to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
counter.setDistancePerPulse(4./256.);

// Configures the counter to consider itself stopped after .1 seconds
counter.setMaxPeriod(.1);

// Configures the counter to consider itself stopped when its rate is below 10
counter.setMinRate(10);

// Reverses the direction of the counter
counter.setReverseDirection(true);

// Configures an counter to average its period measurement over 5 samples
// Can be between 1 and 127 samples
counter.setSamplesToAverage(5);

14.3. Sensors 473

FIRST Robotics Competition

C++

// Configures the counter to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
counter.SetDistancePerPulse(4./256.);

// Configures the counter to consider itself stopped after .1 seconds
counter.SetMaxPeriod(.1);

// Configures the counter to consider itself stopped when its rate is below 10
counter.SetMinRate(10);

// Reverses the direction of the counter
counter.SetReverseDirection(true);

// Configures an counter to average its period measurement over 5 samples
// Can be between 1 and 127 samples
counter.SetSamplesToAverage(5);

Reading information from counters

Regardless of mode, there is some information that the Counter class always exposes to users:

Count

Users can obtain the current count with the get() method:
Java

// returns the current count
counter.get();

C++

// returns the current count
counter.Get();

Distance

Note: Counters measure relative distance, not absolute; the distance value returned will
depend on the position of the encoder when the robot was turned on or the encoder value
was last reset.

If the distance per pulse has been configured, users can obtain the total distance traveled by
the counted sensor with the getDistance() method:
Java

// returns the current distance
counter.getDistance();

C++

474 Chapter 14. Hardware APIs

FIRST Robotics Competition

// returns the current distance
counter.GetDistance();

Rate

Note: Units of time for the Counter class are always in seconds.

Users can obtain the current rate of change of the counter with the getRate() method:
Java

// Gets the current rate of the counter
counter.getRate();

C++

// Gets the current rate of the counter
counter.GetRate();

Stopped

Users can obtain whether the counter is stationary with the getStopped() method:
Java

// Gets whether the counter is stopped
counter.getStopped();

C++

// Gets whether the counter is stopped
counter.GetStopped();

Direction

Users can obtain the direction in which the counter last moved with the getDirection()
method:
Java

// Gets the last direction in which the counter moved
counter.getDirection();

C++

// Gets the last direction in which the counter moved
counter.GetDirection();

14.3. Sensors 475

FIRST Robotics Competition

Period

Note: In semi-period mode, this method returns the duration of the pulse, not of the period.

Users can obtain the duration (in seconds) of the most-recent period with the getPeriod()
method:
Java

// returns the current period in seconds
counter.getPeriod();

C++

// returns the current period in seconds
counter.GetPeriod();

Resetting a counter

To reset a counter to a distance reading of zero, call the reset() method. This is useful for en-
suring that the measured distance corresponds to the actual desired physical measurement.
Java

// Resets the encoder to read a distance of zero
counter.reset();

C++

// Resets the encoder to read a distance of zero
counter.Reset();

Using counters in code

Counters are useful for a wide variety of robot applications - but since the Counter class is
so varied, it is difficult to provide a good summary of them here. Many of these applications
overlap with the Encoder class - a simple counter is often a cheaper alternative to a quadrature
encoder. For a summary of potential uses for encoders in code, see Encoders - Software.

14.3.6 Encoders - Software

Note: This section covers encoders in software. For a hardware guide to encoders, see
Encoders - Hardware.

Encoders are devices used to measure motion (usually, the rotation of a shaft).

476 Chapter 14. Hardware APIs

FIRST Robotics Competition

Important: The classes in this document are only used for encoders that are plugged di-
rectly into the roboRIO! Please reference the appropriate vendors’ documentation for using
encoders plugged into motor controllers.

Quadrature Encoders - The Encoder Class

WPILib provides support for quadrature encoders through the Encoder class (Java, C++).
This class provides a simple API for configuring and reading data from encoders.

These encoders produce square-wave signals on two channels that are a quarter-period out-
of-phase (hence the term, “quadrature”). The pulses are used to measure the rotation, and
the direction of motion can be determined from which channel “leads” the other.

The FPGA handles quadrature encoders either through a counter module or an encoder mod-

14.3. Sensors 477

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Encoder.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_encoder.html

FIRST Robotics Competition

ule, depending on the decoding type - the choice is handled automatically by WPILib. The
FPGA contains 8 encoder modules.
Examples of quadrature encoders:

• AMT103-V available through FIRST Choice
• CTRE Mag Encoder
• Grayhill 63r
• REV Through Bore Encoder
• US Digital E4T

Initializing a Quadrature Encoder

A quadrature encoder can be instantiated as follows:
Java

// Initializes an encoder on DIO pins 0 and 1
// Defaults to 4X decoding and non-inverted
Encoder encoder = new Encoder(0, 1);

C++

// Initializes an encoder on DIO pins 0 and 1
// Defaults to 4X decoding and non-inverted
frc::Encoder encoder{0, 1};

Decoding Type

The WPILib Encoder class can decode encoder signals in three different modes:
• 1X Decoding: Increments the distance for every complete period of the encoder signal

(once per four edges).
• 2X Decoding: Increments the distance for every half-period of the encoder signal (once

per two edges).
• 4X Decoding: Increments the distance for every edge of the encoder signal (four times

per period).
4X decoding offers the greatest precision, but at the potential cost of increased “jitter” in rate
measurements. To use a different decoding type, use the following constructor:
Java

// Initializes an encoder on DIO pins 0 and 1
// 2X encoding and non-inverted
Encoder encoder = new Encoder(0, 1, false, Encoder.EncodingType.k2X);

C++

// Initializes an encoder on DIO pins 0 and 1
// 2X encoding and non-inverted
frc::Encoder encoder{0, 1, false, frc::Encoder::EncodingType::k2X};

478 Chapter 14. Hardware APIs

https://www.cuidevices.com/product/motion/rotary-encoders/incremental/modular/amt10-v-kit/amt103-v
https://store.ctr-electronics.com/srx-mag-encoder/
https://www.grayhill.com/documents/63R-Datasheet
https://www.revrobotics.com/rev-11-1271/
https://www.andymark.com/products/e4t-oem-miniature-optical-encoder-kit

FIRST Robotics Competition

Configuring Quadrature Encoder Parameters

Note: The Encoder class does not make any assumptions about units of distance; it will
return values in whatever units were used to calculate the distance-per-pulse value. Users
thus have complete control over the distance units used. However, units of time are always
in seconds.

Note: The number of pulses used in the distance-per-pulse calculation does not depend on
the decoding type - each “pulse” should always be considered to be a full cycle (four edges).

The Encoder class offers a number of configuration methods:
Java

// Configures the encoder to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
encoder.setDistancePerPulse(4.0/256.0);

// Configures the encoder to consider itself stopped after .1 seconds
encoder.setMaxPeriod(0.1);

// Configures the encoder to consider itself stopped when its rate is below 10
encoder.setMinRate(10);

// Reverses the direction of the encoder
encoder.setReverseDirection(true);

// Configures an encoder to average its period measurement over 5 samples
// Can be between 1 and 127 samples
encoder.setSamplesToAverage(5);

C++

// Configures the encoder to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
encoder.SetDistancePerPulse(4.0/256.0);

// Configures the encoder to consider itself stopped after .1 seconds
encoder.SetMaxPeriod(0.1);

// Configures the encoder to consider itself stopped when its rate is below 10
encoder.SetMinRate(10);

// Reverses the direction of the encoder
encoder.SetReverseDirection(true);

// Configures an encoder to average its period measurement over 5 samples
// Can be between 1 and 127 samples
encoder.SetSamplesToAverage(5);

14.3. Sensors 479

FIRST Robotics Competition

Reading information from Quadrature Encoders

The Encoder class provides a wealth of information to the user about the motion of the en-
coder.

Distance

Note: Quadrature encoders measure relative distance, not absolute; the distance value
returned will depend on the position of the encoder when the robot was turned on or the
encoder value was last reset.

Users can obtain the total distance traveled by the encoder with the getDistance() method:
Java

// Gets the distance traveled
encoder.getDistance();

C++

// Gets the distance traveled
encoder.GetDistance();

Rate

Note: Units of time for the Encoder class are always in seconds.

Users can obtain the current rate of change of the encoder with the getRate() method:
Java

// Gets the current rate of the encoder
encoder.getRate();

C++

// Gets the current rate of the encoder
encoder.GetRate();

Stopped

Users can obtain whether the encoder is stationary with the getStopped() method:
Java

// Gets whether the encoder is stopped
encoder.getStopped();

C++

480 Chapter 14. Hardware APIs

FIRST Robotics Competition

// Gets whether the encoder is stopped
encoder.GetStopped();

Direction

Users can obtain the direction in which the encoder last moved with the getDirection()
method:
Java

// Gets the last direction in which the encoder moved
encoder.getDirection();

C++

// Gets the last direction in which the encoder moved
encoder.GetDirection();

Period

Users can obtain the period of the encoder pulses (in seconds) with the getPeriod() method:
Java

// Gets the current period of the encoder
encoder.getPeriod();

C++

// Gets the current period of the encoder
encoder.GetPeriod();

Resetting a Quadrature Encoder

To reset a quadrature encoder to a distance reading of zero, call the reset() method. This
is useful for ensuring that the measured distance corresponds to the actual desired physical
measurement, and is often called during a homing routine:
Java

// Resets the encoder to read a distance of zero
encoder.reset();

C++

// Resets the encoder to read a distance of zero
encoder.Reset();

14.3. Sensors 481

FIRST Robotics Competition

Duty Cycle Encoders - The DutyCycleEncoder class

WPILib provides support for duty cycle (also marketed as PWM) encoders through the Duty-
CycleEncoder class (Java, C++). This class provides a simple API for configuring and reading
data from duty cycle encoders.
The roboRIO’s FPGA handles duty cycle encoders automatically.
Examples of duty cycle encoders:

• AndyMark Mag Encoder
• CTRE Mag Encoder
• REV Through Bore Encoder
• Team 221 Lamprey2
• US Digital MA3

Initializing a Duty Cycle Encoder

A duty cycle encoder can be instantiated as follows:
Java

// Initializes a duty cycle encoder on DIO pins 0
DutyCycleEncoder encoder = new DutyCycleEncoder(0);

C++

// Initializes a duty cycle encoder on DIO pins 0
frc::DutyCycleEncoder encoder{0};

Configuring Duty Cycle Encoder Parameters

Note: The DutyCycleEncoder class does not make any assumptions about units of distance;
it will return values in whatever units were used to calculate the distance-per-rotation value.
Users thus have complete control over the distance units used.

The DutyCycleEncoder class offers a number of configuration methods:
Java

// Configures the encoder to return a distance of 4 for every rotation
encoder.setDistancePerRotation(4.0);

C++

// Configures the encoder to return a distance of 4 for every rotation
encoder.SetDistancePerRotation(4.0);

482 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DutyCycleEncoder.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_duty_cycle_encoder.html
https://www.andymark.com/products/am-mag-encoder
https://store.ctr-electronics.com/srx-mag-encoder/
https://www.revrobotics.com/rev-11-1271/
https://www.andymark.com/products/lamprey-absolute-encoder
https://www.usdigital.com/products/encoders/absolute/shaft/ma3/

FIRST Robotics Competition

Reading Distance from Duty Cycle Encoders

Note: Duty Cycle encoders measure absolute distance. It does not depend on the starting
position of the encoder.

Users can obtain the distance measured by the encoder with the getDistance() method:
Java

// Gets the distance traveled
encoder.getDistance();

C++

// Gets the distance traveled
encoder.GetDistance();

Detecting a Duty Cycle Encoder is Connected

As duty cycle encoders output a continuous set of pulses, it is possible to detect that the
encoder has been unplugged.
Java

// Gets if the encoder is connected
encoder.isConnected();

C++

// Gets if the encoder is connected
encoder.IsConnected();

Resetting a Duty Cycle Encoder

To reset an encoder so the current distance is 0, call the reset() method. This is useful
for ensuring that the measured distance corresponds to the actual desired physical measure-
ment. Unlike quadrature encoders, duty cycle encoders don’t need to be homed. However,
after reset, the position offset can be stored to be set when the program starts so that the
reset doesn’t have to be performed again. The Preferences class provides a method to save
and retrieve the values on the roboRIO.
Java

// Resets the encoder to read a distance of zero at the current position
encoder.reset();

// get the position offset from when the encoder was reset
encoder.getPositionOffset();

// set the position offset to half a rotation
encoder.setPositionOffset(0.5);

C++

14.3. Sensors 483

FIRST Robotics Competition

// Resets the encoder to read a distance of zero at the current position
encoder.Reset();

// get the position offset from when the encoder was reset
encoder.GetPositionOffset();

// set the position offset to half a rotation
encoder.SetPositionOffset(0.5);

Analog Encoders - The AnalogEncoder Class

WPILib provides support for analog absolute encoders through the AnalogEncoder class
(Java, C++). This class provides a simple API for configuring and reading data from duty
cycle encoders.
Examples of analog encoders:

• Team 221 Lamprey2
• Thrifty Absolute Magnetic Encoder
• US Digital MA3

Initializing an Analog Encoder

An analog encoder can be instantiated as follows:
Java

// Initializes a duty cycle encoder on Analog Input pins 0
AnalogEncoder encoder = new AnalogEncoder(0);

C++

// Initializes a duty cycle encoder on DIO pins 0
frc::AnalogEncoder encoder{0};

Configuring Analog Encoder Parameters

Note: The AnalogEncoder class does not make any assumptions about units of distance; it
will return values in whatever units were used to calculate the distance-per-rotation value.
Users thus have complete control over the distance units used.

The AnalogEncoder class offers a number of configuration methods:
Java

// Configures the encoder to return a distance of 4 for every rotation
encoder.setDistancePerRotation(4.0);

C++

484 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogEncoder.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_encoder.html
https://www.andymark.com/products/lamprey-absolute-encoder
https://www.thethriftybot.com/bearings/Thrifty-Absolute-Magnetic-Encoder-p421607500
https://www.usdigital.com/products/encoders/absolute/shaft/ma3/

FIRST Robotics Competition

// Configures the encoder to return a distance of 4 for every rotation
encoder.SetDistancePerRotation(4.0);

Reading Distance from Analog Encoders

Note: Analog encoders measure absolute distance. It does not depend on the starting
position of the encoder.

Users can obtain the distance measured by the encoder with the getDistance() method:
Java

// Gets the distance measured
encoder.getDistance();

C++

// Gets the distance measured
encoder.GetDistance();

Resetting an Analog Encoder

To reset an analog encoder so the current distance is 0, call the reset() method. This is
useful for ensuring that the measured distance corresponds to the actual desired physical
measurement. Unlike quadrature encoders, duty cycle encoders don’t need to be homed.
However, after reset, the position offset can be stored to be set when the program starts so
that the reset doesn’t have to be performed again. The Preferences class provides a method
to save and retrieve the values on the roboRIO.
Java

// Resets the encoder to read a distance of zero at the current position
encoder.reset();

// get the position offset from when the encoder was reset
encoder.getPositionOffset();

// set the position offset to half a rotation
encoder.setPositionOffset(0.5);

C++

// Resets the encoder to read a distance of zero at the current position
encoder.Reset();

// get the position offset from when the encoder was reset
encoder.GetPositionOffset();

// set the position offset to half a rotation
encoder.SetPositionOffset(0.5);

14.3. Sensors 485

FIRST Robotics Competition

Using Encoders in Code

Encoders are some of the most useful sensors in FRC®; they are very nearly a requirement
to make a robot capable of nontrivially-automated actuations and movement. The potential
applications of encoders in robot code are too numerous to summarize fully here, but an
example is provided below:

Driving to a Distance

Encoders can be used on a robot drive to create a simple “drive to distance” routine. This is
useful in autonomous mode, but has the disadvantage that the robot’s momentum will cause
it to overshoot the intended distance. Better methods include using a PID Controller or using
Path Planning

Note: The following example uses the Encoder class, but is similar if other DutyCycleEn-
coder or AnalogEncoder is used. However, quadrature encoders are typically better suited
for drivetrains since they roll over many times and don’t have an absolute position.

Java

// Creates an encoder on DIO ports 0 and 1
Encoder encoder = new Encoder(0, 1);

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

MotorControllerGroup leftMotors = new MotorControllerGroup(left1, left2);
MotorControllerGroup rightMotors = new MotorControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {

// Configures the encoder's distance-per-pulse
// The robot moves forward 1 foot per encoder rotation
// There are 256 pulses per encoder rotation
encoder.setDistancePerPulse(1./256.);

}

@Override
public void autonomousPeriodic() {

// Drives forward at half speed until the robot has moved 5 feet, then stops:
if(encoder.getDistance() < 5) {

drive.tankDrive(0.5, 0.5);
} else {

drive.tankDrive(0, 0);
}

}

C++

486 Chapter 14. Hardware APIs

FIRST Robotics Competition

// Creates an encoder on DIO ports 0 and 1.
frc::Encoder encoder{0, 1};

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};

frc::Spark right1{2};
frc::Spark right2{3};

frc::MotorControllerGroup leftMotors{left1, left2};
frc::MotorControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::RobotInit() {
// Configures the encoder's distance-per-pulse
// The robot moves forward 1 foot per encoder rotation
// There are 256 pulses per encoder rotation
encoder.SetDistancePerPulse(1.0/256.0);

}

void Robot:AutonomousPeriodic() {
// Drives forward at half speed until the robot has moved 5 feet, then stops:
if(encoder.GetDistance() < 5) {

drive.TankDrive(0.5, 0.5);
} else {

drive.TankDrive(0, 0);
}

}

Homing a Mechanism

Since quadrature encoders measure relative distance, it is often important to ensure that their
“zero-point” is in the right place. A typical way to do this is a “homing routine,” in which a
mechanism is moved until it hits a known position (usually accomplished with a limit switch),
or “home,” and then the encoder is reset. The following code provides a basic example:

Note: Homing is not necessary for absolute encoders like duty cycle encoders and analog
encoders.

Java

Encoder encoder = new Encoder(0, 1);

Spark spark = new Spark(0);

// Limit switch on DIO 2
DigitalInput limit = new DigitalInput(2);

public void autonomousPeriodic() {
// Runs the motor backwards at half speed until the limit switch is pressed
// then turn off the motor and reset the encoder

(continues on next page)

14.3. Sensors 487

FIRST Robotics Competition

(continued from previous page)
if(!limit.get()) {

spark.set(-0.5);
} else {

spark.set(0);
encoder.reset();

}
}

C++

frc::Encoder encoder{0,1};

frc::Spark spark{0};

// Limit switch on DIO 2
frc::DigitalInput limit{2};

void AutonomousPeriodic() {
// Runs the motor backwards at half speed until the limit switch is pressed
// then turn off the motor and reset the encoder
if(!limit.Get()) {

spark.Set(-0.5);
} else {

spark.Set(0);
encoder.Reset();

}
}

14.3.7 Analog Inputs - Software

Note: This section covers analog inputs in software. For a hardware guide to analog inputs,
see Analog Inputs - Hardware.

The roboRIO’s FPGA supports up to 8 analog input channels that can be used to read the value
of an analog voltage from a sensor. Analog inputs may be used for any sensor that outputs a
simple voltage.
Analog inputs from the FPGA by default return a 12-bit integer proportional to the voltage,
from 0 to 5 volts.

The AnalogInput class

Note: It is often more convenient to use the Analog Potentiometers wrapper class than to
use AnalogInput directly, as it supports scaling to meaningful units.

Support for reading the voltages on the FPGA analog inputs is provided through the
AnalogInput class (Java, C++).

488 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogInput.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_input.html

FIRST Robotics Competition

Initializing an AnalogInput

An AnalogInput may be initialized as follows:
Java

// Initializes an AnalogInput on port 0
AnalogInput analog = new AnalogInput(0);

C++

// Initializes an AnalogInput on port 0
frc::AnalogInput analog{0};

Oversampling and Averaging

The FPGA’s analog input modules supports both oversampling and averaging. These behav-
iors are highly similar, but differ in a few important ways. Both may be used at the same
time.

Oversampling

When oversampling is enabled, the FPGA will add multiple consecutive samples together, and
return the accumulated value. Users may specify the number of bits of oversampling - for n
bits of oversampling, the number of samples added together is 2n:
Java

// Sets the AnalogInput to 4-bit oversampling. 16 samples will be added together.
// Thus, the reported values will increase by about a factor of 16, and the update
// rate will decrease by a similar amount.
analog.setOversampleBits(4);

C++

// Sets the AnalogInput to 4-bit oversampling. 16 samples will be added together.
// Thus, the reported values will increase by about a factor of 16, and the update

(continues on next page)

14.3. Sensors 489

FIRST Robotics Competition

(continued from previous page)
// rate will decrease by a similar amount.
analog.SetOversampleBits(4);

Averaging

Averaging behaves much like oversampling, except the accumulated values are divided by the
number of samples so that the scaling of the returned values does not change. This is often
more-convenient, but occasionally the additional roundoff error introduced by the rounding
is undesirable.
Java

// Sets the AnalogInput to 4-bit averaging. 16 samples will be averaged together.
// The update rate will decrease by a factor of 16.
analog.setAverageBits(4);

C++

// Sets the AnalogInput to 4-bit averaging. 16 samples will be averaged together.
// The update rate will decrease by a factor of 16.
analog.SetAverageBits(4);

Note: When oversampling and averaging are used at the same time, the oversampling is
applied first, and then the oversampled values are averaged. Thus, 2-bit oversampling and
2-bit averaging used at the same time will increase the scale of the returned values by ap-
proximately a factor of 2, and decrease the update rate by approximately a factor of 4.

Reading values from an AnalogInput

Values can be read from an AnalogInput with one of four different methods:

getValue

The getValue method returns the raw instantaneous measured value from the analog input,
without applying any calibration and ignoring oversampling and averaging settings. The re-
turned value is an integer.
Java

analog.getValue();

C++

analog.GetValue();

490 Chapter 14. Hardware APIs

FIRST Robotics Competition

getVoltage

The getVoltage method returns the instantaneous measured voltage from the analog input.
Oversampling and averaging settings are ignored, but the value is rescaled to represent a
voltage. The returned value is a double.
Java

analog.getVoltage();

C++

analog.GetVoltage();

getAverageValue

The getAverageValue method returns the averaged value from the analog input. The value
is not rescaled, but oversampling and averaging are both applied. The returned value is an
integer.
Java

analog.getAverageValue();

C++

analog.GetAverageValue();

getAverageVoltage

The getAverageVoltage method returns the averaged voltage from the analog input. Rescal-
ing, oversampling, and averaging are all applied. The returned value is a double.
Java

analog.getAverageVoltage();

C++

analog.GetAverageVoltage();

Accumulator

Note: The accumulator methods do not currently support returning a value in units of volts
- the returned value will always be an integer (specifically, a long).

Analog input channels 0 and 1 additionally support an accumulator, which integrates (adds
up) the signal indefinitely, so that the returned value is the sum of all past measured values.
Oversampling and averaging are applied prior to accumulation.
Java

14.3. Sensors 491

FIRST Robotics Competition

// Sets the initial value of the accumulator to 0
// This is the "starting point" from which the value will change over time
analog.setAccumulatorInitialValue(0);

// Sets the "center" of the accumulator to 0. This value is subtracted from
// all measured values prior to accumulation.
analog.setAccumulatorCenter(0);

// Returns the number of accumulated samples since the accumulator was last started/
↪→reset
analog.getAccumulatorCount();

// Returns the value of the accumulator. Return type is long.
analog.getAccumulatorValue();

// Resets the accumulator to the initial value
analog.resetAccumulator();

C++

// Sets the initial value of the accumulator to 0
// This is the "starting point" from which the value will change over time
analog.SetAccumulatorInitialValue(0);

// Sets the "center" of the accumulator to 0. This value is subtracted from
// all measured values prior to accumulation.
analog.SetAccumulatorCenter(0);

// Returns the number of accumulated samples since the accumulator was last started/
↪→reset
analog.GetAccumulatorCount();

// Returns the value of the accumulator. Return type is long.
analog.GetAccumulatorValue();

// Resets the accumulator to the initial value
analog.ResetAccumulator();

Obtaining synchronized count and value

Sometimes, it is necessarily to obtain matched measurements of the count and the value. This
can be done using the getAccumulatorOutput method:
Java

// Instantiate an AccumulatorResult object to hold the matched measurements
AccumulatorResult result = new AccumulatorResult();

// Fill the AccumulatorResult with the matched measurements
analog.getAccumulatorOutput(result);

// Read the values from the AccumulatorResult
long count = result.count;
long value = result.value;

C++

492 Chapter 14. Hardware APIs

FIRST Robotics Competition

// The count and value variables to fill
int_64t count;
int_64t value;

// Fill the count and value variables with the matched measurements
analog.GetAccumulatorOutput(count, value);

Using analog inputs in code

The AnalogInput class can be used to write code for a wide variety of sensors (including
potentiometers, accelerometers, gyroscopes, ultrasonics, and more) that return their data as
an analog voltage. However, if possible it is almost always more convenient to use one of the
other existing WPILib classes that handles the lower-level code (reading the analog voltages
and converting them to meaningful units) for you. Users should only directly use AnalogInput
as a “last resort.”
Accordingly, for examples of how to effectively use analog sensors in code, users should refer
to the other pages of this chapter that deal with more-specific classes.

14.3.8 Analog Potentiometers - Software

Note: This section covers analog potentiometers in software. For a hardware guide to analog
potentiometers, see Analog Potentiometers - Hardware.

Potentiometers are variable resistors that allow information about position to be converted
into an analog voltage signal. This signal can be read by the roboRIO to control whatever
device is attached to the potentiometer.
While it is possible to read information from a potentiometer directly with an Analog In-
puts - Software, WPILib provides an AnalogPotentiometer class (Java, C++) that handles
re-scaling the values into meaningful units for the user. It is strongly encouraged to use this
class.
In fact, the AnalogPotentiometer name is something of a misnomer - this class should be
used for the vast majority of sensors that return their signal as a simple, linearly-scaled analog
voltage.

The AnalogPotentiometer class

Note: The “full range” or “scale” parameters in the AnalogPotentiometer constructor are
scale factors from a range of 0-1 to the actual range, not from 0-5. That is, they represent a
native fractional scale, rather than a voltage scale.

An AnalogPotentiometer can be initialized as follows:
Java

14.3. Sensors 493

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogPotentiometer.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_potentiometer.html

FIRST Robotics Competition

// Initializes an AnalogPotentiometer on analog port 0
// The full range of motion (in meaningful external units) is 0-180 (this could be␣
↪→degrees, for instance)
// The "starting point" of the motion, i.e. where the mechanism is located when the␣
↪→potentiometer reads 0v, is 30.

AnalogPotentiometer pot = new AnalogPotentiometer(0, 180, 30);

C++

// Initializes an AnalogPotentiometer on analog port 0
// The full range of motion (in meaningful external units) is 0-180 (this could be␣
↪→degrees, for instance)
// The "starting point" of the motion, i.e. where the mechanism is located when the␣
↪→potentiometer reads 0v, is 30.

frc::AnalogPotentiometer pot{0, 180, 30};

Customizing the underlying AnalogInput

Note: If the user changes the scaling of the AnalogInput with oversampling, this must be
reflected in the scale setting passed to the AnalogPotentiometer.

If the user would like to apply custom settings to the underlying AnalogInput used by the
AnalogPotentiometer, an alternative constructor may be used in which the AnalogInput is
injected:
Java

// Initializes an AnalogInput on port 0, and enables 2-bit averaging
AnalogInput input = new AnalogInput(0);
input.setAverageBits(2);

// Initializes an AnalogPotentiometer with the given AnalogInput
// The full range of motion (in meaningful external units) is 0-180 (this could be␣
↪→degrees, for instance)
// The "starting point" of the motion, i.e. where the mechanism is located when the␣
↪→potentiometer reads 0v, is 30.

AnalogPotentiometer pot = new AnalogPotentiometer(input, 180, 30);

C++

// Initializes an AnalogInput on port 0, and enables 2-bit averaging
frc::AnalogInput input{0};
input.SetAverageBits(2);

// Initializes an AnalogPotentiometer with the given AnalogInput
// The full range of motion (in meaningful external units) is 0-180 (this could be␣
↪→degrees, for instance)
// The "starting point" of the motion, i.e. where the mechanism is located when the␣
↪→potentiometer reads 0v, is 30.

frc::AnalogPotentiometer pot{input, 180, 30};

494 Chapter 14. Hardware APIs

FIRST Robotics Competition

Reading values from the AnalogPotentiometer

The scaled value can be read by simply calling the get method:
Java

pot.get();

C++

pot.Get();

Using AnalogPotentiometers in code

Analog sensors can be used in code much in the way other sensors that measure the same
thing can be. If the analog sensor is a potentiometer measuring an arm angle, it can be
used similarly to an encoder. If it is an ultrasonic sensor, it can be used similarly to other
ultrasonics.
It is very important to keep in mind that actual, physical potentiometers generally have a lim-
ited range of motion. Safeguards should be present in both the physical mechanism and the
code to ensure that the mechanism does not break the sensor by traveling past its maximum
throw.

14.3.9 Digital Inputs - Software

Note: This section covers digital inputs in software. For a hardware guide to digital inputs,
see Digital Inputs - Hardware.

The roboRIO’s FPGA supports up to 26 digital inputs. 10 of these are made available through
the built-in DIO ports on the RIO itself, while the other 16 are available through the MXP
breakout port.
Digital inputs read one of two states - “high” or “low.” By default, the built-in ports on the
RIO will read “high” due to internal pull-up resistors (for more information, see Digital Inputs
- Hardware). Accordingly, digital inputs are most-commonly used with switches of some sort.
Support for this usage is provided through the DigitalInput class (Java, C++).

The DigitalInput class

A DigitalInput can be initialized as follows:
Java

// Initializes a DigitalInput on DIO 0
DigitalInput input = new DigitalInput(0);

C++

// Initializes a DigitalInput on DIO 0
frc::DigitalInput input{0};

14.3. Sensors 495

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DigitalInput.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_digital_input.html

FIRST Robotics Competition

Reading the value of the DigitalInput

The state of the DigitalInput can be polled with the get method:
Java

// Gets the value of the digital input. Returns true if the circuit is open.
input.get();

C++

// Gets the value of the digital input. Returns true if the circuit is open.
input.Get();

Creating a DigitalInput from an AnalogInput

Note: An AnalogTrigger constructed with a port number argument can share that analog
port with a separate AnalogInput, but two AnalogInput objects may not share the same port.

Sometimes, it is desirable to use an analog input as a digital input. This can be easily achieved
using the AnalogTrigger class (Java, C++).
An AnalogTriggermay be initialized as follows. As with AnalogPotentiometer, an AnalogIn-
put may be passed explicitly if the user wishes to customize the sampling settings:
Java

// Initializes an AnalogTrigger on port 0
AnalogTrigger trigger0 = new AnalogTrigger(0);

// Initializes an AnalogInput on port 1 and enables 2-bit oversampling
AnalogInput input = new AnalogInput(1);
input.setAverageBits(2);

// Initializes an AnalogTrigger using the above input
AnalogTrigger trigger1 = new AnalogTrigger(input);

C++

// Initializes an AnalogTrigger on port 0
frc::AnalogTrigger trigger0{0};

// Initializes an AnalogInput on port 1 and enables 2-bit oversampling
frc::AnalogInput input{1};
input.SetAverageBits(2);

// Initializes an AnalogTrigger using the above input
frc::AnalogTrigger trigger1{input};

496 Chapter 14. Hardware APIs

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/AnalogTrigger.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_analog_trigger.html

FIRST Robotics Competition

Setting the trigger points

Note: For details on the scaling of “raw” AnalogInput values, see Analog Inputs - Software.

To convert the analog signal to a digital one, it is necessary to specify at what values the
trigger will enable and disable. These values may be different to avoid “dithering” around
the transition point:
Java

// Sets the trigger to enable at a raw value of 3500, and disable at a value of 1000
trigger.setLimitsRaw(1000, 3500);

// Sets the trigger to enable at a voltage of 4 volts, and disable at a value of 1.5␣
↪→volts
trigger.setLimitsVoltage(1.5, 4);

C++

// Sets the trigger to enable at a raw value of 3500, and disable at a value of 1000
trigger.SetLimitsRaw(1000, 3500);

// Sets the trigger to enable at a voltage of 4 volts, and disable at a value of 1.5␣
↪→volts
trigger.SetLimitsVoltage(1.5, 4);

Using DigitalInputs in code

As almost all switches on the robot will be used through a DigitalInput. This class is ex-
tremely important for effective robot control.

Limiting the motion of a mechanism

Nearly all motorized mechanisms (such as arms and elevators) in FRC® should be given some
form of “limit switch” to prevent them from damaging themselves at the end of their range of
motions. A short example is given below:
Java

Spark spark = new Spark(0);

// Limit switch on DIO 2
DigitalInput limit = new DigitalInput(2);

public void autonomousPeriodic() {
// Runs the motor forwards at half speed, unless the limit is pressed
if(!limit.get()) {

spark.set(.5);
} else {

spark.set(0);
}

}

14.3. Sensors 497

FIRST Robotics Competition

C++

// Motor for the mechanism
frc::Spark spark{0};

// Limit switch on DIO 2
frc::DigitalInput limit{2};

void AutonomousPeriodic() {
// Runs the motor forwards at half speed, unless the limit is pressed
if(!limit.Get()) {

spark.Set(.5);
} else {

spark.Set(0);
}

}

Homing a mechanism

Limit switches are very important for being able to “home” a mechanism with an encoder.
For an example of this, see Homing a Mechanism.

14.3.10 Programming Limit Switches

Limit switches are often used to control mechanisms on robots. While limit switches are
simple to use, they only can sense a single position of a moving part. This makes them ideal
for ensuring that movement doesn’t exceed some limit but not so good at controlling the
speed of the movement as it approaches the limit. For example, a rotational shoulder joint on
a robot arm would best be controlled using a potentiometer or an absolute encoder. A limit
switch could make sure that if the potentiometer ever failed, the limit switch would stop the
robot from going too far and causing damage.
Limit switches can have “normally open” or “normally closed” outputs. This will control if a
high signal means the switch is opened or closed. To learn more about limit switch hardware
see this article.

Controlling a Motor with Two Limit Switches

Java

DigitalInput toplimitSwitch = new DigitalInput(0);
DigitalInput bottomlimitSwitch = new DigitalInput(1);
PWMVictorSPX motor = new PWMVictorSPX(0);
Joystick joystick = new Joystick(0);

@Override
public void teleopPeriodic() {

setMotorSpeed(joystick.getRawAxis(2));
}

public void setMotorSpeed(double speed) {
if (speed > 0) {

(continues on next page)

498 Chapter 14. Hardware APIs

FIRST Robotics Competition

(continued from previous page)
if (toplimitSwitch.get()) {

// We are going up and top limit is tripped so stop
motor.set(0);

} else {
// We are going up but top limit is not tripped so go at commanded speed
motor.set(speed);

}
} else {

if (bottomlimitSwitch.get()) {
// We are going down and bottom limit is tripped so stop
motor.set(0);

} else {
// We are going down but bottom limit is not tripped so go at commanded␣

↪→speed
motor.set(speed);

}
}

}

C++

frc::DigitalInput toplimitSwitch {0};
frc::DigitalInput bottomlimitSwitch {1};
frc::PWMVictorSPX motor {0};
frc::Joystick joystick {0};

void TeleopPeriodic() {
SetMotorSpeed(joystick.GetRawAxis(2));

}

void SetMotorSpeed(double speed) {
if (speed > 0) {

if (toplimitSwitch.Get()) {
// We are going up and top limit is tripped so stop
motor.Set(0);

} else {
// We are going up but top limit is not tripped so go at commanded speed
motor.Set(speed);

}
} else {

if (bottomlimitSwitch.Get()) {
// We are going down and bottom limit is tripped so stop
motor.Set(0);

} else {
// We are going down but bottom limit is not tripped so go at commanded␣

↪→speed
motor.Set(speed);

}
}

}

14.3. Sensors 499

FIRST Robotics Competition

14.4 Miscellaneous Hardware APIs

This section highlights miscellaneous hardware APIs that are standalone.

14.4.1 Addressable LEDs

LED strips have been commonly used by teams for several years for a variety of reasons. They
allow teams to debug robot functionality from the audience, provide a visual marker for their
robot, and can simply add some visual appeal. WPILib has an API for controlling WS2812
LEDs with their data pin connected via PWM.

Instantiating the AddressableLED Object

You first create an AddressableLED object that takes the PWM port as an argument. It must
be a PWM header on the roboRIO. Then you set the number of LEDs located on your LED
strip, with can be done with the setLength() function.

Important: It is important to note that setting the length of the LED header is an expensive
task and it’s not recommended to run this periodically.

After the length of the strip has been set, you’ll have to create an AddressableLEDBuffer
object that takes the number of LEDs as an input. You’ll then call myAddressableLed.
setData(myAddressableLEDBuffer) to set the led output data. Finally, you can call
myAddressableLed.start() to write the output continuously. Below is a full example of the
initialization process.

Note: C++ does not have an AddressableLEDBuffer, and instead uses an Array.

Java

17 @Override
18 public void robotInit() {
19 // PWM port 9
20 // Must be a PWM header, not MXP or DIO
21 m_led = new AddressableLED(9);
22

23 // Reuse buffer
24 // Default to a length of 60, start empty output
25 // Length is expensive to set, so only set it once, then just update data
26 m_ledBuffer = new AddressableLEDBuffer(60);
27 m_led.setLength(m_ledBuffer.getLength());
28

29 // Set the data
30 m_led.setData(m_ledBuffer);
31 m_led.start();
32 }

C++

500 Chapter 14. Hardware APIs

FIRST Robotics Competition

11 class Robot : public frc::TimedRobot {
12 private:
13 static constexpr int kLength = 60;
14

15 // PWM port 9
16 // Must be a PWM header, not MXP or DIO
17 frc::AddressableLED m_led{9};
18 std::array<frc::AddressableLED::LEDData, kLength>
19 m_ledBuffer; // Reuse the buffer
20 // Store what the last hue of the first pixel is
21 int firstPixelHue = 0;

7 void Robot::RobotInit() {
8 // Default to a length of 60, start empty output
9 // Length is expensive to set, so only set it once, then just update data

10 m_led.SetLength(kLength);
11 m_led.SetData(m_ledBuffer);
12 m_led.Start();
13 }

Setting the Entire Strip to One Color

Color can be set to an individual led on the strip using two methods. setRGB() which takes
RGB values as an input and setHSV() which takes HSV values as an input.

Using RGB Values

RGB stands for Red, Green, and Blue. This is a fairly common color model as it’s quite easy
to understand. LEDs can be set with the setRGB method that takes 4 arguments: index of the
LED, amount of red, amount of green, amount of blue. The amount of Red, Green, and Blue
are integer values between 0-255.
Java

for (var i = 0; i < m_ledBuffer.getLength(); i++) {
// Sets the specified LED to the RGB values for red
m_ledBuffer.setRGB(i, 255, 0, 0);

}

m_led.setData(m_ledBuffer);

C++

for (int i = 0; i < kLength; i++) {
m_ledBuffer[i].SetRGB(255, 0, 0);

}

m_led.SetData(m_ledBuffer);

14.4. Miscellaneous Hardware APIs 501

FIRST Robotics Competition

Using HSV Values

HSV stands for Hue, Saturation, and Value. Hue describes the color or tint, saturation being
the amount of gray, and value being the brightness. In WPILib, Hue is an integer from 0 - 180.
Saturation and Value are integers from 0 - 255. If you look at a color picker like Google’s,
Hue will be 0 - 360 and Saturation and Value are from 0% to 100%. This is the same way that
OpenCV handles HSV colors. Make sure the HSV values entered to WPILib are correct, or
the color produced might not be the same as was expected.

LEDs can be set with the setHSV method that takes 4 arguments: index of the LED, hue,
saturation, and value. An example is shown below for setting the color of an LED strip to red
(hue of 0).
Java

502 Chapter 14. Hardware APIs

https://www.google.com/search?q=color+picker

FIRST Robotics Competition

for (var i = 0; i < m_ledBuffer.getLength(); i++) {
// Sets the specified LED to the HSV values for red
m_ledBuffer.setHSV(i, 0, 100, 100);

}

m_led.setData(m_ledBuffer);

C++

for (int i = 0; i < kLength; i++) {
m_ledBuffer[i].SetHSV(0, 100, 100);

}

m_led.SetData(m_ledBuffer);

Creating a Rainbow Effect

The below method does a couple of important things. Inside of the for loop, it equally dis-
tributes the hue over the entire length of the strand and stores the individual LED hue to a
variable called hue. Then the for loop sets the HSV value of that specified pixel using the hue
value.
Moving outside of the for loop, the m_rainbowFirstPixelHue then iterates the pixel that
contains the “initial” hue creating the rainbow effect. m_rainbowFirstPixelHue then checks
to make sure that the hue is inside the hue boundaries of 180. This is because HSV hue is a
value from 0-180.

Note: It’s good robot practice to keep the robotPeriodic() method as clean as possible,
so we’ll create a method for handling setting our LED data. We’ll call this method rainbow()
and call it from robotPeriodic().

Java

42 private void rainbow() {
43 // For every pixel
44 for (var i = 0; i < m_ledBuffer.getLength(); i++) {
45 // Calculate the hue - hue is easier for rainbows because the color
46 // shape is a circle so only one value needs to precess
47 final var hue = (m_rainbowFirstPixelHue + (i * 180 / m_ledBuffer.getLength()))

↪→% 180;
48 // Set the value
49 m_ledBuffer.setHSV(i, hue, 255, 128);
50 }
51 // Increase by to make the rainbow "move"
52 m_rainbowFirstPixelHue += 3;
53 // Check bounds
54 m_rainbowFirstPixelHue %= 180;
55 }

C++

22 void Robot::Rainbow() {
23 // For every pixel

(continues on next page)

14.4. Miscellaneous Hardware APIs 503

FIRST Robotics Competition

(continued from previous page)
24 for (int i = 0; i < kLength; i++) {
25 // Calculate the hue - hue is easier for rainbows because the color
26 // shape is a circle so only one value needs to precess
27 const auto pixelHue = (firstPixelHue + (i * 180 / kLength)) % 180;
28 // Set the value
29 m_ledBuffer[i].SetHSV(pixelHue, 255, 128);
30 }
31 // Increase by to make the rainbow "move"
32 firstPixelHue += 3;
33 // Check bounds
34 firstPixelHue %= 180;
35 }

Now that we have our rainbow method created, we have to actually call the method and set
the data of the LED.
Java

34 @Override
35 public void robotPeriodic() {
36 // Fill the buffer with a rainbow
37 rainbow();
38 // Set the LEDs
39 m_led.setData(m_ledBuffer);
40 }

C++

15 void Robot::RobotPeriodic() {
16 // Fill the buffer with a rainbow
17 Rainbow();
18 // Set the LEDs
19 m_led.SetData(m_ledBuffer);
20 }

14.5 Motor Controllers

A motor controller is responsible on your robot for making motors move. For brushed DC
motors such as CIMs or 775s, the motor controller regulates the voltage that the motor re-
ceives, much like a light bulb. For brushless motor controllers such as the Spark MAX, the
controller regulates the power delivered to each “phase” of the motor.

Note: Another name for a motor controller is a speed controller.

Hint: One can make a quick, non-competition-legal motor controller by removing the motor
from a cordless BRUSHED drill and attaching PowerPoles or equivalents to the motor’s leads.
Make sure that the voltage supplied by the drill will not damage the motor, but note that the
775 is fine at up to 24 volts.

504 Chapter 14. Hardware APIs

FIRST Robotics Competition

Warning: Connecting a BRUSHLESS motor controller straight to power, such as to a
conventional brushed motor controller, will destroy the motor!

14.5.1 FRC Legal Motor Controllers

Motor controllers come in lots of shapes, sizes and feature sets. This is the full list of FRC®
Legal motor controllers as of 2023:

• DMC 60/DMC 60c Motor Controller (P/N: 410-334-1, 410-334-2)
• Jaguar Motor Controller (P/N: MDL-BDC, MDL-BDC24, and 217-3367) connected to

PWM only
• Nidec Dynamo BLDC Motor with Controller to control integral actuator only (P/N

840205-000, am-3740)
• SD540 Motor Controller (P/N: SD540x1, SD540x2, SD540x4, SD540Bx1, SD540Bx2,

SD540Bx4, SD540C)
• Spark Motor Controller (P/N: REV-11-1200, am-4260)
• Spark MAX Motor Controller (P/N: REV-11-2158, am-4261)
• Talon FX Motor Controller (P/N: 217-6515, 19-708850, am-6515, am-6515_Short) for

controlling integral Falcon 500 only
• Talon Motor Controller (P/N: CTRE_Talon, CTRE_Talon_SR, and am-2195)
• Talon SRX Motor Controller (P/N: 217-8080, am-2854, 14-838288)
• Venom Motor with Controller (P/N BDC-10001) for controlling integral motor only
• Victor 884 Motor Controller (P/N: VICTOR-884-12/12)
• Victor 888 Motor Controller (P/N: 217-2769)
• Victor SP Motor Controller (P/N: 217-9090, am-2855, 14-868380)
• Victor SPX Motor Controller (P/N: 217-9191, 17-868388, am-3748)

14.6 Pneumatics

Pneumatics are a quick and easy way to make something that’s in one state or another using
compressed air. For information on operating pneumatics, see Operating pneumatic cylin-
ders.

14.6. Pneumatics 505

FIRST Robotics Competition

14.6.1 FRC Legal Pneumatics controllers

• Pneumatics Control Module (P/N: am-2858, 217-4243)
• Pneumatic Hub (P/N REV-11-1852)

14.7 Relays

A relay controls power to a motor or custom electronics in an On/Off fashion.

14.7.1 FRC Legal Relay Modules

• Spike H-Bridge Relay (P/N: 217-0220 and SPIKE-RELAY-H)
• Automation Direct Relay (P/N: AD-SSR6M12-DC200D, AD-SSR6M25-DC200D, AD-

SSR6M40-DC200D)
• Power Distribution Hub (PDH) switched channel (P/N REV-11-1850)

506 Chapter 14. Hardware APIs

15
CAN Devices

15.1 Using CAN Devices

CAN has many advantages over other methods of connection between the robot controller
and peripheral devices.

• CAN connections are daisy-chained from device to device, which often results in much
shorter wire runs than having to wire each device to the RIO itself.

• Much more data can be sent over a CAN connection than over a PWM connection - thus,
CAN motor controllers are capable of a much more expansive feature-set than are PWM
motor controllers.

• CAN is bi-directional, so CAN motor controllers can send data back to the RIO, again
facilitating a more expansive feature-set than can be offered by PWM Controllers.

For instructions on wiring CAN devices, see the relevant section of the robot wiring guide.
CAN devices generally have their own WPILib classes. The following sections will describe
the use of several of these classes.

507

FIRST Robotics Competition

15.2 Pneumatics Control Module

The Pneumatics Control Module (PCM) is a CAN-based device that provides complete control
over the compressor and up to 8 solenoids per module. The PCM is integrated into WPILib
through a series of classes that make it simple to use.
The closed loop control of the Compressor and Pressure switch is handled by the Compressor
class (Java, C++), and the Solenoids are handled by the Solenoid (Java, C++) and Dou-
bleSolenoid (Java, C++) classes.
An additional PCM module can be used where the module’s corresponding solenoids are dif-
ferentiated by the module number in the constructors of the Solenoid and Compressor classes.
For more information on controlling the compressor, see Operating a Compressor for Pneu-
matics.
For more information on controlling solenoids, see Operating Pneumatic Cylinders.

508 Chapter 15. CAN Devices

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Compressor.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_compressor.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Solenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_solenoid.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DoubleSolenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_double_solenoid.html

FIRST Robotics Competition

15.3 Pneumatic Hub

The Pneumatic Hub (PH) is a CAN-based device that provides complete control over the com-
pressor and up to 16 solenoids per module. The PH is integrated into WPILib through a series
of classes that make it simple to use.
The closed loop control of the Compressor and Pressure switch is handled by the Compressor
class (Java, C++), and the Solenoids are handled by the Solenoid (Java, C++) and Dou-
bleSolenoid (Java, C++) classes.
An additional PH module can be used where the module’s corresponding solenoids are differ-
entiated by the module number in the constructors of the Solenoid and Compressor classes.
For more information on controlling the compressor, see Operating a Compressor for Pneu-
matics.
For more information on controlling solenoids, see Operating Pneumatic Cylinders.

15.4 Power Distribution Module

The CTRE Power Distribution Panel (PDP) and Rev Power Distribution Hub (PDH) can use
their CAN connectivity to communicate a wealth of status information regarding the robot’s
power use to the roboRIO, for use in user code. This has the capability to report current
temperature, the bus voltage, the total robot current draw, the total robot energy use, and
the individual current draw of each device power channel. This data can be used for a number
of advanced control techniques, such as motor torque limiting and brownout avoidance.

15.3. Pneumatic Hub 509

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Compressor.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_compressor.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Solenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_solenoid.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DoubleSolenoid.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_double_solenoid.html

FIRST Robotics Competition

15.4.1 Creating a Power Distribution Object

To use the either Power Distribution module, create an instance of the PowerDistribution
class (Java, C++). With no arguments, the Power Distribution object will be detected, and
must use CAN ID of 0 for CTRE or 1 for REV. If the CAN ID is non-default, additional con-
structors are available to specify the CAN ID and type.
Java

PowerDistribution examplePD = new PowerDistribution();
PowerDistribution examplePD = new PowerDistribution(0, ModuleType.kCTRE);
PowerDistribution examplePD = new PowerDistribution(1, ModuleType.kRev);

C++

PowerDistribution examplePD{};
PowerDistribution examplePD{0, frc::PowerDistribution::ModuleType::kCTRE};
PowerDistribution examplePD{1, frc::PowerDistribution::ModuleType::kRev};

Note: it is not necessary to create a PowerDistribution object unless you need to read values
from it. The board will work and supply power on all the channels even if the object is never
created.

Warning: To enable voltage and current logging in the Driver Station, the CAN ID for
the CTRE Power Distribution Panel must be 0, and for the REV Power Distribution Hub it
must be 1.

15.4.2 Reading the Bus Voltage

Java

32 // Get the voltage going into the PDP, in Volts.
33 // The PDP returns the voltage in increments of 0.05 Volts.
34 double voltage = m_pdp.getVoltage();
35 SmartDashboard.putNumber("Voltage", voltage);

C++

28 // Get the voltage going into the PDP, in Volts.
29 // The PDP returns the voltage in increments of 0.05 Volts.
30 double voltage = m_pdp.GetVoltage();
31 frc::SmartDashboard::PutNumber("Voltage", voltage);

Monitoring the bus voltage can be useful for (among other things) detecting when the robot
is near a brownout, so that action can be taken to avoid brownout in a controlled manner. See
the roboRIO Brownouts document for more information.

510 Chapter 15. CAN Devices

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/PowerDistribution.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_power_distribution.html

FIRST Robotics Competition

15.4.3 Reading the Temperature

Java

37 // Retrieves the temperature of the PDP, in degrees Celsius.
38 double temperatureCelsius = m_pdp.getTemperature();
39 SmartDashboard.putNumber("Temperature", temperatureCelsius);

C++

33 // Retrieves the temperature of the PDP, in degrees Celsius.
34 double temperatureCelsius = m_pdp.GetTemperature();
35 frc::SmartDashboard::PutNumber("Temperature", temperatureCelsius);

Monitoring the temperature can be useful for detecting if the robot has been drawing too
much power and needs to be shut down for a while, or if there is a short or other wiring
problem.

15.4.4 Reading the Total Current, Power, and Energy

Java

41 // Get the total current of all channels.
42 double totalCurrent = m_pdp.getTotalCurrent();
43 SmartDashboard.putNumber("Total Current", totalCurrent);
44

45 // Get the total power of all channels.
46 // Power is the bus voltage multiplied by the current with the units Watts.
47 double totalPower = m_pdp.getTotalPower();
48 SmartDashboard.putNumber("Total Power", totalPower);
49

50 // Get the total energy of all channels.
51 // Energy is the power summed over time with units Joules.
52 double totalEnergy = m_pdp.getTotalEnergy();
53 SmartDashboard.putNumber("Total Energy", totalEnergy);

C++

37 // Get the total current of all channels.
38 double totalCurrent = m_pdp.GetTotalCurrent();
39 frc::SmartDashboard::PutNumber("Total Current", totalCurrent);
40

41 // Get the total power of all channels.
42 // Power is the bus voltage multiplied by the current with the units Watts.
43 double totalPower = m_pdp.GetTotalPower();
44 frc::SmartDashboard::PutNumber("Total Power", totalPower);
45

46 // Get the total energy of all channels.
47 // Energy is the power summed over time with units Joules.
48 double totalEnergy = m_pdp.GetTotalEnergy();
49 frc::SmartDashboard::PutNumber("Total Energy", totalEnergy);

Monitoring the total current, power and energy can be useful for controlling how much power
is being drawn from the battery, both for preventing brownouts and ensuring that mechanisms
have sufficient power available to perform the actions required. Power is the bus voltage

15.4. Power Distribution Module 511

FIRST Robotics Competition

multiplied by the current with the units Watts. Energy is the power summed over time with
units Joules.

15.4.5 Reading Individual Channel Currents

The PDP/PDH also allows users to monitor the current drawn by the individual device power
channels. You can read the current on any of the 16 PDP channels (0-15) or 24 PDH channels
(0-23).
Java

26 // Get the current going through channel 7, in Amperes.
27 // The PDP returns the current in increments of 0.125A.
28 // At low currents the current readings tend to be less accurate.
29 double current7 = m_pdp.getCurrent(7);
30 SmartDashboard.putNumber("Current Channel 7", current7);

C++

22 // Get the current going through channel 7, in Amperes.
23 // The PDP returns the current in increments of 0.125A.
24 // At low currents the current readings tend to be less accurate.
25 double current7 = m_pdp.GetCurrent(7);
26 frc::SmartDashboard::PutNumber("Current Channel 7", current7);

Monitoring individual device current draws can be useful for detecting shorts or stalled mo-
tors.

15.4.6 Using the Switchable Channel (PDH)

The REV PDH has one channel that can be switched on or off to control custom circuits.
Java

examplePD.setSwitchableChannel(true);
examplePD.setSwitchableChannel(false);

C++

examplePD.SetSwitchableChannel(true);
examplePD.SetSwitchableChannel(false);

15.5 Third-Party CAN Devices

A number of FRC® vendors offer their own CAN peripherals. As CAN devices offer expansive
feature-sets, vendor CAN devices require similarly expansive code libraries to operate. As
a result, these libraries are not maintained as an official part of WPILib, but are instead
maintained by the vendors themselves. For a guide to installing third-party libraries, see 3rd
Party Libraries
A list of common third-party CAN devices from various vendors, along with links to corre-
sponding external documentation, is provided below:

512 Chapter 15. CAN Devices

FIRST Robotics Competition

15.5.1 CTR Electronics

CTR Electronics (CTRE) offers several CAN peripherals with external libraries. General re-
sources for all CTRE devices include:

Phoenix Device Software Documentation

CTRE Motor Controllers

• Talon FX (with Falcon 500 Motor)
– API Documentation (v5: Java, C++ | Pro: Java, C++)
– Hardware User’s Manual
– Software Documentation (v5, Pro)

• Talon SRX
– API Documentation (Java, C++)
– Hardware User’s Manual
– Software Documentation

• Victor SPX
– API Documentation (Java, C++)
– Hardware User’s Manual
– Software Documentation

CTRE Sensors

• CANcoder
– API Documentation (v5: Java, C++ | Pro: Java, C++)
– Hardware User’s Manual
– Software Documentation (v5, Pro)

• Pigeon 2.0
– API Documentation (v5: Java, C++ | Pro: Java, C++)
– Hardware User’s Manual
– Software Documentation (v5, Pro)

• Pigeon IMU
– API Documentation (Java, C++)
– Hardware User’s Manual
– Software Documentation

• CANifier
– API Documentation (Java, C++)
– Hardware User’s Manual

15.5. Third-Party CAN Devices 513

https://docs.ctr-electronics.com/
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/motorcontrol/can/WPI_TalonFX.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_w_p_i___talon_f_x.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/hardware/TalonFX.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1hardware_1_1_talon_f_x.html
https://store.ctr-electronics.com/content/user-manual/Falcon%20500%20User%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch13_MC.html
https://pro.docs.ctr-electronics.com/en/stable/docs/api-reference/examples/quickstart.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/motorcontrol/can/WPI_TalonSRX.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_w_p_i___talon_s_r_x.html
https://store.ctr-electronics.com/content/user-manual/Talon%20SRX%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch13_MC.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/motorcontrol/can/WPI_VictorSPX.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_w_p_i___victor_s_p_x.html
https://store.ctr-electronics.com/content/user-manual/Victor%20SPX%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch13_MC.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/sensors/WPI_CANCoder.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1sensors_1_1_w_p_i___c_a_n_coder.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/hardware/CANcoder.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1hardware_1_1_c_a_ncoder.html
https://store.ctr-electronics.com/content/user-manual/CANCoder%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch12a_BringUpCANCoder.html
https://pro.docs.ctr-electronics.com/en/stable/docs/api-reference/api-usage/index.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/sensors/WPI_Pigeon2.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1sensors_1_1_w_p_i___pigeon2.html
https://api.ctr-electronics.com/phoenixpro/release/java/com/ctre/phoenixpro/hardware/Pigeon2.html
https://api.ctr-electronics.com/phoenixpro/release/cpp/classctre_1_1phoenixpro_1_1hardware_1_1_pigeon2.html
https://store.ctr-electronics.com/content/user-manual/Pigeon2%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch11a_BringUpPigeon2.html
https://pro.docs.ctr-electronics.com/en/stable/docs/api-reference/api-usage/index.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/sensors/WPI_PigeonIMU.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1sensors_1_1_w_p_i___pigeon_i_m_u.html
https://store.ctr-electronics.com/content/user-manual/Pigeon%20IMU%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch11_BringUpPigeon.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/CANifier.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1_c_a_nifier.html
https://store.ctr-electronics.com/content/user-manual/CANifier%20User%27s%20Guide.pdf

FIRST Robotics Competition

– Software Documentation

CTRE Other CAN Devices

• CANdle LED Controller
– API Documentation (Java, C++)
– Hardware User’s Manual
– Software Documentation

15.5.2 REV Robotics

REV Robotics currently offers the SPARK MAX motor controller, which has a similar feature-
set to the Talon SRX.

REV Motor Controllers

• SPARK MAX
– API Documentation (Java, C++)
– Technical Manual

15.5.3 Playing With Fusion

Playing With Fusion (PWF) offers the Venom integrated motor/controller as well as a Time-
of-Flight distance sensor:

PWF Motor Controllers

• Venom
– API Documentation (Java, C++)
– Technical Manual

PWF Sensors

• Time of Flight Sensor
– API Documentation (Java, C++)
– Technical Manual

514 Chapter 15. CAN Devices

https://v5.docs.ctr-electronics.com/en/stable/ch12_BringUpCANifier.html
https://api.ctr-electronics.com/phoenix/release/java/com/ctre/phoenix/led/CANdle.html
https://api.ctr-electronics.com/phoenix/release/cpp/classctre_1_1phoenix_1_1led_1_1_c_a_ndle.html
https://store.ctr-electronics.com/content/user-manual/CANdle%20User's%20Guide.pdf
https://v5.docs.ctr-electronics.com/en/stable/ch12b_BringUpCANdle.html
https://codedocs.revrobotics.com/java/com/revrobotics/package-summary.html
https://codedocs.revrobotics.com/cpp/namespacerev.html
https://docs.revrobotics.com/sparkmax/
https://www.playingwithfusion.com/frc/2020/javadoc/com/playingwithfusion/package-summary.html
https://www.playingwithfusion.com/frc/2020/cppdoc/html/annotated.html
https://www.playingwithfusion.com/include/getfile.php?fileid=7086
https://www.playingwithfusion.com/frc/2020/javadoc/com/playingwithfusion/package-summary.html
https://www.playingwithfusion.com/frc/2020/cppdoc/html/annotated.html
https://www.playingwithfusion.com/include/getfile.php?fileid=7091

FIRST Robotics Competition

15.6 FRC CAN Device Specifications

This document seeks to describe the basic functions of the current FRC® CAN system and
the requirements for any new CAN devices seeking to work with the system.

15.6.1 Addressing

FRC CAN nodes assign arbitration IDs based on a pre-defined scheme that breaks the ID into
5 components:

Device Type

This is a 5-bit value describing the type of device being addressed. A table of currently as-
signed device types can be found below. If you wish to have a new device type assigned from
the Reserved pool, please submit a request to FIRST.

Device Types
Broadcast Messages 0
Robot Controller 1
Motor Controller 2
Relay Controller 3
Gyro Sensor 4
Accelerometer 5
Ultrasonic Sensor 6
Gear Tooth Sensor 7
Power Distribution Module 8
Pneumatics Controller 9
Miscellaneous 10
IO Breakout 11
Reserved 12-30
Firmware Update 31

Manufacturer

This is an 8-bit value indicating the manufacturer of the CAN device. Currently assigned
values can be found in the table below. If you wish to have a manufacturer ID assigned from
the Reservedpool, please submit a request to FIRST.

15.6. FRC CAN Device Specifications 515

FIRST Robotics Competition

Manufacturer
Broadcast 0
NI 1
Luminary Micro 2
DEKA 3
CTR Electronics 4
REV Robotics 5
Grapple 6
MindSensors 7
Team Use 8
Kauai Labs 9
Copperforge 10
Playing With Fusion 11
Studica 12
The Thrifty Bot 13
Redux Robotics 14
Reserved 15-255

API/Message Identifier

The API or Message Identifier is a 10-bit value that identifies a particular command or mes-
sage type. These identifiers are unique for each Manufacturer + Device Type combination
(so an API identifier that may be a “Voltage Set” for a Luminary Micro Motor Controller may
be a “Status Get” for a CTR Electronics Motor Controller or Current Get for a CTR Power
Distribution Module).
The Message identifier is further broken down into 2 sub-fields: the 6-bit API Class and the
4-bit API Index.

API Class

The API Class is a 6-bit identifier for an API grouping. Similar messages are grouped into a
single API Class. An example of the API Classes for the Jaguar Motor Controller is shown in
the table below.

API Class
Voltage Control Mode 0
Speed Control Mode 1
Voltage Compensation Mode 2
Position Control Mode 3
Current Control Mode 4
Status 5
Periodic Status 6
Configuration 7
Ack 8

516 Chapter 15. CAN Devices

FIRST Robotics Competition

API Index

The API Index is a 4-bit identifier for a particular message within an API Class. An example
of the API Index values for the Jaguar Motor Controller Speed Control API Class is shown in
the table below.

API Index
Enable Control 0
Disable Control 1
Set Setpoint 2
P Constant 3
I Constant 4
D Constant 5
Set Reference 6
Trusted Enable 7
Trusted Set No Ack 8
Trusted Set Setpoint No Ack 10
Set Setpoint No Ack 11

Device Number

Device Number is a 6-bit quantity indicating the number of the device of a particular type.
Devices should default to device ID 0 to match other components of the FRC Control System.
Device 0x3F may be reserved for device specific broadcast messages.

15.6.2 Protected Frames

FRC CAN Nodes which implement actuator control capability (motor controllers, relays, pneu-
matics controllers, etc.) must implement a way to verify that the robot is enabled and that
commands originate with the main robot controller (i.e. the roboRIO).

15.6. FRC CAN Device Specifications 517

FIRST Robotics Competition

15.6.3 Broadcast Messages

Broadcast messages are messages sent to all nodes by setting the device type and manufac-
turer fields to 0. The API Class for broadcast messages is 0. The currently defined broadcast
messages are shown in the table below:

Description
Disable 0
System Halt 1
System Reset 2
Device Assign 3
Device Query 4
Heartbeat 5
Sync 6
Update 7
Firmware Version 8
Enumerate 9
System Resume 10

Devices should disable immediately when receiving the Disable message (arbID 0). Imple-
mentation of other broadcast messages is optional.

15.6.4 Requirements for FRC CAN Nodes

For CAN Nodes to be accepted for use in the FRC System, they must:
• Communicate using Arbitration IDs which match the prescribed FRC format:

– A valid, issued CAN Device Type (per Table 1 - CAN Device Types)
– A valid, issued Manufacturer ID (per Table 2 - CAN Manufacturer Codes)
– API Class(es) and Index(s) assigned and documented by the device manufacturer
– A user selectable device number if multiple units of the device type are intended to

co-exist on the same network.
• Support the minimum Broadcast message requirements as detailed in the Broadcast

Messages section.
• If controlling actuators, utilize a scheme to assure that the robot is issuing commands,

is enabled, and is still present.
• Provide software library support for LabVIEW, C++, and Java or arrange with FIRST®

or FIRST’s Control System Partners to provide such interfaces.

518 Chapter 15. CAN Devices

FIRST Robotics Competition

15.6.5 Universal Heartbeat

The roboRIO provides a universal CAN heartbeat that any device on the bus can listen and
react to. This heartbeat is sent every 20ms. The heartbeat has a full CAN ID of 0x01011840
(which is the NI Manufacturer ID, RobotController type, Device ID 0 and API ID 0x062). It
is an 8 byte CAN packet. The important byte in here is byte 5 (index 4). The layout is the
following bitfield.

Description Width
RedAlliance 1
Enabled 1
Autonomous 1
Test 1
WatchdogEnabled 1
Reserved 3

The flag to watch for is WatchdogEnabled. If that flag is set, that means motor controllers are
enabled.
If 100ms has passed since this packet was received, the robot program can be considered
hung, and devices should act as if the robot has been disabled.

15.6. FRC CAN Device Specifications 519

FIRST Robotics Competition

520 Chapter 15. CAN Devices

16
Basic Programming

16.1 Git Version Control Introduction

Important: A more in-depth guide on Git is available on the Git website.

Git is a Distributed Version Control System (VCS) created by Linus Torvalds, also known for
creating and maintaining the Linux kernel. Version Control is a system for tracking changes
of code for developers. The advantages of Git Version Control are:

• Separation of testing environments into branches
• Ability to navigate to a particular commit without removing history
• Ability to manage commits in various ways, including combining them
• Various other features, see here

16.1.1 Prerequisites

Important: This tutorial uses the Windows operating system

You have to download and install Git from the following links:
• Windows
• macOS
• Linux

Note: You may need to add Git to your path

521

https://git-scm.com/book/en/v2
https://git-scm.com/about
https://git-scm.com/about
https://git-scm.com/download/win
https://git-scm.com/download/mac
https://git-scm.com/download/linux
https://www.google.com/search?q=adding+git+to+path

FIRST Robotics Competition

16.1.2 Git Vocabulary

Git revolves around several core data structures and commands:
• Repository: the data structure of your code, including a .git folder in the root directory
• Commit: a particular saved state of the repository, which includes all files and additions
• Branch: a means of grouping a set of commits. Each branch has a unique history. This

is primarily used for separating development and stable branches.
• Push: update the remote repository with your local changes
• Pull: update your local repository with the remote changes
• Clone: retrieve a local copy of a repository to modify
• Fork: duplicate a pre-existing repository to modify, and to compare against the original
• Merge: combine various changes from different branches/commits/forks into a single

history

16.1.3 Repository

A Git repository is a data structure containing the structure, history, and files of a project.
Git repositories usually consist of:

• A .git folder. This folder contains the various information about the repository.
• A .gitignore file. This file contains the files or directories that you do not want included

when you commit.
• Files and folders. This is the main content of the repository.

Creating the repository

You can store the repository locally, or through a remote – a remote being the cloud, or possibly
another storage medium or server that hosts your repository. GitHub is a popular free hosting
service. Numerous developers use it, and that’s what this tutorial will use.

Note: There are various providers that can host repositories. Gitlab and Bitbucket are a few
alternatives to Github.

Creating a GitHub Account

Go ahead and create a GitHub account by visiting the website and following the on-screen
prompts.

522 Chapter 16. Basic Programming

https://github.com/
https://about.gitlab.com
https://bitbucket.org/
https://github.com

FIRST Robotics Competition

Local Creation

After creating and verifying your account, you’ll want to visit the homepage. It’ll look similar
to the shown image.

Click the plus icon in the top right.

16.1. Git Version Control Introduction 523

FIRST Robotics Competition

Then click “New Repository”

Fill out the appropriate information, and then click “Create repository”

524 Chapter 16. Basic Programming

FIRST Robotics Competition

You should see a screen similar to this

16.1. Git Version Control Introduction 525

FIRST Robotics Competition

Note: The keyboard shortcut Ctrl+~ can be used to open a terminal in Visual Studio Code
for Windows.

Now you’ll want to open a PowerShell window and navigate to your project directory. An
excellent tutorial on PowerShell can be found here. Please consult your search engine on
how to open a terminal on alternative operating systems.

If a directory is empty, a file needs to be created in order for git to have something to track.
In the below Empty Directory example, we created a file called README.md with the contents
of # Example Repo. For FRC® Robot projects, the below Existing Project commands should
be run in the root of a project created by the VS Code WPILib Project Creator. More details
on the various commands can be found in the subsequent sections.

526 Chapter 16. Basic Programming

https://programminghistorian.org/en/lessons/intro-to-powershell

FIRST Robotics Competition

Note: Replace the filepath "C:\Users\ExampleUser9007\Documents\Example Folder"with
the one you want to create the repo in, and replace the remote URL https://github.com/
ExampleUser9007/ExampleRepo.git with the URL for the repo you created in the previous
steps.

Empty Directory

> cd "C:\Users\ExampleUser9007\Documents\Example Folder"
> git init
Initialized empty Git repository in C:/Users/ExampleUser9007/Documents/Example Folder/
↪→.git/
> echo "# ExampleRepo" >> README.md
> git add README.md
> git commit -m "First commit"
[main (root-commit) fafafa] First commit
1 file changed, 1 insertions(+), 0 deletions(-)
create mode 100644 README.md
> git remote add origin https://github.com/ExampleUser9007/ExampleRepo.git
> git push -u origin main

Existing Project

> cd "C:\Users\ExampleUser9007\Documents\Example Folder"
> git init
Initialized empty Git repository in C:/Users/ExampleUser9007/Documents/Example Folder/
↪→.git/
> git add .
> git commit -m "First commit"
[main (root-commit) fafafa] First commit
1 file changed, 1 insertions(+), 0 deletions(-)
create mode 100644 README.md
> git remote add origin https://github.com/ExampleUser9007/ExampleRepo.git
> git push -u origin main

16.1.4 Commits

Repositories are primarily composed of commits. Commits are saved states or versions of
code.
In the previous example, we created a file called README.md. Open that file in your favorite
text editor and edit a few lines. After tinkering with the file for a bit, simply save and close.
Navigate to PowerShell and type the following commands.

> git add README.md
> git commit -m "Adds a description to the repository"
[main bcbcbc] Adds a description to the repository
1 file changed, 2 insertions(+), 0 deletions(-)
> git push

Note: Writing good commit messages is a key part of a maintainable project. A guide on
writing commit messages can be found here.

16.1. Git Version Control Introduction 527

https://cbea.ms/git-commit/

FIRST Robotics Competition

Git Pull

Note: git fetch can be used when the user does not wish to automatically merge into the
current working branch

This command retrieves the history or commits from the remote repository. When the remote
contains work you do not have, it will attempt to automatically merge. See Merging.
Run: git pull

Git Add

This command “stages” the specified file(s) so that they will be included in the next commit.
For a single file, run git add FILENAME.txt where FILENAME.txt is the name and extension
of the file to add. To add every file/folder that isn’t excluded via gitignore, run git add ..
When run in the root of the repository this command will stage every untracked, unexcluded
file.

Git Commit

This command creates the commit and stores it locally. This saves the state and adds it to the
repository’s history. The commit will consist of whatever changes (“diffs”) were made to the
staged files since the last commit. It is required to specify a “commit message” explaining
why you changed this set of files or what the change accomplishes.
Run: git commit -m "type message here"

Git Push

Upload (Push) your local changes to the remote (Cloud)
Run: git push

16.1.5 Branches

Branches in Git are similar to parallel worlds. They start off the same, and then they can
“branch” out into different varying paths. Consider the Git control flow to look similar to this.

528 Chapter 16. Basic Programming

FIRST Robotics Competition

A C AFeature 1...

AYour Local Version...

File AMaster A A+CB

New Branch

Checkout branch Merge + Commit

Pull Request + Merge

Edited Files are listed inside the circles, representing c...

Viewer does not support full SVG 1.1

In the above example, main was branched (or duplicated) into the branch Feature 1 and some-
one checked out the branch, creating a local copy. Then, someone committed (or uploaded)
their changes, merging them into the branch Feature 1. You are “merging” the changes from
one branch into another.

Creating a Branch

Run: git branch branch-name where branch-name is the name of the branch to create. The
new branch history will be created from the current active branch.

Entering a Branch

Once a branch is created, you have to then enter the branch.
Run: git checkout branch-name where branch-name is the branch that was previously
created.

16.1.6 Merging

In scenarios where you want to copy one branches history into another, you can merge them.
A merge is done by calling git merge branch-name with branch-name being the name of the
branch to merge from. It is automatically merged into the current active branch.
It’s common for a remote repository to contain work (history) that you do not have. Whenever
you run git pull, it will attempt to automatically merge those commits into your local copy.
That merge may look like the below.

16.1. Git Version Control Introduction 529

FIRST Robotics Competition

A C AFeature 1...

AYour Local Version...

File AMaster A A+CA

New Branch

Checkout branch Merge + Commit

Edited Files are listed inside the circles, representing c...

C

Manual Resolution of merge conflict

Viewer does not support full SVG 1.1

However, in the above example, what if File A was modified by both branch Feature1 and
Feature2? This is called a merge conflict. A merge conflict can be resolved by editing
the conflicting file. In the example, we would need to edit File A to keep the history or
changes that we want. After that has been done, simply re-add, re-commit, and then push
your changes.

16.1.7 Resets

Sometimes history needs to be reset, or a commit needs to be undone. This can be done
multiple ways.

Reverting the Commit

Note: You cannot revert a merge, as git does not know which branch or origin it should
choose.

To revert history leading up to a commit run git revert commit-id. The commit IDs can be
shown using the git log command.

530 Chapter 16. Basic Programming

FIRST Robotics Competition

Resetting the Head

Warning: Forcibly resetting the head is a dangerous command. It permanently erases
all history past the target. You have been warned!

Run: git reset --hard commit-id.

16.1.8 Forks

Forks can be treated similarly to branches. You can merge the upstream (original repository)
into the origin (forked repository).

Cloning an Existing Repo

In the situation that a repository is already created and stored on a remote, you can clone it
using

git clone https://github.com/myrepo.git

where myrepo.git is replaced with your git repo. If you follow this, you can skip to commits.

Updating a Fork

1. Add the upstream: git remote add upstream https://github.com/ORIGINAL_OWNER/
ORIGINAL_REPOSITORY.git

2. Confirm it was added via: git remote -v

3. Pull changes from upstream: git fetch upstream

4. Merge the changes into head: git merge upstream/upstream-branch-name

16.1.9 Gitignore

Important: It is extremely important that teams do not modify the .gitignore file that is
included with their robot project. This can lead to offline deployment not working.

A .gitignore file is commonly used as a list of files to not automatically commit with git
add. Any files or directory listed in this file will not be committed. They will also not show up
with git status.
Additional Information can be found here.

16.1. Git Version Control Introduction 531

https://git-scm.com/docs/git-status
https://www.atlassian.com/git/tutorials/saving-changes/gitignore

FIRST Robotics Competition

Hiding a Folder

Simply add a new line containing the folder to hide, with a forward slash at the end
EX: directory-to-exclude/

Hiding a File

Add a new line with the name of the file to hide, including any prepending directory relative
to the root of the repository.
EX: directory/file-to-hide.txt
EX: file-to-hide2.txt

16.1.10 Additional Information

A much more in-depth tutorial can be found at the official git website.
A guide for correcting common mistakes can be found at the git flight rules repository.

16.2 The C++ Units Library

WPILib is coupled with a Units library for C++ teams. This library leverages the C++ type
system to enforce proper dimensionality for method parameters, automatically perform unit
conversions, and even allow users to define arbitrary defined unit types. Since the C++ type
system is enforced at compile-time, the library has essentially no runtime cost.

16.2.1 Using the Units Library

The units library is a header-only library. You must include the relevant header in your source
files for the units you want to use. Here’s a list of available units.

#include <units/acceleration.h>
#include <units/angle.h>
#include <units/angular_acceleration.h>
#include <units/angular_velocity.h>
#include <units/area.h>
#include <units/capacitance.h>
#include <units/charge.h>
#include <units/concentration.h>
#include <units/conductance.h>
#include <units/current.h>
#include <units/curvature.h>
#include <units/data.h>
#include <units/data_transfer_rate.h>
#include <units/density.h>
#include <units/dimensionless.h>
#include <units/energy.h>
#include <units/force.h>
#include <units/frequency.h>

(continues on next page)

532 Chapter 16. Basic Programming

https://git-scm.com/docs/gittutorial
https://github.com/k88hudson/git-flight-rules/blob/master/README.md
https://github.com/nholthaus/units
https://docs.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=msvc-170&viewFallbackFrom=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=msvc-170&viewFallbackFrom=vs-2019

FIRST Robotics Competition

(continued from previous page)
#include <units/illuminance.h>
#include <units/impedance.h>
#include <units/inductance.h>
#include <units/length.h>
#include <units/luminous_flux.h>
#include <units/luminous_intensity.h>
#include <units/magnetic_field_strength.h>
#include <units/magnetic_flux.h>
#include <units/mass.h>
#include <units/moment_of_inertia.h>
#include <units/power.h>
#include <units/pressure.h>
#include <units/radiation.h>
#include <units/solid_angle.h>
#include <units/substance.h>
#include <units/temperature.h>
#include <units/time.h>
#include <units/torque.h>
#include <units/velocity.h>
#include <units/voltage.h>
#include <units/volume.h>

The units/math.h header provides unit-aware functions like units::math::abs().

Unit Types and Container Types

The C++ units library is based around two sorts of type definitions: unit types and container
types.

Unit Types

Unit types correspond to the abstract concept of a unit, without any actual stored value. Unit
types are the fundamental “building block” of the units library - all unit types are defined
constructively (using the compound_unit template) from a small number of “basic” unit types
(such as meters, seconds, etc).
While unit types cannot contain numerical values, their use in building other unit types means
that when a type or method uses a template parameter to specify its dimensionality, that
parameter will be a unit type.

Container Types

Container types correspond to an actual quantity dimensioned according to some unit - that
is, they are what actually hold the numerical value. Container types are constructed from
unit types with the unit_t template. Most unit types have a corresponding container type
that has the same name suffixed by _t - for example, the unit type units::meter corresponds
to the container type units::meter_t.
Whenever a specific quantity of a unit is used (as a variable or a method parameter), it will
be an instance of the container type. By default, container types will store the actual value
as a double - advanced users may change this by calling the unit_t template manually.
A full list of unit and container types can be found in the documentation.

16.2. The C++ Units Library 533

https://cplusplus.com/doc/oldtutorial/templates/
https://github.com/nholthaus/units#namespaces

FIRST Robotics Competition

Creating Instances of Units

To create an instance of a specific unit, we create an instance of its container type:

// The variable speed has a value of 5 meters per second.
units::meter_per_second_t speed{5.0};

Alternatively, the units library has type literals defined for some of the more common con-
tainer types. These can be used in conjunction with type inference via auto to define a unit
more succinctly:

// The variable speed has a value of 5 meters per second.
auto speed = 5_mps;

Units can also be initialized using a value of an another container type, as long as the types
can be converted between one another. For example, a meter_t value can be created from a
foot_t value.

auto feet = 6_ft;
units::meter_t meters{feet};

In fact, all container types representing convertible unit types are implicitly convertible.
Thus, the following is perfectly legal:

units::meter_t distance = 6_ft;

In short, we can use any unit of length in place of any other unit of length, anywhere in our
code; the units library will automatically perform the correct conversion for us.

Performing Arithmetic with Units

Container types support all of the ordinary arithmetic operations of their underlying data type,
with the added condition that the operation must be dimensionally sound. Thus, addition must
always be performed on two compatible container types:

// Add two meter_t values together
auto sum = 5_m + 7_m; // sum is 12_m

// Adds meters to feet; both are length, so this is fine
auto sum = 5_m + 7_ft;

// Tries to add a meter_t to a second_t, will throw a compile-time error
auto sum = 5_m + 7_s;

Multiplication may be performed on any pair of container types, and yields the container type
of a compound unit:

Note: When a calculation yields a compound unit type, this type will only be checked for
validity at the point of operation if the result type is specified explicitly. If auto is used,
this check will not occur. For example, when we divide distance by time, we may want to
ensure the result is, indeed, a velocity (i.e. units::meter_per_second_t). If the return type
is declared as auto, this check will not be made.

534 Chapter 16. Basic Programming

https://en.cppreference.com/w/cpp/language/user_literal

FIRST Robotics Competition

// Multiply two meter_t values, result is square_meter_t
auto product = 5_m * 7_m; // product is 35_sq_m

// Divide a meter_t value by a second_t, result is a meter_per_second_t
units::meter_per_second_t speed = 6_m / 0.5_s; // speed is 12_mps

<cmath> Functions

Some std functions (such as clamp) are templated to accept any type on which the arith-
metic operations can be performed. Quantities stored as container types will work with these
functions without issue.
However, other std functions work only on ordinary numerical types (e.g. double). The units
library’s units::math namespace contains wrappers for several of these functions that accept
units. Examples of such functions include sqrt, pow, etc.

auto area = 36_sq_m;
units::meter_t sideLength = units::math::sqrt(area);

Removing the Unit Wrapper

To convert a container type to its underlying value, use the value() method. This serves as
an escape hatch from the units type system, which should be used only when necessary.

units::meter_t distance = 6.5_m;
double distanceMeters = distance.value();

16.2.2 Example of the Units Library in WPILib Code

Several arguments for methods in new features of WPILib (ex. kinematics) use the units
library. Here is an example of sampling a trajectory.

// Sample the trajectory at 1.2 seconds. This represents where the robot
// should be after 1.2 seconds of traversal.
Trajectory::State point = trajectory.Sample(1.2_s);

// Since units of time are implicitly convertible, this is exactly equivalent to the␣
↪→above code
Trajectory::State point = trajectory.Sample(1200_ms);

Some WPILib classes represent objects that could naturally work with multiple choices of unit
types - for example, a motion profile might operate on either linear distance (e.g. meters) or
angular distance (e.g. radians). For such classes, the unit type is required as a template
parameter:

// Creates a new set of trapezoidal motion profile constraints
// Max velocity of 10 meters per second
// Max acceleration of 20 meters per second squared
frc::TrapezoidProfile<units::meters>::Constraints{10_mps, 20_mps_sq};

(continues on next page)

16.2. The C++ Units Library 535

FIRST Robotics Competition

(continued from previous page)
// Creates a new set of trapezoidal motion profile constraints
// Max velocity of 10 radians per second
// Max acceleration of 20 radians per second squared
frc::TrapezoidProfile<units::radians>::Constraints{10_rad_per_s, 20__rad_per_s / 1_s};

For more detailed documentation, please visit the official GitHub page for the units library.

16.3 Joysticks

A joystick can be used with the Driver Station program to control the robot. Almost any “con-
troller” that can be recognized by Windows can be used as a joystick. Joysticks are accessed
using the GenericHID class. This class has three relevant subclasses for preconfigured joy-
sticks. You may also implement your own for other controllers by extending GenericHID. The
first is Joystick which is useful for standard flight joysticks. The second is XboxController
which works for the Xbox 360, Xbox One, or Logitech F310 (in XInput mode). Finally, the
PS4Controller class is ideal for using that controller. Each axis of the controller ranges
from -1 to 1.
The command based way to use the these classes is detailed in the section: Binding Com-
mands to Triggers.

16.3.1 Driver Station Joysticks

The USB Devices Tab of the Driver Station is used to setup and configure the joystick for use
with the robot. Pressing a button on a joystick will cause its entry in the table to light up green.
Selecting the joystick will show the values of axes, buttons and the POV that can be used to
determine the mapping between physical joystick features and axis or button numbers.

536 Chapter 16. Basic Programming

https://github.com/nholthaus/units

FIRST Robotics Competition

The USB Devices Tab also assigns a joystick index to each joystick. To reorder the joysticks
simply click and drag. The Driver Station software will try to preserve the ordering of devices
between runs. It is a good idea to note what order your devices should be in and check each
time you start the Driver Station software that they are correct.
When the Driver Station is in disabled mode, it is routinely looking for status changes on the
joystick devices. Unplugged devices are removed from the list and new devices are opened
and added. When not connected to the FMS, unplugging a joystick will force the Driver
Station into disabled mode. To start using the joystick again: plug the joystick in, check that
it shows up in the right spot, then re-enable the robot. While the Driver Station is in enabled
mode, it will not scan for new devices. This is a time consuming operation and timely update
of signals from attached devices takes priority.

Note: For some joysticks the startup routine will read whatever position the joysticks are
in as the center position, therefore, when the computer is turned on (or when the joystick is
plugged in) the joysticks should be at their center position.

When the robot is connected to the Field Management System at competition, the Driver
Station mode is dictated by the FMS. This means that you cannot disable your robot and the
DS cannot disable itself in order to detect joystick changes. A manual complete refresh of the
joysticks can be initiated by pressing the F1 key on the keyboard. Note that this will close
and re-open all devices, so all devices should be in their center position as noted above.

16.3. Joysticks 537

FIRST Robotics Competition

16.3.2 Joystick Class

Java

Joystick exampleJoystick = new Joystick(0); // 0 is the USB Port to be used as␣
↪→indicated on the Driver Station

C++

Joystick exampleJoystick{0}; // 0 is the USB Port to be used as indicated on the␣
↪→Driver Station

Python

exampleJoystick = wpilib.Joystick(0) # 0 is the USB Port to be used as indicated on␣
↪→the Driver Station

The Joystick class is designed to make using a flight joystick to operate the robot significantly
easier. Depending on the flight joystick, the user may need to set the specific X, Y, Z, and

538 Chapter 16. Basic Programming

FIRST Robotics Competition

Throttle channels that your flight joystick uses. This class offers special methods for accessing
the angle and magnitude of the flight joystick.

16.3.3 XboxController Class

Java

XboxController exampleXbox = new XboxController(0); // 0 is the USB Port to be used␣
↪→as indicated on the Driver Station

C++

XboxController exampleXbox{0}; // 0 is the USB Port to be used as indicated on the␣
↪→Driver Station

Python

exampleXbox = wpilib.XboxController(0) # 0 is the USB Port to be used as indicated on␣
↪→the Driver Station

The XboxController class provides named methods (e.g. getXButton, getXButtonPressed,
getXButtonReleased) for each of the buttons, and the indices can be accessed with
XboxController.Button.kX.value. The rumble feature of the controller can be controlled by

16.3. Joysticks 539

FIRST Robotics Competition

using XboxController.setRumble(GenericHID.RumbleType.kRightRumble, value). Many
users do a split stick arcade drive that uses the left stick for just forwards / backwards and
the right stick for left / right turning.

16.3.4 PS4Controller Class

Java

PS4Controller examplePS4 = new PS4Controller(0); // 0 is the USB Port to be used as␣
↪→indicated on the Driver Station

C++

PS4Controller examplePS4{0}; // 0 is the USB Port to be used as indicated on the␣
↪→Driver Station

Python

examplePS4 = wpilib.PS4Controller(0) # 0 is the USB Port to be used as indicated on␣
↪→the Driver Station

The PS4Controller class provides named methods (e.g. getSquareButton, getSquare-
ButtonPressed, getSquareButtonReleased) for each of the buttons, and the indices can
be accessed with PS4Controller.Button.kSquare.value. The rumble feature of the con-
troller can be controlled by using PS4Controller.setRumble(GenericHID.RumbleType.
kRightRumble, value).

540 Chapter 16. Basic Programming

FIRST Robotics Competition

16.3.5 POV

On joysticks, the POV is a directional hat that can select one of 8 different angles or read -1
for unpressed. The XboxController/PS4Controller D-pad works the same as a POV. Be careful
when using a POV with exact angle requirements as it is hard for the user to ensure they
select exactly the angle desired.

16.3.6 GenericHID Usage

An axis can be used with .getRawAxis(int index) (if not using any of the classes above)
that returns the current value. Zero and one in this example are each the index of an axis as
found in the Driver Station mentioned above.
Java

private final PWMSparkMax m_leftMotor = new PWMSparkMax(Constants.kLeftMotorPort);
private final PWMSparkMax m_rightMotor = new PWMSparkMax(Constants.kRightMotorPort);
private final DifferentialDrive m_robotDrive = new DifferentialDrive(m_leftMotor, m_
↪→rightMotor);
private final GenericHID m_stick = new GenericHID(Constants.kJoystickPort);

m_robotDrive.arcadeDrive(-m_stick.getRawAxis(0), m_stick.getRawAxis(1));

C++

frc::PWMVictorSPX m_leftMotor{Constants::kLeftMotorPort};
frc::PWMVictorSPX m_rightMotor{Constants::kRightMotorPort};
frc::DifferentialDrive m_robotDrive{m_leftMotor, m_rightMotor};
frc::GenericHID m_stick{Constants::kJoystickPort};

m_robotDrive.ArcadeDrive(-m_stick.GetRawAxis(0), m_stick.GetRawAxis(1));

Python

leftMotor = wpilib.PWMVictorSPX(LEFT_MOTOR_PORT)
rightMotor = wpilib.PWMVictorSPX(RIGHT_MOTOR_PORT)
self.robotDrive = wpilib.drive.DifferentialDrive(leftMotor, rightMotor)
self.stick = wpilib.GenericHID(JOYSTICK_PORT)

self.robotDrive.arcadeDrive(-self.stick.getRawAxis(0), self.stick.getRawAxis(1))

16.3. Joysticks 541

FIRST Robotics Competition

16.3.7 Button Usage

Note: Usage such as the following is for code not using the command-based framework. For
button usage in the command-based framework, see Binding Commands to Triggers.

Unlike an axis, you will usually want to use the pressed and released methods to respond
to button input. These will return true if the button has been activated since the last check.
This is helpful for taking an action once when the event occurs but not having to continuously
do it while the button is held down.
Java

if (joystick.getRawButtonPressed(0)) {
turnIntakeOn(); // When pressed the intake turns on

}
if (joystick.getRawButtonReleased(0)) {

turnIntakeOff(); // When released the intake turns off
}

OR

if (joystick.getRawButton(0)) {
turnIntakeOn();

} else {
turnIntakeOff();

}

C++

if (joystick.GetRawButtonPressed(0)) {
turnIntakeOn(); // When pressed the intake turns on

}
if (joystick.GetRawButtonReleased(0)) {

turnIntakeOff(); // When released the intake turns off
}

OR

if (joystick.GetRawButton(0)) {
turnIntakeOn();

} else {
turnIntakeOff();

}

Python

if joystick.getRawButtonPressed(0):
turnIntakeOn() # When pressed the intake turns on

if joystick.getRawButtonReleased(0):
turnIntakeOff() # When released the intake turns off

OR

if joystick.getRawButton(0):
turnIntakeOn()

(continues on next page)

542 Chapter 16. Basic Programming

FIRST Robotics Competition

(continued from previous page)
else:

turnIntakeOff()

A common request is to toggle something on and off with the press of a button. Toggles should
be used with caution, as they require the user to keep track of the robot state.
Java

boolean toggle = false;

if (joystick.getRawButtonPressed(0)) {
if (toggle) {

// Current state is true so turn off
retractIntake();
toggle = false;

} else {
// Current state is false so turn on
deployIntake();
toggle = true;

}
}

C++

bool toggle{false};

if (joystick.GetRawButtonPressed(0)) {
if (toggle) {

// Current state is true so turn off
retractIntake();
toggle = false;

} else {
// Current state is false so turn on
deployIntake();
toggle = true;

}
}

Python

toggle = False

if joystick.getRawButtonPressed(0):
if toggle:

current state is True so turn off
retractIntake()
toggle = False

else:
Current state is False so turn on
deployIntake()
toggle = True

16.3. Joysticks 543

FIRST Robotics Competition

16.4 Setting Robot Preferences

The Robot Preferences (Java, C++) class is used to store values in the flash memory on the
roboRIO. The values might be for remembering preferences on the robot such as calibration
settings for potentiometers, PID values, setpoints, etc. that you would like to change without
having to rebuild the program. The values can be viewed on SmartDashboard or Shuffleboard
and read and written by the robot program.
This example shows how to utilize Preferences to change the setpoint of a PID controller
and the P constant. The code examples are adapted from the Arm Simulation example (Java,
C++). You can run the Arm Simulation example in the Robot Simulator to see how to use the
preference class and interact with it using the dashboards without needing a robot.

16.4.1 Initializing Preferences

Java

public static final String kArmPositionKey = "ArmPosition";
public static final String kArmPKey = "ArmP";

// The P gain for the PID controller that drives this arm.
public static final double kDefaultArmKp = 50.0;
public static final double kDefaultArmSetpointDegrees = 75.0;

// The P gain for the PID controller that drives this arm.
private double m_armKp = Constants.kDefaultArmKp;
private double m_armSetpointDegrees = Constants.kDefaultArmSetpointDegrees;
/** Subsystem constructor. */
public Arm() {

// Set the Arm position setpoint and P constant to Preferences if the keys don't␣
↪→already exist

Preferences.initDouble(Constants.kArmPositionKey, m_armSetpointDegrees);
Preferences.initDouble(Constants.kArmPKey, m_armKp);

}

C++

static constexpr std::string_view kArmPositionKey = "ArmPosition";
static constexpr std::string_view kArmPKey = "ArmP";

static constexpr double kDefaultArmKp = 50.0;
static constexpr units::degree_t kDefaultArmSetpoint = 75.0_deg;

Arm::Arm() {
// Set the Arm position setpoint and P constant to Preferences if the keys
// don't already exist
frc::Preferences::InitDouble(kArmPositionKey, m_armSetpoint.value());
frc::Preferences::InitDouble(kArmPKey, m_armKp);

}

Preferences are stored using a name, the key. It’s helpful to store the key in a constant, like
kArmPositionKey and kArmPKey in the code above to avoid typing it multiple times and avoid
typos. We also declare variables, kArmKp and armPositionDeg to hold the data retrieved from
preferences.

544 Chapter 16. Basic Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Preferences.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_preferences.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armsimulation/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/ArmSimulation/cpp/Robot.cpp

FIRST Robotics Competition

In robotInit, each key is checked to see if it already exists in the Preferences database. The
containsKey method takes one parameter, the key to check if data for that key already exists
in the preferences database. If it doesn’t exist, a default value is written. The setDouble
method takes two parameters, the key to write and the data to write. There are similar
methods for other data types like booleans, ints, and strings.
If using the Command Framework, this type of code could be placed in the constructor of a
Subsystem or Command.

16.4.2 Reading Preferences

Java

public void loadPreferences() {
// Read Preferences for Arm setpoint and kP on entering Teleop
m_armSetpointDegrees = Preferences.getDouble(Constants.kArmPositionKey, m_

↪→armSetpointDegrees);
if (m_armKp != Preferences.getDouble(Constants.kArmPKey, m_armKp)) {
m_armKp = Preferences.getDouble(Constants.kArmPKey, m_armKp);
m_controller.setP(m_armKp);

}
}

C++

void Arm::LoadPreferences() {
// Read Preferences for Arm setpoint and kP on entering Teleop
m_armSetpoint = units::degree_t{

frc::Preferences::GetDouble(kArmPositionKey, m_armSetpoint.value())};
if (m_armKp != frc::Preferences::GetDouble(kArmPKey, m_armKp)) {

m_armKp = frc::Preferences::GetDouble(kArmPKey, m_armKp);
m_controller.SetP(m_armKp);

}
}

Reading a preference is easy. The getDouble method takes two parameters, the key to read,
and a default value to use in case the preference doesn’t exist. There are similar methods for
other data types like booleans, ints, and strings.
Depending on the data that is stored in preferences, you can use it when you read it, such as
the proportional constant above. Or you can store it in a variable and use it later, such as the
setpoint, which is used in telopPeriodic below.
Java

@Override
public void teleopPeriodic() {

if (m_joystick.getTrigger()) {
// Here, we run PID control like normal.
m_arm.reachSetpoint();

} else {
// Otherwise, we disable the motor.
m_arm.stop();

}
}

16.4. Setting Robot Preferences 545

FIRST Robotics Competition

/** Run the control loop to reach and maintain the setpoint from the preferences. */
public void reachSetpoint() {

var pidOutput =
m_controller.calculate(

m_encoder.getDistance(), Units.degreesToRadians(m_armSetpointDegrees));
m_motor.setVoltage(pidOutput);

}

C++

void Robot::TeleopPeriodic() {
if (m_joystick.GetTrigger()) {

// Here, we run PID control like normal.
m_arm.ReachSetpoint();

} else {
// Otherwise, we disable the motor.
m_arm.Stop();

}
}

void Arm::ReachSetpoint() {
// Here, we run PID control like normal, with a setpoint read from
// preferences in degrees.
double pidOutput = m_controller.Calculate(

m_encoder.GetDistance(), (units::radian_t{m_armSetpoint}.value()));
m_motor.SetVoltage(units::volt_t{pidOutput});

}

16.4.3 Using Preferences in SmartDashboard

Displaying Preferences in SmartDashboard

In the SmartDashboard, the Preferences display can be added to the display by selecting View
then Add… then Robot Preferences. This reveals the contents of the preferences file stored
in the roboRIO flash memory.

546 Chapter 16. Basic Programming

FIRST Robotics Competition

Editing Preferences in SmartDashboard

The values are shown here with the default values from the code. If the values need to be
adjusted they can be edited here and saved.

16.4.4 Using Preferences in Shuffleboard

16.4. Setting Robot Preferences 547

FIRST Robotics Competition

Displaying Preferences in Shuffleboard

In Shuffleboard, the Preferences display can be added to the display by dragging the prefer-
ences field from the sources window. This reveals the contents of the preferences file stored
in the roboRIO flash memory.

548 Chapter 16. Basic Programming

FIRST Robotics Competition

Editing Preferences in Shuffleboard

The values are shown here with the default values from the code. If the values need to be
adjusted they can be edited here.

16.5 Using Test Mode

Test mode is designed to enable programmers to have a place to put code to verify that all
systems on the robot are functioning. In each of the robot program templates there is a place
to add test code to the robot.

16.5. Using Test Mode 549

FIRST Robotics Competition

16.5.1 Enabling Test Mode

Test mode on the robot can be enabled from the Driver Station just like autonomous or teleop.
To enable test mode in the Driver Station, select the “Test” button and enable the robot. The
test mode code will then run.

16.5.2 LiveWindow in Test Mode

With LiveWindow, all actuator outputs can be controlled on the Dashboard and all sensor
values can be seen. PID Controllers can also be tuned. The sensors and actuators are added
automatically, no code is necessary. See SmartDashboard: Test Mode and Live Window for
more details.

16.5.3 Adding Test mode code to your robot code

When in test mode, the testInit method is run once, and the testPeriodic method is run
once per tick, in addition to robotPeriodic, similar to teleop and autonomous control modes.
Adding test mode can be as painless as calling your already written Teleop methods from Test.
Or you can write special code to try out a new feature that is only run in Test mode, before
integrating it into your teleop or autonomous code. You could even write code to move all
motors and check all sensors to help the pit crew!

Warning: If you write your own test code, it may interfere with the LiveWindow code
that can control actuators and is enabled automatically. You may need to call LiveWindow.
setEnabled(false) in your testInit method to avoid this.

16.6 Reading Stacktraces

An unexpected error has occurred.

When your robot code hits an unexpected error, you will see this message show up in some
console output (Driver Station or RioLog). You’ll probably also notice your robot abruptly
stop, or possibly never move. These unexpected errors are called unhandled exceptions.
When an unhandled exception occurs, it means that your code has one or more bugs which
need to be fixed.
This article will explore some of the tools and techniques involved in finding and fixing those
bugs.

550 Chapter 16. Basic Programming

FIRST Robotics Competition

16.6.1 What’s a “Stack Trace”?

The unexpected error has occurred message is a signal that a stack trace has been printed
out.
In Java and C++, the call stack data structure is used to store information about which func-
tion or method is currently being executed.
A stack trace prints information about what was on this stack when the unhandled exception
occurred. This points you to the lines of code which were running just before the problem
happened. While it doesn’t always point you to the exact root cause of your issue, it’s usually
the best place to start looking.

16.6.2 What’s an “Unhandled Exception”?

An unrecoverable error is any condition which arises where the processor cannot continue
executing code. It almost always implies that, even though the code compiled and started
running, it no longer makes sense for execution to continue.
In almost all cases, the root cause of an unhandled exception is code that isn’t correctly
implemented. It almost never implies that any hardware has malfunctioned.

16.6.3 So How Do I Fix My Issue?

Read the Stack Trace

To start, search above the unexpected error has occurred for the stack trace.
Java
In Java, it should look something like this:

Error at frc.robot.Robot.robotInit(Robot.java:24): Unhandled exception: java.lang.
↪→NullPointerException

at frc.robot.Robot.robotInit(Robot.java:24)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:94)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:335)
at edu.wpi.first.wpilibj.RobotBase.lambda$startRobot$0(RobotBase.java:387)
at java.base/java.lang.Thread.run(Thread.java:834)

There’s a few important things to pick out of here:
• There was an Error

• The error was due to an Unhandled exception

• The exception was a java.lang.NullPointerException

• The error happened while running line 24 inside of Robot.java
– robotInit was the name of the method executing when the error happened.

• robotInit is a function in the frc.robot.Robot package (AKA, your team’s code)
• robotInit was called from a number of functions from the edu.wpi.first.wpilibj

package (AKA, the WPILib libraries)

16.6. Reading Stacktraces 551

FIRST Robotics Competition

The list of indented lines starting with the word at represent the state of the stack at the time
the error happened. Each line represents one method, which was called by the method right
below it.
For example, If the error happened deep inside your codebase, you might see more entries
on the stack:

Error at frc.robot.Robot.buggyMethod(TooManyBugs.java:1138): Unhandled exception:␣
↪→java.lang.NullPointerException

at frc.robot.Robot.buggyMethod(TooManyBugs.java:1138)
at frc.robot.Robot.barInit(Bar.java:21)
at frc.robot.Robot.fooInit(Foo.java:34)
at frc.robot.Robot.robotInit(Robot.java:24)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:94)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:335)
at edu.wpi.first.wpilibj.RobotBase.lambda$startRobot$0(RobotBase.java:387)
at java.base/java.lang.Thread.run(Thread.java:834)

In this case: robotInit called fooInit, which in turn called barInit, which in turn called
buggyMethod. Then, during the execution of buggyMethod, the NullPointerException oc-
curred.
C++
Java will usually produce stack traces automatically when programs run into issues. C++ will
require more digging to extract the same info. Usually, a single-step debugger will need to
be hooked up to the executing robot program.
Stack traces can be found in the debugger tab of VS Code:

552 Chapter 16. Basic Programming

FIRST Robotics Competition

Stack traces in C++ will generally look similar to this:

16.6. Reading Stacktraces 553

FIRST Robotics Competition

There’s a few important things to pick out of here:
• The code execution is currently paused.
• The reason it paused was one thread having an exception

• The error happened while running line 20 inside of Robot.cpp
– RobotInit was the name of the method executing when the error happened.

• RobotInit is a function in the Robot:: namespace (AKA, your team’s code)
• RobotInit was called from a number of functions from the frc:: namespace (AKA, the

WPILib libraries)
This “call stack” window represents the state of the stack at the time the error happened.
Each line represents one method, which was called by the method right below it.
The examples in this page assume you are running code examples in simulation, with the
debugger connected and watching for unexpected errors. Similar techniques should apply
while running on a real robot.

554 Chapter 16. Basic Programming

FIRST Robotics Competition

Perform Code Analysis

Once you’ve found the stack trace, and found the lines of code which are triggering the un-
handled exception, you can start the process of determining root cause.
Often, just looking in (or near) the problematic location in code will be fruitful. You may notice
things you forgot, or lines which don’t match an example you’re referencing.

Note: Developers who have lots of experience working with code will often have more luck
looking at code than newer folks. That’s ok, don’t be discouraged! The experience will come
with time.

A key strategy for analyzing code is to ask the following questions:
• When was the last time the code “worked” (I.e., didn’t have this particular error)?
• What has changed in the code between the last working version, and now?

Frequent testing and careful code changes help make this particular strategy more effective.

Run the Single Step Debugger

Sometimes, just looking at code isn’t enough to spot the issue. The single-step debugger is
a great option in this case - it allows you to inspect the series of events leading up to the
unhandled exception.

Search for More Information

Google is a phenomenal resource for understanding the root cause of errors. Searches involv-
ing the programming language and the name of the exception will often yield good results on
more explanations for what the error means, how it comes about, and potential fixes.

Seeking Outside Help

If all else fails, you can seek out advice and help from others (both in-person and online). When
working with folks who aren’t familiar with your codebase, it’s very important to provide the
following information:

• Access to your source code, (EX: on github.com)
• The full text of the error, including the full stack trace.

16.6. Reading Stacktraces 555

https://www.google.com/

FIRST Robotics Competition

16.6.4 Common Examples & Patterns

There are a number of common issues which result in runtime exceptions.

Null Pointers and References

Both C++ and Java have the concept of “null” - they use it to indicate something which has
not yet been initialized, and does not refer to anything meaningful.
Manipulating a “null” reference will produce a runtime error.
For example, consider the following code:
Java

19 PWMSparkMax armMotorCtrl;
20

21 @Override
22 public void robotInit() {
23 armMotorCtrl.setInverted(true);
24 }

C++

17 class Robot : public frc::TimedRobot {
18 public:
19 void RobotInit() override {
20 motorRef->SetInverted(false);
21 }
22

23 private:
24 frc::PWMVictorSPX m_armMotor{0};
25 frc::PWMVictorSPX* motorRef;
26 };

When run, you’ll see output that looks like this:
Java

********** Robot program starting **********
Error at frc.robot.Robot.robotInit(Robot.java:23): Unhandled exception: java.lang.
↪→NullPointerException

at frc.robot.Robot.robotInit(Robot.java:23)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:373)
at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463)
at frc.robot.Main.main(Main.java:23)

Warning at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:388): The robot␣
↪→program quit unexpectedly. This is usually due to a code error.
The above stacktrace can help determine where the error occurred.
See https://wpilib.org/stacktrace for more information.

Error at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): The␣
↪→startCompetition() method (or methods called by it) should have handled the␣
↪→exception above.

Reading the stack trace, you can see that the issue happened inside of the robotInit()
function, on line 23, and the exception involved “Null Pointer”.

556 Chapter 16. Basic Programming

FIRST Robotics Competition

By going to line 23, you can see there is only one thing which could be null - armMotorC-
trl. Looking further up, you can see that the armMotorCtrl object is declared, but never
instantiated.
Alternatively, you can step through lines of code with the single step debugger, and stop when
you hit line 23. Inspecting the armMotorCtrl object at that point would show that it is null.
C++

Exception has occurred: W32/0xc0000005
Unhandled exception thrown: read access violation.
this->motorRef was nullptr.

In Simulation, this will show up in a debugger window that points to line 20 in the above
buggy code.
You can view the full stack trace by clicking the debugger tab in VS Code:

The error is specific - our member variable motorRefwas declared, but never assigned a value.
Therefore, when we attempt to use it to call a method using the -> operator, the exception
occurs.
The exception states its type was nullptr.

16.6. Reading Stacktraces 557

FIRST Robotics Competition

Fixing Null Object Issues

Generally, you will want to ensure each reference has been initialized before using it. In
this case, there is a missing line of code to instantiate the armMotorCtrl before calling the
setInverted() method.
A functional implementation could look like this:
Java

19 PWMSparkMax armMotorCtrl;
20

21 @Override
22 public void robotInit() {
23 armMotorCtrl = new PWMSparkMax(0);
24 armMotorCtrl.setInverted(true);
25 }

C++

17 class Robot : public frc::TimedRobot {
18 public:
19 void RobotInit() override {
20 motorRef = &m_armMotor;
21 motorRef->SetInverted(false);
22 }
23

24 private:
25 frc::PWMVictorSPX m_armMotor{0};
26 frc::PWMVictorSPX* motorRef;
27 };

Divide by Zero

It is not generally possible to divide an integer by zero, and expect reasonable results. Most
processors (including the roboRIO) will raise an Unhandled Exception.
For example, consider the following code:
Java

18 int armLengthRatio;
19 int elbowToWrist_in = 39;
20 int shoulderToElbow_in = 0; //TODO
21

22 @Override
23 public void robotInit() {
24 armLengthRatio = elbowToWrist_in / shoulderToElbow_in;
25 }

C++

17 class Robot : public frc::TimedRobot {
18 public:
19 void RobotInit() override {
20 armLengthRatio = elbowToWrist_in / shoulderToElbow_in;
21 }

(continues on next page)

558 Chapter 16. Basic Programming

FIRST Robotics Competition

(continued from previous page)
22

23 private:
24 int armLengthRatio;
25 int elbowToWrist_in = 39;
26 int shoulderToElbow_in = 0; //TODO
27

28 };

When run, you’ll see output that looks like this:
Java

********** Robot program starting **********
Error at frc.robot.Robot.robotInit(Robot.java:24): Unhandled exception: java.lang.
↪→ArithmeticException: / by zero

at frc.robot.Robot.robotInit(Robot.java:24)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:373)
at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463)
at frc.robot.Main.main(Main.java:23)

Warning at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:388): The robot␣
↪→program quit unexpectedly. This is usually due to a code error.
The above stacktrace can help determine where the error occurred.
See https://wpilib.org/stacktrace for more information.

Error at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): The␣
↪→startCompetition() method (or methods called by it) should have handled the␣
↪→exception above.

Looking at the stack trace, we can see a java.lang.ArithmeticException: / by zero
exception has occurred on line 24. If you look at the two variables which are used on the
right-hand side of the = operator, you might notice one of them has been initialized to zero.
Looks like someone forgot to update it! Furthermore, the zero-value variable is used in the
denominator of a division operation. Hence, the divide by zero error happens.
Alternatively, by running the single-step debugger and stopping on line 24, you could inspect
the value of all variables to discover shoulderToElbow_in has a value of 0.
C++

Exception has occurred: W32/0xc0000094
Unhandled exception at 0x00007FF71B223CD6 in frcUserProgram.exe: 0xC0000094: Integer␣
↪→division by zero.

In Simulation, this will show up in a debugger window that points to line 20 in the above
buggy code.
You can view the full stack trace by clicking the debugger tab in VS Code:

16.6. Reading Stacktraces 559

FIRST Robotics Competition

Looking at the message, we see the error is described as Integer division by zero. If you
look at the two variables which are used on the right-hand side of the = operator on line 20,
you might notice one of them has been initialized to zero. Looks like someone forgot to update
it! Furthermore, the zero-value variable is used in the denominator of a division operation.
Hence, the divide by zero error happens.
Note that the error messages might look slightly different on the roboRIO, or on an operating
system other than windows.

Fixing Divide By Zero Issues

Divide By Zero issues can be fixed in a number of ways. It’s important to start by thinking
about what a zero in the denominator of your calculation means. Is it plausible? Why did it
happen in the particular case you saw?
Sometimes, you just need to use a different number other than 0.
A functional implementation could look like this:
Java

18 int armLengthRatio;
19 int elbowToWrist_in = 39;

(continues on next page)

560 Chapter 16. Basic Programming

FIRST Robotics Competition

(continued from previous page)
20 int shoulderToElbow_in = 3;
21

22 @Override
23 public void robotInit() {
24

25 armLengthRatio = elbowToWrist_in / shoulderToElbow_in;
26

27 }

C++

17 class Robot : public frc::TimedRobot {
18 public:
19 void RobotInit() override {
20 armLengthRatio = elbowToWrist_in / shoulderToElbow_in;
21 }
22

23 private:
24 int armLengthRatio;
25 int elbowToWrist_in = 39;
26 int shoulderToElbow_in = 3
27

28 };

Alternatively, if zero is a valid value, adding if/else statements around the calculation can
help you define alternate behavior to avoid making the processor perform a division by zero.
Finally, changing variable types to be float or double can help you get around the issue -
floating-point numbers have special values like NaN to represent the results of a divide-by-
zero operation. However, you may still have to handle this in code which consumes that
calculation’s value.

HAL Resource Already Allocated

A very common FRC-specific error occurs when the code attempts to put two hardware-
related entities on the same HAL resource (usually, roboRIO IO pin).
For example, consider the following code:
Java

19 PWMSparkMax leftFrontMotor;
20 PWMSparkMax leftRearMotor;
21

22 @Override
23 public void robotInit() {
24 leftFrontMotor = new PWMSparkMax(0);
25 leftRearMotor = new PWMSparkMax(0);
26 }

C++

17 class Robot : public frc::TimedRobot {
18 public:
19 void RobotInit() override {

(continues on next page)

16.6. Reading Stacktraces 561

FIRST Robotics Competition

(continued from previous page)
20 m_frontLeftMotor.Set(0.5);
21 m_rearLeftMotor.Set(0.25);
22 }
23

24 private:
25 frc::PWMVictorSPX m_frontLeftMotor{0};
26 frc::PWMVictorSPX m_rearLeftMotor{0};
27

28 };

When run, you’ll see output that looks like this:
Java

********** Robot program starting **********
Error at frc.robot.Robot.robotInit(Robot.java:25): Unhandled exception: edu.wpi.first.
↪→hal.util.AllocationException: Code: -1029
PWM or DIO 0 previously allocated.
Location of the previous allocation:

at frc.robot.Robot.robotInit(Robot.java:24)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:373)
at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463)
at frc.robot.Main.main(Main.java:23)

Location of the current allocation:
at edu.wpi.first.hal.PWMJNI.initializePWMPort(Native Method)
at edu.wpi.first.wpilibj.PWM.<init>(PWM.java:66)
at edu.wpi.first.wpilibj.motorcontrol.PWMMotorController.<init>

↪→(PWMMotorController.java:27)
at edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax.<init>(PWMSparkMax.java:35)
at frc.robot.Robot.robotInit(Robot.java:25)
at edu.wpi.first.wpilibj.TimedRobot.startCompetition(TimedRobot.java:107)
at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:373)
at edu.wpi.first.wpilibj.RobotBase.startRobot(RobotBase.java:463)
at frc.robot.Main.main(Main.java:23)

Warning at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:388): The robot␣
↪→program quit unexpectedly. This is usually due to a code error.
The above stacktrace can help determine where the error occurred.
See https://wpilib.org/stacktrace for more information.

Error at edu.wpi.first.wpilibj.RobotBase.runRobot(RobotBase.java:395): The␣
↪→startCompetition() method (or methods called by it) should have handled the␣
↪→exception above.

This stack trace shows that a edu.wpi.first.hal.util.AllocationException has occurred.
It also gives the helpful message: PWM or DIO 0 previously allocated..
Looking at our stack trace, we see two stack traces. The first stack trace shows that the first
allocation occurred in Robot.java:25. The second stack trace shows that the error actually
happened deep within WPILib. However, we should start by looking in our own code. Halfway
through the stack trace, you can find a reference to the last line of the team’s robot code that
called into WPILib: Robot.java:25.
Taking a peek at the code, we see line 24 is where the first motor controller is declared
and line 25 is where the second motor controller is declared. We can also note that both
motor controllers are assigned to PWM output 0. This doesn’t make logical sense, and isn’t

562 Chapter 16. Basic Programming

FIRST Robotics Competition

physically possible. Therefore, WPILib purposely generates a custom error message and
exception to alert the software developers of a non-achievable hardware configuration.
C++
In C++, you won’t specifically see a stacktrace from this issue. Instead, you’ll get messages
which look like the following:

Error at PWM [C::31]: PWM or DIO 0 previously allocated.
Location of the previous allocation:

at frc::PWM::PWM(int, bool) + 0x50 [0xb6f01b68]
at frc::PWMMotorController::PWMMotorController(std::basic_string_view<char,␣

↪→std::char_traits<char> >, int) + 0x70 [0xb6ef7d50]
at frc::PWMVictorSPX::PWMVictorSPX(int) + 0x3c [0xb6e9af1c]
at void frc::impl::RunRobot<Robot>(wpi::priority_mutex&, Robot**) + 0xa8␣

↪→[0x13718]
at int frc::StartRobot<Robot>() + 0x3d4 [0x13c9c]
at __libc_start_main + 0x114 [0xb57ec580]

Location of the current allocation:: Channel 0
at + 0x5fb5c [0xb6e81b5c]
at frc::PWM::PWM(int, bool) + 0x334 [0xb6f01e4c]
at frc::PWMMotorController::PWMMotorController(std::basic_string_view<char,␣

↪→std::char_traits<char> >, int) + 0x70 [0xb6ef7d50]
at frc::PWMVictorSPX::PWMVictorSPX(int) + 0x3c [0xb6e9af1c]
at void frc::impl::RunRobot<Robot>(wpi::priority_mutex&, Robot**) + 0xb4␣

↪→[0x13724]
at int frc::StartRobot<Robot>() + 0x3d4 [0x13c9c]
at __libc_start_main + 0x114 [0xb57ec580]

Error at RunRobot: Error: The robot program quit unexpectedly. This is usually due to␣
↪→a code error.
The above stacktrace can help determine where the error occurred.
See https://wpilib.org/stacktrace for more information.

at void frc::impl::RunRobot<Robot>(wpi::priority_mutex&, Robot**) + 0x1c8␣
↪→[0x13838]

at int frc::StartRobot<Robot>() + 0x3d4 [0x13c9c]
at __libc_start_main + 0x114 [0xb57ec580]

terminate called after throwing an instance of 'frc::RuntimeError'
what(): PWM or DIO 0 previously allocated.

Location of the previous allocation:
at frc::PWM::PWM(int, bool) + 0x50 [0xb6f01b68]
at frc::PWMMotorController::PWMMotorController(std::basic_string_view<char,␣

↪→std::char_traits<char> >, int) + 0x70 [0xb6ef7d50]
at frc::PWMVictorSPX::PWMVictorSPX(int) + 0x3c [0xb6e9af1c]
at void frc::impl::RunRobot<Robot>(wpi::priority_mutex&, Robot**) + 0xa8␣

↪→[0x13718]
at int frc::StartRobot<Robot>() + 0x3d4 [0x13c9c]
at __libc_start_main + 0x114 [0xb57ec580]

Location of the current allocation:: Channel 0

The key thing to notice here is the string, PWM or DIO 0 previously allocated.. That string
is your primary clue that something in code has incorrectly “doubled up” on pin 0 usage.
The message example above was generated on a roboRIO. If you are running in simulation, it
might look different.

16.6. Reading Stacktraces 563

FIRST Robotics Competition

Fixing HAL Resource Already Allocated Issues

HAL: Resource already allocated are some of the most straightforward errors to fix. Just
spend a bit of time looking at the electrical wiring on the robot, and compare that to what’s
in code.
In the example, the left motor controllers are plugged into PWM ports 0 and 1. Therefore,
corrected code would look like this:
Java

19 PWMSparkMax leftFrontMotor;
20 PWMSparkMax leftRearMotor;
21

22 @Override
23 public void robotInit() {
24

25 leftFrontMotor = new PWMSparkMax(0);
26 leftRearMotor = new PWMSparkMax(1);
27

28 }

C++

:lineno-start: 17

class Robot : public frc::TimedRobot {
public:

void RobotInit() override {
m_frontLeftMotor.Set(0.5);
m_rearLeftMotor.Set(0.25);

}

private:
frc::PWMVictorSPX m_frontLeftMotor{0};
frc::PWMVictorSPX m_rearLeftMotor{1};

};

gradlew is not recognized…

gradlew is not recognized as an internal or external command is a common error that
can occur when the project or directory that you are currently in does not contain a gradlew
file. This usually occurs when you open the wrong directory.

564 Chapter 16. Basic Programming

FIRST Robotics Competition

In the above screenshot, you can see that the left-hand sidebar does not contain many files.
At a minimum, VS Code needs a couple of files to properly build and deploy your project.

• gradlew

• build.gradle

• gradlew.bat

If you do not see any one of the above files in your project directory, then you have two possible
causes.

• A corrupt or bad project.
• You are in the wrong directory.

Fixing gradlew is not recognized…

gradlew is not recognized... is a fairly easy problem to fix. First identify the problem
source:
Are you in the wrong directory? - Verify that the project directory is the correct directory
and open this.
Is your project missing essential files? - This issue is more complex to solve. The recom-
mended solution is to recreate your project and manually copy necessary code in.

16.6. Reading Stacktraces 565

FIRST Robotics Competition

16.7 Treating Functions as Data

Regardless of programming language, one of the first things anyone learns to do when pro-
gramming a computer is to write a function (also known as a “method” or a “subroutine”).
Functions are a fundamental part of organized code - writing functions lets us avoid dupli-
cating the same piece of code over and over again. Instead of writing duplicated sections of
code, we call a single function that contains the code we want to execute from multiple places
(provided we named the function well, the function name is also easier to read than the code
itself!). If the section of code needs some additional information about its surrounding context
to run, we pass those to the function as “parameters”, and if it needs to yield something back
to the rest of the code once it finishes, we call that a “return value” (together, the parameters
and return value are called the function’s “signature”);
Sometimes, we need to pass functions from one part of the code to another part of the code.
This might seem like a strange concept, if we’re used to thinking of functions as part of a
class definition rather than objects in their own right. But at a basic level, functions are just
data - in the same way we can store an integer or a double as a variable and pass it around
our program, we can do the same thing with a function. A variable whose value is a function
is called a “functional interface” in Java, and a “function pointer” or “functor” in C++.

16.7.1 Why Would We Want to Treat Functions as Data?

Typically, code that calls a function is coupled to (depends on) the definition of the function.
While this occurs all the time, it becomes problematic when the code calling the function
(for example, WPILib) is developed independently and without direct knowledge of the code
that defines the function (for example, code from an FRC team). Sometimes we solve this
challenge through the use of class interfaces, which define collections of data and functions
that are meant to be used together. However, often we really only have a dependency on a
single function, rather than on an entire class.
For example, WPILib offers several ways for users to execute certain code whenever a joystick
button is pressed - one of the easiest and cleanest ways to do this is to allow the user to pass a
function to one of the WPILib joystick methods. This way, the user only has to write the code
that deals with the interesting and team-specific things (e.g., “move my robot arm”) and not
the boring, error-prone, and universal thing (“properly read button inputs from a standard
joystick”).
For another example, the Command-based framework is built on Command objects that refer to
methods defined on various Subsystem classes. Many of the included Command types (such as
InstantCommand and RunCommand) work with any function - not just functions associated with
a single Subsystem. To support building commands generically, we need to support passing
functions from a Subsystem (which interacts with the hardware) to a Command (which interacts
with the scheduler).
In these cases, we want to be able to pass a single function as a piece of data, as if it were
a variable - it doesn’t make sense to ask the user to provide an entire class, when we really
just want them to give us a single appropriately-shaped function.
It’s important that passing a function is not the same as calling a function. When we call
a function, we execute the code inside of it and either receive a return value, cause some
side-effects elsewhere in the code, or both. When we pass a function, nothing in particular
happens immediately. Instead, by passing the function we are allowing some other code to
call the function in the future. Seeing the name of a function in code does not always mean
that the code in the function is being run!

566 Chapter 16. Basic Programming

FIRST Robotics Competition

Inside of code that passes a function, we will see some syntax that either refers to the name
of an existing function in a special way, or else defines a new function to be passed inside of
the call expression. The specific syntax needed (and the rules around it) depends on which
programming language we are using.

16.7.2 Treating Functions as Data in Java

Java represents functions-as-data as instances of functional interfaces. A “functional inter-
face” is a special kind of class that has only a single method - since Java was originally designed
strictly for object-oriented programming, it has no way of representing a single function de-
tached from a class. Instead, it defines a particular group of classes that only represent
single functions. Each type of function signature has its own functional interface, which is an
interface with a single function definition of that signature.
This might sound complicated, but in the context of WPILib we don’t really need to worry
much about using the functional interfaces themselves - the code that does that is internal
to WPILib. Instead, all we need to know is how to pass a function that we’ve written to a
method that takes a functional interface as a parameter. For a simple example, consider the
signature of Commands.runOnce (which creates an InstantCommand that, when scheduled,
runs the given function once and then terminates):

Note: The requirements parameter is explained in the Command-based documentation,
and will not be discussed here.

public static CommandBase runOnce(Runnable action, Subsystem... requirements)

runOnce expects us to give it a Runnable parameter (named action). A Runnable is the Java
term for a function that takes no parameters and returns no value. When we call runOnce,
we need to give it a function with no parameters and no return value. There are two ways to
do this: we can refer to some existing function using a “method reference”, or we can define
the function we want inline using a “lambda expression”.

Method References

A method reference lets us pass an already-existing function as our Runnable:

// Create an InstantCommand that runs the `resetEncoders` method of the `drivetrain`␣
↪→object
Command disableCommand = runOnce(drivetrain::resetEncoders, drivetrain);

The expression drivetrain::resetEncoders is a reference to the resetEncoders method of
the drivetrain object. It is not a method call - this line of code does not itself reset the
encoders of the drivetrain. Instead, it returns a Command that will do so when it is scheduled.
Remember that in order for this to work, resetEncoders must be a Runnable - that is, it must
take no parameters and return no value. So, its signature must look like this:

// void because it returns no parameters, and has an empty parameter list
public void resetEncoders()

If the function signature does not match this, Java will not be able to interpret the method
reference as a Runnable and the code will not compile. Note that all we need to do is make

16.7. Treating Functions as Data 567

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

FIRST Robotics Competition

sure that the signature matches the signature of the single method in the Runnable functional
interface - we don’t need to explicitly name it as a Runnable.

Lambda Expressions in Java

If we do not already have a named function that does what we want, we can define a function
“inline” - that means, right inside of the call to runOnce! We do this by writing our function
with a special syntax that uses an “arrow” symbol to link the argument list to the function
body:

// Create an InstantCommand that runs the drive forward at half speed
Command driveHalfSpeed = runOnce(() -> { drivetrain.arcadeDrive(0.5, 0.0); },␣
↪→drivetrain);

Java calls () -> { drivetrain.arcadeDrive(0.5, 0.0); } a “lambda expression”; it may
be less-confusingly called an “arrow function”, “inline function”, or “anonymous function”
(because it has no name). While this may look a bit funky, it is just another way of writing
a function - the parentheses before the arrow are the function’s argument list, and the code
contained in the brackets is the function body. The “lambda expression” here represents a
function that calls drivetrain.arcadeDrive with a specific set of parameters - note again
that this does not call the function, but merely defines it and passes it to the Command to be
run later when the Command is scheduled.
As with method references, we do not need to explicitly name the lambda expression as a
Runnable - Java can infer that our lambda expression is a Runnable so long as its signature
matches that of the single method in the Runnable interface. Accordingly, our lambda takes
no arguments and has no return statement - if it did not match the Runnable contract, our
code would fail to compile.

Capturing State in Java Lambda Expressions

In the above example, our function body references an object that lives outside of the function
itself (namely, the drivetrain object). This is called a “capture” of a variable from the sur-
rounding code (which is sometimes called the “outer scope” or “enclosing scope”). Usually
the captured variables are either local variables from the enclosing method body in which
the lambda expression is defined, or else fields of an enclosing class definition in which that
method is defined.
In Java capturing state is a fairly safe thing to do in general, with one major caveat: we can
only capture state that is “effectively final”. That means it is only legal to capture a variable
from the enclosing scope if that variable is never reassigned after initialization. Note that
this does not mean that the captured state cannot change: Remember that Java objects are
references, so the object that the reference points to may change after capture - but the
reference itself cannot be made to point to another object.
This means we can only capture primitive types (like int, double, and boolean) if they’re
constants. If we want to capture a state variable that can change, it must be wrapped in a
mutable object.

568 Chapter 16. Basic Programming

FIRST Robotics Competition

Syntactic Sugar for Java Lambda Expressions

The full lambda expression syntax can be needlessly verbose in some cases. To help with
this, Java lets us take some shortcuts (called “syntactic sugar”) in cases where some of the
notation is redundant.

Omitting Function Body Brackets for One-Line Lambdas

If the function body of our lambda expression is only one line, Java lets us omit the brackets
around the function body. When omitting function brackets, we also omit trailing semicolons
And the return keyword.
So, our Runnable lambda above could instead be written:

// Create an InstantCommand that runs the drive forward at half speed
Command driveHalfSpeed = runOnce(() -> drivetrain.arcadeDrive(0.5, 0.0), drivetrain);

Omitting Parentheses around Single Lambda Parameters

If the lambda expression is for a functional interface that takes only a single argument, we
can omit the parenthesis around the parameter list:

// We can write this lambda with no parenthesis around its single argument
IntConsumer exampleLambda = (a -> System.out.println(a));

16.7.3 Treating Functions as Data in C++

C++ has a number of ways to treat functions as data. For the sake of this article, we’ll only
talk about the parts that are relevant to using WPILibC.
In WPILibC, function types are represented with the std::function class (https://en.
cppreference.com/w/cpp/utility/functional/function). This standard library class is templated
on the function’s signature - that means we have to provide it a function type as a template
parameter to specify the signature of the function (compare this to Java above, where we have
a separate interface type for each kind of signature).
This sounds a lot more complicated than it is to use in practice. Let’s look at the call signature
of cmd::RunOnce (which creates an InstantCommand that, when scheduled, runs the given
function once and then terminates):

Note: The requirements parameter is explained in the Command-based documentation,
and will not be discussed here.

CommandPtr RunOnce(
std::function<void()> action,
std::initializer_list<Subsystem*> requirements);

runOnce expects us to give it a std::function<void()> parameter (named action). A
std::function<void()> is the C++ type for a std::function that takes no parameters and
returns no value (the template parameter, void(), is a function type with no parameters and

16.7. Treating Functions as Data 569

https://en.cppreference.com/w/cpp/utility/functional/function
https://en.cppreference.com/w/cpp/utility/functional/function
https://stackoverflow.com/questions/17446220/c-function-types

FIRST Robotics Competition

no return value). When we call runOnce, we need to give it a function with no parameters
and no return value. C++ lacks a clean way to refer to existing class methods in a way that
can automatically be converted to a std::function, so the typical way to do this is to define
a new function inline with a “lambda expression”.

Lambda Expressions in C++

To pass a function to runOnce, we need to write a short inline function expression using a spe-
cial syntax that resembles ordinary C++ function declarations, but varies in a few important
ways:

// Create an InstantCommand that runs the drive forward at half speed
CommandPtr driveHalfSpeed = cmd::RunOnce([this] { drivetrain.ArcadeDrive(0.5, 0.0); },
↪→ {drivetrain});

C++ calls [captures] (params) { body; } a “lambda expression”. It has three parts: a
capture list (square brackets), an optional parameter list (parentheses), and a function body
(curly brackets). It may look a little strange, but the only real difference between a lambda
expression and an ordinary function (apart from the lack of a function name) is the addition
of the capture list.
Since RunOnce wants a function with no parameters and no return value, our lambda expres-
sion has no parameter list and no return statement. The “lambda expression” here represents
a function that calls drivetrain.ArcadeDrive with a specific set of parameters - note again
that the above code does not call the function, but merely defines it and passes it to the
Command to be run later when the Command is scheduled.

Capturing State in C++ Lambda Expressions

In the above example, our function body references an object that lives outside of the function
itself (namely, the drivetrain object). This is called a “capture” of a variable from the sur-
rounding code (which is sometimes called the “outer scope” or “enclosing scope”). Usually
the captured variables are either local variables from the enclosing method body in which
the lambda expression is defined, or else fields of an enclosing class definition in which that
method is defined.
C++ has somewhat more-powerful semantics than Java. One cost of this is that we generally
need to give the C++ compiler some help to figure out how exactly we want it to capture
state from the enclosing scope. This is the purpose of the capture list. For the purposes of
using the WPILibC Command-based framework, it is usually sufficient to use a capture list
of [this], which gives access to members of the enclosing class by capturing the enclosing
class’s this pointer by value.
Method locals cannot be captured with the this pointer, and must be captured explicitly
either by reference or by value by including them in the capture list (or by implicitly by instead
specifying a default capture semantics). It is typically safer to capture locals by-value, since
a lambda can outlive the lifespan of an object it captures by reference. For more details,
consult the C++ standard library documentation on capture semantics.

570 Chapter 16. Basic Programming

https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture

17
Support Resources

In addition to the documentation here, there are a variety of other resources available to
FRC® teams to help understand the Control System and software.

17.1 Other Documentation

In addition to this site there are a few other places teams may check for documentation:
• NI FRC Community Documents Section
• FIRST Inspires Technical Resources Page
• CTRE Software & Resources Page
• REV Robotics Documentation

17.2 Forums

Stuck? Have a question not answered by the documentation? Official Support is provided on
these forums:

• NI FRC Support Forum (roboRIO, LabVIEW and Driver Station software questions)
• FIRST Inspires Control System Forum (wiring, hardware and Driver Station questions)
• FIRST Inspires Programming Forum (programming questions for C++, Java, or Lab-

VIEW)

571

https://forums.ni.com/t5/FIRST-Robotics-Competition/bd-p/1014?profile.language=en&view=documents
https://www.firstinspires.org/resource-library?flagged=All&combine=&field_content_type_value%5B0%5D=first_robotics_competition&field_resource_library_tags_tid=171&sort_by=created_1
https://store.ctr-electronics.com/software/
https://docs.revrobotics.com/docs/
https://forums.ni.com/t5/Support/ct-p/Support
https://forums.firstinspires.org/forum/general-discussions/first-programs/first-robotics-competition/competition-discussion/control-system?f=1338
https://forums.firstinspires.org/forum/general-discussions/first-programs/first-robotics-competition/competition-discussion/programming-aa

FIRST Robotics Competition

17.3 CTRE Support

Support for Cross The Road Electronics components (Pneumatics Control Module, Power Dis-
tribution Panel, Talon SRX, and Voltage Regulator Module) is provided via the email address
support@crosstheroadelectronics.com.

17.4 REV Robotics Support

Support for REV Robotics components (SPARK MAX, Sensors, Pneumatic Hub, Power Dis-
tribution Hub, Radio Power Module) is provided via phone at 844-255-2267 or via the email
address support@revrobotics.com.

17.5 Other Vendors

Support for vendors outside of the KOP can be found below.
• Copperforge
• Kauai Labs (NavX)
• Limelight
• PhotonVision (Discord)
• Playing with Fusion

17.6 Unofficial Support

There are useful forms of support provided by the community through various forums and
services. The below links and websites are not endorsed by FIRST® and may be used at your
own risk.

• Chief Delphi
• FRC Discord

17.7 Bug Reporting

Found a bug? Let us know by reporting it in the Issues section of the appropriate WPILibSuite
project on GitHub: https://github.com/wpilibsuite

572 Chapter 17. Support Resources

mailto:support@crosstheroadelectronics.com
tel:844-255-2267
mailto:support@revrobotics.com
https://copperforge.cc/docs/software/libcu/
https://www.kauailabs.com/support/navx-mxp/
https://limelightvision.io/pages/contact-us
https://discord.com/invite/wYxTwym
https://www.playingwithfusion.com/contactus.php
https://www.chiefdelphi.com/
https://discord.com/invite/frc
https://github.com/wpilibsuite

18
FRC Glossary

accelerometer
A common sensor used to measure acceleration in one or more axis.

auto
The first phase of each match is called Autonomous (auto) and consists of the robot’s
running pre-programmed instructions.

back-EMF
In electric motors, the force generated by the interaction of spinning magnets in a coil
of wire which opposes spinning motion.

boolean
A form of data with only two possible values (true or false), intended to represent the
two truth values of logic and Boolean algebra.

call stack
A specially-organized region of memory which helps the program keep track of what
function it is in. As each function calls another, the call point is recorded and added to
the top of the structure, forming a “stack” of references. Additionally, local variables
will also be stored in this stack. See call stack on Wikipedia for more info.

central limit theorem
A core concept in probability which states that when many independent variables are
added up, the result tends to look like a “normal” (or Gaussian) distribution, regardless
of whether the independent variables themselves are normally distributed. See Central
Limit Theorem on Wikipedia for more info.

Classical Mechanics
The branch of physics which studies and describes the motion of relatively large, rela-
tively slow objects. See Classical Mechanics on Wikipedia for more info.

COTS
Commercial off the shelf, a standard (i.e. not custom order) part commonly available
from a vendor to all teams for purchase.

composition
A formal software term for building (or “composing”) software entities out of smaller
component entities. See object composition on Wikipedia for more info.

CRTP
Continuously Recurring Template Pattern - A software idiom in which a class X` derives

573

https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Object_composition

FIRST Robotics Competition

from a class template instantiation using X` itself as a template argument. See CRTP on
Wikipedia for more info.

C++
One of the three officially supported programming languages.

declarative programming
A style of software which focuses on describing what a program should do, rather than
how it gets done. See declarative programming on Wikipedia for more info.

dependency injection
A software design pattern where each class receives all objects it depends upon. Some-
times these are passed through the constructor, but not always. See dependency injec-
tion on Wikipedia for more info.

deprecated
Software that has been replaced and will no longer receive new features. Deprecated
software will be maintained for at least 1 year, but may be removed after that. For
example, if a method is deprecated prior to the 2022 season, it will be usable in the 2022
season, but may be removed prior to the 2023 season. Teams are encouraged to not use
deprecated methods in new code. WPILib always deprecates features at least one year
prior to removing them from the codebase.

design pattern
A particular, intentionally-chosen style of organizing code. A design pattern intentionally
excludes using certain features of a programming language to constrain developers into
solutions that are well-suited to a particular problem-space. See design pattern. on
Wikipedia for more info.

DHCP
Dynamic Host Configuration Protocol, the protocol that allows a central device to assign
unique IP addresses to all other devices.

encapsulation
A software design pattern which uses a class to hide the implementation details of other
classes. See encapsulation on Wikipedia for more info.

entry
InNetworkTables, a combined publisher and subscriber. The subscriber is always active,
but the publisher is not created until a publish operation is performed (e.g. a value is
“set”, aka published, on the entry). This may be more convenient than maintaining a
separate publisher and subscriber.

enumeration
A list of all elements of a set, typically used to refer to a set of pre-defined values.

event-driven programming
A style of programming where certain parts of code generate “events” as a result of some
input (sensors, user interaction, etc). Then, other parts of code listen for and respond to
“handle” these events. See event-based on Wikipedia for more info.

floating point
A method for approximating real numbers in computer-based arithmetic, using a fixed
precision integer scaled by an integer exponent. Typically computer systems support
both “single” precision (32-bit storage) and “double” precision (64-bit storage) floating
point values, as defined by IEEE 754.

FMS
Field Management System, the electronics core responsible for sensing and controlling
the FIRST Robotics Competition field.

574 Chapter 18. FRC Glossary

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Event-driven_programming

FIRST Robotics Competition

FPGA
Field-programmable gate array - a specialized integrated circuit consisting of many dig-
ital logic elements, which can be configured to act in different patterns. This allows its
behavior to be changed after manufacturing. In the context of FRC, National Instru-
ments provides a specific configuration for the RIO’s FPGA which allows it to process
the electrical inputs and outputs at a very high rate. See FPGA on Wikipedia for more
info.

GradleRIO
The mechanism that powers the deployment of robot code to the roboRIO.

gyroscope
A device that measures rate of rotation. It can add up the rotation measurements to
determine heading of the robot. (“gyro”, for short)

heading
The direction the robot is pointed, usually expressed as an angle in degrees.

imperative programming
A style of programming that focuses on what the code should be doing, step by step,
every loop. See imperative programming on Wikipedia for more info.

IMU
Inertial Measurement Unit, a sensor that combines both an accelerometer and a gyro-
scope into a single sensor.

Java
One of the three officially supported programming languages.

JSON
JavaScript Object Notation. A standardized way of organizing data into named values.
The organized data can be easily serialized. While the original usage was in Javascript,
it can be used and interested by most modern programming languages. See JSON on
Wikipedia for more info.

KOP
Kit of Parts, the collection of items listed on the Kickoff Kit checklists, distributed to the
team via FIRST Choice, or paid for completely (except shipping) with a Product Donation
Voucher (PDV).

KOP chassis
The KOP contains a drive base (chassis) distributed to every team (that did not opt out)
as part of the KOP. For the 2023 season, the KOP chassis is the AM14U5.

LabVIEW
One of the three officially supported programming languages.

NetworkTables
A publish-subscribe messaging system to communicate data between programs.

mass
the amount of matter in a physical object. Objects with more mass will resist changes in
motion more than objects with less mass. See mass on Wikipedia for more info.

moment of inertia
The property of an object that describes both how much mass it has, and how that mass is
distributed relative to a certain axis of rotation. Objects with higher moments of inertia
resist changes in rotational motion more than objects with lower moments of inertia.
Increasing the moment of inertia is accomplished by adding more mass, or moving the

575

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/JSON
https://www.andymark.com/products/am14u5-6-wheel-drop-center-robot-drive-base-first-kit-of-parts-chassis
https://en.wikipedia.org/wiki/Mass

FIRST Robotics Competition

mass further away from the axis of rotation. See moment of inertia on Wikipedia for
more info.

mutable
An object that can be modified after it is created.

permanent-magnet DC motor
The classification of all legal motors for the FIRST robotics competition. This type of
motor takes direct current as input, and uses it to create a magnetic field. In turn,
this magnetic field interacts with a physical magnet to create a force that turns the
output shaft. Electrical (“brushless”) or mechanical (“brushed”) means are used to en-
sure the electrically-generated magnetic field always points in a direction that creates
forces when it interacts with the physical magnet, even as the motor’s shaft rotates. See
permanent-magnet motor on Wikipedia for more info.

persistent
In NetworkTables, a topic that is saved to a file by the server and restored at startup.

property
In NetworkTables, named information (metadata) about a topic stored and updated sep-
arately from the topic’s data. A topic may have any number of properties. A property’s
value can be any data type that can be represented in JSON.

publisher
In NetworkTables, an object that defines a topic and creates and sends timestamped
data values.

pose
The collection of position and rotation information that describes how a rigid body is
oriented in space, relative to some fixed reference point.

RAII
Resource Acquisition Is Initialization; a language behavior (in C++, but not in Java)
where holding a resource is tied to object lifetime.

retro-reflection
The property of reflecting incoming light back at the same angle it came in at, rather
than an incident angle (like a mirror), absorbing it, or scattering it. Most FRC vision
processing targets are retro-reflective. See retroreflector on Wikipedia for more infor-
mation.

recursive composition
A type of composition in which the composite object may contain components of the same
type as itself. For example, a command group may contain one or more command groups.
See recursive composition on Wikipedia for more info. See also recursive composition.

retained
In NetworkTables, a topic that is kept alive by the server even after all publishers stop
publishing.

serialized
The property of a data organization scheme that allows the description of the data to be
sent in order, byte by byte, over some communication channel. Reading or writing a file
on disk is done in this serial fashion (IE, the data is read or written byte by byte, not all
at once). Sending data over a SPI or I2C bus is also done byte by byte, again requiring
the data can be serialized.

simulation
A way for teams to test their code without having an actual robot available.

576 Chapter 18. FRC Glossary

https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Brushed_DC_electric_motor#Permanent-magnet_motors
https://en.wikipedia.org/wiki/Retroreflector
https://en.wikipedia.org/wiki/Object_composition#Recursive_composition

FIRST Robotics Competition

software library
A collection of code that can be imported into and used by other software. See software
library on Wikipedia for more info.

solenoid valve
A airflow-controlling valve which is actuated by a small electromagnet. Strictly speak-
ing, the solenoid is the coil of wire which forms the electromagnet, and the valve is the
mechanism which actually redirects airflow. However, the set of solenoid and valve to-
gether is often simply called “a solenoid”. See solenoid valve. on Wikipedia for more
info.

state machine
A programming construct that divides a problem into many discrete, well-defined,
mutually-exclusive “states”, then defines how the problem is solved by moving between
different states. See state machine on Wikipedia for more more info.

subscriber
In NetworkTables, an object that receives timestamped data value updates to one or
more topics.

telemetry
The process of recording and sending real-time data about the performance of your robot
to a real-time readout or log file. For the linguists among us, the word’s roots are “tele”
(remote) and “metry” (measurement). See telemetry on Wikipedia for more info.

teleop
The second phase of each match is called the Teleoperated Period (teleop) and consists
of drivers controlling their robots.

topic
In NetworkTables, a named data channel.

torque
A force applied at a distance from some axis of rotation

trajectory
A trajectory is a smooth curve, with velocities and accelerations at each point along the
curve, connecting two endpoints on the field.

transitory
In NetworkTables, a topic that will disappear after the last publisher stops publishing.

577

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Solenoid_valve
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Telemetry

FIRST Robotics Competition

578 Chapter 18. FRC Glossary

19
Driver Station

19.1 FRC Driver Station Powered by NI LabVIEW

This article describes the use and features of the FRC® Driver Station Powered by NI Lab-
VIEW.
For information on installing the Driver Station software see this document.

19.1.1 Starting the FRC Driver Station

The FRC Driver Station can be launched by double-clicking the icon on the Desktop or by
selecting Start->All Programs->FRC Driver Station.

Note: By default the FRC Driver Station launches the LabVIEW Dashboard. It can also be
configured on Setup Tab to launch the other Dashboards: SmartDashboard and Shuffleboard.
WPILib must be installed to use SmartDashboard and Shuffleboard.

579

FIRST Robotics Competition

19.1.2 Driver Station Key Shortcuts

• F1 - Force a Joystick refresh.
• [+] + \ - Enable the robot (the 3 keys above Enter on most keyboards)
• Enter - Disable the Robot
• Space - Emergency Stop the robot. After an emergency stop is triggered the roboRIO

will need to be rebooted before the robot can be enabled again.

Note: Space bar will E-Stop the robot regardless of if the Driver Station window has focus
or not

Warning: When connected to FMS in a match, teams must press the Team Station E-Stop
button to emergency stop their robot as the DS enable/disable and E-Stop key shortcuts
are ignored.

19.1.3 Setting Up the Driver Station

The DS should be set to your team number in order to connect to your robot. In order to do
this click the Setup tab then enter your team number in the team number box. Press return
or click outside the box for the setting to take effect.
PCs will typically have the correct network settings for the DS to connect to the robot already,
but if not, make sure your Network adapter is set to DHCP.

580 Chapter 19. Driver Station

FIRST Robotics Competition

19.1.4 Status Pane

The Status Pane of the Driver Station is located in the center of the display and is always
visible regardless of the tab selected. It displays a selection of critical information about the
state of the DS and robot:

1. Team # - The Team number the DS is currently configured for. This should match your
FRC team number. To change the team number see the Setup Tab.

2. Battery Voltage - If the DS is connected and communicating with the roboRIO this dis-
plays current battery voltage as a number and with a small chart of voltage over time
in the battery icon. The background of the numeric indicator will turn red when the ro-
boRIO brownout is triggered. See roboRIO Brownout and Understanding Current Draw
for more information.

3. Major Status Indicators - These three indicators display major status items for the DS.
The “Communications” indicates whether the DS is currently communicating with the
FRC Network Communications Task on the roboRIO (it is split in half for the TCP and
UDP communication). The “Robot Code” indicator shows whether the team Robot Code
is currently running (determined by whether or not the Driver Station Task in the robot
code is updating the battery voltage), The “Joysticks” indicator shows if at least one
joystick is plugged in and recognized by the DS.

4. Status String - The Status String provides an overall status message indicating the state
of the robot. Some examples are “No Robot Communication”, “No Robot Code”, “Emer-
gency Stopped”, and “Teleoperated Enabled”. When the roboRIO brownout is triggered
this will display “Voltage Brownout”.

19.1. FRC Driver Station Powered by NI LabVIEW 581

FIRST Robotics Competition

19.1.5 Operation Tab

The Operations Tab is used to control the mode of the robot and provide additional key status
indicators while the robot is running.

1. Robot Mode - This section controls the Robot Mode.
• Teleoperated Mode causes the robot to run the code in the Teleoperated portion of the

match.
• Autonomous Mode causes the robot to run the code in the Autonomous portion of the

match.
• Practice Mode causes the robot to cycle through the same transitions as an FRC match

after the Enable button is pressed (timing for practice mode can be found on the setup
tab).

• Test Mode is an additional mode where test code that doesn’t run in a regular match can
be tested.

2. Enable/Disable - These controls enable and disable the robot. See also Driver Station
Key Shortcuts.

3. Elapsed Time - Indicates the amount of time the robot has been enabled.
4. PC Battery - Indicates current state of DS PC battery and whether the PC is plugged in.
5. PC CPU% - Indicates the CPU Utilization of the DS PC.
6. Window Mode - When not on the Driver account on the Classmate allows the user to

toggle between floating (arrow) and docked (rectangle).
7. Team Station - When not connected to FMS, sets the team station to transmit to the

robot.

Note: When connected to the Field Management System the controls in sections 1 and 2
will be replaced by the words FMS Connected and the control in Section 7 will be greyed out.

582 Chapter 19. Driver Station

FIRST Robotics Competition

19.1.6 Diagnostics Tab

The Diagnostics Tab contains additional status indicators that teams can use to diagnose
issues with their robot:

1. DS Version - Indicates the Driver Station Version number.
2. roboRIO Image Version - String indicating the version of the roboRIO Image.
3. WPILib Version - String indicating the version of WPILib in use.
4. CAN Device Versions - String indicating the firmware version of devices connected to

the CAN bus. These items may not be present if the CTRE Phoenix Framework has not
been loaded.

5. Memory Stats - This section shows stats about the roboRIO memory.
6. Connection Indicators - The top half of these indicators show connection status to various

components.
• “Enet Link” indicates the computer has something connected to the ethernet port.
• “Robot Radio” indicates the ping status to the robot wireless bridge at 10.XX.YY.1.
• “Robot” indicates the ping status to the roboRIO using mDNS (with a fallback of a

static 10.TE.AM.2 address).
• “FMS” indicates if the DS is receiving packets from FMS (this is NOT a ping indica-

tor).
7. Network Indicators - The second section of indicators indicates status of network

adapters and firewalls. These are provided for informational purposes; communication
may be established even with one or more unlit indicators in this section.

• “Enet” indicates the IP address of the detected Ethernet adapter
• “WiFi” indicates if a wireless adapter has been detected as enabled
• “USB” indicates if a roboRIO USB connection has been detected
• “Firewall” indicates if any firewalls are detected as enabled. Enabled firewalls will

show in orange (Dom = Domain, Pub = Public, Prv = Private)
8. Reboot roboRIO - This button attempts to perform a remote reboot of the roboRIO (after

clicking through a confirmation dialog).

19.1. FRC Driver Station Powered by NI LabVIEW 583

FIRST Robotics Competition

9. Restart Robot Code - This button attempts to restart the code running on the robot (but
not restart the OS).

19.1.7 Setup Tab

The Setup Tab contains a number of buttons teams can use to control the operation of the
Driver Station:

1. Team Number - Should contain your FRC Team Number. This controls the mDNS name
that the DS expects the robot to be at. Shift clicking on the dropdown arrow will show
all roboRIO names detected on the network for troubleshooting purposes.

2. Dashboard Type - Controls what Dashboard is launched by the Driver Station. Default
launches the file pointed to by the “FRC DS Data Storage.ini” (for more information
about setting a custom dashboard). By default this is Dashboard.exe in the Program
Files (x86)\FRC Dashboard folder. LabVIEW attempts to launch a dashboard at the de-
fault location for a custom built LabVIEW dashboard, but will fall back to the default if
no dashboard is found. SmartDashboard and Shuffleboard launch the respective dash-
boards included with the C++ and Java WPILib installation. Remote forwards LabVIEW
dashboard data to the IP specified in Dashboard IP field.

3. Game Data - This box can be used for at home testing of the Game Data API. Text entered
into this box will appear in the Game Data API on the Robot Side. When connected to
FMS, this data will be populated by the field automatically.

4. Practice Mode Timing - These boxes control the timing of each portion of the practice
mode sequence. When the robot is enabled in practice mode the DS automatically pro-
ceeds through the modes indicated from top to bottom.

5. Audio Control - This button controls whether audio tones are sounded when the Practice
Mode is used.

584 Chapter 19. Driver Station

FIRST Robotics Competition

19.1.8 USB Devices Tab

The USB Devices tab includes the information about the USB Devices connected to the DS
1. USB Setup List - This contains a list of all compatible USB devices connected to the DS.

Pressing a button on a device will highlight the name in green and put 2 *s before the
device name

2. Rescan - This button will force a Rescan of the USB devices. While the robot is disabled,
the DS will automatically scan for new devices and add them to the list. To force a
complete re-scan or to re-scan while the robot is Enabled (such as when connected to
FMS during a match) press F1 or use this button.

3. Device indicators - These indicators show the current status of the Axes, buttons and
POV of the joystick.

4. Rumble - For XInput devices (such as X-Box controllers) the Rumble control will appear.
This can be used to test the rumble functionality of the device. The top bar is “Right
Rumble” and the bottom bar is “Left Rumble”. Clicking and holding anywhere along the
bar will activate the rumble proportionally (left is no rumble = 0, right is full rumble =
1). This is a control only and will not indicate the Rumble value set in robot code.

19.1. FRC Driver Station Powered by NI LabVIEW 585

FIRST Robotics Competition

Re-Arranging and Locking Devices

The Driver Station has the capability of “locking” a USB device into a specific slot. This is
done automatically if the device is dragged to a new position and can also be triggered by
double clicking on the device. “Locked” devices will show up with an underline under the
device. A locked device will reserve its slot even when the device is not connected to the
computer (shown as grayed out and underlined). Devices can be unlocked (and unconnected
devices removed) by double clicking on the entry.

Note: If you have two or more of the same device, they should maintain their position as
long as all devices remain plugged into the computer in the same ports they were locked in.
If you switch the ports of two identical devices the lock should follow the port, not the device.
If you re-arrange the ports (take one device and plug it into a new port instead of swapping)
the behavior is not determinate (the devices may swap slots). If you unplug one or more of
the set of devices, the positions of the others may move; they should return to the proper
locked slots when all devices are reconnected.

Example: The image above shows 4 devices:
• A Locked “Logitech Attack 3” joystick. This device will stay in this position unless

dragged somewhere else or unlocked
• An unlocked “Logitech Extreme 3D” joystick
• An unlocked “Gamepad F310 (Controller)” which is a Logitech F310 gamepad
• A Locked, but disconnected “MadCatz GamePad (Controller)” which is a MadCatz Xbox

360 Controller
In this example, unplugging the Logitech Extreme 3D joystick will result in the F310 Gamepad
moving up to slot 1. Plugging in the MadCatz Gamepad (even if the devices in Slots 1 and 2
are removed and those slots are empty) will result in it occupying Slot 3.

586 Chapter 19. Driver Station

FIRST Robotics Competition

19.1.9 CAN/Power Tab

The last tab on the left side of the DS is the CAN/Robot Power Tab. This tab contains infor-
mation about the power status of the roboRIO and the status of the CAN bus:

1. Comms Faults - Indicates the number of Comms faults that have occurred since the DS
has been connected

2. 12V Faults - Indicates the number of input power faults (Brownouts) that have occurred
since the DS has been connected

3. 6V/5V/3.3V Faults - Indicates the number of faults (typically caused by short circuits)
that have occurred on the User Voltage Rails since the DS has been connected

4. CAN Bus Utilization - Indicates the percentage utilization of the CAN bus
5. CAN faults - Indicates the counts of each of the 4 types of CAN faults since the DS has

been connected
If a fault is detected, the indicator for this tab (shown in blue in the image above) will turn
red.

19.1.10 Messages Tab

19.1. FRC Driver Station Powered by NI LabVIEW 587

FIRST Robotics Competition

The Messages tab displays diagnostic messages from the DS, WPILib, User Code, and/or the
roboRIO. The messages are filtered by severity. By default, only Errors are displayed.
To access settings for the Messages tab, click the Gear icon. This will display a menu that will
allow you to select the detail level (Errors, Errors+Warnings or Errors+Warnings+Prints),
clear the box, launch a larger Console window for viewing messages, or launch the DS Log
Viewer.

19.1.11 Charts Tab

The Charts tab plots and displays advanced indicators of robot status to help teams diagnose
robot issues:

1. The top graph charts trip time in milliseconds in green (against the axis on the right)
and lost packets per second in orange (against the axis on the left).

2. The bottom graph plots battery voltage in yellow (against the axis on the left), roboRIO
CPU in red (against the axis on the right), DS Requested mode as a continuous line on
the bottom of the chart and robot mode as a discontinuous line above it.

3. This key shows the colors used for the DS Requested and Robot Reported modes in the
bottom chart.

4. Chart scale - These controls change the time scale of the DS Charts.
5. This button launches the DS Log File Viewer.

The DS Requested mode is the mode that the Driver Station is commanding the robot to be
in. The Robot Reported mode is what code is actually running based on reporting methods
contained in the coding frameworks for each language.

588 Chapter 19. Driver Station

FIRST Robotics Competition

19.1.12 Both Tab

The last tab on the right side is the Both tab which displays Messages and Charts side by side.

19.2 Driver Station Best Practices

This document was created by Steve Peterson, with contributions from Juan Chong, James
Cole-Henry, Rick Kosbab, Greg McKaskle, Chris Picone, Chris Roadfeldt, Joe Ross, and Ryan
Sjostrand. The original post and follow-up posts can be found here.
Want to ensure the driver station isn’t a stopper for your team at the FIRST Robotics Com-
petition (FRC) field? Building and configuring a solid driver station laptop is an easy project
for the time between stop build day and your competition. Read on to find lessons learned by
many teams over thousands of matches.

19.2.1 Prior To Departing For The Competition

1. Dedicate a laptop to be used solely as a driver station. Many teams do. A dedicated
machine allows you manage the configuration for one goal – being ready to compete at
the field. Dedicated means no other software except the FRC-provided Driver Station
software and associated Dashboard installed or running.

2. Use a business-class laptop for your driver station. Why? They’re much more durable
than the $300 Black Friday special at Best Buy. They’ll survive being banged around
at the competition. Business-class laptops have higher quality device drivers, and the
drivers are maintained for a longer period than consumer laptops. This makes your
investment last longer. Lenovo ThinkPad T series and Dell Latitude are two popular
business-class brands you’ll commonly see at competitions. There are thousands for
sale every day on eBay. The laptop provided in recent rookie kits is a good entry level
machine. Teams often graduate from it to bigger displays as they do more with vision
and dashboards.

3. Consider used laptops rather than new. The FRC® Driver Station and dashboard soft-
ware uses very few system resources, so you don’t need to buy a new laptop – instead,
buy a cheap 4-5 year old used one. You might even get one donated by a used computer
store in your area.

4. Laptop recommended features
a. RAM – 4GB of RAM
b. A display size of 13” or greater, with minimum resolution of 1440x1050.
c. Ports

i. A built-in Ethernet port is highly preferred. Ensure that it’s a full-sized port. The
hinged Ethernet ports don’t hold up to repeated use.

ii. Use an Ethernet port saver to make your Ethernet connection. This extends
the life of the port on the laptop. This is particularly important if you have a
consumer-grade laptop with a hinged Ethernet port.

iii. If the Ethernet port on your laptop is dodgy, either replace the laptop (recom-
mended) or buy a USB Ethernet dongle from a reputable brand. Many teams
find that USB Ethernet is less reliable than built-in Ethernet, primarily due to

19.2. Driver Station Best Practices 589

https://www.chiefdelphi.com/t/paper-driver-station-best-practices/164429

FIRST Robotics Competition

cheap hardware and bad drivers. The dongles given to rookies in the KOP have
a reputation for working well.

iv. 2 USB ports minimum
d. A keyboard. It’s hard to quickly do troubleshooting on touch-only computers at the

field.
e. A solid-state disk (SSD). If the laptop has a rotating disk, spend $50 and replace it

with a SSD.
f. Updated to the current release of Windows 10 or 11. Being the most common OS

now seen at competitions, bugs are more likely to be found and fixed for Windows
10 and 11 than on older Windows versions.

5. Install all Windows updates a week before the competition. This allows you time to
ensure the updates will not interfere with driver station functions. To do so, open the
Windows Update settings page and see that you’re up-to-date. Install pending updates
if not. Reboot and check again to make sure you’re up to date.

6. Change “Active Hours” for Windows Updates to prevent updates from installing during
competition hours. Navigate to Start -> Settings -> Update & Security -> Windows
Update, then select Change active hours. If you’re traveling to a competition, take time
zone differences into account. This will help ensure your driver station does not reboot
or fail due to update installing on the field.

7. Remove any 3rd party antivirus or antimalware software. Instead, use Windows De-
fender on Windows 10 or 11. Since you’re only connecting to the internet for Windows
and FRC software updating, the risk is low. Only install software on your driver station
that’s needed for driving. Your goal here is to eliminate variables that might interfere
with proper operation. Remove any unneeded preinstalled software (“bloatware”) that
came with the machine. Don’t use the laptop as your Steam machine for gaming back
at the hotel the night before the event. Many teams go as far as having a separate
programming laptop.

8. Avoid managed Windows 10 or 11 installations from the school’s IT department. These
deployments are built for the school environment and often come with unwanted soft-
ware that interferes with your robot’s operation.

9. Laptop battery / power
a. Turn off Put the computer to sleep in your power plan for both battery and powered

operation.
b. Turn off USB Selective Suspend:

i. Right click on the battery/charging icon in the tray, then select Power Options.
ii. Edit the plan settings of your power plan.

iii. Click the Change advanced power settings link.
iv. Scroll down in the advanced settings and disable the USB selective suspend

setting for both Battery and Plugged in.
c. Ensure the laptop battery can hold a charge for at least an hour after making the

changes above. This allows plenty of time for the robot and drive team to go through
the queue and reach the alliance station without mains power.

10. Bring a trusted USB and Ethernet cable for use connecting to the roboRIO.

590 Chapter 19. Driver Station

FIRST Robotics Competition

11. Add retention/strain relief to prevent your joystick/gamepad controllers from falling on
the floor and/or yanking on the USB ports. This helps prevent issues with intermittent
controller connections.

12. The Windows user account you use to drive must be a member of the Administrator
group.

19.2.2 At The Competition

1. Turn off Windows firewall using these instructions.
2. Turn off the Wi-Fi adapter, either using the dedicated hardware Wi-Fi switch or by dis-

abling it in the Adapter Settings control panel.
3. Charge the driver station when it’s in the pit.
4. Remove login passwords or ensure everyone on the drive team knows the password.

You’d be surprised at how often drivers arrive at the field without knowing the password
for the laptop.

5. Ensure your LabView code is deployed permanently and set to “run as startup”, using
the instructions in the LabView Tutorial. If you must deploy code every time you turn
the robot on, you’re doing it wrong.

6. Limit web browsing to FRC related web sites. This minimizes the chance of getting
malware during the competition.

7. Don’t plan on using internet access to do software updates. There likely won’t be any
in the venue, and hotel Wi-Fi varies widely in quality. If you do need updates, contact a
Control System Advisor in the pit.

19.2.3 Before Each Match

1. Make sure the laptop is on and logged in prior to the end of the match before yours.
2. Close programs that aren’t needed during the match – e.g., Visual Studio Code or Lab-

View – when you are competing.
3. Bring your laptop charger to the field. Power is provided for you in each player station.
4. Fasten your laptop with hook-and-loop tape to the player station shelf. You never know

when your alliance partner will have an autonomous programming issue and blast the
wall.

5. Ensure joysticks and controllers are assigned to the correct USB ports.
a. In the USB tab in the FRC Driver Station software, drag and drop to assign joysticks

as needed.
b. Use the rescan button (F1) if joysticks / controllers do not appear green
c. Use the rescan button (F1) during competition if joystick or controllers become un-

plugged and then are plugged back in or otherwise turn gray during competition.

19.2. Driver Station Best Practices 591

FIRST Robotics Competition

19.3 Driver Station Log File Viewer

In an effort to provide information to aid in debugging, the FRC® Driver Station creates log
files of important diagnostic data while running. These logs can be reviewed later using the
FRC Driver Station Log Viewer. The Log Viewer can be found via the shortcut installed in
the Start menuin the FRC Driver Station folder in Program Files, or via the Gear icon in the
Driver Station.

Note: Several third-party tools exist that provide similar functionality to the FRC Driver
Station Log Viewer, including AdvantageScope and DSLOG Reader. Note that WPILib offers
no support for third-party projects.

19.3.1 Event Logs

The Driver Station logs all messages sent to the Messages box on the Diagnostics tab (not
the User Messages box on the Operation tab) into a new Event Log file. When viewing Log
Files with the Driver Station Log File Viewer, the Event Log and DSLog files are overlaid in a
single display.
Log files are stored in C:\Users\Public\Documents\FRC\Log Files. Each log has date and
timestamp in the file name and has two files with extension .dslog and .dsevents.

592 Chapter 19. Driver Station

https://github.com/Mechanical-Advantage/AdvantageScope
https://github.com/orangelight/DSLOG-Reader

FIRST Robotics Competition

19.3.2 Log Viewer UI

The Log Viewer contains a number of controls and displays to aid in the analysis of the Driver
Station log files:

1. File Selection Box - This window displays all available log files in the currently selected
folder. Click on a log file in the list to select it.

2. Path to Log Files - This box displays the current folder the viewer is looking in for log
files. This defaults to the folder that the Driver Station stores log files in. Click the folder
icon to browse to a different location.

3. Message Box - This box displays a summary of all messages from the Event Log. When
hovering over an event on the graph this box changes to display the information for that
event.

4. Scroll Bar - When the graph is zoomed in, this scroll bar allows for horizontal scrolling
of the graph.

5. Voltage Filter - This control turns the Voltage Filter on and off (defaults to on). The
Voltage Filter filters out data such as CPU %, robot mode and trip time when no Battery
Voltage is received (indicating that the DS is no in communication with the roboRIO).

6. AutoScale - This button zooms the graph out to show all data in the log.
7. Match Length - This button scales the graph to approximately the length of an FRC

match (2 minutes and 30 seconds shown). It does not automatically locate the start of
the match, you will have to scroll using the scroll bar to locate the beginning of the
Autonomous mode.

8. Graph - This display shows graph data from the DS Log file (voltage, trip time, roboRIO
CPU%, Lost Packets, and robot mode) as well as overlaid event data (shown as dots on
the graph with select events showing as vertical lines across the entire graph). Hovering

19.3. Driver Station Log File Viewer 593

FIRST Robotics Competition

over event markers on the graph displays information about the event in the Messages
window in the bottom left of the screen.

9. Robot Mode Key - Key for the Robot Mode displayed at the top of the screen
10. Major event key - Key for the major events, displayed as vertical lines on the graph
11. Graph key - Key for the graph data
12. Filter Control - Drop-down to select the filter mode (filter modes explained below)
13. Tab Control - Control to switch between the Graph (Data and Events vs. Time) and Event

List displays.

19.3.3 Using the Graph Display

The Graph Display contains the following information:
1. Graphs of Trip Time in ms (green line) and Lost Packets per second (displayed as blue

vertical bars). In these example images Trip Time is a flat green line at the bottom of
the graph and there are no lost packets

2. Graph of Battery voltage displayed as a yellow line.
3. Graph of roboRIO CPU % as a red line
4. Graph of robot mode and DS mode. The top set of the display shows the mode com-

manded by the Driver Station. The bottom set shows the mode reported by the robot
code. In this example the robot is not reporting it’s mode during the disabled and au-
tonomous modes, but is reported during Teleop.

5. Event markers will be displayed on the graph indicating the time the event occurred.
Errors will display in red; warnings will display in yellow. Hovering over an event marker
will display information about the event in the Messages box at the bottom left of the
screen.

6. Major events are shown as vertical lines across the graph display.
To zoom in on a portion of the graph, click and drag around the desired viewing area. You
can only zoom the time axis, you cannot zoom vertically.

594 Chapter 19. Driver Station

FIRST Robotics Competition

19.3.4 Event List

The Event List tab displays a list of events (warnings and errors) recorded by the Driver
Station. The events and detail displayed are determined by the currently active filter (images
shows “All Events, All Info” filter active).

19.3.5 Filters

Three filters are currently available in the Log Viewer:
1. Default: This filter filters out many of the errors and warnings produced by the Driver

Station. This filter is useful for identifying errors thrown by the code on the Robot.
2. All Events and Time: This filter shows all events and the time they occurred
3. All Events, All Info: This filter shows all events and all recorded info. At this time the

primary difference between this filter and “All Events and Time” is that this option shows
the “unique” designator for the first occurrence of a particular message.

19.3. Driver Station Log File Viewer 595

FIRST Robotics Competition

19.3.6 Identifying Logs from Matches

A common task when working with the Driver Station Logs is to identify which logs came
from competition matches. Logs which were taken during a match can now be identified
using the FMS Connected event which will display the match type (Practice, Qualification
or Elimination), match number, and the current time according to the FMS server. In this
example, you can see that the FMS server time and the time of the Driver Station computer
are fairly close, approximately 7 seconds apart.

19.3.7 Identifying Common Connection Failures with the Log Viewer

When diagnosing robot issues, there is no substitute for thorough knowledge of the system
and a methodical debugging approach. If you need assistance diagnosing a connection prob-
lem at your events it is strongly recommended to seek assistance from your FTA and/or CSA.
The goal of this section is to familiarize teams with how some common failures can mani-
fest themselves in the DS Log files. Please note that depending on a variety of conditions a
particular failure show slightly differently in a log file.

Note: Note that all log files shown in this section have been scaled to match length using
the Match Length button and then scrolling to the beginning of the autonomous mode. Also,
many of the logs do not contain battery voltage information, the platform used for log capture
was not properly wired for reporting the battery voltage.

Tip: Some error messages that are found in the Log Viewer are show below and more are
detailed in the Driver Station Errors/Warnings article.

596 Chapter 19. Driver Station

FIRST Robotics Competition

“Normal” Log

This is an example of a normal match log. The errors and warnings contained in the first
box are from when the DS first started and can be ignored. This is confirmed by observing
that these events occurred prior to the “FMS Connected:” event. The last event shown can
also be ignored, it is also from the robot first connecting to the DS (it occurs 3 seconds after
connecting to FMS) and occurs roughly 30 seconds before the match started.

19.3. Driver Station Log File Viewer 597

FIRST Robotics Competition

Disconnected from FMS

When the DS disconnects from FMS, and therefore the robot, during the match it may seg-
ment the log into pieces. The key indicators to this failure are the last event of the first log,
indicating that the connection to FMS is now “bad” and the second event from the 2nd log
which is a new FMS connected message followed by the DS immediately transitioning into
Teleop Enabled. The most common cause of this type of failure is an ethernet cable with no
latching tab or a damaged ethernet port on the DS computer.

598 Chapter 19. Driver Station

FIRST Robotics Competition

roboRIO Reboot

The “Time since robot boot” message is the primary indicator in a connection failure caused
by the roboRIO rebooting. In this log the DS loses connection with the roboRIO at 3:01:36
as indicated by the first event. The second event indicates that the ping initiated after the
connection failed was successful to all devices other than the roboRIO. At 3:01:47 the roboRIO
begins responding to pings again, one additional ping fails at 3:01:52. At 3:02:02 the Driver
Station connects to the roboRIO and the roboRIO reports that it has been up for 3.682 seconds.
This is a clear indicator that the roboRIO has rebooted. The code continues to load and at
3:02:24 the code reports an error communicating with the camera. A warning is also reported
indicating that no robot code is running right before the code finishes starting up.

19.3. Driver Station Log File Viewer 599

FIRST Robotics Competition

Ethernet cable issue on robot

An issue with the ethernet cable on the robot is primarily indicated by the ping to the roboRIO
going to bad and Radio Lost and Radio Seen events when the roboRIO reconnects. The “Time
since robot boot” message when the roboRIO reconnects will also indicate that the roboRIO
has not rebooted. In this example, the robot Ethernet cable was disconnected at 3:31:38. The
ping status indicates that the radio is still connected. When the robot reconnects at 3:32:08
the “Tim since robot boot” is 1809 seconds indicating that the roboRIO clearly did not reboot.
At 3:32:12 the robot indicates that it lost the radio 24.505 seconds ago and it returned 0.000
seconds ago. These points are plotted as vertical lines on the graph, yellow for radio lost and
green for radio seen. Note that the times are slightly offset from the actual events as shown
via the disconnection and connection, but help to provide additional information about what
is occurring.

600 Chapter 19. Driver Station

FIRST Robotics Competition

Radio reboot

A reboot of the robot radio is typically characterized by a loss of connection to the radio for
~40-45 seconds. In this example, the radio briefly lost power at 3:22:44, causing it to start
rebooting. The event at 3:22:45 indicates that the ping to the radio failed. At 3:23:11, the
DS regains communication with the roboRIO and the roboRIO indicates it has been up for
1272.775 seconds, ruling out a roboRIO reboot. Note that the network switch on the radio
comes back up very quickly so a momentary power loss may not result in a “radio lost”/”radio
seen” event pair. A longer disturbance may result in radio events being logged by the DS.
In that case, the distinguishing factor which points towards a radio reboot is the ping status
of the radio from the DS. If the radio resets, the radio will be unreachable. If the issue is a
cabling or connection issue on the robot, the radio ping should remain “GOOD”.

19.3. Driver Station Log File Viewer 601

FIRST Robotics Competition

19.4 Driver Station Errors/Warnings

In an effort to provide both Teams and Volunteers (FTAs/CSAs/etc.) more information to use
when diagnosing robot problems, a number of Warning and Error messages have been added
to the Driver Station. These messages are displayed in the DS diagnostics tab when they
occur and are also included in the DS Log Files that can be viewed with the Log File Viewer.
This document discusses the messages produced by the DS (messages produced by WPILib
can also appear in this box and the DS Logs).

19.4.1 Joystick Unplugged

ERROR<Code>-44009 occurred at Driver Station
<time>2/5/2013 4:43:54 PM <unique#>1
FRC: A joystick was disconnected while the robot was enabled.

This error is triggered when a Joystick is unplugged. Contrary to the message text this error
will be printed even if the robot is not enabled, or even connected to the DS. You will see a
single instance of this message occur each time the Driver Station is started, even if Joysticks
are properly connected and functioning.

Note: Joystick Unplugged warnings can be silenced by calling DriverStation.
silenceJoystickConnectionWarning(true) (Java, C++)

19.4.2 Lost Communication

Warning<Code>44004 occurred at Driver Station
<time>2/6/2013 11:07:53 AM<unique#>2
FRC: The Driver Station has lost communication with the robot.

This Warning message is printed whenever the Driver Station loses communication with the
robot (Communications indicator changing from green to red). A single instance of this mes-
sage is printed when the DS starts up, before communication is established.

19.4.3 Ping Status

Warning<Code>44002 occurred at Ping Results: link-GOOD, DS radio(.4)-bad, robot␣
↪→radio(.1)-GOOD, cRIO(.2)-bad, FMS- bad Driver Station
<time>2/6/2013 11:07:59 AM<unique#>5
FRC: Driver Station ping status has changed.

A Ping Status warning is generated each time the Ping Status to a device changes while the
DS is not in communication with the roboRIO. As communications is being established when
the DS starts up, a few of these warnings will appear as the Ethernet link comes up, then
the connection to the robot radio, then the roboRIO (with FMS mixed in if applicable). If
communications are later lost, the ping status change may help identify at which component
the communication chain broke.

602 Chapter 19. Driver Station

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/DriverStation.html#silenceJoystickConnectionWarning(boolean)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_driver_station.html#ad92dee0301f96316ffd2a28a22ab9e54

FIRST Robotics Competition

19.4.4 Time Since Robot Boot

WARNING<Code>44007 occurred at FRC_NetworkCommunications
<secondsSinceReboot> 3.585
FRC: Time since robot boot.

This message is printed each time the DS begins communicating with the roboRIO. The mes-
sage indicates the up-time, in seconds, of the roboRIO and can be used to determine if a loss
of communication was due to a roboRIO Reboot.

19.4.5 Radio Detection Times

WARNING<Code>44008 occurred at FRC_NetworkCommunications
<radioLostEvents> 19.004<radioSeenEvents> 0.000
FRC: Robot radio dectection times

WARNING<Code>44008 occurred at FRC_NetworkCommunications
<radioLostEvents> 2.501,422.008<radioSeenEvents> 0.000,147.005
FRC: Robot radio dectection times.

This message may be printed when the DS begins communicating with the roboRIO and indi-
cates the time, in seconds, since the last time the radio was lost and seen. In the first example
image above the message indicates that the roboRIO’s connection to the radio was lost 19
seconds before the message was printed and the radio was seen again right when the mes-
sage was printed. If multiple radioLost or radioSeen events have occurred since the roboRIO
booted, up to 2 events of each type will be included, separated by commas.

19.4.6 No Robot Code

Warning<Code>44003 occurred at Driver Station
<time>2/8/2013 9:50:13 AM<unique#>8
FRC: No robot code is currently running.

This message is printed when the DS begins communicating with the roboRIO, but detects no
robot code running. A single instance of this message will be printed if the Driver Station is
open and running while the roboRIO is booting as the DS will begin communication with the
roboRIO before the robot code finishes loading.

19.5 Programming Radios for FMS Offseason

When using the FMS Offseason software, the typical networking setup is to use a single access
point with a single SSID and WPA key. This means that the radios should all be programmed
to connect to this network, but with different IPs for each team. The Team version of the
FRC® Bridge Configuration Utility has an FMS Offseason mode that can be used to do this
configuration.

19.5. Programming Radios for FMS Offseason 603

FIRST Robotics Competition

19.5.1 Pre-Requisites

Install the FRC® Radio Configuration Utility software per the instructions in Programming
your radio
Before you begin using the software:

1. Disable WiFi connections on your computer, as it may prevent the configuration utility
from properly communicating with the bridge

2. Plug directly from your computer into the wireless bridge ethernet port closest to the
power jack. Make sure no other devices are connected to your computer via ethernet. If
powering the radio via PoE, plug an Ethernet cable from the PC into the socket side of the
PoE adapter (where the roboRIO would plug in). If you experience issues configuring
through the PoE adapter, you may try connecting the PC to the alternate port on the
radio.

Programmed Configuration

The Radio Configuration Utility programs a number of configuration settings into the radio
when run. These settings apply to the radio in all modes (including at events). These include:

• Set a static IP of 10.TE.AM.1
• Set an alternate IP on the wired side of 192.168.1.1 for future programming
• Bridge the wired ports so they may be used interchangeably
• The LED configuration noted in the status light referenced below.
• 4Mb/s bandwidth limit on the outbound side of the wireless interface (may be disabled

for home use)
• QoS rules for internal packet prioritization (affects internal buffer and which packets to

discard if bandwidth limit is reached). These rules are:
– Robot Control and Status (UDP 1110, 1115, 1150)
– Robot TCP & NetworkTables (TCP 1735, 1740)
– Bulk (All other traffic). (disabled if BW limit is disabled)

• DHCP server enabled. Serves out:
– 10.TE.AM.11 - 10.TE.AM.111 on the wired side
– 10.TE.AM.138 - 10.TE.AM.237 on the wireless side
– Subnet mask of 255.255.255.0
– Broadcast address 10.TE.AM.255

• DNS server enabled. DNS server IP and domain suffix (.lan) are served as part of the
DHCP.

Tip: See the Status Light Reference for details on the behavior of the radio status lights
when configured.

When programmed with the team version of the Radio Configuration - Utility, the user ac-
counts will be left at (or set to) the firmware - defaults for the DAPs only:

604 Chapter 19. Driver Station

FIRST Robotics Competition

• Username: root
• Password: root

Note: It is not recommended to modify the configuration manually

19.5.2 Launch the software

Use the Start menu or desktop shortcut to launch the program.

Note: If you need to locate the program, it is installed to C:\Program Files (x86)\FRC
Radio Configuration Utility. For 32-bit machines the path is C:\Program Files\FRC
Radio Configuration Utility

19.5.3 Allow the program to make changes, if prompted

A prompt may appear about allowing the configuration utility to make changes to the com-
puter. Click Yes if the prompt appears.

19.5. Programming Radios for FMS Offseason 605

FIRST Robotics Competition

19.5.4 Enter FMS Offseason Mode

Click Tools -> FMS-Lite Mode to enter FMS-Lite Mode.

19.5.5 Enter SSID

606 Chapter 19. Driver Station

FIRST Robotics Competition

Enter the SSID (name) of your wireless network in the box and click OK.

19.5.6 Enter WPA Key

Enter the WPA key for your network in the box and click OK. Leave the box blank if you are
using an unsecured network.

19.5. Programming Radios for FMS Offseason 607

FIRST Robotics Competition

19.5.7 Program Radios

The Kiosk is now ready to program any number of radios to connect to the network entered.
To program each radio, connect the radio to the Kiosk, set the Team Number in the box, and
click Configure.
The kiosk will program OpenMesh, D-Link Rev A or D-Link Rev B radios to work on an offsea-
son FMS network by selecting the appropriate option from the “Radio” dropdown.

Note: Bandwidth limitations and QoS will not be configured on the D-Link radios in this
mode.

608 Chapter 19. Driver Station

FIRST Robotics Competition

19.5.8 Changing SSID or Key

If you enter something incorrectly or need to change the SSID or WPA Key, go to the Tools
menu and click FMS-Lite Mode to take the kiosk out of FMS-Lite Mode. When you click again
to put the Kiosk back in FMS-Lite Mode, you will be re-prompted for the SSID and Key.

19.5.9 Troubleshooting

See the troubleshooting steps in Programming your radio

19.6 Imaging your Classmate (Veteran Image Download)

Note: Veteran teams are not required to re-image their classmate

This document describes the procedure for creating a bootable USB drive to restore the FRC®
image on a Classmate computer. If you do not wish to re-image your Classmate then you can
start with the appropriate document for C++/Java, LabVIEW, or DS only.

19.6.1 Prerequisites

1. E09, E11, E12, or E14 Classmate computer or Acer ES1 computer
2. 16GB or larger USB drive
3. 7-Zip software installed (download here). As of the writing of this document, the current

released version is 19.00 (2019-02-21).
4. RMprepUSB software installed (download here). Scroll down the page and select the

stable (Full) version download link. As of the writing of this document, the current stable
version is 2.1.745.

19.6. Imaging your Classmate (Veteran Image Download) 609

https://www.7-zip.org
https://rmprepusb.com/

FIRST Robotics Competition

19.6.2 Download the Computer Image

Download the image from the FIRST FRC Driver Station System Image Portal. There are
several computer images available, one for each model. On the download site, select the
option that matches your computer by clicking the button below the image. Due to the limited
size of the hard drive in the E09, it is supported with a DS/Utilities image only and does not
have the IDEs for LabVIEW or C++/Java installed. All other images have the LabVIEW base
installation already present.

Note: These images only install the prerequisite core FRC software, it is still necessary to
install the FRC specific updates. See the Update Software step for more information.

Warning: Due to computer availability, the E14 image provided is the 2018 image. If
using this image, teams may need to remove the old IDE (LabVIEW or Eclipse) and install
the new IDE.

610 Chapter 19. Driver Station

https://frc-events.firstinspires.org/services/DSImages/

FIRST Robotics Competition

19.6.3 Preparation

1. Place the image file downloaded from the site to a folder on your root drive (e.g. C:\
2016_Image).

2. Connect 16GB or larger USB Flash drive to the PC to use as the new restoration drive.

19.6.4 RMPrep

Start/Run RMprepUSB
Select USB Drive

19.6. Imaging your Classmate (Veteran Image Download) 611

FIRST Robotics Competition

Set Partition Size

Set Partition Size to MAX

612 Chapter 19. Driver Station

FIRST Robotics Competition

Set Volume Label

Set Volume Label to Generic

19.6. Imaging your Classmate (Veteran Image Download) 613

FIRST Robotics Competition

Set Bootloader Option

Select Bootloader Option “WinPE v2/WinPE v3/Vista/Win7 bootable”

614 Chapter 19. Driver Station

FIRST Robotics Competition

Select Filesystem

Select NTFS Filesystem

19.6. Imaging your Classmate (Veteran Image Download) 615

FIRST Robotics Competition

Copy OS Files Option

Ensure the “Copy OS files after Format” box is checked

616 Chapter 19. Driver Station

FIRST Robotics Competition

Locate Image

Select the “Choose Folder/File” button

19.6. Imaging your Classmate (Veteran Image Download) 617

FIRST Robotics Competition

Copy Files Dialog

Choose “No” and select your .7z image

Prepare Drive

All configuration settings are now complete. Select “Prepare Drive” to begin the process

618 Chapter 19. Driver Station

FIRST Robotics Competition

Confirmation Dialog 1

Click “OK” to execute the command on the selected USB Flash drive. A Command Prompt
will open showing the progress

Confirmation Dialog 2

Click “OK” to format the USB drive

Danger: ALL DATA ON THE DRIVE WILL BE ERASED!

Decryption

Note: If you are using an encrypted version of the image downloaded before kickoff you will
be prompted to enter the decryption key found at the end of the Kickoff video.

19.6. Imaging your Classmate (Veteran Image Download) 619

FIRST Robotics Competition

Copy Complete

Once formatting is complete, the restoration files will be extracted and copied to the USB
drive. This process should take ~15 minutes when connected to a USB 2.0 port. When all
files have been copied, this message will appear, press OK to continue.

620 Chapter 19. Driver Station

FIRST Robotics Competition

Eject Drive

Press the “Eject Drive” button to safely remove the USB drive. The USB drive is now ready
to be used to restore the image onto the PC.

19.6. Imaging your Classmate (Veteran Image Download) 621

FIRST Robotics Competition

19.6.5 Hardware Setup

1. Make sure the computer is turned off, but plugged in.
2. Insert the USB Thumb Drive into a USB port on the Driver Station computer.

622 Chapter 19. Driver Station

FIRST Robotics Competition

Boot to USB

19.6. Imaging your Classmate (Veteran Image Download) 623

FIRST Robotics Competition

Classmate:
1. Power on the Classmate and tap the F11 key on the keyboard. Tapping the F11 key

during boot will bring up the boot menu.
2. Use the up/down keys to select the USB HDD: entry on the menu, then press the right

arrow to expand the listing
3. Use the up/down arrow keys on the keyboard to select the USB device (it will be called

“Generic Flash Disk”). Press the ENTER key when the USB device is highlighted.
Acer ES1:

1. Power on the computer and tap the F12 key on the keyboard. Tapping the F12 key during
boot will bring up the boot menu.

2. Use the up/down keys to select the USB HDD: Generic entry on the menu, then press
the ENTER key when the USB device is highlighted.

Acer ES1: If pressing F12 does not pull up the boot menu or if the USB device is not
listed in the boot menu, see “Checking BIOS Settings” at the bottom of this article.

624 Chapter 19. Driver Station

FIRST Robotics Competition

Image the Classmate

1. To confirm that you want to reimage the Classmate, type “1” and press ENTER.
2. Then, type “Y” and press ENTER. The Classmate will begin re-imaging. The installation

will take 15-30 minutes.
3. When the installation is complete, remove the USB drive.
4. Restart the Classmate. The Classmate will boot into Windows.

19.6. Imaging your Classmate (Veteran Image Download) 625

FIRST Robotics Competition

19.6.6 Initial Driver Station Boot

The first time the Classmate is turned on, there are some unique steps, listed below, that
you’ll need to take. The initial boot may take several minutes; make sure you do not cycle
power during the process.

Note: These steps are only required during original startup.

Enter Setup

1. Log into the Developer account.
2. Click “Ask me later”.
3. Click “OK”. The computer now enters a Set Up that may take a few minutes.

Activate Windows

1. Establish an Internet connection.
2. Once you have an Internet connection, click the Start menu, right click “Computer” and

click “Properties”.
3. Scroll to the bottom section, “Windows activation”, and Click “Activate Windows now”
4. Click “Activate Windows online now”. The activation may take a few minutes.
5. When the activation is complete, close all of the windows.

Microsoft Security Essentials

Navigate through the Microsoft Security Essentials Setup Wizard. Once it is complete, close
all of the windows.

626 Chapter 19. Driver Station

FIRST Robotics Competition

Acer ES1: Fix Wireless Driver

Acer ES1 PC only!
The default wireless driver in the image may have issues with intermittent communication
with the robot radio. The correct driver is in the image, but could not be set to load by
default. To load the correct driver, open the Device Manager by clicking start, typing “Device
Manager” in the box and clicking Device Manager.

19.6. Imaging your Classmate (Veteran Image Download) 627

FIRST Robotics Competition

Open Wireless Device Properties

Click on the arrow next to Network Adapters to expand it and locate the Wireless Network
Adapter. Right click the adapter and select Properties.

628 Chapter 19. Driver Station

FIRST Robotics Competition

Uninstall-Driver

Click on the Driver tab, then click the Uninstall button. Click Yes at any prompts.

Scan for New Hardware

Right click on the top entry of the tree and click “Scan for hardware changes”. The wireless
adapter should automatically be re-detected and the correct driver should be installed.

19.6. Imaging your Classmate (Veteran Image Download) 629

FIRST Robotics Competition

19.6.7 Update Software

In order for the Classmate images to be prepared on time, they are created before the final
versions of the software were ready. To use the software for FRC some additional components
will need to be installed. LabVIEW teams should continue with Installing the FRC Game Tools
(All Languages). C++ or Java teams should continue Installing C++ and Java Development
Tools for FRC.

19.6.8 Errors during Imaging Process

If an error is detected during the imaging process, the following screen will appear. Note
that the screenshot below shows the error screen for the Driver Station-only image for the
E09. The specific image filename shown will vary depending on the image being applied.
The typical reason for the appearance of this message is due to an error with the USB device
on which the image is stored. Each option is listed below with further details as to the actions
you can take in pursuing a solution. Pressing any key once this error message is shown will
return the user to the menu screen shown in Image the Classmate.

Option 1

Using same image on the existing USB Flash drive
To try this option, press any key to return to the main menu and select #1. This will run
the imaging process again.

630 Chapter 19. Driver Station

FIRST Robotics Competition

Option 2

Reload the same image onto the USB Flash drive using RMPrepUSB
It’s possible the error message was displayed due to an error caused during the creation
of the USB Flash drive (e.g. file copy error, data corruption, etc.) Press any key to return
to the main menu and select #4 to safely shutdown the Classmate then follow the steps
starting with RMPrep to create a new USB Restoration Key using the same USB Flash
drive.

Option 3

Reload the same image onto a new USB Flash drive using RMPrepUSB
The error message displayed may also be caused by an error with the USB Flash drive
itself. Press any key to return to the main menu and select #4 to safely shutdown the
Classmate. Select a new USB Flash drive and follow the steps starting with RMPrep.

Option 4

Download a new image
An issue with the downloaded image may also cause an error when imaging. Press any
key to return to the main menu and select #4 to safely shutdown the Classmate. Staring
with Download the Classmate Image create a new copy of the imaging stick.

19.6. Imaging your Classmate (Veteran Image Download) 631

FIRST Robotics Competition

Checking BIOS Settings

If you are having difficulty booting to USB, check the BIOS settings to insure they are correct.
To do this:

• Repeatedly tap the F2 key while the computer is booting to enter the BIOS settings
• Once the BIOS settings screen has loaded, use the right and left arrow keys to select the

“Main” tab, then check if the line for “F12 Boot Menu” is set to “Enabled”. If it is not,
use the Up/Down keys to highlight it, press Enter, use Up/Down to select “Enabled” and

632 Chapter 19. Driver Station

FIRST Robotics Competition

press Enter again.
• Next, use the Left/Right keys to select the “Boot” tab. Make sure that the “Boot Mode”

is set to “Legacy”. If it is not, highlight it using UpDown, press Enter, highlight “Legacy”
and press Enter again. Press Enter to move through any pop-up dialogs you may see.

• Press F10 to save any changes and exit.

19.7 Manually Setting the Driver Station to Start Custom
Dashboard

Note: If WPILib is not installed to the default location (such as when files are copied to
a PC manually), the dashboard of choice may not launch properly. To have the DS start a
custom dashboard when it starts up, you have to manually modify the settings for the default
dashboard.

Warning: This is not needed for most installations, try using the appropriate Dashboard
Type setting for your language first.

19.7.1 Set Driver Station to Default

Open the Driver Station software, click on the Setup tab and set the Dashboard setting to
Default. Then close the Driver Station!

19.7. Manually Setting the Driver Station to Start Custom Dashboard 633

FIRST Robotics Competition

19.7.2 Open DS Data Storage file

Browse to C:\Users\Public\Documents\FRC and double click on FRC DS Data Storage to
open it.

19.7.3 DashboardCmdLine

Locate the line beginning with DashboardCmdLine. Modify it to point to the dashboard to
launch when the driver station starts

634 Chapter 19. Driver Station

FIRST Robotics Competition

LabVIEW Custom Dashboard

Replace the string after = with "C:\\PATH\\TO\\DASHBOARD.exe" where the path specified is
the path to the dashboard exe file. Save the FRC DS Data Storage file.

Java Dashboard

Replace the string after = with java -jar "C:\\PATH\\TO\\DASHBOARD.jar" where the path
specified is the path to the dashboard jar file. Save the FRC DS Data Storage file.

Tip: Shuffleboard and Smartdashboard require Java 11.

Dashboard from WPILib installer

Replace the string after = with wscript "C:\\Users\\Public\\wpilib\\YYYY\\tools\\
DASHBOARD.vbs" where YYYY is the year and DASHBOARD.vbs is either Shuffleboard.vbs or
Smartdashboard.vbs. Save the FRC DS Data Storage file.

19.7.4 Launch Driver Station

The Driver Station should now launch the dashboard each time it is opened.

19.7. Manually Setting the Driver Station to Start Custom Dashboard 635

FIRST Robotics Competition

636 Chapter 19. Driver Station

20
RobotBuilder

20.1 RobotBuilder - Introduction

20.1.1 RobotBuilder Overview

RobotBuilder is an application designed to aid the robot development process. RobotBuilder
can help you:

• Generating boilerplate code.
• Organize your robot and figure out what its key subsystems are.
• Check that you have enough channels for all of your sensors and actuators.
• Generate wiring diagrams.
• Easily modify your operator interface.
• More…

Creating a program with RobotBuilder is a very straight forward procedure by following a
few steps that are the same for any robot. This lesson describes the steps that you can follow.
You can find more details about each of these steps in subsequent sections of the document.

Note: RobotBuilder generates code using the new Command Framework. For more details
on the new framework see Command Based Programming.

637

FIRST Robotics Competition

Divide the Robot into Subsystems

Your robot is naturally made up of a number of smaller systems like the drive trains, arms,
shooters, collectors, manipulators, wrist joints, etc. You should look at the design of your
robot and break it up into smaller, separately operated subsystems. In this particular example
there is an elevator, a minibot alignment device, a gripper, and a camera system. In addition
one might include the drive base. Each of these parts of the robot are separately controlled
and make good candidates for subsystems.
For more information see Creating a Subsystem.

638 Chapter 20. RobotBuilder

FIRST Robotics Competition

Adding each Subsystem to the Project

Each subsystem will be added to the “Subsystems” folder in the RobotBuilder and given a
meaningful name. For each of the subsystems there are several attributes that get filled in to
specify more information about the subsystems. In addition there are two types of subsystems
that you might want to create:

1. PIDSubsystems - often it is desirable to control a subsystems operation with a PID con-
troller. This is code in your program that makes the subsystem element, for example
arm angle, more quickly to a desired position then stop when reaching it. PIDSubsys-
tems have the PID Controller code built-in and are often more convenient then adding
it yourself. PIDSubsystems have a sensor that determines when the device has reached
the target position and an actuator (motor controller) that is driven to the setpoint.

2. Regular subsystem - these subsystems don’t have an integrated PID controller and are
used for subsystems without PID control for feedback or for subsystems requiring more
complex control than can be handled with the default embedded PID controller.

As you look through more of this documentation the differences between the subsystem types
will become more apparent.
For more information see Creating a Subsystem and Writing Code for a Subsystem.

20.1. RobotBuilder - Introduction 639

FIRST Robotics Competition

Adding Components to each of the Subsystems

Each subsystem consists of a number of actuators, sensors and controllers that it uses to
perform its operations. These sensors and actuators are added to the subsystem with which
they are associated. Each of the sensors and actuators comes from the RobotBuilder palette
and is dragged to the appropriate subsystem. For each, there are usually other properties
that must be set such as port numbers and other parameters specific to the component.
In this example there is an Elevator subsystem that uses a motor and a potentiometer (motor
and pot) that have been dragged to the Elevator subsystem.

Adding Commands That Describe Subsystem Goals

Commands are distinct goals that the robot will perform. These commands are added by
dragging the command under the “Commands” folder. When creating a command, there are
7 choices (shown on the palette on the left of the picture):

• Normal commands - these are the most flexible command, you have to write all of the
code to perform the desired actions necessary to accomplish the goal.

• Timed commands - these commands are a simplified version of a command that ends
after a timeout

• Instant commands - these commands are a simplified version of a command that runs
for one iteration and then ends

• Command groups - these commands are a combination of other commands running both
in a sequential order and in parallel. Use these to build up more complicated actions
after you have a number of basic commands implemented.

• Setpoint commands - setpoint commands move a PID Subsystem to a fixed setpoint, or
the desired location.

• PID commands - these commands have a built-in PID controller to be used with a regular
subsystem.

640 Chapter 20. RobotBuilder

FIRST Robotics Competition

• Conditional commands - these commands select one of two commands to run at the time
of initialization.

For more information see Creating a Command and Writing Command Code.

Testing each Command

Each command can be run from Shuffleboard or SmartDashboard. This is useful for testing
commands before you add them to the operator interface or to a command group. As long as

20.1. RobotBuilder - Introduction 641

FIRST Robotics Competition

you leave the “Button on SmartDashboard” property checked, a button will be created on the
SmartDashboard. When you press the button, the command will run and you can check that
it performs the desired action.
By creating buttons, each command can be tested individually. If all the commands work
individually, you can be pretty sure that the robot will work as a whole.
For more information see Testing with Smartdashboard.

Adding Operator Interface Components

The operator interface consists of joysticks, gamepads and other HID input devices. You can
add operator interface components (joysticks, joystick buttons) to your program in Robot-
Builder. It will automatically generate code that will initialize all of the components and
allow them to be connected to commands.
The operator interface components are dragged from the palette to the “Operator Interface”
folder in the RobotBuilder program. First (1) add Joysticks to the program then put buttons
under the associated joysticks (2) and give them meaningful names, like ShootButton.

642 Chapter 20. RobotBuilder

FIRST Robotics Competition

Connecting the Commands to the Operator Interface

Commands can be associated with buttons so that when a button is pressed the command is
scheduled. This should, for the most part, handle most of the tele-operated part of your robot
program.
This is simply done by (1) adding the command to the JoystickButton object in the Robot-
Builder program, then (2) setting the condition in which the command is scheduled.
For more information see Connecting the Operator Interface to a Command.

20.1. RobotBuilder - Introduction 643

FIRST Robotics Competition

Developing Autonomous Commands

Commands make it simple to develop autonomous programs. You simply specify which com-
mand should run when the robot enters the autonomous period and it will automatically be
scheduled. If you have tested commands as discussed above, this should simply be a matter
of choosing which command should run.
Select the robot at the root of the RobotBuilder project (1), then edit the Autonomous Com-
mand property (2) to choose the command to run. It’s that simple!
For more information see Setting the Autonomous Commands.

644 Chapter 20. RobotBuilder

FIRST Robotics Competition

Generating Code

At any point in the process outlined above you can have RobotBuilder generate a C++ or
Java program that will represent the project you have created. This is done by specifying
the location of the project in the project properties (1), then clicking the appropriate toolbar
button to generate the code (2).
For more information see Generating RobotBuilder Code.

20.1.2 Starting RobotBuilder

Note: RobotBuilder is a Java program and as such should be able to run on any platform that
is supported by Java. We have been running RobotBuilder on macOS, Windows, and various
versions of Linux successfully.

Getting RobotBuilder

RobotBuilder is downloaded as part of the WPILib Offline Installer. For more information, see
the Windows/macOS/Linux installation guides

20.1. RobotBuilder - Introduction 645

FIRST Robotics Competition

Option 1 - Starting from Visual Studio Code

Press Ctrl+Shift+P and type “WPILib” or click the WPILib logo in the top right to launch the
WPILib Command Palette. Select Start Tool, then select Robot Builder.

Option 2 - Shortcuts

Shortcuts are installed to the Windows Start Menu and the 2023 WPILib Tools folder on the
desktop.

Option 3 - Running from the Script

The install process installs the tools to ~/wpilib/YYYY/tools (where YYYY is the year and ~
is C:\Users\Public on Windows).
Inside this folder you will find .vbs (Windows) and .py (macOS/Linux) files that you can use
to launch each tool. These scripts help launch the tools using the correct JDK and are what
you should use to launch the tools.

646 Chapter 20. RobotBuilder

FIRST Robotics Competition

20.1.3 RobotBuilder User Interface

RobotBuilder has a user interface designed for rapid development of robot programs. Almost
all operations are performed by drag-and-drop or selecting options from drop-down lists.

Dragging Items from the Palette to the Robot Description

You can drag items from the palette to the robot description by starting the drag on the palette
item and ending on the container where you would like the item to be located. In this example,

20.1. RobotBuilder - Introduction 647

FIRST Robotics Competition

dropping a potentiometer to the Elevator subsystem.

Adding Components using the Right-Click Context Menu

A shortcut method of adding items to the robot description is to right-click on the container
object (Elevator) and select the item that should be added (Potentiometer). This is identical
to using drag and drop but might be easier for some people.

648 Chapter 20. RobotBuilder

FIRST Robotics Competition

Editing Properties of Robot Description Items

The properties for a selected item will appear in the properties viewer. The properties can
be edited by selecting the value in the right hand column.

Using the Menu System

Operations for RobotBuilder can either be selected through the menu system or the equivalent
item (if it is available) from the toolbar.

20.1. RobotBuilder - Introduction 649

FIRST Robotics Competition

20.1.4 Setting up the Robot Project

The RobotBuilder program has some default properties that need to be set up so the generated
program and other generated files work properly. This setup information is stored in the
properties for robot description (the first line).

Robot Project Properties

The properties that describe the robot are:
• Name - The name of the robot project that is created
• Autonomous Command - the command that will run by default when the program is

placed in autonomous mode
• Autonomous Command Parameters - Parameters for the Autonomous Command
• Team Number - The team number for the project, which will be used to locate the robot

when deploying code.
• Use Default Java Package - If checked RobotBuilder will use the default package

(frc.robot). Otherwise you can specify a custom package name to be used.
• Java Package - The name of the generated Java package used when generating the

project code
• Export Directory - The folder that the project is generated into when Export to Java or

C++ is selected
• Export Subsystems - Checked if RobotBuilder should export the Subsystem classes

from your project
• Export Commands - Checked if RobotBuilder should export the Command classes from

your project
• Wiring File location - the location of the html file to generate that contains the wiring

diagram for your robot
• Desktop Support - Enables unit test and simulation. While WPILib supports this, third

party software libraries may not. If libraries do not support desktop, then your code may
not compile or may crash. It should be left unchecked unless unit testing or simulation
is needed and all libraries support it.

650 Chapter 20. RobotBuilder

FIRST Robotics Competition

Using Source Control with the RobotBuilder Project

When using source control the project will typically be used on a number of computers and
the path to the project directory might be different from one users computer to another. If
the RobotBuilder project file is stored using an absolute path, it will typically contain the user
name and won’t be usable across multiple computers. To make this work, select “relative
path” and specify the path as an directory offset from the project files. In the above example,
the project file is stored in the folder just above the project files in the file hierarchy. In this
case, the user name is not part of the path and it will be portable across all of your computers.

20.1.5 Creating a Subsystem

Subsystems are classes that encapsulate (or contain) all the data and code that make a subsys-
tem on your robot operate. The first step in creating a robot program with the RobotBuilder is
to identify and create all the subsystems on the robot. Examples of subsystems are grippers,
ball collectors, the drive base, elevators, arms, etc. Each subsystem contains all the sensors
and actuators that are used to make it work. For example, an elevator might have a Victor
SPX motor controller and a potentiometer to provide feedback of the robot position.

20.1. RobotBuilder - Introduction 651

FIRST Robotics Competition

Creating a Subsystem using the Palette

Drag the subsystem icon from the palette to the Subsystems folder in the robot description
to create a subsystem class.

Creating a Subsystem using the Context Menu

Right-click on the Subsystem folder in the robot description to add a subsystem to that folder.

652 Chapter 20. RobotBuilder

FIRST Robotics Competition

Name the Subsystem

After creating the subsystem by either dragging or using the context menu as described
above, simply type the name you would like to give the subsystem. The name can be mul-
tiple words separated by spaces, RobotBuilder will concatenate the words to make a proper
Java or C++ class name for you.

Adding Constants

Constants are very useful to reduce the amount of magic numbers in your code. In subsys-

20.1. RobotBuilder - Introduction 653

FIRST Robotics Competition

tems, they can be used to keep track of certain values, such as sensor values for specific
heights of an elevator, or the speed at which to drive the robot.
By default, there will be no constants in a subsystem. Press the button next to “Constants”
to open a dialog to create some.

Creating Constants

The constants table will be empty at first. Press “Add constant” to add one.

654 Chapter 20. RobotBuilder

FIRST Robotics Competition

Add Constants

1. The name of the constant. Change this to something descriptive. In this example of a
drivetrain some good constants might be “PlaceDistance” and “BackAwayDistance”.

2. The type of the constant. This will most likely be a double, but you can choose from one
of: String, double, int, long, boolean, or byte.

3. The value of the constant.

20.1. RobotBuilder - Introduction 655

FIRST Robotics Competition

Saving Constants

After adding constants and setting their values, just press “Save and close” to save the con-
stants and close the dialog. If you don’t want to save, press the exit button on the top of the
window.

After Saving

After saving constants, the names will appear in the “Constants” button in the subsystem
properties.

656 Chapter 20. RobotBuilder

FIRST Robotics Competition

Dragging Actuators/Sensors into the Subsystem

There are three steps to adding components to a subsystem:
1. Drag actuators or sensors from the palette into the subsystem as required.
2. Give the actuator or sensor a meaningful name
3. Edit the properties such as module numbers and channel numbers for each item in the

subsystem.
RobotBuilder will automatically use incrementing channel numbers for each module on the
robot. If you haven’t yet wired the robot you can just let RobotBuilder assign unique channel
numbers for each sensor or actuator and wire the robot according to the generating wiring
table.
This just creates the subsystem in RobotBuilder, and will subsequently generate skeleton code
for the subsystem. To make it actually operate your robot please refer to Writing Code for a
Subsystem.

20.1.6 Creating a Command

Commands are classes you create that provide behaviors or actions for your subsystems. The
subsystem class should set the operation of the subsystem, like MoveElevator to start the
elevator moving, or ElevatorToSetPoint to set the elevator’s PID setpoint. The commands
initiate the subsystem operation and keep track of when it is finished.

20.1. RobotBuilder - Introduction 657

FIRST Robotics Competition

Drag the Command to the Commands Folder

Simple commands can be dragged from the palette to the robot description. The command
will be created under the Commands folder.

Creating Commands using the Context Menu

You can also create commands using the right-click context menu on the Command folder in
the robot description.

658 Chapter 20. RobotBuilder

FIRST Robotics Competition

Configuring the Command

1. Name the command with something meaningful that describes what the command will
do. Commands should be named as if they were in code, although there can be spaces
between words.

2. Set the subsystem that is required by this command. When this command is scheduled, it
will automatically stop any command currently running that also requires this command.
If a command to open the claw is currently running (requiring the claw subsystem) and
the close claw command is scheduled, it will immediately stop opening and start closing.

3. Tell RobotBuilder if it should create buttons on the SmartDashboard for the command.
A button will be created for each parameter preset.

4. Set the parameters this command takes. A single command with parameters can do the
same thing as two or more commands that do not take parameters. For example, “Drive
Forward”, “Drive Backward”, and “Drive Distance” commands can be consolidated into
a single command that takes values for direction and distance.

5. Set presets for parameters. These can be used elsewhere in RobotBuilder when using
the command, such as binding it to a joystick button or setting the default command for
a subsystem.

6. Run When Disabled. Allows the command to run when the robot is disabled. However,
any actuators commanded while disabled will not actuate.

7. Autonomous Selection. Whether the command should be added to the Sendable Chooser
so that it can be selected for autonomous.

Setpoint commands come with a single parameter (‘setpoint’, of type double); parameters
cannot be added, edited, or deleted for setpoint commands.

20.1. RobotBuilder - Introduction 659

FIRST Robotics Competition

Adding and Editing Parameters

To add or edit parameters:
1. Click the button in the Value column of the property table
2. Press the Add Parameter button to add a parameter
3. A parameter that has just been added. The name defaults to [change me] and the type

defaults to String. The default name is invalid, so you will have to change it before
exporting. Double click the Name cell to start changing the name. Double click the
Type cell to select the type.

4. Save and close button will save all changes and close the window.
Rows can be reordered simply by dragging, and can be deleted by selecting them and pressing
delete or backspace.

660 Chapter 20. RobotBuilder

FIRST Robotics Competition

Adding and Editing Parameter Presets

1. Click Add parameter set to add a new preset.
2. Change the name of the preset to something descriptive. The presets in this example

are for opening and closing the gripper subsystem.
3. Change the value of the parameter(s) for the preset. You can either type a value in (e.g.

“3.14”) or select from constants defined in the subsystem that the command requires.
Note that the type of the constant has to be the same type as the parameter – you can’t
have an int-type constant be passed to a double-type parameter, for example

4. Click Save and close to save changes and exit the dialog; to exit without saving, press
the exit button in the top bar of the window.

20.1.7 Setting the Autonomous Commands

Since a command is simply one or more actions (behaviors) that the robot performs, it makes
sense to describe the autonomous operation of a robot as a command. While it could be a
single command, it is more likely going to be a command group (a group of commands that
happen together).
RobotBuilder generates code for a Sendable Chooser which allows the autonomous command
to run to be chosen from the dashboard.

20.1. RobotBuilder - Introduction 661

FIRST Robotics Competition

To designate the default autonomous command that runs if another command is not selected
on the dashboard:

• Select the robot in the robot program description
• Fill in the Autonomous command field with the command that should run when the robot

is placed in autonomous mode. This is a drop-down field and will give you the option to
select any command that has been defined.

• Set the parameters the command takes, if any.

To select commands to add as options to the Sendable Chooser, select the Autonomous Se-
lection check box.
When the robot is put into autonomous mode, the chosen Autonomous command will be sched-

662 Chapter 20. RobotBuilder

FIRST Robotics Competition

uled.

20.1.8 Using Shuffleboard to Test a Command

Commands are easily tested by adding a button to Shuffleboard/SmartDashboard to trigger
the command. In this way, no integration with the rest of the robot program is necessary and
commands can easily be independently tested. This is the easiest way to verify commands
since with a single line of code in your program, a button can be created on Shuffleboard
that will run the command. These buttons can then be left in place to verify subsystems and
command operations in the future.
This has the added benefit of accommodating multiple programmers, each writing commands.
As the code is checked into the main robot project, the commands can be individually tested.

Creating the Button on Shuffleboard

The button is created on the SmartDashboard by putting an instance of the command from the
robot program to the dashboard. This is such a common operation that it has been added to
RobotBuilder as a checkbox. When writing your commands, be sure that the box is checked,
and buttons will be automatically generated for you.

20.1. RobotBuilder - Introduction 663

FIRST Robotics Competition

Operating the Buttons

The buttons will be generated automatically and will appear on the dashboard screen. You
can rearrange the buttons on Shuffleboard. In this example there are a number of com-
mands, each with an associated button for testing. Pressing the commands button will run
the command. Once it is pressed, pressing again it will interrupt the command causing the
Interrupted() method to be called.

664 Chapter 20. RobotBuilder

FIRST Robotics Competition

Adding Commands Manually

Java

SmartDashboard.putData("Autonomous Command", new AutonomousCommand());
SmartDashboard.putData("Open Claw", new OpenClaw(m_claw);
SmartDashboard.putData("Close Claw", new CloseClaw(m_claw));

C++

SmartDashboard::PutData("Autonomous Command", new AutonomousCommand());
SmartDashboard::PutData("Open Claw", new OpenClaw(&m_claw));
SmartDashboard::PutData("Close Claw", new CloseClaw(&m_claw));

Commands can be added to the Shuffleboard manually by writing the code yourself. This is
done by passing instances of the command to the PutData method along with the name that
should be associated with the button on the Shuffleboard. These instances are scheduled
whenever the button is pressed. The result is exactly the same as RobotBuilder generated
code, although clicking the checkbox in RobotBuilder is much easier than writing all the code
by hand.

20.1.9 Connecting the Operator Interface to a Command

Commands handle the behaviors for your robot. The command starts a subsystem to some
operating mode like raising and elevator and continues running until it reaches some set-
point or timeout. The command then handles waiting for the subsystem to finish. That way
commands can run in sequence to develop more complex behaviors.
RobotBuilder will also generate code to schedule a command to run whenever a button on your
operator interface is pressed. You can also write code to run a command when a particular
trigger condition has happened.

20.1. RobotBuilder - Introduction 665

FIRST Robotics Competition

Run a Command with a Button Press

In this example we want to schedule the “Close Claw” command to run whenever the dpad
right direction button is pressed on a logitech gamepad (button 6) is pressed.

1. The command to run is called “Close Claw” and its function is to close the claw of the
robot

2. Notice that the command requires the Claw subsystem. This will ensure that this com-
mand starts running even if there was another operation happening at the same time
that used the claw. In this case the previous command would be interrupted.

3. Parameters make it possible for one command to do multiple things; presets let you
define values you pass to the command and reuse them

666 Chapter 20. RobotBuilder

FIRST Robotics Competition

Adding the Joystick to the Robot Program

Add the joystick to the robot program
1. Drag the joystick to the Operator Interface folder in the robot program
2. Name the joystick so that it reflects the use of the joystick and set the USB port number

20.1. RobotBuilder - Introduction 667

FIRST Robotics Competition

Linking a Button to the “Move Elevator” Command

Add the button that should be pressed to the program
1. Drag the joystick button to the Joystick (Logitech Controller) so that it’s under the joy-

stick
2. Set the properties for the button: the button number, the command to run when the

button is pressed, parameters the command takes, and the When to run property to
onTrue to indicate that the command should run whenever the joystick button is pressed.

Note: Joystick buttons must be dragged to (under) a Joystick. You must have a joystick in
the Operator Interface folder before adding buttons.

668 Chapter 20. RobotBuilder

FIRST Robotics Competition

20.1.10 RobotBuilder Created Code

The Layout of a RobotBuilder Generated Project

20.1. RobotBuilder - Introduction 669

FIRST Robotics Competition

A RobotBuilder generated project consists of a package (in Java) or a folder (in C++) for
Commands and another for Subsystems. Each command or subsystem object is stored under
those containers. At the top level of the project you’ll find the robot main program (Robot-
Container.java/C++).
For more information on the organization of a Command Based robot, see Structuring a
Command-Based Robot Project

Autogenerated Code

Java

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
m_chooser.setDefaultOption("Autonomous", new Autonomous());
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS

SmartDashboard.putData("Auto Mode", m_chooser);

C++

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
m_chooser.SetDefaultOption("Autonomous", new Autonomous());

(continues on next page)

670 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS

frc::SmartDashboard::PutData("Auto Mode", &m_chooser);

When the robot description is modified and code is re-exported RobotBuilder is designed to
not modify any changes you made to the file, thus preserving your code. This makes Robot-
Builder a full-lifecycle tool. To know what code is OK to be modified by RobotBuilder, it
generates sections that will potentially have to be rewritten delimited with some special com-
ments. These comments are shown in the example above. Don’t add any code within these
comment blocks, it will be rewritten next time the project is exported from RobotBuilder.
If code inside one of these blocks must be modified, the comments can be removed, but this
will prevent further updates from happening later. In the above example, if the //BEGIN
and //END comments were removed, then later another required subsystem was added in
RobotBuilder, it would not be generated on that next export.
Java

// ROBOTBUILDER TYPE: Robot.

C++

// ROBOTBUILDER TYPE: Robot.

Additionally, each file has a comment defining the type of file. If this is modified or deleted,
RobotBuilder will completely regenerate the file deleting any code added both inside and
outside the AUTOGENERATED CODE blocks.

Main Robot Program

Java

11 // ROBOTBUILDER TYPE: Robot.
12

13 package frc.robot;
14

15 import edu.wpi.first.hal.FRCNetComm.tInstances;
16 import edu.wpi.first.hal.FRCNetComm.tResourceType;
17 import edu.wpi.first.hal.HAL;
18 import edu.wpi.first.wpilibj.TimedRobot;
19 import edu.wpi.first.wpilibj2.command.Command;
20 import edu.wpi.first.wpilibj2.command.CommandScheduler;
21

22 /**
23 * The VM is configured to automatically run this class, and to call the
24 * functions corresponding to each mode, as described in the TimedRobot
25 * documentation. If you change the name of this class or the package after
26 * creating this project, you must also update the build.properties file in
27 * the project.
28 */
29 public class Robot extends TimedRobot { // (1)
30

31 private Command m_autonomousCommand;
32

33 private RobotContainer m_robotContainer;
(continues on next page)

20.1. RobotBuilder - Introduction 671

FIRST Robotics Competition

(continued from previous page)
34

35 /**
36 * This function is run when the robot is first started up and should be
37 * used for any initialization code.
38 */
39 @Override
40 public void robotInit() {
41 // Instantiate our RobotContainer. This will perform all our button bindings,

↪→ and put our
42 // autonomous chooser on the dashboard.
43 m_robotContainer = RobotContainer.getInstance();
44 HAL.report(tResourceType.kResourceType_Framework, tInstances.kFramework_

↪→RobotBuilder);
45 }
46

47 /**
48 * This function is called every robot packet, no matter the mode. Use this for␣

↪→items like
49 * diagnostics that you want ran during disabled, autonomous, teleoperated and␣

↪→test.
50 *
51 * <p>This runs after the mode specific periodic functions, but before
52 * LiveWindow and SmartDashboard integrated updating.
53 */
54 @Override
55 public void robotPeriodic() {
56 // Runs the Scheduler. This is responsible for polling buttons, adding newly-

↪→scheduled
57 // commands, running already-scheduled commands, removing finished or␣

↪→interrupted commands,
58 // and running subsystem periodic() methods. This must be called from the␣

↪→robot's periodic
59 // block in order for anything in the Command-based framework to work.
60 CommandScheduler.getInstance().run(); // (2)
61 }
62

63

64 /**
65 * This function is called once each time the robot enters Disabled mode.
66 */
67 @Override
68 public void disabledInit() {
69 }
70

71 @Override
72 public void disabledPeriodic() {
73 }
74

75 /**
76 * This autonomous runs the autonomous command selected by your {@link␣

↪→RobotContainer} class.
77 */
78 @Override
79 public void autonomousInit() {
80 m_autonomousCommand = m_robotContainer.getAutonomousCommand(); // (3)
81

(continues on next page)

672 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
82 // schedule the autonomous command (example)
83 if (m_autonomousCommand != null) {
84 m_autonomousCommand.schedule();
85 }
86 }
87

88 /**
89 * This function is called periodically during autonomous.
90 */
91 @Override
92 public void autonomousPeriodic() {
93 }
94

95 @Override
96 public void teleopInit() {
97 // This makes sure that the autonomous stops running when
98 // teleop starts running. If you want the autonomous to
99 // continue until interrupted by another command, remove

100 // this line or comment it out.
101 if (m_autonomousCommand != null) {
102 m_autonomousCommand.cancel();
103 }
104 }
105

106 /**
107 * This function is called periodically during operator control.
108 */
109 @Override
110 public void teleopPeriodic() {
111 }
112

113 @Override
114 public void testInit() {
115 // Cancels all running commands at the start of test mode.
116 CommandScheduler.getInstance().cancelAll();
117 }
118

119 /**
120 * This function is called periodically during test mode.
121 */
122 @Override
123 public void testPeriodic() {
124 }
125

126 }

C++ (Header)

11 // ROBOTBUILDER TYPE: Robot.
12 #pragma once
13

14 #include <frc/TimedRobot.h>
15 #include <frc2/command/Command.h>
16

17 #include "RobotContainer.h"
18

(continues on next page)

20.1. RobotBuilder - Introduction 673

FIRST Robotics Competition

(continued from previous page)
19 class Robot : public frc::TimedRobot { // {1}
20 public:
21 void RobotInit() override;
22 void RobotPeriodic() override;
23 void DisabledInit() override;
24 void DisabledPeriodic() override;
25 void AutonomousInit() override;
26 void AutonomousPeriodic() override;
27 void TeleopInit() override;
28 void TeleopPeriodic() override;
29 void TestPeriodic() override;
30

31 private:
32 // Have it null by default so that if testing teleop it
33 // doesn't have undefined behavior and potentially crash.
34 frc2::Command* m_autonomousCommand = nullptr;
35

36 RobotContainer* m_container = RobotContainer::GetInstance();
37 };

C++ (Source)

11 // ROBOTBUILDER TYPE: Robot.
12

13 #include "Robot.h"
14

15 #include <frc/smartdashboard/SmartDashboard.h>
16 #include <frc2/command/CommandScheduler.h>
17

18 void Robot::RobotInit() {}
19

20 /**
21 * This function is called every robot packet, no matter the mode. Use
22 * this for items like diagnostics that you want to run during disabled,
23 * autonomous, teleoperated and test.
24 *
25 * <p> This runs after the mode specific periodic functions, but before
26 * LiveWindow and SmartDashboard integrated updating.
27 */
28 void Robot::RobotPeriodic() { frc2::CommandScheduler::GetInstance().Run(); } // (2)
29

30 /**
31 * This function is called once each time the robot enters Disabled mode. You
32 * can use it to reset any subsystem information you want to clear when the
33 * robot is disabled.
34 */
35 void Robot::DisabledInit() {}
36

37 void Robot::DisabledPeriodic() {}
38

39 /**
40 * This autonomous runs the autonomous command selected by your {@link
41 * RobotContainer} class.
42 */
43 void Robot::AutonomousInit() {
44 m_autonomousCommand = m_container->GetAutonomousCommand(); // {3}

(continues on next page)

674 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
45

46 if (m_autonomousCommand != nullptr) {
47 m_autonomousCommand->Schedule();
48 }
49 }
50

51 void Robot::AutonomousPeriodic() {}
52

53 void Robot::TeleopInit() {
54 // This makes sure that the autonomous stops running when
55 // teleop starts running. If you want the autonomous to
56 // continue until interrupted by another command, remove
57 // this line or comment it out.
58 if (m_autonomousCommand != nullptr) {
59 m_autonomousCommand->Cancel();
60 m_autonomousCommand = nullptr;
61 }
62 }
63

64 /**
65 * This function is called periodically during operator control.
66 */
67 void Robot::TeleopPeriodic() {}
68

69 /**
70 * This function is called periodically during test mode.
71 */
72 void Robot::TestPeriodic() {}
73

74 #ifndef RUNNING_FRC_TESTS
75 int main() { return frc::StartRobot<Robot>(); }
76 #endif

This is the main program generated by RobotBuilder. There are a number of parts to this
program (highlighted sections):

1. This class extends TimedRobot. TimedRobot will call your autonomousPeriodic() and
teleopPeriodic() methods every 20ms.

2. In the robotPeriodic method which is called every 20ms, make one scheduling pass.
3. The autonomous command provided is scheduled at the start of autonomous in the

autonomousInit() method and canceled at the end of the autonomous period in
teleopInit().

RobotContainer

Java

11 // ROBOTBUILDER TYPE: RobotContainer.
12

13 package frc.robot;
14

15 import frc.robot.commands.*;
16 import frc.robot.subsystems.*;
17 import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;

(continues on next page)

20.1. RobotBuilder - Introduction 675

FIRST Robotics Competition

(continued from previous page)
18 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
19 import edu.wpi.first.wpilibj2.command.Command.InterruptionBehavior;
20

21 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
22 import edu.wpi.first.wpilibj2.command.Command;
23 import edu.wpi.first.wpilibj2.command.InstantCommand;
24 import edu.wpi.first.wpilibj.Joystick;
25 import edu.wpi.first.wpilibj2.command.button.JoystickButton;
26 import frc.robot.subsystems.*;
27

28 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
29

30

31 /**
32 * This class is where the bulk of the robot should be declared. Since Command-based␣

↪→is a
33 * "declarative" paradigm, very little robot logic should actually be handled in the

↪→{@link Robot}
34 * periodic methods (other than the scheduler calls). Instead, the structure of the␣

↪→robot
35 * (including subsystems, commands, and button mappings) should be declared here.
36 */
37 public class RobotContainer {
38

39 private static RobotContainer m_robotContainer = new RobotContainer();
40

41 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
42 // The robot's subsystems
43 public final Wrist m_wrist = new Wrist(); // (1)
44 public final Elevator m_elevator = new Elevator();
45 public final Claw m_claw = new Claw();
46 public final Drivetrain m_drivetrain = new Drivetrain();
47

48 // Joysticks
49 private final Joystick joystick2 = new Joystick(2); // (3)
50 private final Joystick joystick1 = new Joystick(1);
51 private final Joystick logitechController = new Joystick(0);
52

53 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
54

55

56 // A chooser for autonomous commands
57 SendableChooser<Command> m_chooser = new SendableChooser<>();
58

59 /**
60 * The container for the robot. Contains subsystems, OI devices, and commands.
61 */
62 private RobotContainer() {
63 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SMARTDASHBOARD
64 // Smartdashboard Subsystems
65 SmartDashboard.putData(m_wrist); // (6)
66 SmartDashboard.putData(m_elevator);
67 SmartDashboard.putData(m_claw);
68 SmartDashboard.putData(m_drivetrain);
69

70

(continues on next page)

676 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
71 // SmartDashboard Buttons
72 SmartDashboard.putData("Close Claw", new CloseClaw(m_claw)); // (6)
73 SmartDashboard.putData("Open Claw: OpenTime", new OpenClaw(1.0, m_claw));
74 SmartDashboard.putData("Pickup", new Pickup());
75 SmartDashboard.putData("Place", new Place());
76 SmartDashboard.putData("Prepare To Pickup", new PrepareToPickup());
77 SmartDashboard.putData("Set Elevator Setpoint: Bottom", new SetElevatorSetpoint(0,

↪→ m_elevator));
78 SmartDashboard.putData("Set Elevator Setpoint: Platform", new␣

↪→SetElevatorSetpoint(0.2, m_elevator));
79 SmartDashboard.putData("Set Elevator Setpoint: Top", new SetElevatorSetpoint(0.3,␣

↪→m_elevator));
80 SmartDashboard.putData("Set Wrist Setpoint: Horizontal", new SetWristSetpoint(0,␣

↪→m_wrist));
81 SmartDashboard.putData("Set Wrist Setpoint: Raise Wrist", new SetWristSetpoint(-

↪→45, m_wrist));
82 SmartDashboard.putData("Drive: Straight3Meters", new Drive(3, 0, m_drivetrain));
83 SmartDashboard.putData("Drive: Place", new Drive(Drivetrain.PlaceDistance,␣

↪→Drivetrain.BackAwayDistance, m_drivetrain));
84

85 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SMARTDASHBOARD
86 // Configure the button bindings
87 configureButtonBindings();
88

89 // Configure default commands
90 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SUBSYSTEM_DEFAULT_COMMAND
91 m_drivetrain.setDefaultCommand(new TankDrive(() -> getJoystick1().getY(), () ->␣

↪→getJoystick2().getY(), m_drivetrain)); // (5)
92

93

94 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SUBSYSTEM_DEFAULT_COMMAND
95

96 // Configure autonomous sendable chooser
97 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
98

99 m_chooser.addOption("Set Elevator Setpoint: Bottom", new SetElevatorSetpoint(0, m_
↪→elevator));

100 m_chooser.addOption("Set Elevator Setpoint: Platform", new SetElevatorSetpoint(0.
↪→2, m_elevator));

101 m_chooser.addOption("Set Elevator Setpoint: Top", new SetElevatorSetpoint(0.3, m_
↪→elevator));

102 m_chooser.setDefaultOption("Autonomous", new Autonomous()); // (2)
103

104 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
105

106 SmartDashboard.putData("Auto Mode", m_chooser);
107 }
108

109 public static RobotContainer getInstance() {
110 return m_robotContainer;
111 }
112

113 /**
114 * Use this method to define your button->command mappings. Buttons can be created␣

↪→by
115 * instantiating a {@link GenericHID} or one of its subclasses ({@link

(continues on next page)

20.1. RobotBuilder - Introduction 677

FIRST Robotics Competition

(continued from previous page)
116 * edu.wpi.first.wpilibj.Joystick} or {@link XboxController}), and then passing it␣

↪→to a
117 * {@link edu.wpi.first.wpilibj2.command.button.JoystickButton}.
118 */
119 private void configureButtonBindings() {
120 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=BUTTONS
121 // Create some buttons
122 final JoystickButton r1 = new JoystickButton(logitechController, 12); // (4)
123 r1.onTrue(new Autonomous().withInterruptBehavior(InterruptionBehavior.kCancelSelf));
124

125 final JoystickButton l1 = new JoystickButton(logitechController, 11);
126 l1.onTrue(new Place().withInterruptBehavior(InterruptionBehavior.kCancelSelf));
127

128 final JoystickButton r2 = new JoystickButton(logitechController, 10);
129 r2.onTrue(new Pickup().withInterruptBehavior(InterruptionBehavior.kCancelSelf));
130

131 final JoystickButton l2 = new JoystickButton(logitechController, 9);
132 l2.onTrue(new PrepareToPickup().withInterruptBehavior(InterruptionBehavior.

↪→kCancelSelf));
133

134 final JoystickButton dpadLeft = new JoystickButton(logitechController, 8);
135 dpadLeft.onTrue(new OpenClaw(1.0, m_claw).withInterruptBehavior(InterruptionBehavior.

↪→kCancelSelf));
136

137 final JoystickButton dpadRight = new JoystickButton(logitechController, 6);
138 dpadRight.onTrue(new CloseClaw(m_claw).withInterruptBehavior(InterruptionBehavior.

↪→kCancelSelf));
139

140 final JoystickButton dpadDown = new JoystickButton(logitechController, 7);
141 dpadDown.onTrue(new SetElevatorSetpoint(0, m_elevator).

↪→withInterruptBehavior(InterruptionBehavior.kCancelSelf));
142

143 final JoystickButton dpadUp = new JoystickButton(logitechController, 5);
144 dpadUp.onTrue(new SetElevatorSetpoint(0.3, m_elevator).

↪→withInterruptBehavior(InterruptionBehavior.kCancelSelf));
145

146

147

148 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=BUTTONS
149 }
150

151 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=FUNCTIONS
152 public Joystick getLogitechController() {
153 return logitechController;
154 }
155

156 public Joystick getJoystick1() {
157 return joystick1;
158 }
159

160 public Joystick getJoystick2() {
161 return joystick2;
162 }
163

164

165 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=FUNCTIONS

(continues on next page)

678 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
166

167 /**
168 * Use this to pass the autonomous command to the main {@link Robot} class.
169 *
170 * @return the command to run in autonomous
171 */
172 public Command getAutonomousCommand() {
173 // The selected command will be run in autonomous
174 return m_chooser.getSelected();
175 }
176

177

178 }

C++ (Header)

11 // ROBOTBUILDER TYPE: RobotContainer.
12

13 #pragma once
14

15 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
16 #include <frc/smartdashboard/SendableChooser.h>
17 #include <frc2/command/Command.h>
18

19 #include "subsystems/Claw.h"
20 #include "subsystems/Drivetrain.h"
21 #include "subsystems/Elevator.h"
22 #include "subsystems/Wrist.h"
23

24 #include "commands/Autonomous.h"
25 #include "commands/CloseClaw.h"
26 #include "commands/Drive.h"
27 #include "commands/OpenClaw.h"
28 #include "commands/Pickup.h"
29 #include "commands/Place.h"
30 #include "commands/PrepareToPickup.h"
31 #include "commands/SetElevatorSetpoint.h"
32 #include "commands/SetWristSetpoint.h"
33 #include "commands/TankDrive.h"
34 #include <frc/Joystick.h>
35 #include <frc2/command/button/JoystickButton.h>
36

37 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
38

39 class RobotContainer {
40

41 public:
42

43 frc2::Command* GetAutonomousCommand();
44 static RobotContainer* GetInstance();
45

46 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=PROTOTYPES
47 // The robot's subsystems
48 Drivetrain m_drivetrain; // (1)
49 Claw m_claw;
50 Elevator m_elevator;

(continues on next page)

20.1. RobotBuilder - Introduction 679

FIRST Robotics Competition

(continued from previous page)
51 Wrist m_wrist;
52

53

54 frc::Joystick* getJoystick2();
55 frc::Joystick* getJoystick1();
56 frc::Joystick* getLogitechController();
57

58 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=PROTOTYPES
59

60 private:
61

62 RobotContainer();
63

64 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
65 // Joysticks
66 frc::Joystick m_logitechController{0}; // (3)
67 frc::Joystick m_joystick1{1};
68 frc::Joystick m_joystick2{2};
69

70 frc::SendableChooser<frc2::Command*> m_chooser;
71

72 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
73

74 Autonomous m_autonomousCommand;
75 static RobotContainer* m_robotContainer;
76

77 void ConfigureButtonBindings();
78 };

C++ (Source)

11 // ROBOTBUILDER TYPE: RobotContainer.
12

13 #include "RobotContainer.h"
14 #include <frc2/command/ParallelRaceGroup.h>
15 #include <frc/smartdashboard/SmartDashboard.h>
16

17

18

19 RobotContainer* RobotContainer::m_robotContainer = NULL;
20

21 RobotContainer::RobotContainer() : m_autonomousCommand(
22 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
23){
24

25

26

27 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
28

29 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SMARTDASHBOARD
30 // Smartdashboard Subsystems
31 frc::SmartDashboard::PutData(&m_drivetrain);
32 frc::SmartDashboard::PutData(&m_claw);
33 frc::SmartDashboard::PutData(&m_elevator);
34 frc::SmartDashboard::PutData(&m_wrist);
35

(continues on next page)

680 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
36

37 // SmartDashboard Buttons
38 frc::SmartDashboard::PutData("Drive: Straight3Meters", new Drive(3, 0, &m_

↪→drivetrain)); // (6)
39 frc::SmartDashboard::PutData("Drive: Place", new Drive(Drivetrain::PlaceDistance,␣

↪→Drivetrain::BackAwayDistance, &m_drivetrain));
40 frc::SmartDashboard::PutData("Set Wrist Setpoint: Horizontal", new␣

↪→SetWristSetpoint(0, &m_wrist));
41 frc::SmartDashboard::PutData("Set Wrist Setpoint: Raise Wrist", new␣

↪→SetWristSetpoint(-45, &m_wrist));
42 frc::SmartDashboard::PutData("Set Elevator Setpoint: Bottom", new␣

↪→SetElevatorSetpoint(0, &m_elevator));
43 frc::SmartDashboard::PutData("Set Elevator Setpoint: Platform", new␣

↪→SetElevatorSetpoint(0.2, &m_elevator));
44 frc::SmartDashboard::PutData("Set Elevator Setpoint: Top", new␣

↪→SetElevatorSetpoint(0.3, &m_elevator));
45 frc::SmartDashboard::PutData("Prepare To Pickup", new PrepareToPickup());
46 frc::SmartDashboard::PutData("Place", new Place());
47 frc::SmartDashboard::PutData("Pickup", new Pickup());
48 frc::SmartDashboard::PutData("Open Claw: OpenTime", new OpenClaw(1.0_s, &m_claw));
49 frc::SmartDashboard::PutData("Close Claw", new CloseClaw(&m_claw));
50

51 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SMARTDASHBOARD
52

53 ConfigureButtonBindings();
54

55 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DEFAULT-COMMANDS
56 m_drivetrain.SetDefaultCommand(TankDrive([this] {return getJoystick1()->GetY();},␣

↪→[this] {return getJoystick2()->GetY();}, &m_drivetrain)); // (5)
57

58 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DEFAULT-COMMANDS
59

60 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
61

62 m_chooser.AddOption("Set Elevator Setpoint: Bottom", new SetElevatorSetpoint(0, &
↪→m_elevator));

63 m_chooser.AddOption("Set Elevator Setpoint: Platform", new SetElevatorSetpoint(0.
↪→2, &m_elevator));

64 m_chooser.AddOption("Set Elevator Setpoint: Top", new SetElevatorSetpoint(0.3, &m_
↪→elevator));

65

66 m_chooser.SetDefaultOption("Autonomous", new Autonomous()); // (2)
67

68 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=AUTONOMOUS
69

70 frc::SmartDashboard::PutData("Auto Mode", &m_chooser);
71

72 }
73

74 RobotContainer* RobotContainer::GetInstance() {
75 if (m_robotContainer == NULL) {
76 m_robotContainer = new RobotContainer();
77 }
78 return(m_robotContainer);
79 }
80

(continues on next page)

20.1. RobotBuilder - Introduction 681

FIRST Robotics Competition

(continued from previous page)
81 void RobotContainer::ConfigureButtonBindings() {
82 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=BUTTONS
83

84 frc2::JoystickButton m_dpadUp{&m_logitechController, 5}; // (4)
85 frc2::JoystickButton m_dpadDown{&m_logitechController, 7};
86 frc2::JoystickButton m_dpadRight{&m_logitechController, 6};
87 frc2::JoystickButton m_dpadLeft{&m_logitechController, 8};
88 frc2::JoystickButton m_l2{&m_logitechController, 9};
89 frc2::JoystickButton m_r2{&m_logitechController, 10};
90 frc2::JoystickButton m_l1{&m_logitechController, 11};
91 frc2::JoystickButton m_r1{&m_logitechController, 12};
92

93 m_dpadUp.OnTrue(SetElevatorSetpoint(0.3, &m_elevator).
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

94

95 m_dpadDown.OnTrue(SetElevatorSetpoint(0, &m_elevator).
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

96

97 m_dpadRight.OnTrue(CloseClaw(&m_claw).
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

98

99 m_dpadLeft.OnTrue(OpenClaw(1.0_s, &m_claw).
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

100

101 m_l2.OnTrue(PrepareToPickup().
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

102

103 m_r2.OnTrue(Pickup().
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

104

105 m_l1.OnTrue(Place().
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

106

107 m_r1.OnTrue(Autonomous().
↪→WithInterruptBehavior(frc2::Command::InterruptionBehavior::kCancelSelf));

108

109

110 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=BUTTONS
111 }
112

113 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=FUNCTIONS
114

115 frc::Joystick* RobotContainer::getLogitechController() {
116 return &m_logitechController;
117 }
118 frc::Joystick* RobotContainer::getJoystick1() {
119 return &m_joystick1;
120 }
121 frc::Joystick* RobotContainer::getJoystick2() {
122 return &m_joystick2;
123 }
124

125 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=FUNCTIONS
126

127

128 frc2::Command* RobotContainer::GetAutonomousCommand() {

(continues on next page)

682 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
129 // The selected command will be run in autonomous
130 return m_chooser.GetSelected();
131 }

This is the RobotContainer generated by RobotBuilder which is where the subsystems and
operator interface are defined. There are a number of parts to this program (highlighted
sections):

1. Each of the subsystems is declared here. They can be passed as parameters to any
commands that require them.

2. If there is an autonomous command provided in RobotBuilder robot properties, it is
added to the Sendable Chooser to be selected on the dashboard.

3. The code for all the operator interface components is generated here.
4. In addition the code to link the OI buttons to commands that should run is also generated

here.
5. Commands to be run on a subsystem when no other commands are running are defined

here.
6. Commands to be run via a dashboard are defined here.

20.2 RobotBuilder - Writing the Code

20.2.1 Generating Code for a Project

After you’ve set up your robot framework in RobotBuilder, you’ll need to export the code and
load it into Visual Studio Code. This article describes the process for doing so.

20.2. RobotBuilder - Writing the Code 683

FIRST Robotics Competition

Generate the Code for the Project

Verify that the Export Directory points to where you want (1) and then click Java or C++ (2)
to generate a VS Code project or update code.

Open the Project in Visual Studio Code

Open VS Code and select File -> Open Folder. Navigate to your Export location and click
Select Folder.

684 Chapter 20. RobotBuilder

FIRST Robotics Competition

20.2.2 Writing the Code for a Subsystem

Adding code to create an actual working subsystem is very straightforward. For simple sub-
systems that don’t use feedback it turns out to be extremely simple. In this section we will look
at an example of a Claw subsystem. The Claw subsystem also has a limit switch to determine
if an object is in the grip.

RobotBuilder Representation of the Claw Subsystem

The claw at the end of a robot arm is a subsystem operated by a single VictorSPX Motor
Controller. There are three things we want the motor to do, start opening, start closing, and
stop moving. This is the responsibility of the subsystem. The timing for opening and closing
will be handled by a command later in this tutorial. We will also define a method to get if the
claw is gripping an object.

Adding Subsystem Capabilities

Java

11 // ROBOTBUILDER TYPE: Subsystem.
12

13 package frc.robot.subsystems;
14

15

16 import frc.robot.commands.*;
17 import edu.wpi.first.wpilibj.livewindow.LiveWindow;
18 import edu.wpi.first.wpilibj2.command.SubsystemBase;
19

20 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
21 import edu.wpi.first.wpilibj.DigitalInput;
22 import edu.wpi.first.wpilibj.motorcontrol.MotorController;
23 import edu.wpi.first.wpilibj.motorcontrol.PWMVictorSPX;
24

25 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
26

27

28 /**
(continues on next page)

20.2. RobotBuilder - Writing the Code 685

FIRST Robotics Competition

(continued from previous page)
29 *
30 */
31 public class Claw extends SubsystemBase {
32 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
33 public static final double PlaceDistance = 0.1;
34 public static final double BackAwayDistance = 0.6;
35

36 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
37

38 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
39 private PWMVictorSPX motor;
40 private DigitalInput limitswitch;
41

42 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
43

44 /**
45 *
46 */
47 public Claw() {
48 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
49 motor = new PWMVictorSPX(4);
50 addChild("motor",motor);
51 motor.setInverted(false);
52

53 limitswitch = new DigitalInput(4);
54 addChild("limit switch", limitswitch);
55

56

57

58 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
59 }
60

61 @Override
62 public void periodic() {
63 // This method will be called once per scheduler run
64

65 }
66

67 @Override
68 public void simulationPeriodic() {
69 // This method will be called once per scheduler run when in simulation
70

71 }
72

73 public void open() {
74 motor.set(1.0);
75 }
76

77 public void close() {
78 motor.set(-1.0);
79 }
80

81 public void stop() {
82 motor.set(0.0);
83 }
84

(continues on next page)

686 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
85 public boolean isGripping() {
86 return limitswitch.get();
87 }
88

89 }

C++

11 // ROBOTBUILDER TYPE: Subsystem.
12

13 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
14 #include "subsystems/Claw.h"
15 #include <frc/smartdashboard/SmartDashboard.h>
16

17 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
18

19 Claw::Claw(){
20 SetName("Claw");
21 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
22 SetSubsystem("Claw");
23

24 AddChild("limit switch", &m_limitswitch);
25

26

27 AddChild("motor", &m_motor);
28 m_motor.SetInverted(false);
29

30 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
31 }
32

33 void Claw::Periodic() {
34 // Put code here to be run every loop
35

36 }
37

38 void Claw::SimulationPeriodic() {
39 // This method will be called once per scheduler run when in simulation
40

41 }
42

43 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
44

45 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
46

47

48 void Claw::Open() {
49 m_motor.Set(1.0);
50 }
51

52 void Claw::Close() {
53 m_motor.Set(-1.0);
54 }
55

56 void Claw::Stop() {
57 m_motor.Set(0.0);
58 }

(continues on next page)

20.2. RobotBuilder - Writing the Code 687

FIRST Robotics Competition

(continued from previous page)
59

60 bool Claw::IsGripping() {
61 return m_limitswitch.Get();
62 }

Add methods to the claw.java or claw.cpp that will open, close, and stop the claw from
moving and get the claw limit switch. Those will be used by commands that actually operate
the claw.

Note: The comments have been removed from this file to make it easier to see the changes
for this document.

Notice that member variable called motor and limitswitch are created by RobotBuilder so
it can be used throughout the subsystem. Each of your dragged-in palette items will have a
member variable with the name given in RobotBuilder.

Adding the Method Declarations to the Header File (C++ Only)

C++

11 // ROBOTBUILDER TYPE: Subsystem.
12 #pragma once
13

14 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
15 #include <frc2/command/SubsystemBase.h>
16 #include <frc/DigitalInput.h>
17 #include <frc/motorcontrol/PWMVictorSPX.h>
18

19 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
20

21 /**
22 *
23 *
24 * @author ExampleAuthor
25 */
26 class Claw: public frc2::SubsystemBase {
27 private:
28 // It's desirable that everything possible is private except
29 // for methods that implement subsystem capabilities
30 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
31 frc::DigitalInput m_limitswitch{4};
32 frc::PWMVictorSPX m_motor{4};
33

34 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
35 public:
36 Claw();
37

38 void Periodic() override;
39 void SimulationPeriodic() override;
40 void Open();
41 void Close();
42 void Stop();
43 bool IsGripping();

(continues on next page)

688 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
44 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
45

46 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
47 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
48 static constexpr const double PlaceDistance = 0.1;
49 static constexpr const double BackAwayDistance = 0.6;
50

51 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
52

53

54 };

In addition to adding the methods to the class implementation file, Claw.cpp, the declarations
for the methods need to be added to the header file, Claw.h. Those declarations that must be
added are shown here.
To add the behavior to the claw subsystem to handle opening and closing you need to define
commands.

20.2.3 Writing the Code for a Command

Subsystem classes get the mechanisms on your robot moving, but to get it to stop at the right
time and sequence through more complex operations you write Commands. Previously in
writing the code for a subsystem we developed the code for the Claw subsystem on a robot to
start the claw opening, closing, or to stop moving. Now we will write the code for a command
that will actually run the claw motor for the right time to get the claw to open and close. Our
claw example is a very simple mechanism where we run the motor for 1 second to open it or
until the limit switch is tripped to close it.

Close Claw Command in RobotBuilder

This is the definition of the CloseClaw command in RobotBuilder. Notice that it requires the
Claw subsystem. This is explained in the next step.

20.2. RobotBuilder - Writing the Code 689

FIRST Robotics Competition

Generated CloseClaw Class

Java

11 // ROBOTBUILDER TYPE: Command.
12

13 package frc.robot.commands;
14 import edu.wpi.first.wpilibj2.command.CommandBase;
15

16 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
17 import frc.robot.subsystems.Claw;
18

19 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
20

21 /**
22 *
23 */
24 public class CloseClaw extends CommandBase {
25

26 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
27 private final Claw m_claw;
28

29 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
30

31 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
32

33

34 public CloseClaw(Claw subsystem) {
35

36

37 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
38 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
39

40 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
41 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
42

43 m_claw = subsystem;
44 addRequirements(m_claw);
45

46 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
47 }
48

49 // Called when the command is initially scheduled.
50 @Override
51 public void initialize() {
52 m_claw.close(); // (1)
53 }
54

55 // Called every time the scheduler runs while the command is scheduled.
56 @Override
57 public void execute() {
58 }
59

60 // Called once the command ends or is interrupted.
61 @Override
62 public void end(boolean interrupted) {
63 m_claw.stop(); // (3)
64 }

(continues on next page)

690 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
65

66 // Returns true when the command should end.
67 @Override
68 public boolean isFinished() {
69 return m_claw.isGripping(); // (2)
70 }
71

72 @Override
73 public boolean runsWhenDisabled() {
74 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
75 return false;
76

77 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
78 }
79 }

C++

11 // ROBOTBUILDER TYPE: Command.
12

13 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
14

15 #include "commands/CloseClaw.h"
16

17 CloseClaw::CloseClaw(Claw* m_claw)
18 :m_claw(m_claw){
19

20 // Use AddRequirements() here to declare subsystem dependencies
21 // eg. AddRequirements(m_Subsystem);
22 SetName("CloseClaw");
23 AddRequirements({m_claw});
24

25 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
26

27 }
28

29 // Called just before this Command runs the first time
30 void CloseClaw::Initialize() {
31 m_claw->Close(); // (1)
32 }
33

34 // Called repeatedly when this Command is scheduled to run
35 void CloseClaw::Execute() {
36

37 }
38

39 // Make this return true when this Command no longer needs to run execute()
40 bool CloseClaw::IsFinished() {
41 return m_claw->IsGripping(); // (2)
42 }
43

44 // Called once after isFinished returns true
45 void CloseClaw::End(bool interrupted) {
46 m_claw->Stop(); // (3)
47 }
48

(continues on next page)

20.2. RobotBuilder - Writing the Code 691

FIRST Robotics Competition

(continued from previous page)
49 bool CloseClaw::RunsWhenDisabled() const {
50 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
51 return false;
52

53 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
54 }

RobotBuilder will generate the class files for the CloseClaw command. The command repre-
sents the behavior of the claw, that is the operation over time. To operate this very simple
claw mechanism the motor needs to operate in the close direction,. The Claw subsystem has
methods to start the motor running in the right direction and to stop it. The commands re-
sponsibility is to run the motor for the correct time. The lines of code that are shown in the
boxes are added to add this behavior.

1. Start the claw motor moving in the closing direction by calling the Close() method that
was added to the Claw subsystem in the CloseClaw Initialize method.

2. This command is finished when the limit switch in the Claw subsystem is tripped.
3. The End() method is called when the command is finished and is a place to clean up. In

this case, the motor is stopped since the time has run out.

20.2.4 Driving the Robot with Tank Drive and Joysticks

A common use case is to have a joystick that should drive some actuators that are part of a
subsystem. The problem is that the joystick is created in the RobotContainer class and the
motors to be controlled are in the subsystem. The idea is to create a command that, when
scheduled, reads input from the joystick and calls a method that is created on the subsystem
that drives the motors.
In this example a drive base subsystem is shown that is operated in tank drive using a pair of
joysticks.

692 Chapter 20. RobotBuilder

FIRST Robotics Competition

Create a Drive Train Subsystem

Create a subsystem called Drive Train. Its responsibility will be to handle the driving for the
robot base.

Inside the Drive Train create a Differential Drive object for a two motor drive. There is a left
motor and right motor as part of the Differential Drive class.

20.2. RobotBuilder - Writing the Code 693

FIRST Robotics Competition

Since we want to use more then two motors to drive the robot, inside the Differential Drive,
create two Motor Controller Groups. These will group multiple motor controllers so they can
be used with Differential Drive.

Finally, create two Motor Controllers in each Motor Controller Group.

694 Chapter 20. RobotBuilder

FIRST Robotics Competition

Add the Joysticks to the Operator Interface

Add two joysticks to the Operator Interface, one is the left stick and the other is the right
stick. The y-axis on the two joysticks are used to drive the robots left and right sides.

Note: Be sure to export your program to C++ or Java before continuing to the next step.

Create a Method to Write the Motors on the Subsystem

java

11 // ROBOTBUILDER TYPE: Subsystem.
12

13 package frc.robot.subsystems;
14

15

16 import frc.robot.commands.*;
17 import edu.wpi.first.wpilibj.livewindow.LiveWindow;
18 import edu.wpi.first.wpilibj2.command.SubsystemBase;
19

20 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
21 import edu.wpi.first.wpilibj.AnalogGyro;
22 import edu.wpi.first.wpilibj.AnalogInput;
23 import edu.wpi.first.wpilibj.CounterBase.EncodingType;
24 import edu.wpi.first.wpilibj.Encoder;
25 import edu.wpi.first.wpilibj.drive.DifferentialDrive;
26 import edu.wpi.first.wpilibj.motorcontrol.MotorController;
27 import edu.wpi.first.wpilibj.motorcontrol.MotorControllerGroup;

(continues on next page)

20.2. RobotBuilder - Writing the Code 695

FIRST Robotics Competition

(continued from previous page)
28 import edu.wpi.first.wpilibj.motorcontrol.PWMVictorSPX;
29

30 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
31

32

33 /**
34 *
35 */
36 public class Drivetrain extends SubsystemBase {
37 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
38 public static final double PlaceDistance = 0.1;
39 public static final double BackAwayDistance = 0.6;
40

41 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
42

43 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
44 private PWMVictorSPX left1;
45 private PWMVictorSPX left2;
46 private MotorControllerGroup leftMotor;
47 private PWMVictorSPX right1;
48 private PWMVictorSPX right2;
49 private MotorControllerGroup rightMotor;
50 private DifferentialDrive drive;
51 private Encoder leftencoder;
52 private Encoder rightencoder;
53 private AnalogGyro gyro;
54 private AnalogInput rangefinder;
55

56 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
57

58 /**
59 *
60 */
61 public Drivetrain() {
62 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
63 left1 = new PWMVictorSPX(0);
64 addChild("left1",left1);
65 left1.setInverted(false);
66

67 left2 = new PWMVictorSPX(1);
68 addChild("left2",left2);
69 left2.setInverted(false);
70

71 leftMotor = new MotorControllerGroup(left1, left2);
72 addChild("Left Motor",leftMotor);
73

74

75 right1 = new PWMVictorSPX(5);
76 addChild("right1",right1);
77 right1.setInverted(false);
78

79 right2 = new PWMVictorSPX(6);
80 addChild("right2",right2);
81 right2.setInverted(false);
82

83 rightMotor = new MotorControllerGroup(right1, right2);

(continues on next page)

696 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
84 addChild("Right Motor",rightMotor);
85

86

87 drive = new DifferentialDrive(leftMotor, rightMotor);
88 addChild("Drive",drive);
89 drive.setSafetyEnabled(true);
90 drive.setExpiration(0.1);
91 drive.setMaxOutput(1.0);
92

93

94 leftencoder = new Encoder(0, 1, false, EncodingType.k4X);
95 addChild("left encoder",leftencoder);
96 leftencoder.setDistancePerPulse(1.0);
97

98 rightencoder = new Encoder(2, 3, false, EncodingType.k4X);
99 addChild("right encoder",rightencoder);

100 rightencoder.setDistancePerPulse(1.0);
101

102 gyro = new AnalogGyro(0);
103 addChild("gyro",gyro);
104 gyro.setSensitivity(0.007);
105

106 rangefinder = new AnalogInput(1);
107 addChild("range finder", rangefinder);
108

109

110

111 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
112 }
113

114 @Override
115 public void periodic() {
116 // This method will be called once per scheduler run
117

118 }
119

120 @Override
121 public void simulationPeriodic() {
122 // This method will be called once per scheduler run when in simulation
123

124 }
125

126 // Put methods for controlling this subsystem
127 // here. Call these from Commands.
128

129 public void drive(double left, double right) {
130 drive.tankDrive(left, right);
131 }
132 }

C++ (Header)

11 // ROBOTBUILDER TYPE: Subsystem.
12 #pragma once
13

14 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
(continues on next page)

20.2. RobotBuilder - Writing the Code 697

FIRST Robotics Competition

(continued from previous page)
15 #include <frc2/command/SubsystemBase.h>
16 #include <frc/AnalogGyro.h>
17 #include <frc/AnalogInput.h>
18 #include <frc/Encoder.h>
19 #include <frc/drive/DifferentialDrive.h>
20 #include <frc/motorcontrol/MotorControllerGroup.h>
21 #include <frc/motorcontrol/PWMVictorSPX.h>
22

23 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
24

25 /**
26 *
27 *
28 * @author ExampleAuthor
29 */
30 class Drivetrain: public frc2::SubsystemBase {
31 private:
32 // It's desirable that everything possible is private except
33 // for methods that implement subsystem capabilities
34 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
35 frc::AnalogInput m_rangefinder{1};
36 frc::AnalogGyro m_gyro{0};
37 frc::Encoder m_rightencoder{2, 3, false, frc::Encoder::k4X};
38 frc::Encoder m_leftencoder{0, 1, false, frc::Encoder::k4X};
39 frc::DifferentialDrive m_drive{m_leftMotor, m_rightMotor};
40 frc::MotorControllerGroup m_rightMotor{m_right1, m_right2 };
41 frc::PWMVictorSPX m_right2{6};
42 frc::PWMVictorSPX m_right1{5};
43 frc::MotorControllerGroup m_leftMotor{m_left1, m_left2 };
44 frc::PWMVictorSPX m_left2{1};
45 frc::PWMVictorSPX m_left1{0};
46

47 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
48 public:
49 Drivetrain();
50

51 void Periodic() override;
52 void SimulationPeriodic() override;
53 void Drive(double left, double right);
54 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
55

56 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
57 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
58 static constexpr const double PlaceDistance = 0.1;
59 static constexpr const double BackAwayDistance = 0.6;
60

61 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
62

63

64 };

C++ (Source)

11 // ROBOTBUILDER TYPE: Subsystem.
12

13 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
(continues on next page)

698 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
14 #include "subsystems/Drivetrain.h"
15 #include <frc/smartdashboard/SmartDashboard.h>
16

17 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
18

19 Drivetrain::Drivetrain(){
20 SetName("Drivetrain");
21 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
22 SetSubsystem("Drivetrain");
23

24 AddChild("range finder", &m_rangefinder);
25

26

27 AddChild("gyro", &m_gyro);
28 m_gyro.SetSensitivity(0.007);
29

30 AddChild("right encoder", &m_rightencoder);
31 m_rightencoder.SetDistancePerPulse(1.0);
32

33 AddChild("left encoder", &m_leftencoder);
34 m_leftencoder.SetDistancePerPulse(1.0);
35

36 AddChild("Drive", &m_drive);
37 m_drive.SetSafetyEnabled(true);
38 m_drive.SetExpiration(0.1_s);
39 m_drive.SetMaxOutput(1.0);
40

41

42 AddChild("Right Motor", &m_rightMotor);
43

44

45 AddChild("right2", &m_right2);
46 m_right2.SetInverted(false);
47

48 AddChild("right1", &m_right1);
49 m_right1.SetInverted(false);
50

51 AddChild("Left Motor", &m_leftMotor);
52

53

54 AddChild("left2", &m_left2);
55 m_left2.SetInverted(false);
56

57 AddChild("left1", &m_left1);
58 m_left1.SetInverted(false);
59

60 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
61 }
62

63 void Drivetrain::Periodic() {
64 // Put code here to be run every loop
65

66 }
67

68 void Drivetrain::SimulationPeriodic() {
69 // This method will be called once per scheduler run when in simulation

(continues on next page)

20.2. RobotBuilder - Writing the Code 699

FIRST Robotics Competition

(continued from previous page)
70

71 }
72

73 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
74

75 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CMDPIDGETTERS
76

77

78 // Put methods for controlling this subsystem
79 // here. Call these from Commands.
80

81 void Drivetrain::Drive(double left, double right) {
82 m_drive.TankDrive(left, right);
83 }

Create a method that takes the joystick inputs, in this case the left and right driver joystick.
The values are passed to the DifferentialDrive object that in turn does tank steering using
the joystick values. Also create a method called stop() that stops the robot from driving, this
might come in handy later.

Note: Some RobotBuilder output has been removed for this example for clarity

Read Joystick Values and Call the Subsystem Methods

Create a command, in this case called Tank Drive. Its purpose will be to read the joystick
values and send them to the Drive Base subsystem. Notice that this command Requires the
Drive Train subsystem. This will cause it to stop running whenever anything else tries to use
the Drive Train.

700 Chapter 20. RobotBuilder

FIRST Robotics Competition

Create two parameters (DoubleSupplier for Java or std::function<double()> for C++) for
the left and right speeds.

Create a parameter preset to retrieve joystick values. Java: For the left parameter enter ()
-> getJoystick1().getY() and for right enter () -> getJoystick2().getY(). C++: For
the left parameter enter [this] {return getJoystick1()->GetY();} and for the right enter
[this] {return getJoystick2()->GetY();}

20.2. RobotBuilder - Writing the Code 701

FIRST Robotics Competition

Note: Be sure to export your program to C++ or Java before continuing to the next step.

Add the Code to do the Driving

java

11 // ROBOTBUILDER TYPE: Command.
12

13 package frc.robot.commands;
14 import edu.wpi.first.wpilibj.Joystick;
15 import edu.wpi.first.wpilibj2.command.CommandBase;
16 import frc.robot.RobotContainer;
17 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
18 import frc.robot.subsystems.Drivetrain;
19

20 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=IMPORTS
21

22 /**
23 *
24 */
25 public class TankDrive extends CommandBase {
26

27 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
28 private final Drivetrain m_drivetrain;
29

30 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_DECLARATIONS
31

32 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
33

34

35 public TankDrive(Drivetrain subsystem) {
36

37

38 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTORS
39 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
40

41 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLE_SETTING
42 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
43

44 m_drivetrain = subsystem;
45 addRequirements(m_drivetrain);
46

47 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=REQUIRES
48 }
49

50 // Called when the command is initially scheduled.
51 @Override
52 public void initialize() {
53 }
54

55 // Called every time the scheduler runs while the command is scheduled.
56 @Override
57 public void execute() {
58 m_drivetrain.drive(m_left.getAsDouble(), m_right.getAsDouble());

(continues on next page)

702 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
59 }
60

61 // Called once the command ends or is interrupted.
62 @Override
63 public void end(boolean interrupted) {
64 m_drivetrain.drive(0.0, 0.0);
65 }
66

67 // Returns true when the command should end.
68 @Override
69 public boolean isFinished() {
70 return false;
71 }
72

73 @Override
74 public boolean runsWhenDisabled() {
75 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
76 return false;
77

78 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
79 }
80 }

C++ (Header)

11 // ROBOTBUILDER TYPE: Command.
12

13 #pragma once
14

15 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
16

17 #include <frc2/command/CommandHelper.h>
18 #include <frc2/command/CommandBase.h>
19

20 #include "subsystems/Drivetrain.h"
21

22 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=INCLUDES
23 #include "RobotContainer.h"
24 #include <frc/Joystick.h>
25

26 /**
27 *
28 *
29 * @author ExampleAuthor
30 */
31 class TankDrive: public frc2::CommandHelper<frc2::CommandBase, TankDrive> {
32 public:
33 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
34 explicit TankDrive(Drivetrain* m_drivetrain);
35

36 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
37

38 void Initialize() override;
39 void Execute() override;
40 bool IsFinished() override;
41 void End(bool interrupted) override;

(continues on next page)

20.2. RobotBuilder - Writing the Code 703

FIRST Robotics Competition

(continued from previous page)
42 bool RunsWhenDisabled() const override;
43

44

45 private:
46 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
47

48

49 Drivetrain* m_drivetrain;
50 frc::Joystick* m_leftJoystick;
51 frc::Joystick* m_rightJoystick;
52

53 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=VARIABLES
54 };

C++ (Source)

11 // ROBOTBUILDER TYPE: Command.
12

13 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
14

15 #include "commands/TankDrive.h"
16

17 TankDrive::TankDrive(Drivetrain* m_drivetrain)
18 :m_drivetrain(m_drivetrain){
19

20 // Use AddRequirements() here to declare subsystem dependencies
21 // eg. AddRequirements(m_Subsystem);
22 SetName("TankDrive");
23 AddRequirements({m_drivetrain});
24

25 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTRUCTOR
26 }
27

28 // Called just before this Command runs the first time
29 void TankDrive::Initialize() {
30

31 }
32

33 // Called repeatedly when this Command is scheduled to run
34 void TankDrive::Execute() {
35 m_drivetrain->Drive(m_left(),m_right());
36 }
37

38 // Make this return true when this Command no longer needs to run execute()
39 bool TankDrive::IsFinished() {
40 return false;
41 }
42

43 // Called once after isFinished returns true
44 void TankDrive::End(bool interrupted) {
45 m_drivetrain->Drive(0,0);
46 }
47

48 bool TankDrive::RunsWhenDisabled() const {
49 // BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
50 return false;

(continues on next page)

704 Chapter 20. RobotBuilder

FIRST Robotics Competition

(continued from previous page)
51

52 // END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DISABLED
53 }

Add code to the execute method to do the actual driving. All that is needed is pass the for the
left and right parameters to the Drive Train subsystem. The subsystem just uses them for the
tank steering method on its DifferentialDrive object. And we get tank steering.
We also filled in the end() method so that when this command is interrupted or stopped, the
motors will be stopped as a safety precaution.

Make Default Command

The last step is to make the Tank Drive command be the “Default Command” for the Drive
Train subsystem. This means that whenever no other command is using the Drive Train, the
Joysticks will be in control. This is probably the desirable behavior. When the autonomous
code is running, it will also require the drive train and interrupt the Tank Drive command.
When the autonomous code is finished, the DriveWithJoysticks command will restart auto-
matically (because it is the default command), and the operators will be back in control. If
you write any code that does teleop automatic driving, those commands should also “require”
the DriveTrain so that they too will interrupt the Tank Drive command and have full control.

20.2. RobotBuilder - Writing the Code 705

FIRST Robotics Competition

The final step is to choose the joystick parameter preset previously set up.

Note: Be sure to export your program to C++ or Java before continuing.

20.3 RobotBuilder - Advanced

20.3.1 Using PIDSubsystem to Control Actuators

More advanced subsystems will use sensors for feedback to get guaranteed results for oper-
ations like setting elevator heights or wrist angles. PIDSubsystems use feedback to control
the actuator and drive it to a particular position. In this example we use an elevator with a
10-turn potentiometer connected to it to give feedback on the height. The PIDSubsystem has
a built-in PIDController to automatically control the mechanism to the correct setpoints.

706 Chapter 20. RobotBuilder

FIRST Robotics Competition

Create a PIDSubsystem

Creating a subsystem that uses feedback to control the position or speed of a mechanism is
very easy.

1. Drag a PIDSubsystem from the palette to the Subsystems folder in the robot description
2. Rename the PID Subsystem to a more meaningful name for the subsystem, in this case

Elevator
Notice that some of the parts of the robot description have turned red. This indicates that
these components (the PIDSubsystem) haven’t been completed and need to be filled in. The
properties that are either missing or incorrect are shown in red.

20.3. RobotBuilder - Advanced 707

FIRST Robotics Competition

Adding Sensors and Actuators to the PIDSubsystem

Add the missing components for the PIDSubsystem
1. Drag in the actuator (a motor controller) to the particular subsystem - in this case the

Elevator
2. Drag the sensor that will be used for feedback to the subsystem, in this case the sensor

is a potentiometer that might give elevator height feedback.

708 Chapter 20. RobotBuilder

FIRST Robotics Competition

Fill in the PID Parameters

The P, I, and D values need to be filled in to get the desired sensitivity and stability of the
component. In the case of our elevator we use a proportional constant of 6.0 and 0 for the I
and D terms.

Create Setpoint Constants

20.3. RobotBuilder - Advanced 709

FIRST Robotics Competition

In order to make it easier to manage elevator setpoints, we will create constants to manage
the setpoints. Click on the constants box to bring up the constants dialog.

Click on the add constant button

710 Chapter 20. RobotBuilder

FIRST Robotics Competition

1. Fill in a name for the constant, in this case: Bottom
2. Select a type for the constant from the drop-down menu, in this case: double
3. Select a value for the constant, in this case: 4.65
4. Click add constant to continue adding constants
5. After entering all constants, Click Save and close

20.3.2 Writing the Code for a PIDSubsystem

The skeleton of the PIDSubsystem is generated by the RobotBuilder and we have to fill in the
rest of the code to provide the potentiometer value and drive the motor with the output of the
embedded PIDController.
Make sure the Elevator PID subsystem has been created in the RobotBuilder. Once it’s all
set, generate Java/C++ code for the project using the Export menu or the Java/C++ toolbar
menu.
RobotBuilder generates the PIDSubsystem methods such that no additional code is needed
for basic operation.

20.3. RobotBuilder - Advanced 711

FIRST Robotics Competition

Setting the PID Constants

The height constants and PID constants are automatically generated.
Java

public class Elevator extends PIDSubsystem {

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
public static final double Bottom = 4.6;
public static final double Stow = 1.65;
public static final double Table_Height = 1.58;

// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS
private AnalogPotentiometer pot;private PWMVictorSPX motor;

//P I D Variables
private static final double kP = 6.0;
private static final double kI = 0.0;
private static final double kD = 0.0;
private static final double kF = 0.0;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=DECLARATIONS

C++

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS
static constexpr const double Bottom = 4.6;
static constexpr const double Stow = 1.65;
static constexpr const double Table_Height = 1.58;

static constexpr const double kP = 6.0;
static constexpr const double kI = 0.0;
static constexpr const double kD = 0.0;
static constexpr const double kF = 0.0;
// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=CONSTANTS

Get Potentiometer Measurement

Java

@Override
public double getMeasurement() {

// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SOURCE
return pot.get();

// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SOURCE
}

C++

double Elevator::GetMeasurement() {
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SOURCE
return m_pot.Get();

// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=SOURCE
}

712 Chapter 20. RobotBuilder

FIRST Robotics Competition

The getMeasurement() method is used to set the value of the sensor that is providing the
feedback for the PID controller. In this case, the code is automatically generated and returns
the potentiometer voltage as returned by the get() method.

Calculate PID Output

Java

@Override
public void useOutput(double output, double setpoint) {

output += setpoint*kF;
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=OUTPUT

motor.set(output);

// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=OUTPUT
}

C++

void Elevator::UseOutput(double output, double setpoint) {
output += setpoint*kF;
// BEGIN AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=OUTPUT

m_motor.Set(output);

// END AUTOGENERATED CODE, SOURCE=ROBOTBUILDER ID=OUTPUT
}

The useOutput method writes the calculated PID output directly to the motor.
That’s all that is required to create the Elevator PIDSubsystem.

20.3.3 Setpoint Command

A Setpoint Command works in conjunction with a PIDSubsystem to drive an actuator to a
particular angle or position that is measured using a potentiometer or encoder. This happens
so often that there is a shortcut in RobotBuilder to do this task.

20.3. RobotBuilder - Advanced 713

FIRST Robotics Competition

Start with a PIDSubsystem

Suppose in a robot there is a wrist joint with a potentiometer that measures the angle. First
create a PIDSubsystem that include the motor that moves the wrist joint and the potentiome-
ter that measures the angle. The PIDSubsystem should have all the PID constants filled in
and working properly.
It is important to set the Tolerance parameter. This controls how far off the current value
can be from the setpoint and be considered on target. This is the criteria that the Setpoint-
Command uses to move onto the next command.

714 Chapter 20. RobotBuilder

FIRST Robotics Competition

Creating the Setpoint Command

Right-click on the Commands folder in the palette and select “Add Setpoint command”.

20.3. RobotBuilder - Advanced 715

FIRST Robotics Competition

Setpoint Command Parameters

Fill in the name of the new command. The Requires field is the PIDSubsystem that is being
driven to a setpoint, in this case the Elevator subsystem.

1. Click on the Parameter Presets to set up the setpoints.

716 Chapter 20. RobotBuilder

FIRST Robotics Competition

2. Select Add Preset
3. Enter a preset name (in this case ‘bottom’
4. Click the dropdown next to the setpoint entry box
5. Select the Elevator.Bottom constant, that was created in the Elevator subsystem previ-

ously
6. Repeat steps 2-5 for the other setpoints.
7. Click Save and close

There is no need to fill in any code for this command, it is automatically created by Robot-
Builder.
Whenever this command is scheduled, it will automatically drive the subsystem to the speci-
fied setpoint. When the setpoint is reached within the tolerance specified in the PIDSubsys-
tem, the command ends and the next command starts. It is important to specify a tolerance in
the PIDSubsystem or this command might never end because the tolerance is not achieved.

Note: For more information about PID Control, please see the Advanced Controls Introduc-
tion.

20.3.4 Adding Custom Components

RobotBuilder works very well for creating robot programs that just use WPILib for motors,
controllers, and sensors. But for teams that use custom classes, RobotBuilder doesn’t have
any support for those classes, so a few steps need to be taken to use them in RobotBuilder

Custom Component Structure

Custom components all go in ~/wpilib/YYYY/Robotbuilder/extensions where ~ is C:\
Users\Public on Windows and YYYY is the FRC® year.

20.3. RobotBuilder - Advanced 717

FIRST Robotics Competition

There are seven files and one folder that are needed for a custom component. The folder
contains the files describing the component and how to export it. It should have the same
name as the component (e.g.”Kiwi Drive” for a kiwi drive controller, “Robot Drive 6” for a
six-motor drive controller, etc.). The files should have the same names and extensions as the
ones shown here. Other files can be in the folder along with these seven, but the seven must
be present for RobotBuilder to recognize the custom component.

PaletteDescription.yaml

Line-by-line:
• !Component: Declares the beginning of a new component
• name: The name of the component. This is what will show up in the palette/tree – this

should also be the same as the name of the containing folder
• type: the type of the component (these will be explained in depth later on)
• supports: a map of the amount of each type of component this can support. Motor con-

trollers in RobotBuilder are all PIDOutputs, so a kiwi drive can support three PIDOut-
puts. If a component doesn’t support anything (such as sensors or motor controllers),
just leave this line out

• help: a short string that gives a helpful message when one of these components is hov-
ered over

• properties: a list of the properties of this component. In this kiwi drive example, there
are three very similar properties, one for each motor. A ChildSelectionProperty allows
the user to choose a component of the given type from the subcomponents of the one
being edited (so here, they would show a dropdown asking for a PIDOutput - i.e. a motor
controller - that has been added to the kiwi drive)

718 Chapter 20. RobotBuilder

FIRST Robotics Competition

The types of component RobotBuilder supports (these are case-sensitive):
• Command
• Subsystem
• PIDOutput (motor controller)
• PIDSource (sensor that implements PIDSource e.g. analog potentiometer, encoder)
• Sensor (sensor that does not implement PIDSource e.g. limit switch)
• Controller (robot drive, PID controller, etc.)
• Actuator (an output that is not a motor, e.g. solenoid, servo)
• Joystick
• Joystick Button

Properties

The properties relevant for a custom component:
• StringProperty: used when a component needs a string e.g. the name of the component
• BooleanProperty: used when a component needs a boolean value e.g. putting a button

on the SmartDashboard
• DoubleProperty: used when a component needs a number value e.g. PID constantsChoic-

esProperty
• ChildSelectionProperty: used when you need to choose a child component e.g. motor

controllers in a RobotDrive
• TypeSelectionProperty: used when you need to choose any component of the given type

from anywhere in the program e.g. input and output for a PID command
The fields for each property are described below:

20.3. RobotBuilder - Advanced 719

FIRST Robotics Competition

720 Chapter 20. RobotBuilder

FIRST Robotics Competition

Validators.yaml

You may have noticed “KiwiDriveValidator” in the validators entry of each of the motor prop-
erties in PaletteDescription.yaml. It’s not a built-in validator, so it had to be defined in Valida-
tors.yaml. This example validator is very simple - it just makes sure that each of the named
fields has a different value than the others.

Built-in Validators and Validator Types

The built-in validators are very useful (especially the UniqueValidators for port/channel use),
but sometimes a custom validator is needed, like in the previous step

• DistinctValidator: Makes sure the values of each of the given fields are unique
• ExistsValidator: Makes sure that a value has been set for the property using this validator
• UniqueValidator: Makes sure that the value for the property is unique globally for the

given fields

20.3. RobotBuilder - Advanced 721

FIRST Robotics Competition

• ListValidator: Makes sure that all the values in a list property are valid

C++ Export.yaml

A line-by-line breakdown of the file:
• Kiwi Drive: the name of the component being exported. This is the same as the name

set in PaletteDescription.yaml, and the name of the folder containing this file
• Defaults: provides some default values for includes needed by this component, the name

of the class, a construction template, and more. The CustomComponent default adds an
include for Custom/${ClassName}.h to every generated file that uses the component
(e.g. RobotDrive.h would have #include "Custom/KiwiDrive.h the top of the file)

• ClassName: the name of the custom class you’re adding.
• Construction: an instruction for how the component should be constructed. Variables

will be replaced with their values (“${ClassName}” will be replaced with “KiwiDrive”),
then macros will be evaluated (for example, #variable($Name) may be replaced with
drivebaseKiwiDrive).

This example expects a KiwiDrive class with the constructor

KiwiDrive(SpeedController, SpeedController, SpeedController)

If your team uses Java, this file can be empty.

Java Export.yaml

Very similar to the C++ export file; the only difference should be the Construction line. This
example expects a KiwiDrive class with the constructor

KiwiDrive(SpeedController, SpeedController, SpeedController)

If your team uses C++, this file can be empty.

722 Chapter 20. RobotBuilder

FIRST Robotics Competition

Using Macros and Variables

Macros are simple functions that RobotBuilder uses to turn variables into text that will be in-
serted into generated code. They always start with the “#” symbol, and have a syntax similar
to functions: <macro_name>(arg0, arg1, arg2, ...). The only macro you’ll probably need
to use is #variable(component_name)

#variable takes a string, usually the a variable defined somewhere (i.e. “Name” is the name
given to the component in RobotBuilder, such as “Arm Motor”), and turns it into the name of
a variable defined in the generated code. For example, #variable("Arm Motor") results in
the string ArmMotor

Variables are referenced by placing a dollar sign (“$”) in front of the variable name, which an
optionally be placed inside curly braces to easily distinguish the variable from other text in
the file. When the file is parsed, the dollar sign, variable name, and curly braces are replaced
with the value of the variable (e.g. ${ClassName} is replaced with KiwiDrive).
Variables are either component properties (e.g. “Motor 1”, “Motor 2”, “Motor 3” in the kiwi
drive example), or one of the following:

1. Short_Name: the name given to the component in the editor panel in RobotBuilder
2. Name: the full name of the component. If the component is in a subsystem, this will be

the short name appended to the name of the subsystem
3. Export: The name of the file this component should be created in, if any. This should be

“RobotMap” for components like actuators, controllers, and sensors; or “OI” for things
like gamepads or other custom OI components. Note that the “CustomComponent” de-
fault will export to the RobotMap.

4. Import: Files that need to be included or imported for this component to be able to be
used.

5. Declaration: an instruction, similar to Construction, for how to declare a variable of this
component type. This is taken care of by the default “None”

6. Construction: an instruction for how to create a new instance of this component
7. LiveWindow: an instruction for how to add this component to the LiveWindow
8. Extra: instructions for any extra functions or method calls for this component to behave

correctly, such as encoders needing to set the encoding type.
9. Prototype (C++ only): The prototype for a function to be created in the file the compo-

nent is declared in, typically a getter in the OI class
10. Function: A function to be created in the file the component is declared in, typically a

getter in the OI class
11. PID: An instruction for how to get the PID output of the component, if it has one (e.g.

#variable($Short_Name)->PIDGet())
12. ClassName: The name of the class that the component represents (e.g. KiwiDrive or

Joystick)
If you have variables with spaces in the name (such as “Motor 1”, “Right Front Motor”, etc.),
the spaces need to be replaced with underscores when using them in the export files.

20.3. RobotBuilder - Advanced 723

FIRST Robotics Competition

help.html

A HTML file giving information on the component. It is better to have this be as detailed as
possible, though it certainly isn’t necessary if the programmer(s) are familiar enough with
the component, or if it’s so simple that there’s little point in a detailed description.

config.txt

A configuration file to hold miscellaneous information about the component. Currently, this
only has the section of the palette to put the component in.
The sections of the palette (these are case sensitive):

• Subsystems
• Controllers

724 Chapter 20. RobotBuilder

FIRST Robotics Competition

• Sensors
• Actuators
• Pneumatics
• OI
• Commands

icon.png

The icon that shows up in the palette and the help page. This should be a 64x64 .png file.
It should use the color scheme and general style of the section it’s in to avoid vi-
sual clutter, but this is entirely optional. Photoshop .psd files of the icons and back-
grounds are in src/main/icons/icons and png files of the icons and backgrounds are in
src/main/resources/icons.

20.3. RobotBuilder - Advanced 725

https://github.com/wpilibsuite/RobotBuilder/tree/main/src/main/icons/icons
https://github.com/wpilibsuite/RobotBuilder/tree/main/src/main/resources/icons

FIRST Robotics Competition

726 Chapter 20. RobotBuilder

21
Robot Simulation

21.1 Introduction to Robot Simulation

Often a team may want to test their code without having an actual robot available. WPILib
provides teams with the ability to simulate various robot features using simple gradle com-
mands.

21.1.1 Enabling Desktop Support

Use of the Desktop Simulator requires Desktop Support to be enabled. This can be done by
checking the “Enable Desktop Support Checkbox” when creating your robot project or by
running “WPILib: Change Desktop Support Enabled Setting” from the Visual Studio Code
command palette.

727

FIRST Robotics Competition

Desktop support can also be enabled by manually editing your build.gradle file located at
the root of your robot project. Simply change includeDesktopSupport = false to includ-
eDesktopSupport = true

def includeDesktopSupport = true

Important: It is important to note that enabling desktop/simulation support can have un-
intended consequences. Not all vendors will support this option, and code that uses their

728 Chapter 21. Robot Simulation

FIRST Robotics Competition

libraries may even crash when attempting to run simulation!

If at any point in time you want to disable Desktop Support, simply re-run the “WPILib:
Change Desktop Support Enabled Setting” from the command palette.

Additional C++ Dependency

C++ robot simulation requires that a native compiler to be installed. For Windows, this would
be Visual Studio 2022 (not VS Code), macOS requires Xcode 13 or later, and Linux (Ubuntu)
requires the build-essential package.
Ensure the Desktop Development with C++ option is checked in the Visual Studio installer
for simulation support.

21.1.2 Running Robot Simulation

Basic robot simulation can be run using VS Code. This can be done without using any com-
mands by using VS Code’s command palette.

21.1. Introduction to Robot Simulation 729

https://visualstudio.microsoft.com/vs/
https://apps.apple.com/us/app/xcode/id497799835

FIRST Robotics Competition

Your console output in Visual Studio Code should look like the below. However, teams prob-
ably will want to actually test their code versus just running the simulation. This can be done
using WPILib’s Simulation GUI.

********** Robot program starting **********
Default disabledInit() method... Override me!
Default disabledPeriodic() method... Override me!
Default robotPeriodic() method... Override me!

Important: Simulation can also be run outside of VS Code using ./gradlew simulateJava
for Java or ./gradlew simulateNative for C++.

21.1.3 Running Robot Dashboards

Both Shuffleboard and SmartDashboard can be used with WPILib simulation.

Shuffleboard

Shuffleboard is automatically configured to look for a NetworkTables instance from the
robotRIO but not from other sources. To connect to a simulation, open Shuffleboard pref-
erences from the File menu and select NetworkTables under Plugins on the left navigation
bar. In the Server field, type in the IP address or hostname of the NetworkTables host. For a
standard simulation configuration, use localhost.

730 Chapter 21. Robot Simulation

FIRST Robotics Competition

SmartDashboard

SmartDashboard is automatically configured to look for a NetworkTables instance from the
roboRIO, but not from other sources. To connect to a simulation, open SmartDashboard
preferences under the File menu and in the Team Number field, enter the IP address or
hostname of the NetworkTables host. For a standard simulation configuration, use localhost.

Glass

Glass is automatically configured to look for a NetworkTables instance from the roboRIO, but
not from other sources. To connect to a simulation, open NetworkTables Settings under
the NetworkTables menu and in the Team/IP field, enter the IP address or hostname of the
NetworkTables host. For a standard simulation configuration, use localhost.

21.2 Simulation Specific User Interface Elements

WPILib has extended robot simulation to introduce a graphical user interface (GUI) compo-
nent. This allows teams to easily visualize their robot’s inputs and outputs.

Note: The Simulation GUI is very similar in many ways to Glass. Some of the following
pages will link to Glass sections that describe elements common to both GUIs.

21.2. Simulation Specific User Interface Elements 731

FIRST Robotics Competition

21.2.1 Running the GUI

You can simply launch the GUI via the Run Simulation command palette option.

And the Sim GUI option should popup in a new dialog and will be selected by default. Press
Ok. This will now launch the Simulation GUI!

732 Chapter 21. Robot Simulation

FIRST Robotics Competition

21.2.2 Using the GUI

Learning the Layout

The following items are shown on the simulation GUI by default:
1. Robot State - This is the robot’s current state or “mode”. You can click on the labels to

change mode as you would on the normal Driver Station.
2. Timing - Shows the values of the Robot’s timers and allows the timing to be manipulated.
3. System Joysticks - This is a list of joysticks connected to your system currently.
4. FMS - This is used for simulating many of the common FMS systems.
5. NetworkTables - This shows the data that has been published to NetworkTables.
6. Joysticks - This is joysticks that the robot code can directly pull from.
7. Other Devices - This includes devices that do not fall into any of the other categories,

such as the ADXRS450 gyro that is included in the Kit of Parts or third party devices that
support simulation.

The following items can be added from the Hardware menu, but are not shown by default.
1. Addressable LEDs - This shows LEDs controlled by the AddressableLED Class.
2. Analog Inputs - This includes any devices that would normally use the ANALOG IN

connector on the roboRIO, such as any Analog based gyros.
3. DIO - (Digital Input Output) This includes any devices that use the DIO connector on

the roboRIO.
4. Encoders - This will show any instantiated devices that extend or use the Encoder class.
5. PDPs - This shows the Power Distribution Panel object.

21.2. Simulation Specific User Interface Elements 733

FIRST Robotics Competition

6. PWM Outputs - This is a list of instantiated PWM devices. This will appear as many
devices as you instantiate in robot code, as well as their outputs.

7. Relays - This includes any relay devices. This includes VEX Spike relays.
8. Solenoids - This is a list of “connected” solenoids. When you create a solenoid object

and push outputs, these are shown here.

Adding a System Joystick to Joysticks

To add a joystick from the list of system joysticks, simply click and drag a shown joystick
under the “System Joysticks” menu to the “Joysticks” menu”.

Note: The FRC® Driver Station does special mapping to gamepads connected and the
WPILib simulator does not “map” these by default. You can turn on this behavior by pressing
the “Map gamepad” toggle underneath the “Joysticks” menu.

Using the Keyboard as a Joystick

You add a keyboard to the list of system joysticks by clicking and dragging one of the keyboard
items (e.g. Keyboard 0) just like a joystick above. To edit the settings of the keyboard go to
the DS item in the menu bar then choose Keyboard 0 Settings. This allows you to control
which keyboard buttons control which axis. This is a common example of how to make the
keyboard similar to a split sticks arcade drive on an Xbox controller (uses axis 1 & 4):

734 Chapter 21. Robot Simulation

FIRST Robotics Competition

21.2. Simulation Specific User Interface Elements 735

FIRST Robotics Competition

Modifying ADXRS450 Inputs

Using the ADXRS450 object is a fantastic way to test gyro based outputs. This will show up
in the “Other Devices” menu. A drop down menu is then exposed that shows various options
such as “Connected”, “Angle”, and “Rate”. All of these values are values that you can change,
and that your robot code and use on-the-fly.

21.2.3 Determining Simulation from Robot Code

In cases where vendor libraries do not compile when running the robot simulation, you can
wrap their content with RobotBase.isReal() which returns a boolean.
Java

TalonSRX motorLeft;
TalonSRX motorRight;

public Robot() {
if (RobotBase.isReal()) {

motorLeft = new TalonSRX(0);
motorRight = new TalonSRX(1);

}
}

Note: Reassigning value types in C++ requires move or copy assignment; vendors classes
that both do not support the SIM and lack a move or copy assignment operator cannot be
worked around with conditional allocation unless a pointer is used, instead of a value type.

21.2.4 Changing View Settings

The View menu item contains Zoom and Style settings that can be customized. The Zoom
option dictates the size of the text in the application whereas the Style option allows you to
select between the Classic, Light, and Dark modes.
An example of the Dark style setting is below:

736 Chapter 21. Robot Simulation

FIRST Robotics Competition

21.2.5 Clearing Application Data

Application data for the Simulation GUI, including widget sizes and positions as well as other
custom information for widgets is stored in a imgui.ini file. This file is stored in the root of
the project directory that the simulation is run from.
The imgui.ini configuration file can simply be deleted to restore the Simulation GUI to a
“clean slate”.

21.3 Physics Simulation with WPILib

Because state-space notation allows us to compactly represent the dynamics of systems, we
can leverage it to provide a backend for simulating physical systems on robots. The goal of
these simulators is to simulate the motion of robot mechanisms without modifying existing
non-simulation user code. The basic flow of such simulators is as follows:

• In normal user code:
– PID or similar control algorithms generate voltage commands from encoder (or other

sensor) readings
– Motor outputs are set

• In simulation periodic code:
– The simulation’s state is updated using inputs, usually voltages from motors set from

a PID loop

21.3. Physics Simulation with WPILib 737

FIRST Robotics Competition

– Simulated encoder (or other sensor) readings are set for user code to use in the next
timestep

21.3.1 WPILib’s Simulation Classes

The following physics simulation classes are available in WPILib:
• LinearSystemSim, for modeling systems with linear dynamics
• FlywheelSim
• DifferentialDrivetrainSim
• ElevatorSim, which models gravity in the direction of elevator motion
• SingleJointedArmSim, which models gravity proportional to the arm angle
• BatterySim, which simply estimates battery voltage sag based on drawn currents

All simulation classes (with the exception of the differential drive simulator) inherit from the
LinearSystemSim class. By default, the dynamics are the linear system dynamics xk+1 =
Axk+Buk. Subclasses override the UpdateX(x, u, dt) method to provide custom, nonlinear
dynamics, such as modeling gravity.

Note: Swerve support for simulation is in the works, but we cannot provide an ETA. For
updates on progress, please follow this pull request.

21.3.2 Usage in User Code

The following is available from the WPILib elevatorsimulation example project.
In addition to standard objects such as motors and encoders, we instantiate our elevator simu-
lator using known constants such as carriage mass and gearing reduction. We also instantiate
an EncoderSim, which sets the distance and rate read by our Encoder.
In the following example, we simulate an elevator given the mass of the moving carriage (in
kilograms), the radius of the drum driving the elevator (in meters), the gearing reduction
between motor and drum as output over input (so usually greater than one), the minimum
and maximum height of the elevator (in meters), and some random noise to add to our position
estimate.

Note: The elevator and arm simulators will prevent the simulated position from exceeding
given minimum or maximum heights or angles. If you wish to simulate a mechanism with
infinite rotation or motion, LinearSystemSim may be a better option.

Java

47 // Simulation classes help us simulate what's going on, including gravity.
48 private final ElevatorSim m_elevatorSim =
49 new ElevatorSim(
50 m_elevatorGearbox,
51 Constants.kElevatorGearing,
52 Constants.kCarriageMass,

(continues on next page)

738 Chapter 21. Robot Simulation

https://github.com/wpilibsuite/allwpilib/pull/3374
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatorsimulation

FIRST Robotics Competition

(continued from previous page)
53 Constants.kElevatorDrumRadius,
54 Constants.kMinElevatorHeightMeters,
55 Constants.kMaxElevatorHeightMeters,
56 true,
57 VecBuilder.fill(0.01));
58 private final EncoderSim m_encoderSim = new EncoderSim(m_encoder);

C++

51 // Simulation classes help us simulate what's going on, including gravity.
52 frc::sim::ElevatorSim m_elevatorSim{m_elevatorGearbox,
53 Constants::kElevatorGearing,
54 Constants::kCarriageMass,
55 Constants::kElevatorDrumRadius,
56 Constants::kMinElevatorHeight,
57 Constants::kMaxElevatorHeight,
58 true,
59 {0.01}};
60 frc::sim::EncoderSim m_encoderSim{m_encoder};

Next, teleopPeriodic/TeleopPeriodic (Java/C++) uses a simple PID control loop to drive
our elevator to a setpoint 30 inches off the ground.
Java

31 @Override
32 public void teleopPeriodic() {
33 if (m_joystick.getTrigger()) {
34 // Here, we set the constant setpoint of 0.75 meters.
35 m_elevator.reachGoal(Constants.kSetpointMeters);
36 } else {
37 // Otherwise, we update the setpoint to 0.
38 m_elevator.reachGoal(0.0);
39 }
40 }

98 public void reachGoal(double goal) {
99 m_controller.setGoal(goal);

100

101 // With the setpoint value we run PID control like normal
102 double pidOutput = m_controller.calculate(m_encoder.getDistance());
103 double feedforwardOutput = m_feedforward.calculate(m_controller.getSetpoint().

↪→velocity);
104 m_motor.setVoltage(pidOutput + feedforwardOutput);
105 }

C++

20 void Robot::TeleopPeriodic() {
21 if (m_joystick.GetTrigger()) {
22 // Here, we set the constant setpoint of 0.75 meters.
23 m_elevator.ReachGoal(Constants::kSetpoint);
24 } else {
25 // Otherwise, we update the setpoint to 0.
26 m_elevator.ReachGoal(0.0_m);
27 }
28 }

21.3. Physics Simulation with WPILib 739

FIRST Robotics Competition

42 void Elevator::ReachGoal(units::meter_t goal) {
43 m_controller.SetGoal(goal);
44 // With the setpoint value we run PID control like normal
45 double pidOutput =
46 m_controller.Calculate(units::meter_t{m_encoder.GetDistance()});
47 units::volt_t feedforwardOutput =
48 m_feedforward.Calculate(m_controller.GetSetpoint().velocity);
49 m_motor.SetVoltage(units::volt_t{pidOutput} + feedforwardOutput);
50 }

Next, simulationPeriodic/SimulationPeriodic (Java/C++) uses the voltage applied to the
motor to update the simulated position of the elevator. We use SimulationPeriodic because
it runs periodically only for simulated robots. This means that our simulation code will not be
run on a real robot.

Note: Classes inheriting from command-based’s Subsystem can override the inherited sim-
ulationPeriodic() method. Other classes will need their simulation update methods called
from Robot’s simulationPeriodic.

Finally, the simulated encoder’s distance reading is set using the simulated elevator’s posi-
tion, and the robot’s battery voltage is set using the estimated current drawn by the elevator.
Java

78 public void simulationPeriodic() {
79 // In this method, we update our simulation of what our elevator is doing
80 // First, we set our "inputs" (voltages)
81 m_elevatorSim.setInput(m_motorSim.getSpeed() * RobotController.

↪→getBatteryVoltage());
82

83 // Next, we update it. The standard loop time is 20ms.
84 m_elevatorSim.update(0.020);
85

86 // Finally, we set our simulated encoder's readings and simulated battery voltage
87 m_encoderSim.setDistance(m_elevatorSim.getPositionMeters());
88 // SimBattery estimates loaded battery voltages
89 RoboRioSim.setVInVoltage(
90 BatterySim.calculateDefaultBatteryLoadedVoltage(m_elevatorSim.

↪→getCurrentDrawAmps()));
91 }

C++

20 void Elevator::SimulationPeriodic() {
21 // In this method, we update our simulation of what our elevator is doing
22 // First, we set our "inputs" (voltages)
23 m_elevatorSim.SetInput(frc::Vectord<1>{
24 m_motorSim.GetSpeed() * frc::RobotController::GetInputVoltage()});
25

26 // Next, we update it. The standard loop time is 20ms.
27 m_elevatorSim.Update(20_ms);
28

29 // Finally, we set our simulated encoder's readings and simulated battery
30 // voltage
31 m_encoderSim.SetDistance(m_elevatorSim.GetPosition().value());
32 // SimBattery estimates loaded battery voltages

(continues on next page)

740 Chapter 21. Robot Simulation

FIRST Robotics Competition

(continued from previous page)
33 frc::sim::RoboRioSim::SetVInVoltage(
34 frc::sim::BatterySim::Calculate({m_elevatorSim.GetCurrentDraw()}));
35 }

21.4 Device Simulation

WPILib provides a way to manage simulation device data in the form of the SimDevice API.

21.4.1 Simulating Core WPILib Device Classes

Core WPILib device classes (i.e Encoder, Ultrasonic, etc.) have simulation classes named
EncoderSim, UltrasonicSim, and so on. These classes allow interactions with the device data
that wouldn’t be possible or valid outside of simulation. Constructing them outside of simula-
tion likely won’t interfere with your code, but calling their functions and the like is undefined
behavior - in the best case they will do nothing, worse cases might crash your code! Place
functional simulation code in simulation-only functions (such as simulationPeriodic()) or
wrap them with RobotBase.isReal()/ RobotBase::IsReal() checks (which are constexpr
in C++).

Note: This example will use the EncoderSim class as an example. Use of other simulation
classes will be almost identical.

Creating Simulation Device objects

Simulation device object can be constructed in two ways:
• a constructor that accepts the regular hardware object.
• a constructor or factory method that accepts the port/index/channel number that the

device is connected to. These would be the same number that was used to construct the
regular hardware object. This is especially useful for unit testing.

Java

// create a real encoder object on DIO 2,3
Encoder encoder = new Encoder(2, 3);
// create a sim controller for the encoder
EncoderSim simEncoder = new EncoderSim(encoder);

C++

// create a real encoder object on DIO 2,3
frc::Encoder encoder{2, 3};
// create a sim controller for the encoder
frc::sim::EncoderSim simEncoder{encoder};

21.4. Device Simulation 741

FIRST Robotics Competition

Reading and Writing Device Data

Each simulation class has getter (getXxx()/GetXxx()) and setter
(setXxx(value)/SetXxx(value)) functions for each field Xxx. The getter functions will
return the same as the getter of the regular device class.
Java

simEncoder.setCount(100);
encoder.getCount(); // 100
simEncoder.getCount(); // 100

C++

simEncoder.SetCount(100);
encoder.GetCount(); // 100
simEncoder.GetCount(); // 100

Registering Callbacks

In addition to the getters and setters, each field also has a registerXxxCallback()
function that registers a callback to be run whenever the field value changes and re-
turns a CallbackStore object. The callbacks accept a string parameter of the name
of the field and a HALValue object containing the new value. Before retrieving val-
ues from a HALValue, check the type of value contained. Possible types are HALValue.
kBoolean/HAL_BOOL, HALValue.kDouble/HAL_DOUBLE, HALValue.kEnum/HAL_ENUM, HALValue.
kInt/HAL_INT, HALValue.kLong/HAL_LONG.
In Java, call close() on the CallbackStore object to cancel the callback. Keep a reference to
the object so it doesn’t get garbage-collected - otherwise the callback will be canceled by GC.
To provide arbitrary data to the callback, capture it in the lambda or use a method reference.
In C++, save the CallbackStore object in the right scope - the callback will be canceled when
the object goes out of scope and is destroyed. Arbitrary data can be passed to the callbacks
via the param parameter.

Warning: Attempting to retrieve a value of a type from a HALValue containing a different
type is undefined behavior.

Java

NotifyCallback callback = (String name, HALValue value) -> {
if (value.getType() == HALValue.kInt) {

System.out.println("Value of " + name + " is " + value.getInt());
}

}
CallbackStore store = simEncoder.registerCountCallback(callback);

store.close(); // cancel the callback

C++

742 Chapter 21. Robot Simulation

FIRST Robotics Competition

HAL_NotifyCallback callback = [](const char* name, void* param, const HALValue*␣
↪→value) {
if (value->type == HAL_INT) {

wpi::outs() << "Value of " << name << " is " << value->data.v_int << '\n';
}

};
frc::sim::CallbackStore store = simEncoder.RegisterCountCallback(callback);
// the callback will be canceled when ``store`` goes out of scope

21.4.2 Simulating Other Devices - The SimDeviceSim Class

Note: Vendors might implement their connection to the SimDevice API slightly different than
described here. They might also provide a simulation class specific for their device class. See
your vendor’s documentation for more information as to what they support and how.

The SimDeviceSim (not SimDevice!) class is a general device simulation object for devices
that aren’t core WPILib devices and therefore don’t have specific simulation classes - such as
vendor devices. These devices will show up in the Other Devices tab of the SimGUI.
The SimDeviceSim object is created using a string key identical to the key the vendor used
to construct the underlying SimDevice in their device class. This key is the one that the
device shows up with in the Other Devices tab, and is typically of the form Prefix:Device
Name[index]. If the key contains ports/index/channel numbers, they can be passed as sep-
arate arguments to the SimDeviceSim constructor. The key contains a prefix that is hidden
by default in the SimGUI, it can be shown by selecting the Show prefix option. Not including
this prefix in the key passed to SimDeviceSim will not match the device!
Java

SimDeviceSim device = new SimDeviceSim(deviceKey, index);

C++

frc::sim::SimDeviceSim device{deviceKey, index};

Once we have the SimDeviceSim, we can get SimValue objects representing the device’s
fields. Type-specific SimDouble, SimInt, SimLong, SimBoolean, and SimEnum subclasses also
exist, and should be used instead of the type-unsafe SimValue class. These are constructed
from the SimDeviceSim using a string key identical to the one the vendor used to define the
field. This key is the one the field appears as in the SimGUI. Attempting to retrieve a SimValue
object outside of simulation or when either the device or field keys are unmatched will return
null - this can cause NullPointerException in Java or undefined behavior in C++.
Java

SimDouble field = device.getDouble(fieldKey);
field.get();
field.set(value);

C++

21.4. Device Simulation 743

FIRST Robotics Competition

hal::SimDouble field = device.GetDouble(fieldKey);
field.Get();
field.Set(value);

21.5 Drivetrain Simulation Tutorial

This is a tutorial for implementing a simulation model of your differential drivetrain using the
simulation classes. Although the code that we will cover in this tutorial is framework-agnostic,
there are two full examples available – one for each framework.

• StateSpaceDifferentialDriveSimulation (Java, C++) uses the command-based
framework.

• SimpleDifferentialDriveSimulation (Java, C++) uses a more traditional approach to
data flow.

Both of these examples are also available in the VS Code New Project window.

21.5.1 Drivetrain Simulation Overview

Note: The code in this tutorial does not use any specific framework (i.e. command-based
vs. simple data flow); however, guidance will be provided in certain areas for how to best
implement certain pieces of code in specific framework types.

The goal of this tutorial is to provide guidance on implementing simulation capabilities for a
differential-drivetrain robot. By the end of this tutorial, you should be able to:

1. Understand the basic underlying concepts behind the WPILib simulation framework.
2. Create a drivetrain simulation model using your robot’s physical parameters.
3. Use the simulation model to predict how your real robot will move given specific voltage

inputs.
4. Tune feedback constants and squash common bugs (e.g. motor inversion) before having

access to physical hardware.
5. Use the Simulation GUI to visualize robot movement on a virtual field.

744 Chapter 21. Robot Simulation

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespacedifferentialdrivesimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceDifferentialDriveSimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/simpledifferentialdrivesimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SimpleDifferentialDriveSimulation

FIRST Robotics Competition

Why Simulate a Drivetrain?

The drivetrain of a robot is one of the most important mechanisms on the robot – therefore,
it is important to ensure that the software powering your drivetrain is as robust as possible.
By being able to simulate how a physical drivetrain responds, you can get a head start on
writing quality software before you have access to the physical hardware. With the simulation
framework, you can verify not only basic functionality, like making sure that the inversions on
motors and encoders are correct, but also advanced capabilities such as verifying accuracy
of path following.

21.5.2 Step 1: Creating Simulated Instances of Hardware

The WPILib simulation framework contains several XXXSim classes, where XXX represents
physical hardware such as encoders or gyroscopes. These simulation classes can be used to
set positions and velocities (for encoders) and angles (for gyroscopes) from a model of your
drivetrain. See the Device Simulation article for more info about these simulation hardware
classes and simulation of vendor devices.

Note: Simulation objects associated with a particular subsystem should live in that subsys-
tem. An example of this is in the StateSpaceDriveSimulation (Java, C++) example.

21.5. Drivetrain Simulation Tutorial 745

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespacedifferentialdrivesimulation/subsystems/DriveSubsystem.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/StateSpaceDifferentialDriveSimulation/cpp/subsystems/DriveSubsystem.cpp

FIRST Robotics Competition

Simulating Encoders

The EncoderSim class allows users to set encoder positions and velocities on a given Encoder
object. When running on real hardware, the Encoder class interacts with real sensors to
count revolutions (and convert them to distance units automatically if configured to do so);
however, in simulation there are no such measurements to make. The EncoderSim class can
accept these simulated readings from a model of your drivetrain.

Note: It is not possible to simulate encoders that are directly connected to CAN motor
controllers using WPILib classes. For more information about your specific motor controller,
please read your vendor’s documentation.

Java

// These represent our regular encoder objects, which we would
// create to use on a real robot.
private Encoder m_leftEncoder = new Encoder(0, 1);
private Encoder m_rightEncoder = new Encoder(2, 3);

// These are our EncoderSim objects, which we will only use in
// simulation. However, you do not need to comment out these
// declarations when you are deploying code to the roboRIO.
private EncoderSim m_leftEncoderSim = new EncoderSim(m_leftEncoder);
private EncoderSim m_rightEncoderSim = new EncoderSim(m_rightEncoder);

C++

#include <frc/Encoder.h>
#include <frc/simulation/EncoderSim.h>

...

// These represent our regular encoder objects, which we would
// create to use on a real robot.
frc::Encoder m_leftEncoder{0, 1};
frc::Encoder m_rightEncoder{2, 3};

// These are our EncoderSim objects, which we will only use in
// simulation. However, you do not need to comment out these
// declarations when you are deploying code to the roboRIO.
frc::sim::EncoderSim m_leftEncoderSim{m_leftEncoder};
frc::sim::EncoderSim m_rightEncoderSim{m_rightEncoder};

Simulating Gyroscopes

Similar to the EncoderSim class, simulated gyroscope classes also exist for commonly used
WPILib gyros – AnalogGyroSim and ADXRS450_GyroSim. These are also constructed in the
same manner.

Note: It is not possible to simulate certain vendor gyros (i.e. Pigeon IMU and NavX) using
WPILib classes. Please read the respective vendors’ documentation for information on their
simulation support.

746 Chapter 21. Robot Simulation

FIRST Robotics Competition

Java

// Create our gyro object like we would on a real robot.
private AnalogGyro m_gyro = new AnalogGyro(1);

// Create the simulated gyro object, used for setting the gyro
// angle. Like EncoderSim, this does not need to be commented out
// when deploying code to the roboRIO.
private AnalogGyroSim m_gyroSim = new AnalogGyroSim(m_gyro);

C++

#include <frc/AnalogGyro.h>
#include <frc/simulation/AnalogGyroSim.h>

...

// Create our gyro objectl ike we would on a real robot.
frc::AnalogGyro m_gyro{1};

// Create the simulated gyro object, used for setting the gyro
// angle. Like EncoderSim, this does not need to be commented out
// when deploying code to the roboRIO.
frc::sim::AnalogGyroSim m_gyroSim{m_gyro};

21.5.3 Step 2: Creating a Drivetrain Model

In order to accurately determine how your physical drivetrain will respond to given motor
voltage inputs, an accurate model of your drivetrain must be created. This model is usu-
ally created by measuring various physical parameters of your real robot. In WPILib, this
drivetrain simulation model is represented by the DifferentialDrivetrainSim class.

Creating a DifferentialDrivetrainSim from Physical Measurements

One way to creating a DifferentialDrivetrainSim instance is by using physical measure-
ments of the drivetrain and robot – either obtained through CAD software or real-world mea-
surements (the latter will usually yield better results as it will more closely match reality).
This constructor takes the following parameters:

• The type and number of motors on one side of the drivetrain.
• The gear ratio between the motors and the wheels as output torque over input torque

(this number is usually greater than 1 for drivetrains).
• The moment of inertia of the drivetrain (this can be obtained from a CAD model of your

drivetrain. Usually, this is between 3 and 8 kgm2).
• The mass of the drivetrain (it is recommended to use the mass of the entire robot itself, as

it will more accurately model the acceleration characteristics of your robot for trajectory
tracking).

• The radius of the drive wheels.
• The track width (distance between left and right wheels).
• Standard deviations of measurement noise: this represents how much measurement

noise you expect from your real sensors. The measurement noise is an array with 7

21.5. Drivetrain Simulation Tutorial 747

FIRST Robotics Competition

elements, with each element representing the standard deviation of measurement noise
in x, y, heading, left velocity, right velocity, left position, and right position respectively.
This option can be omitted in C++ or set to null in Java if measurement noise is not
desirable.

You can calculate the measurement noise of your sensors by taking multiple data points of
the state you are trying to measure and calculating the standard deviation using a tool like
Python. For example, to calculate the standard deviation in your encoders’ velocity estimate,
you can move your robot at a constant velocity, take multiple measurements, and calculate
their standard deviation from the known mean. If this process is too tedious, the values used
in the example below should be a good representation of average noise from encoders.

Note: The standard deviation of the noise for a measurement has the same units as that
measurement. For example, the standard deviation of the velocity noise has units of m/s.

Note: It is very important to use SI units (i.e. meters and radians) when passing parameters
in Java. In C++, the units library can be used to specify any unit type.

Java

// Create the simulation model of our drivetrain.
DifferentialDrivetrainSim m_driveSim = new DifferentialDrivetrainSim(
DCMotor.getNEO(2), // 2 NEO motors on each side of the drivetrain.
7.29, // 7.29:1 gearing reduction.
7.5, // MOI of 7.5 kg m^2 (from CAD model).
60.0, // The mass of the robot is 60 kg.
Units.inchesToMeters(3), // The robot uses 3" radius wheels.
0.7112, // The track width is 0.7112 meters.

// The standard deviations for measurement noise:
// x and y: 0.001 m
// heading: 0.001 rad
// l and r velocity: 0.1 m/s
// l and r position: 0.005 m
VecBuilder.fill(0.001, 0.001, 0.001, 0.1, 0.1, 0.005, 0.005));

C++

#include <frc/simulation/DifferentialDrivetrainSim.h>

...

// Create the simulation model of our drivetrain.
frc::sim::DifferentialDrivetrainSim m_driveSim{
frc::DCMotor::GetNEO(2), // 2 NEO motors on each side of the drivetrain.
7.29, // 7.29:1 gearing reduction.
7.5_kg_sq_m, // MOI of 7.5 kg m^2 (from CAD model).
60_kg, // The mass of the robot is 60 kg.
3_in, // The robot uses 3" radius wheels.
0.7112_m, // The track width is 0.7112 meters.

// The standard deviations for measurement noise:
// x and y: 0.001 m
// heading: 0.001 rad

(continues on next page)

748 Chapter 21. Robot Simulation

FIRST Robotics Competition

(continued from previous page)
// l and r velocity: 0.1 m/s
// l and r position: 0.005 m
{0.001, 0.001, 0.001, 0.1, 0.1, 0.005, 0.005}};

Creating a DifferentialDrivetrainSim from SysId Gains

You can also use the gains produced by System Identification, which you may have performed
as part of setting up the trajectory tracking workflow outlined here to create a simulation
model of your drivetrain and often yield results closer to real-world behavior than the method
above.

Important: You must need two sets of Kv and Ka gains from the identification tool – one
from straight-line motion and the other from rotating in place. We will refer to these two sets
of gains as linear and angular gains respectively.

This constructor takes the following parameters:
• A linear system representing the drivetrain – this can be created using the identification

gains.
• The track width (distance between the left and right wheels).
• The type and number of motors on one side of the drivetrain.
• The gear ratio between the motors and the wheels as output torque over input torque

(this number is usually greater than 1 for drivetrains).
• The radius of the drive wheels.
• Standard deviations of measurement noise: this represents how much measurement

noise you expect from your real sensors. The measurement noise is an array with 7
elements, with each element representing the standard deviation of measurement noise
in x, y, heading, left velocity, right velocity, left position, and right position respectively.
This option can be omitted in C++ or set to null in Java if measurement noise is not
desirable.

You can calculate the measurement noise of your sensors by taking multiple data points of
the state you are trying to measure and calculating the standard deviation using a tool like
Python. For example, to calculate the standard deviation in your encoders’ velocity estimate,
you can move your robot at a constant velocity, take multiple measurements, and calculate
their standard deviation from the known mean. If this process is too tedious, the values used
in the example below should be a good representation of average noise from encoders.

Note: The standard deviation of the noise for a measurement has the same units as that
measurement. For example, the standard deviation of the velocity noise has units of m/s.

Note: It is very important to use SI units (i.e. meters and radians) when passing parameters
in Java. In C++, the units library can be used to specify any unit type.

Java

21.5. Drivetrain Simulation Tutorial 749

FIRST Robotics Competition

// Create our feedforward gain constants (from the identification
// tool)
static final double KvLinear = 1.98;
static final double KaLinear = 0.2;
static final double KvAngular = 1.5;
static final double KaAngular = 0.3;

// Create the simulation model of our drivetrain.
private DifferentialDrivetrainSim m_driveSim = new DifferentialDrivetrainSim(
// Create a linear system from our identification gains.
LinearSystemId.identifyDrivetrainSystem(KvLinear, KaLinear, KvAngular, KaAngular),
DCMotor.getNEO(2), // 2 NEO motors on each side of the drivetrain.
7.29, // 7.29:1 gearing reduction.
0.7112, // The track width is 0.7112 meters.
Units.inchesToMeters(3), // The robot uses 3" radius wheels.

// The standard deviations for measurement noise:
// x and y: 0.001 m
// heading: 0.001 rad
// l and r velocity: 0.1 m/s
// l and r position: 0.005 m
VecBuilder.fill(0.001, 0.001, 0.001, 0.1, 0.1, 0.005, 0.005));

C++

#include <frc/simulation/DifferentialDrivetrainSim.h>
#include <frc/system/plant/LinearSystemId.h>
#include <units/acceleration.h>
#include <units/angular_acceleration.h>
#include <units/angular_velocity.h>
#include <units/voltage.h>
#include <units/velocity.h>

...

// Create our feedforward gain constants (from the identification
// tool). Note that these need to have correct units.
static constexpr auto KvLinear = 1.98_V / 1_mps;
static constexpr auto KaLinear = 0.2_V / 1_mps_sq;
static constexpr auto KvAngular = 1.5_V / 1_rad_per_s;
static constexpr auto KaAngular = 0.3_V / 1_rad_per_s_sq;
// The track width is 0.7112 meters.
static constexpr auto kTrackwidth = 0.7112_m;

// Create the simulation model of our drivetrain.
frc::sim::DifferentialDrivetrainSim m_driveSim{
// Create a linear system from our identification gains.
frc::LinearSystemId::IdentifyDrivetrainSystem(

KvLinear, KaLinear, KvAngular, KaAngular, kTrackWidth),
kTrackWidth,
frc::DCMotor::GetNEO(2), // 2 NEO motors on each side of the drivetrain.
7.29, // 7.29:1 gearing reduction.
3_in, // The robot uses 3" radius wheels.

// The standard deviations for measurement noise:
// x and y: 0.001 m
// heading: 0.001 rad

(continues on next page)

750 Chapter 21. Robot Simulation

FIRST Robotics Competition

(continued from previous page)
// l and r velocity: 0.1 m/s
// l and r position: 0.005 m
{0.001, 0.001, 0.001, 0.1, 0.1, 0.005, 0.005}};

Creating a DifferentialDrivetrainSim of the KoP Chassis

The DifferentialDrivetrainSim class also has a static createKitbotSim() (Java) / Cre-
ateKitbotSim() (C++) method that can create an instance of the DifferentialDrivetrain-
Sim using the standard Kit of Parts Chassis parameters. This method takes 5 arguments, two
of which are optional:

• The type and number of motors on one side of the drivetrain.
• The gear ratio between the motors and the wheels as output torque over input torque

(this number is usually greater than 1 for drivetrains).
• The diameter of the wheels installed on the drivetrain.
• The moment of inertia of the drive base (optional).
• Standard deviations of measurement noise: this represents how much measurement

noise you expect from your real sensors. The measurement noise is an array with 7
elements, with each element representing the standard deviation of measurement noise
in x, y, heading, left velocity, right velocity, left position, and right position respectively.
This option can be omitted in C++ or set to null in Java if measurement noise is not
desirable.

You can calculate the measurement noise of your sensors by taking multiple data points of
the state you are trying to measure and calculating the standard deviation using a tool like
Python. For example, to calculate the standard deviation in your encoders’ velocity estimate,
you can move your robot at a constant velocity, take multiple measurements, and calculate
their standard deviation from the known mean. If this process is too tedious, the values used
in the example below should be a good representation of average noise from encoders.

Note: The standard deviation of the noise for a measurement has the same units as that
measurement. For example, the standard deviation of the velocity noise has units of m/s.

Note: It is very important to use SI units (i.e. meters and radians) when passing parameters
in Java. In C++, the units library can be used to specify any unit type.

Java

private DifferentialDrivetrainSim m_driveSim = DifferentialDrivetrainSim.
↪→createKitbotSim(
KitbotMotor.kDualCIMPerSide, // 2 CIMs per side.
KitbotGearing.k10p71, // 10.71:1
KitbotWheelSize.kSixInch, // 6" diameter wheels.
null // No measurement noise.

);

C++

21.5. Drivetrain Simulation Tutorial 751

FIRST Robotics Competition

#include <frc/simulation/DifferentialDrivetrainSim.h>

...

frc::sim::DifferentialDrivetrainSim m_driveSim =
frc::sim::DifferentialDrivetrainSim::CreateKitbotSim(

frc::sim::DifferentialDrivetrainSim::KitbotMotor::DualCIMPerSide, // 2 CIMs per␣
↪→side.

frc::sim::DifferentialDrivetrainSim::KitbotGearing::k10p71, // 10.71:1
frc::sim::DifferentialDrivetrainSim::KitbotWheelSize::kSixInch // 6" diameter␣

↪→wheels.
);

Note: You can use the KitbotMotor, KitbotGearing, and KitbotWheelSize enum (Java) /
struct (C++) to get commonly used configurations of the Kit of Parts Chassis.

Important: Constructing your DifferentialDrivetrainSim instance in this way is just an
approximation and is intended to get teams quickly up and running with simulation. Using
empirical values measured from your physical robot will always yield more accurate results.

21.5.4 Step 3: Updating the Drivetrain Model

Now that the drivetrain model has been made, it needs to be updated periodically with the
latest motor voltage commands. It is recommended to do this step in a separate simula-
tionPeriodic() / SimulationPeriodic() method inside your subsystem and only call this
method in simulation.

Note: If you are using the command-based framework, every subsystem that extends Sub-
systemBase has a simulationPeriodic() / SimulationPeriodic() which can be overridden.
This method is automatically run only during simulation. If you are not using the command-
based library, make sure you call your simulation method inside the overridden simulation-
Periodic() / SimulationPeriodic() of the main Robot class. These periodic methods are
also automatically called only during simulation.

There are three main steps to updating the model:
1. Set the input of the drivetrain model. These are the motor voltages from the two sides

of the drivetrain.
2. Advance the model forward in time by the nominal periodic timestep (Usually 20 ms).

This updates all of the drivetrain’s states (i.e. pose, encoder positions and velocities) as
if 20 ms had passed.

3. Update simulated sensors with new positions, velocities, and angles to use in other
places.

Java

private PWMSparkMax m_leftMotor = new PWMSparkMax(0);
private PWMSparkMax m_rightMotor = new PWMSparkMax(1);

(continues on next page)

752 Chapter 21. Robot Simulation

FIRST Robotics Competition

(continued from previous page)

public Drivetrain() {
...
m_leftEncoder.setDistancePerPulse(2 * Math.PI * kWheelRadius / kEncoderResolution);
m_rightEncoder.setDistancePerPulse(2 * Math.PI * kWheelRadius / kEncoderResolution);

}

public void simulationPeriodic() {
// Set the inputs to the system. Note that we need to convert
// the [-1, 1] PWM signal to voltage by multiplying it by the
// robot controller voltage.
m_driveSim.setInputs(m_leftMotor.get() * RobotController.getInputVoltage(),

m_rightMotor.get() * RobotController.getInputVoltage());

// Advance the model by 20 ms. Note that if you are running this
// subsystem in a separate thread or have changed the nominal timestep
// of TimedRobot, this value needs to match it.
m_driveSim.update(0.02);

// Update all of our sensors.
m_leftEncoderSim.setDistance(m_driveSim.getLeftPositionMeters());
m_leftEncoderSim.setRate(m_driveSim.getLeftVelocityMetersPerSecond());
m_rightEncoderSim.setDistance(m_driveSim.getRightPositionMeters());
m_rightEncoderSim.setRate(m_driveSim.getRightVelocityMetersPerSecond());
m_gyroSim.setAngle(-m_driveSim.getHeading().getDegrees());

}

C++

frc::PWMSparkMax m_leftMotor{0};
frc::PWMSparkMax m_rightMotor{1};

Drivetrain() {
...
m_leftEncoder.SetDistancePerPulse(2 * std::numbers::pi * kWheelRadius /␣

↪→kEncoderResolution);
m_rightEncoder.SetDistancePerPulse(2 * std::numbers::pi * kWheelRadius /␣

↪→kEncoderResolution);
}

void SimulationPeriodic() {
// Set the inputs to the system. Note that we need to convert
// the [-1, 1] PWM signal to voltage by multiplying it by the
// robot controller voltage.
m_driveSim.SetInputs(

m_leftMotor.get() * units::volt_t(frc::RobotController::GetInputVoltage()),
m_rightMotor.get() * units::volt_t(frc::RobotController::GetInputVoltage()));

// Advance the model by 20 ms. Note that if you are running this
// subsystem in a separate thread or have changed the nominal timestep
// of TimedRobot, this value needs to match it.
m_driveSim.Update(20_ms);

// Update all of our sensors.
m_leftEncoderSim.SetDistance(m_driveSim.GetLeftPosition().value());
m_leftEncoderSim.SetRate(m_driveSim.GetLeftVelocity().value());

(continues on next page)

21.5. Drivetrain Simulation Tutorial 753

FIRST Robotics Competition

(continued from previous page)
m_rightEncoderSim.SetDistance(m_driveSim.GetRightPosition().value());
m_rightEncoderSim.SetRate(m_driveSim.GetRightVelocity().value());
m_gyroSim.SetAngle(-m_driveSim.GetHeading().Degrees());

}

Important: If the right side of your drivetrain is inverted, you MUST negate the right voltage
in the SetInputs() call to ensure that positive voltages correspond to forward movement.

Important: Because the drivetrain simulator model returns positions and velocities in me-
ters and m/s respectively, these must be converted to encoder ticks and ticks/s when calling
SetDistance() and SetRate(). Alternatively, you can configure SetDistancePerPulse on
the encoders to have the Encoder object take care of this automatically – this is the approach
that is taken in the example above.

Now that the simulated encoder positions, velocities, and gyroscope angles have been set,
you can call m_leftEncoder.GetDistance(), etc. in your robot code as normal and it will
behave exactly like it would on a real robot. This involves performing odometry calculations,
running velocity PID feedback loops for trajectory tracking, etc.

21.5.5 Step 4: Updating Odometry and Visualizing Robot Position

Now that the simulated encoder positions, velocities, and gyro angles are being updated with
accurate information periodically, this data can be used to update the pose of the robot in a
periodic loop (such as the periodic() method in a Subsystem). In simulation, the periodic
loop will use simulated encoder and gyro readings to update odometry whereas on the real
robot, the same code will use real readings from physical hardware.

Note: For more information on using odometry, see this document.

Robot Pose Visualization

The robot pose can be visualized on the Simulator GUI (during simulation) or on a dashboard
such as Glass (on a real robot) by sending the odometry pose over a Field2d object. A Field2d
can be trivially constructed without any constructor arguments:
Java

private Field2d m_field = new Field2d();

C++

#include <frc/smartdashboard/Field2d.h>

..

frc::Field2d m_field;

754 Chapter 21. Robot Simulation

FIRST Robotics Competition

This Field2d instance must then be sent over NetworkTables. The best place to do this is in
the constructor of your subsystem.
Java

public Drivetrain() {
...
SmartDashboard.putData("Field", m_field);

}

C++

#include <frc/smartdashboard/SmartDashboard.h>

Drivetrain() {
...
frc::SmartDashboard::PutData("Field", &m_field);

}

Note: The Field2d instance can also be sent using a lower-level NetworkTables API or using
the Shuffleboard API.

Finally, the pose from your odometry must be updated periodically into the Field2d object.
Remember that this should be in a general periodic() method i.e. one that runs both during
simulation and during real robot operation.
Java

public void periodic() {
...
// This will get the simulated sensor readings that we set
// in the previous article while in simulation, but will use
// real values on the robot itself.
m_odometry.update(m_gyro.getRotation2d(),

m_leftEncoder.getDistance(),
m_rightEncoder.getDistance());

m_field.setRobotPose(m_odometry.getPoseMeters());
}

C++

void Periodic() {
...
// This will get the simulated sensor readings that we set
// in the previous article while in simulation, but will use
// real values on the robot itself.
m_odometry.Update(m_gyro.GetRotation2d(),

units::meter_t(m_leftEncoder.GetDistance()),
units::meter_t(m_rightEncoder.GetDistance()));

m_field.SetRobotPose(m_odometry.GetPose());
}

Important: It is important that this code is placed in a regular periodic() method – one
that is called periodically regardless of mode of operation. If you are using the command-
based library, this method already exists. If not, you are responsible for calling this method

21.5. Drivetrain Simulation Tutorial 755

FIRST Robotics Competition

periodically from the main Robot class.

Note: At this point we have covered all of the code changes required to run your code. You
should head to the Simulation User Interface page for more info on how to run the simulation
and the Field2d Widget page to add the field that your simulated robot will run on to the GUI.

21.6 Unit Testing

Unit testing is a method of testing code by dividing the code into the smallest “units” possible
and testing each unit. In robot code, this can mean testing the code for each subsystem
individually. There are many unit testing frameworks for most languages. Java robot projects
have JUnit 5 available by default, and C++ robot projects have Google Test.

21.6.1 Writing Testable Code

Note: This example can be easily adapted to the command-based paradigm by having Intake
inherit from SubsystemBase.

Our subsystem will be an Infinite Recharge intake mechanism containing a piston and a motor:
the piston deploys/retracts the intake, and the motor will pull the Power Cells inside. We don’t
want the motor to run if the intake mechanism isn’t deployed because it won’t do anything.
To provide a “clean slate” for each test, we need to have a function to destroy the object
and free all hardware allocations. In Java, this is done by implementing the AutoCloseable
interface and its .close() method, destroying each member object by calling the member’s
.close() method - an object without a .close() method probably doesn’t need to be closed.
In C++, the default destructor will be called automatically when the object goes out of scope
and will call destructors of member objects.

Note: Vendors might not support resource closing identically to the way shown here. See
your vendor’s documentation for more information as to what they support and how.

Java

import edu.wpi.first.wpilibj.DoubleSolenoid;
import edu.wpi.first.wpilibj.PneumaticsModuleType;
import edu.wpi.first.wpilibj.examples.unittest.Constants.IntakeConstants;
import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;

public class Intake implements AutoCloseable {
private final PWMSparkMax m_motor;
private final DoubleSolenoid m_piston;

public Intake() {
m_motor = new PWMSparkMax(IntakeConstants.kMotorPort);
m_piston =

(continues on next page)

756 Chapter 21. Robot Simulation

https://junit.org/junit5/
https://github.com/google/googletest/blob/main/docs/primer.md

FIRST Robotics Competition

(continued from previous page)
new DoubleSolenoid(

PneumaticsModuleType.CTREPCM,
IntakeConstants.kPistonFwdChannel,
IntakeConstants.kPistonRevChannel);

}

public void deploy() {
m_piston.set(DoubleSolenoid.Value.kForward);

}

public void retract() {
m_piston.set(DoubleSolenoid.Value.kReverse);
m_motor.set(0); // turn off the motor

}

public void activate(double speed) {
if (isDeployed()) {
m_motor.set(speed);

} else { // if piston isn't open, do nothing
m_motor.set(0);

}
}

public boolean isDeployed() {
return m_piston.get() == DoubleSolenoid.Value.kForward;

}

@Override
public void close() throws Exception {

m_piston.close();
m_motor.close();

}
}

C++ (Header)

#include <frc/DoubleSolenoid.h>
#include <frc/motorcontrol/PWMSparkMax.h>

#include "Constants.h"

class Intake {
public:
void Deploy();
void Retract();
void Activate(double speed);
bool IsDeployed() const;

private:
frc::PWMSparkMax m_motor{IntakeConstants::kMotorPort};
frc::DoubleSolenoid m_piston{frc::PneumaticsModuleType::CTREPCM,

IntakeConstants::kPistonFwdChannel,
IntakeConstants::kPistonRevChannel};

};

C++ (Source)

21.6. Unit Testing 757

FIRST Robotics Competition

#include "subsystems/Intake.h"

void Intake::Deploy() {
m_piston.Set(frc::DoubleSolenoid::Value::kForward);

}

void Intake::Retract() {
m_piston.Set(frc::DoubleSolenoid::Value::kReverse);
m_motor.Set(0); // turn off the motor

}

void Intake::Activate(double speed) {
if (IsDeployed()) {

m_motor.Set(speed);
} else { // if piston isn't open, do nothing

m_motor.Set(0);
}

}

bool Intake::IsDeployed() const {
return m_piston.Get() == frc::DoubleSolenoid::Value::kForward;

}

21.6.2 Writing Tests

Important: Tests are placed inside the test source set: /src/test/java/ and /src/test/
cpp/ for Java and C++ tests, respectively. Files outside that source root do not have access
to the test framework - this will fail compilation due to unresolved references.

In Java, each test class contains at least one test method marked with @org.junit.jupiter.
api.Test, each method representing a test case. Additional methods for opening resources
(such as our Intake object) before each test and closing them after are respectively marked
with @org.junit.jupiter.api.BeforeEach and @org.junit.jupiter.api.AfterEach. In
C++, test fixture classes inheriting from testing::Test contain our subsystem and simula-
tion hardware objects, and test methods are written using the TEST_F(testfixture, test-
name) macro. The SetUp() and TearDown() methods can be overridden in the test fixture
class and will be run respectively before and after each test.
Each test method should contain at least one assertion (assert*() in Java or EXPECT_*() in
C++). These assertions verify a condition at runtime and fail the test if the condition isn’t
met. If there is more than one assertion in a test method, the first failed assertion will crash
the test - execution won’t reach the later assertions.
Both JUnit and GoogleTest have multiple assertion types; the most common is equality:
assertEquals(expected, actual)/EXPECT_EQ(expected, actual). When comparing num-
bers, a third parameter - delta, the acceptable error, can be given. In JUnit (Java), these
assertions are static methods and can be used without qualification by adding the static star
import import static org.junit.jupiter.api.Assertions.*. In Google Test (C++), as-
sertions are macros from the <gtest/gtest.h> header.

Note: Comparison of floating-point values isn’t accurate, so comparing them should be done
with an acceptable error parameter (DELTA).

758 Chapter 21. Robot Simulation

FIRST Robotics Competition

Java

import static org.junit.jupiter.api.Assertions.assertEquals;

import edu.wpi.first.hal.HAL;
import edu.wpi.first.wpilibj.DoubleSolenoid;
import edu.wpi.first.wpilibj.PneumaticsModuleType;
import edu.wpi.first.wpilibj.examples.unittest.Constants.IntakeConstants;
import edu.wpi.first.wpilibj.simulation.DoubleSolenoidSim;
import edu.wpi.first.wpilibj.simulation.PWMSim;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

class IntakeTest {
static final double DELTA = 1e-2; // acceptable deviation range
Intake m_intake;
PWMSim m_simMotor;
DoubleSolenoidSim m_simPiston;

@BeforeEach // this method will run before each test
void setup() {

assert HAL.initialize(500, 0); // initialize the HAL, crash if failed
m_intake = new Intake(); // create our intake
m_simMotor =

new PWMSim(IntakeConstants.kMotorPort); // create our simulation PWM motor␣
↪→controller

m_simPiston =
new DoubleSolenoidSim(

PneumaticsModuleType.CTREPCM,
IntakeConstants.kPistonFwdChannel,
IntakeConstants.kPistonRevChannel); // create our simulation solenoid

}

@SuppressWarnings("PMD.SignatureDeclareThrowsException")
@AfterEach // this method will run after each test
void shutdown() throws Exception {

m_intake.close(); // destroy our intake object
}

@Test // marks this method as a test
void doesntWorkWhenClosed() {

m_intake.retract(); // close the intake
m_intake.activate(0.5); // try to activate the motor
assertEquals(

0.0, m_simMotor.getSpeed(), DELTA); // make sure that the value set to the␣
↪→motor is 0
}

@Test
void worksWhenOpen() {

m_intake.deploy();
m_intake.activate(0.5);
assertEquals(0.5, m_simMotor.getSpeed(), DELTA);

}

@Test
void retractTest() {

(continues on next page)

21.6. Unit Testing 759

FIRST Robotics Competition

(continued from previous page)
m_intake.retract();
assertEquals(DoubleSolenoid.Value.kReverse, m_simPiston.get());

}

@Test
void deployTest() {

m_intake.deploy();
assertEquals(DoubleSolenoid.Value.kForward, m_simPiston.get());

}
}

C++

#include <gtest/gtest.h>

#include <frc/DoubleSolenoid.h>
#include <frc/simulation/DoubleSolenoidSim.h>
#include <frc/simulation/PWMSim.h>

#include "Constants.h"
#include "subsystems/Intake.h"

class IntakeTest : public testing::Test {
protected:
Intake intake; // create our intake
frc::sim::PWMSim simMotor{

IntakeConstants::kMotorPort}; // create our simulation PWM
frc::sim::DoubleSolenoidSim simPiston{

frc::PneumaticsModuleType::CTREPCM, IntakeConstants::kPistonFwdChannel,
IntakeConstants::kPistonRevChannel}; // create our simulation solenoid

};

TEST_F(IntakeTest, DoesntWorkWhenClosed) {
intake.Retract(); // close the intake
intake.Activate(0.5); // try to activate the motor
EXPECT_DOUBLE_EQ(

0.0,
simMotor.GetSpeed()); // make sure that the value set to the motor is 0

}

TEST_F(IntakeTest, WorksWhenOpen) {
intake.Deploy();
intake.Activate(0.5);
EXPECT_DOUBLE_EQ(0.5, simMotor.GetSpeed());

}

TEST_F(IntakeTest, Retract) {
intake.Retract();
EXPECT_EQ(frc::DoubleSolenoid::Value::kReverse, simPiston.Get());

}

TEST_F(IntakeTest, Deploy) {
intake.Deploy();
EXPECT_EQ(frc::DoubleSolenoid::Value::kForward, simPiston.Get());

}

For more advanced usage of JUnit and Google Test, see the framework docs.

760 Chapter 21. Robot Simulation

FIRST Robotics Competition

21.6.3 Running Tests

Note: Tests will always be run in simulation on your desktop. For prerequisites and more
info, see the simulation introduction.

For Java tests to run, make sure that your build.gradle file contains the following block:

73 test {
74 useJUnitPlatform()
75 systemProperty 'junit.jupiter.extensions.autodetection.enabled', 'true'
76 }

Use Test Robot Code from the Command Palette to run the tests. Results will be reported
in the terminal output, each test will have a FAILED or PASSED/OK label next to the test name
in the output. JUnit (Java only) will generate a HTML document in build/reports/tests/
test/index.html with a more detailed overview of the results; if there are failed test a link
to render the document in your browser will be printed in the terminal output.
By default, Gradle runs the tests whenever robot code is built, including deploys. This will
increase deploy time, and failing tests will cause the build and deploy to fail. To prevent this
from happening, you can use Change Skip Tests On Deploy Setting from the Command Palette
to configure whether to run tests when deploying.

21.6. Unit Testing 761

FIRST Robotics Competition

762 Chapter 21. Robot Simulation

22
OutlineViewer

OutlineViewer is a utility used to view, modify and add to the contents of the NetworkTables
for debugging purposes. It displays all key value pairs currently in the NetworkTables and
can be used to modify the value of existing keys or add new keys to the table. OutlineViewer
is included in the Java and C++ language installations.

763

FIRST Robotics Competition

In Visual Studio Code, press Ctrl+Shift+P and type WPILib or click the WPILib logo in the top
right to launch the WPILib Command Palette. Select Start Tool, then select OutlineViewer.
To connect to your robot, open OutlineViewer and set the Server Location to be your team
number. After you click start, OutlineViewer will connect. If you have trouble connecting to
OutlineViewer please see the Dashboard Troubleshooting Steps.

Note: You can use localhost instead of a team number to point OutlineViewer at a simulated
robot or a Romi.

To add additional key/value pairs to NetworkTables, right click on a location and choose the
corresponding data type.

Note: LabVIEW teams can use the Variables tab of the LabVIEW Dashboard to accomplish
the same functionality as OutlineViewer.

764 Chapter 22. OutlineViewer

23
Vision Processing

23.1 Vision Introduction

23.1.1 What is Vision?

Vision in FRC® uses a camera connected to the robot in order to help teams score and drive,
during both the autonomous and teleoperated periods.

Vision Methods

There are two main method that most teams use for vision in FRC.

Streaming

This method involves streaming the camera to the Driver Station so that the driver and ma-
nipulator can get visual information from the robot’s point of view. This method is simple and
takes little time to implement, making it a good option if you do not need features of vision
processing.

• Streaming using the roboRIO

Processing

Instead of only streaming the camera to the Driver Station, this method involves using the
frames captured by the camera to compute information, such as a game piece’s or target’s
angle and distance from the camera. This method requires more technical knowledge and
time in order to implement, as well as being more computationally expensive. However, this
method can help improve autonomous performance and assist in “auto-scoring” operations
during the teleoperated period. This method can be done using the roboRIO or a coprocessor
such as the Raspberry Pi using either OpenCV or programs such as GRIP.

• Vision Processing with Raspberry Pi
• Vision Processing with GRIP

765

FIRST Robotics Competition

• Vision Processing with the roboRIO
For additional information on the pros and cons of using a coprocessor for vision processing,
see the next page, Strategies for Vision Programming.

23.1.2 Strategies for Vision Programming

Using computer vision is a great way of making your robot be responsive to the elements on
the field and make it much more autonomous. Often in FRC® games there are bonus points
for autonomously shooting balls or other game pieces into goals or navigating to locations on
the field. Computer vision is a great way of solving many of these problems. And if you have
autonomous code that can do the challenge, then it can be used during the teleop period as
well to help the human drivers.
There are many options for choosing the components for vision processing and where the
vision program should run. WPILib and associated tools support a number of options and
give teams a lot of flexibility to decide what to do. This article will attempt to give you some
insight into many of the choices and tradeoffs that are available.

Vision Workflows

Cameras

Types of Cameras

PixyCam

Ethernet

USB

Settings

Resolution

Frame Rate

Brightness

Tracking a Target

Camera views on Dri...Use Gyro for turns

Where code runs

Co-proccessor

Hand-written

GRIP Code Gene...

Driver Station

Runs GRIP

roboRIO

Generated by GRIP

Hand Written

WPILib code with Ca...

Write an OpenCV P...

Co-processor Options

Communications

Network Settings

Hand-written Protocol

NetworkTables

Types of Co-proccessors

Kangaroo

Jetson

Raspberry Pi

Viewer does not support full SVG 1.1

766 Chapter 23. Vision Processing

FIRST Robotics Competition

OpenCV Computer Vision Library

OpenCV is an open source computer vision library that is widely used throughout academia
and industry. It has support from hardware manufactures providing GPU accelerated pro-
cessing, it has bindings for a number of languages including C++, Java, and Python. It is
also well documented with many web sites, books, videos, and training courses so there are
lots of resources available to help learn how to use it. The C++ and Java versions of WPILib
include the OpenCV libraries, there is support in the library for capturing, processing and
viewing video, and tools to help you create your vision algorithms. For more information
about OpenCV see https://opencv.org.

Vision Code on roboRIO

Video streamEthernetUSB

Viewer does not support full SVG 1.1

Vision code can be embedded into the main robot program on the roboRIO. Building and
running the vision code is straightforward because it is built and deployed along with the
robot program. The vision code can be written by hand or generated by GRIP in either C++
or Java. The disadvantage of this approach is that having vision code running on the same
processor as the robot program can cause performance issues. This is something you will
have to evaluate depending on the requirements for your robot and vision program.
In this approach, the vision code simply produces results that the robot code directly uses.
Be careful about synchronization issues when writing robot code that is getting values from
a vision thread. The GRIP generated code and the VisionRunner class in WPILib make this
easier.
Using functions provided by the CameraServer class, the video stream can be sent to dash-
boards such as Shuffleboard so operators can see what the camera sees. In addition, anno-
tations can be added to the images using OpenCV commands so targets or other interesting
objects can be identified in the dashboard view.

Vision Code on DS Computer

Video streamEthernetUSB

NetworkTables...
Viewer does not support full SVG 1.1

When vision code is running on the DS computer, the video is streamed back to the Driver
Station laptop for processing. Even the older Classmate laptops are substantially faster at
vision processing than the roboRIO. GRIP can be run on the Driver Station laptop directly
with the results sent back to the robot using NetworkTables. Alternatively you can write your

23.1. Vision Introduction 767

https://opencv.org

FIRST Robotics Competition

own vision program using a language of your choosing. Python makes a good choice since
there is a native NetworkTables implementation and the OpenCV bindings are very good.
After the images are processed, the key values such as the target position, distance or any-
thing else you need can be sent back to the robot with NetworkTables. This approach gener-
ally has higher latency, as delay is added due to the images needing to be sent to the laptop.
Bandwidth limitations also limit the maximum resolution and FPS of the images used for pro-
cessing.
The video stream can be displayed on Shuffleboard or in GRIP.

Vision Code on Coprocessor

Ethernet

Processed video...

E
th

e
rn

e
t

Ethernet

U
S

B

Viewer does not support full SVG 1.1

Coprocessors such as the Raspberry Pi are ideal for supporting vision code (see Using the
Raspberry Pi for FRC). The advantage is that they can run full speed and not interfere with
the robot program. In this case, the camera is probably connected to the coprocessor or
(in the case of Ethernet cameras) an Ethernet switch on the robot. The program can be
written in any language; Python is a good choice because of its simple bindings to OpenCV
and NetworkTables. Some teams have used high performance vision coprocessors such as
the Nvidia Jetson for fastest speed and highest resolution, although this approach generally
requires advanced Linux and programming knowledge.
This approach takes a bit more programming expertise as well as a small amount of additional
weight, but otherwise it brings the best of both worlds compared to the other two approaches,
as coprocessors are much faster than the roboRIO and the image processing can be performed
with minimal latency or bandwidth use.
Data can be sent from the vision program on the coprocessor to the robot using NetworkTables
or a private protocol over a network or serial connection.

768 Chapter 23. Vision Processing

FIRST Robotics Competition

Camera Options

There are a number of camera options supported by WPILib. Cameras have a number of
parameters that affect operation; for example, frame rate and image resolution affect the
quality of the received images, but when set too high impact processing time and, if sent to
the driver station, may exceed the available bandwidth on the field.
The CameraServer class in C++ and Java is used to interface with cameras connected to the
robot. It retrieve frames for local processing through a Source object and sends the stream
to your driver station for viewing or processing there.

23.1.3 Target Info and Retroreflection

Many FRC® games have retroreflective tape attached to field elements to aid in vision pro-
cessing. This document describes the Vision Targets from the 2016 FRC game and the visual
properties of the material making up the targets.

Note: For official dimensions and drawings of all field components, please see the Official
Field Drawings.

Targets

23.1. Vision Introduction 769

FIRST Robotics Competition

Each 2016 vision target consists of a 1’ 8” wide, 1’ tall U-shape made of 2” wide retroreflective
material (3M 8830 Silver Marking Film). The targets are located immediately adjacent to the
bottom of each high goal. When properly lit, the retroreflective tape produces a bright and/or
color-saturated marker.

Retroreflectivity vs. Reflectivity

R
e
tr

o
re

fl
e
c
ti

v
e
 S

u
rf

a
c
e

R
e
fl
e
c
ti

v
e
 S

u
rf

a
c
e

Viewer does not support full SVG 1.1

Highly reflective materials are generally mirrored so that light “bounces off” at a supplemen-
tary angle. As shown above-left, the blue and red angles sum to 180 degrees. An equivalent
explanation is that the light reflects about the surface normal the green line drawn perpen-
dicular to the surface. Notice that a light pointed at the surface will return to the light source
only if the blue angle is ~90 degrees.
Retro-reflective materials are not mirrored, but it will typically have either shiny facets across
the surface, or it will have a pearl-like appearance. Not all faceted or pearl-like materials

770 Chapter 23. Vision Processing

FIRST Robotics Competition

exhibit retro-reflection, however. Retro-reflective materials return the majority of light back
to the light source, and they do this for a wide range of angles between the surface and the
light source, not just the 90 degree case. Retro-reflective materials accomplish this using
small prisms, such as found on a bicycle or roadside reflector, or by using small spheres with
the appropriate index of refraction that accomplish multiple internal reflections. In nature,
the eyes of some animals, including house cats, also exhibit the retro-reflective effect typically
referred to as night-shine.

Examples of Retroreflection

23.1. Vision Introduction 771

FIRST Robotics Competition

This material should be relatively familiar as it is often used to enhance nighttime visibility
of road signs, bicycles, and pedestrians.
Initially, retro-reflection may not seem like a useful property for nighttime safety, but when
the light and eye are near one another, as shown above, the reflected light returns to the eye,
and the material shines brightly even at large distances. Due to the small angle between the
driver’s eyes and vehicle headlights, retro-reflective materials can greatly increase visibility
of distant objects during nighttime driving.

Demonstration

To further explore retro-reflective material properties:
1. Place a piece of the material on a wall or vertical surface
2. Stand 10-20 feet away, and shine a small flashlight at the material.
3. Start with the light held at your belly button, and raise it slowly until it is between your

eyes. As the light nears your eyes, the intensity of the returned light will increase rapidly.
4. Alter the angle by moving to other locations in the room and repeating. The bright

reflection should occur over a wide range of viewing angles, but the angle from light
source to eye is key and must be quite small.

Experiment with different light sources. The material is hundreds of times more reflective
than white paint; so dim light sources will work fine. For example, a red bicycle safety light
will demonstrate that the color of the light source determines the color of the reflected light.
If possible, position several team members at different locations, each with their own light
source. This will show that the effects are largely independent, and the material can simul-
taneously appear different colors to various team members. This also demonstrates that the
material is largely immune to environmental lighting. The light returning to the viewer is
almost entirely determined by a light source they control or one directly behind them. Using

772 Chapter 23. Vision Processing

FIRST Robotics Competition

the flashlight, identify other retro-reflective articles already in your environment: on clothing,
backpacks, shoes, etc.

Lighting

We have seen that the retro-reflective tape will not shine unless a light source is directed at it,
and the light source must pass very near the camera lens or the observer’s eyes. While there
are a number of ways to accomplish this, a very useful type of light source to investigate is
the ring flash, or ring light, shown above. It places the light source directly on or around the
camera lens and provides very even lighting. Because of their bright output and small size,
LEDs are particularly useful for constructing this type of device.
As shown above, inexpensive circular arrangements of LEDs are available in a variety of
colors and sizes and are easy to attach to cameras, and some can even be powered off of a
Raspberry Pi. While not designed for diffuse even lighting, they work quite well for causing
retro-reflective tape to shine. A small green LED ring is available through FIRST Choice.
Other similar LED rings are available from suppliers such as SuperBrightLEDs.

Sample Images

Sample images are located with the code examples for each language (packaged with Lab-
VIEW, and in a separate ZIP in the same location as the C++/Java samples).

23.1.4 Identifying and Processing the Targets

Once an image is captured, the next step is to identify Vision Target(s) in the image. This
document will walk through one approach to identifying the 2016 targets. Note that the
images used in this section were taken with the camera intentionally set to underexpose the
images, producing very dark images with the exception of the lit targets, see the section on
Camera Settings for details.

23.1. Vision Introduction 773

FIRST Robotics Competition

Additional Options

This document walks through the approach used by the example code provided in LabVIEW
(for PC or roboRIO), C++ and Java. In addition to these options teams should be aware of the
following alternatives that allow for vision processing on the Driver Station PC or an on-board
PC:

1. RoboRealm
2. SmartDashboard Camera Extension (programmed in Java, works with any robot lan-

guage)
3. GRIP

Original Image

The image shown below is the starting image for the example described here. The image was
taken using the green ring light available in FIRST® Choice combined with an additional ring
light of a different size. Additional sample images are provided with the vision code examples.

774 Chapter 23. Vision Processing

http://www.roborealm.com/
https://wpiroboticsprojects.github.io/GRIP/

FIRST Robotics Competition

What is HSL/HSV?

The Hue or tone of the color is commonly seen on the artist’s color wheel and contains the
colors of the rainbow Red, Orange, Yellow, Green, Blue, Indigo, and Violet. The hue is spec-
ified using a radial angle on the wheel, but in imaging the circle typically contains only 256
units, starting with red at zero, cycling through the rainbow, and wrapping back to red at the
upper end. Saturation of a color specifies amount of color, or the ratio of the hue color to a
shade of gray. Higher ratio means more colorful, less gray. Zero saturation has no hue and
is completely gray. Luminance or Value indicates the shade of gray that the hue is blended
with. Black is 0 and white is 255.
The example code uses the HSV color space to specify the color of the target. The primary
reason is that it readily allows for using the brightness of the targets relative to the rest of
the image as a filtering criteria by using the Value (HSV) or Luminance (HSL) component.
Another reason to use the HSV color system is that the thresholding operation used in the
example runs more efficiently on the roboRIO when done in the HSV color space.

Masking

In this initial step, pixel values are compared to constant color or brightness values to create
a binary mask shown below in yellow. This single step eliminates most of the pixels that are
not part of a target’s retro-reflective tape. Color based masking works well provided the color
is relatively saturated, bright, and consistent. Color inequalities are generally more accurate
when specified using the HSL (Hue, Saturation, and Luminance) or HSV (Hue, Saturation,
and Value) color space than the RGB (Red, Green, and Blue) space. This is especially true
when the color range is quite large in one or more dimension.
Notice that in addition to the target, other bright parts of the image (overhead light and tower
lighting) are also caught by the masking step.

23.1. Vision Introduction 775

FIRST Robotics Competition

Particle Analysis

After the masking operation, a particle report operation is used to examine the area, bounding
rectangle, and equivalent rectangle for the particles. These are used to compute several
scored terms to help pick the shapes that are most rectangular. Each test described below
generates a score (0-100) which is then compared to pre-defined score limits to decide if the
particle is a target or not.

Coverage Area

The Area score is calculated by comparing the area of the particle compared to the area of the
bounding box drawn around the particle. The area of the retroreflective strips is 80 square
inches (~516 cm2). The area of the rectangle that contains the target is 240 square inches
(~0.15 m2). This means that the ideal ratio between area and bounding box area is 1/3. Area
ratios close to 1/3 will produce a score near 100, as the ratio diverges from 1/3 the score will
approach 0.

Aspect Ratio

The aspect ratio score is based on (Particle Width / Particle Height). The width and height
of the particle are determined using something called the “equivalent rectangle”. The equiv-
alent rectangle is the rectangle with side lengths x and y where 2x + 2y equals the particle
perimeter and x · y equals the particle area. The equivalent rectangle is used for the aspect
ratio calculation as it is less affected by skewing of the rectangle than using the bounding
box. When using the bounding box rectangle for aspect ratio, as the rectangle is skewed the
height increases and the width decreases.
The target is 20” (508 mm) wide by 12” (304.8 mm) tall, for a ratio of 1.6. The detected aspect
ratio is compared to this ideal ratio. The aspect ratio score is normalized to return 100 when
the ratio matches the target ratio and drops linearly as the ratio varies below or above.

Moment

The “moment” measurement calculates how spread out each pixel is from the center of the
blob. This measurement provides a representation of the pixel distribution in the particle. It
can be thought of as analogous to a physics moment of inertia calculation. The ideal score
for this test is ~0.28.

776 Chapter 23. Vision Processing

FIRST Robotics Competition

X/Y Profiles

The edge score describes whether the particle matches the appropriate profile in both the X
and Y directions. As shown, it is calculated using the row and column averages across the
bounding box extracted from the original image and comparing that to a profile mask. The
score ranges from 0 to 100 based on the number of values within the row or column averages
that are between the upper and lower limit values.

Measurements

If a particle scores well enough to be considered a target, it makes sense to calculate some
real-world measurements such as position and distance. The example code includes these
basic measurements, so let’s look at the math involved to better understand it.

Position

The target position is well described by both the particle and the bounding box, but all co-
ordinates are in pixels with 0,0 being at the top left of the screen and the right and bottom
edges determined by the camera resolution. This is a useful system for pixel math, but not
nearly as useful for driving a robot; so let’s change it to something that may be more useful.
To convert a point from the pixel system to the aiming system, we can use the formula shown
below.
The resulting coordinates are close to what you may want, but the Y axis is inverted. This
could be corrected by multiplying the point by [1,-1] (Note: this is not done in the sample
code). This coordinate system is useful because it has a centered origin and the scale is
similar to joystick outputs and Drive inputs.

Ax,y =

(
Px,y −

resolutionx,y

2

)
/
resolutionx,y

2

23.1. Vision Introduction 777

FIRST Robotics Competition

Field of View

You can use known constants and the position of the target on the coordinate plane to de-
termine your distance, yaw, and pitch from the target. However, in order to calculate these,
you must determine your FOV (field of view). In order to empirically determine vertical field
of view, set your camera a set distance away from an flat surface, and measure the distance
between the topmost and bottommost row of pixels.

1

2
FOVvertical = tan

(1
2distancey

distancez

)
You can find the horizontal FOV using the same method, but using the distance between the
first and last column of pixels.

Pitch and Yaw

Finding the pitch and yaw of the target relative to your robot is simple once you know your
FOVs and the location of your target in the aiming coordinate system.

pitch =
Ay

2
FOVvertical

yaw =
Ax

2
FOVhorizontal

778 Chapter 23. Vision Processing

FIRST Robotics Competition

Distance

If your target is at a significantly different height than your robot, you can use known con-
stants, such as the physical height of the target and your camera, as well as the angle your
camera is mounted, to calculate the distance between your camera and the target.

distance =
heighttarget − heightcamera

tan(anglecamera + pitch)

Another option is to create a lookup table for area to distance, or to estimate the inverse
variation constant of area and distance. However, this method is less accurate.

Note: For best results for the above methods of estimating angle and distance, you can cali-
brate your camera using OpenCV to get rid of any distortions that may be affecting accuracy
by reprojecting the pixels of the target using the calibration matrix.

23.1.5 Read and Process Video: CameraServer Class

Concepts

The cameras typically used in FRC® (commodity USB and Ethernet cameras such as the Axis
camera) offer relatively limited modes of operation. In general, they provide only a single
image output (typically in an RGB compressed format such as JPG) at a single resolution and
frame rate. USB cameras are particularly limited as only one application may access the
camera at a time.
CameraServer supports multiple cameras. It handles details such as automatically recon-
necting when a camera is disconnected, and also makes images from the camera available to
multiple “clients” (e.g. both your robot code and the dashboard can connect to the camera
simultaneously).

Camera Names

Each camera in CameraServer must be uniquely named. This is also the name that appears for
the camera in the Dashboard. Some variants of the CameraServer startAutomaticCapture()
and addAxisCamera() functions will automatically name the camera (e.g. “USB Camera 0”
or “Axis Camera”), or you can give the camera a more descriptive name (e.g. “Intake Cam”).
The only requirement is that each camera have a unique name.

USB Camera Notes

CPU Usage

The CameraServer is designed to minimize CPU usage by only performing compression and
decompression operations when required and automatically disabling streaming when no
clients are connected.
To minimize CPU usage, the dashboard resolution should be set to the same resolution as the
camera; this allows the CameraServer to not decompress and recompress the image, instead,
it can simply forward the JPEG image received from the camera directly to the dashboard. It’s

23.1. Vision Introduction 779

FIRST Robotics Competition

important to note that changing the resolution on the dashboard does not change the camera
resolution; changing the camera resolution may be done by calling setResolution() on the
camera object.

USB Bandwidth

The roboRIO can only transmit and receive so much data at a time over its USB interfaces.
Camera images can require a lot of data, and so it is relatively easy to run into this limit. The
most common cause of a USB bandwidth error is selecting a non-JPEG video mode or running
too high of a resolution, particularly when multiple cameras are connected.

Architecture

The CameraServer consists of two layers, the high level WPILib CameraServer class and
the low level cscore library.

CameraServer Class

The CameraServer class (part of WPILib) provides a high level interface for adding cameras
to your robot code. It also is responsible for publishing information about the cameras and
camera servers to NetworkTables so that Driver Station dashboards such as the LabVIEW
Dashboard and Shuffleboard can list the cameras and determine where their streams are
located. It uses a singleton pattern to maintain a database of all created cameras and servers.
Some key functions in CameraServer are:

• startAutomaticCapture(): Add a USB camera (e.g. Microsoft LifeCam) and starts a
server for it so it can be viewed from the dashboard.

• addAxisCamera(): Add an Axis camera. Even if you aren’t processing images from the
Axis camera in your robot code, you may want to use this function so that the Axis camera
appears in the Dashboard’s drop down list of cameras. It also starts a server so the Axis
stream can still be viewed when your driver station is connected to the roboRIO via USB
(useful at competition if you have both the Axis camera and roboRIO connected to the
two robot radio Ethernet ports).

• getVideo(): Get OpenCV access to a camera. This allows you to get images from the
camera for image processing on the roboRIO (in your robot code).

• putVideo(): Start a server that you can feed OpenCV images to. This allows you to pass
custom processed and/or annotated images to the dashboard.

cscore Library

The cscore library provides the lower level implementation to:
• Get images from USB and HTTP (e.g. Axis) cameras
• Change camera settings (e.g. contrast and brightness)
• Change camera video modes (pixel format, resolution and frame rate)
• Act as a web server and serve images as a standard MJPEG stream
• Convert images to/from OpenCV Mat objects for image processing

780 Chapter 23. Vision Processing

FIRST Robotics Competition

Sources and Sinks

The basic architecture of the cscore library is similar to that of MJPGStreamer, with func-
tionality split between sources and sinks. There can be multiple sources and multiple sinks
created and operating simultaneously.
An object that generates images is a source and an object that accepts/consumes images is a
sink. The generate/consume is from the perspective of the library. Thus cameras are sources
(they generate images). The MJPEG web server is a sink because it accepts images from
within the program (even though it may be forwarding those images on to a web browser or
dashboard). Sources may be connected to multiple sinks, but sinks can be connected to one
and only one source. When a sink is connected to a source, the cscore library takes care of
passing each image from the source to the sink.

• Sources obtain individual frames (such as provided by a USB camera) and fire an event
when a new frame is available. If no sinks are listening to a particular source, the library
may pause or disconnect from a source to save processor and I/O resources. The library
autonomously handles camera disconnects/reconnects by simply pausing and resuming
firing of events (e.g. a disconnect results in no new frames, not an error).

• Sinks listen to a particular source’s event, grab the latest image, and forward it to its
destination in the appropriate format. Similarly to sources, if a particular sink is inactive
(e.g. no client is connected to a configured MJPEG over HTTP server), the library may
disable parts of its processing to save processor resources.

User code (such as that used in a FRC robot program) can act as either a source (providing
processed frames as if it were a camera) or as a sink (receiving a frame for processing) via
OpenCV source and sink objects. Thus an image processing pipeline that gets images from a
camera and serves the processed images out looks like the below graph:

UsbCamera

CvSink MjpegServer [1]

User code

CvSource

MjpegServer [2]
Viewer does not support full SVG 1.1

Because sources can have multiple sinks connected, the pipeline may branch. For example,
the original camera image can also be served by connecting the UsbCamera source to a sec-
ond MjpegServer sink in addition to the CvSink, resulting in the below graph:

23.1. Vision Introduction 781

FIRST Robotics Competition

UsbCamera (VideoSource)

CvSink (VideoSink)

User OpenCV processing code

CvSource (VideoSource)

MjpegServer (VideoSink)
Viewer does not support full SVG 1.1

When a new image is captured by the camera, both the CvSink and the MjpegServer [1]
receive it.
The above graph is what the following CameraServer snippet creates:
Java

import edu.wpi.first.cameraserver.CameraServer;
import edu.wpi.cscore.CvSink;
import edu.wpi.cscore.CvSource;

// Creates UsbCamera and MjpegServer [1] and connects them
CameraServer.startAutomaticCapture();

// Creates the CvSink and connects it to the UsbCamera
CvSink cvSink = CameraServer.getVideo();

// Creates the CvSource and MjpegServer [2] and connects them
CvSource outputStream = CameraServer.putVideo("Blur", 640, 480);

C++

#include "cameraserver/CameraServer.h"

// Creates UsbCamera and MjpegServer [1] and connects them
frc::CameraServer::StartAutomaticCapture();

// Creates the CvSink and connects it to the UsbCamera
cs::CvSink cvSink = frc::CameraServer::GetVideo();

// Creates the CvSource and MjpegServer [2] and connects them
cs::CvSource outputStream = frc::CameraServer::PutVideo("Blur", 640, 480);

The CameraServer implementation effectively does the following at the cscore level (for ex-
planation purposes). CameraServer takes care of many of the details such as creating unique
names for all cscore objects and automatically selecting port numbers. CameraServer also

782 Chapter 23. Vision Processing

FIRST Robotics Competition

keeps a singleton registry of created objects so they aren’t destroyed if they go out of scope.
Java

import edu.wpi.cscore.CvSink;
import edu.wpi.cscore.CvSource;
import edu.wpi.cscore.MjpegServer;
import edu.wpi.cscore.UsbCamera;

// Creates UsbCamera and MjpegServer [1] and connects them
UsbCamera usbCamera = new UsbCamera("USB Camera 0", 0);
MjpegServer mjpegServer1 = new MjpegServer("serve_USB Camera 0", 1181);
mjpegServer1.setSource(usbCamera);

// Creates the CvSink and connects it to the UsbCamera
CvSink cvSink = new CvSink("opencv_USB Camera 0");
cvSink.setSource(usbCamera);

// Creates the CvSource and MjpegServer [2] and connects them
CvSource outputStream = new CvSource("Blur", PixelFormat.kMJPEG, 640, 480, 30);
MjpegServer mjpegServer2 = new MjpegServer("serve_Blur", 1182);
mjpegServer2.setSource(outputStream);

C++

#include "cscore_oo.h"

// Creates UsbCamera and MjpegServer [1] and connects them
cs::UsbCamera usbCamera("USB Camera 0", 0);
cs::MjpegServer mjpegServer1("serve_USB Camera 0", 1181);
mjpegServer1.SetSource(usbCamera);

// Creates the CvSink and connects it to the UsbCamera
cs::CvSink cvSink("opencv_USB Camera 0");
cvSink.SetSource(usbCamera);

// Creates the CvSource and MjpegServer [2] and connects them
cs::CvSource outputStream("Blur", cs::PixelFormat::kMJPEG, 640, 480, 30);
cs::MjpegServer mjpegServer2("serve_Blur", 1182);
mjpegServer2.SetSource(outputStream);

Reference Counting

All cscore objects are internally reference counted. Connecting a sink to a source increments
the source’s reference count, so it’s only strictly necessary to keep the sink in scope. The
CameraServer class keeps a registry of all objects created with CameraServer functions, so
sources and sinks created in that way effectively never go out of scope (unless explicitly
removed).

23.1. Vision Introduction 783

FIRST Robotics Competition

23.1.6 2017 Vision Examples

LabVIEW

The 2017 LabVIEW Vision Example is included with the other LabVIEW examples. From the
Splash screen, click Support->Find FRC® Examples or from any other LabVIEW window,
click Help->Find Examples and locate the Vision folder to find the 2017 Vision Example. The
example images are bundled with the example.

C++/Java

We have provided a GRIP project and the description below, as well as the example images,
bundled into a ZIP that can be found on TeamForge.
See Using Generated Code in a Robot Program for details about integrating GRIP generated
code in your robot program.
The code generated by the included GRIP project will find OpenCV contours for green parti-
cles in images like the ones included in the Vision Images folder of this ZIP. From there you
may wish to further process these contours to assess if they are the target. To do this:

1. Use the boundingRect method to draw bounding rectangles around the contours
2. The LabVIEW example code calculates 5 separate ratios for the target. Each of these

ratios should nominally equal 1.0. To do this, it sorts the contours by size, then starting
with the largest, calculates these values for every possible pair of contours that may be
the target, and stops if it finds a target or returns the best pair it found.

In the formulas below, each letter refers to a coordinate of the bounding rect (H = Height,
L = Left, T = Top, B = Bottom, W = Width) and the numeric subscript refers to the contour
number (1 is the largest contour, 2 is the second largest, etc).

• Top height should be 40% of total height (4 in / 10 in):

Group Height = H1

0.4(B2 − T1)

• Top of bottom stripe to top of top stripe should be 60% of total height (6 in / 10 in):

dTop =
T2 − T1

0.6(B2 − T1)

• The distance between the left edge of contour 1 and the left edge of contour 2 should be
small relative to the width of the 1st contour; then we add 1 to make the ratio centered
on 1:

LEdge =
L1 − L2

W1
+ 1

• The widths of both contours should be about the same:

Width ratio =
W1

W2

• The larger stripe should be twice as tall as the smaller one

Height ratio =
H1

2H2

Each of these ratios is then turned into a 0-100 score by calculating:

100− (100 · abs(1− Val))

784 Chapter 23. Vision Processing

https://usfirst.collab.net/sf/frs/do/viewRelease/projects.wpilib/frs.sample_programs.2017_c_java_vision_sample

FIRST Robotics Competition

3. To determine distance, measure pixels from top of top bounding box to bottom of bottom
bounding box:

distance =
Target height in ft.(10/12) · YRes

2 · PixelHeight · tan(viewAngle of camera)
The LabVIEW example uses height as the edges of the round target are the most prone to
noise in detection (as the angle points further from the camera the color looks less green). The
downside of this is that the pixel height of the target in the image is affected by perspective
distortion from the angle of the camera. Possible fixes include:

• Try using width instead
• Empirically measure height at various distances and create a lookup table or regression

function
• Mount the camera to a servo, center the target vertically in the image and use servo

angle for distance calculation (you’ll have to work out the proper trig yourself or find a
math teacher to help!)

• Correct for the perspective distortion using OpenCV. To do this you will need to calibrate
your camera with OpenCV. This will result in a distortion matrix and camera matrix. You
will take these two matrices and use them with the undistortPoints function to map the
points you want to measure for the distance calculation to the “correct” coordinates (this
is much less CPU intensive than undistorting the whole image)

23.2 Vision with WPILibPi

23.2.1 A Video Walkthrough of using WPILibPi with the Raspberry Pi

Note: The video mentions FRCVision which is the old name of WPILibPi.

At the “RSN Spring Conference, Presented by WPI” in 2020, Peter Johnson from the WPILib
team gave a presentation on FRC® Vision with a Raspberry Pi.
The link to the presentation is available here.

23.2.2 Using a Coprocessor for vision processing

Vision processing using libraries like OpenCV for recognizing field targets or game pieces
can often be a CPU intensive process. Often the load isn’t too significant and the processing
can easily be handled by the roboRIO. In cases where there are more camera streams or the
image processing is complex, it is desirable to off-load the roboRIO by putting the code and
the camera connection on a different processor. There are a number of choices of processors
that are popular in FRC® such as the Raspberry PI, the intel-based Kangaroo, the LimeLight
for the ultimate in simplicity, or for more complex vision code a graphics accelerator such as
one of the nVidia Jetson models.

23.2. Vision with WPILibPi 785

https://docs.opencv.org/3.4.6/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/3.4.6/d4/d94/tutorial_camera_calibration.html
https://docs.google.com/presentation/d/1yViG-k5PS4jWVrxY3o7eD8h5YXnK9Deqm6RsUXfCnRA/edit?usp=sharing

FIRST Robotics Competition

Strategy

Generally the idea is to set up the coprocessor with the required software that generally
includes:

• OpenCV - the open source computer vision library
• NetworkTables - to commute the results of the image processing to the roboRIO program
• Camera server library - to handle the camera connections and publish streams that can

be viewed on a dashboard
• The language library for whatever computer language is used for the vision program
• The actual vision program that does the object detection

The coprocessor is connected to the roboRIO network by plugging it into the extra ethernet
port on the network router or, for more connections, adding a small network switch to the
robot. The cameras are plugged into the coprocessor, it acquires the images, processes them,
and publishes the results, usually target location information, to NetworkTables so it is can
be consumed by the robot program for steering and aiming.

Ethernet

Processed video...

E
th

e
rn

e
t

Ethernet

U
S

B

Viewer does not support full SVG 1.1

Streaming camera data to the dashboard

It is often desirable to simply stream the camera data to the dashboard over the robot network.
In this case one or more camera connections can be sent to the network and viewed on a
dashboard such as Shuffleboard or a web browser. Using Shuffleboard has the advantage
of having easy controls to set the camera resolution and bit rate as well as integrating the
camera streams with other data sent from the robot.
It is also possible to process images and add annotation to the image, such as target lines
or boxes showing what the image processing code has detected then send it forward to the
dashboard to make it easier for operators to see a clear picture of what’s around the robot.

786 Chapter 23. Vision Processing

FIRST Robotics Competition

23.2.3 Using the Raspberry Pi for FRC

One of the most popular coprocessor choices is the Raspberry Pi because:
• Low cost - around $35
• High availability - it’s easy to find Raspberry Pis from a number of suppliers, including

Amazon
• Very good performance - the current Raspberry Pi 3b+ has the following specifications:
• Technical Specifications: - Broadcom BCM2837BO 64 bit ARMv8 QUAD Core A53 64bit

Processor powered Single Board Computer run at 1.4GHz - 1GB RAM - BCM43143 WiFi
on board - Bluetooth Low Energy (BLE) on board - 40 pin extended GPIO - 4 x USB2 ports
- 4 pole Stereo output and Composite video port - Full size HDMI - CSI camera port for
connecting the Raspberry - Pi camera - DSI display port for connecting the Raspberry
- Pi touch screen display - MicroSD port for loading your operating system and storing
data - Upgraded switched Micro USB power source (now supports up to 2.5 Amps.

23.2. Vision with WPILibPi 787

FIRST Robotics Competition

Pre-built Raspberry Pi image

To make using the Raspberry Pi as easy as possible for teams, there is a provided Raspberry
Pi image. The image can be copied to a micro SD card, inserted into the Pi, and booted. By
default it supports:

• A web interface for configuring it for the most common functions
• Supports an arbitrary number camera streams (defaults to one) that are published on

the network interface
• OpenCV, NetworkTables, Camera Server, and language libraries for C++, Java, and

Python custom programs
If the only requirement is to stream one or more cameras to the network (and dashboard)
then no programming is required and can be completely set up through the web interface.
The next section discusses how to install the image onto a flash card and boot the Pi.

23.2.4 What you need to get the Pi image running

To start using the Raspberry Pi as a video or image coprocessor you need the following:
• A Raspberry Pi 3 B, Raspberry Pi 3 B+, or a Raspberry Pi 4 B
• A micro SD card that is at least 8 GB to hold all the provided software, with a recom-

mended Speed Class of 10 (10MB/s)
• An ethernet cable to connect the Pi to your roboRIO network
• A USB micro power cable to connect to the Voltage Regulator Module (VRM) on your

robot. It is recommended to use the VRM connection for power rather than powering it
from one of the roboRIO USB ports for higher reliability

• A laptop that can write the MicroSD card, either using a USB dongle (preferred) or a SD
to MicroSD adapter that ships with most MicroSD cards

788 Chapter 23. Vision Processing

FIRST Robotics Competition

Shown is an inexpensive USB dongle that will write the FRC® image to the MicroSD card.

23.2.5 Installing the image to your MicroSD card

Getting the FRC Raspberry PI image

The image is stored on the GitHub release page for the WPILibPi repository.
In addition to the instructions on this page, see the documentation on the GitHub web page
(below).
The image is fairly large so have a fast internet connection when downloading it. Always use
the most recent release from the top of the list of releases.

23.2. Vision with WPILibPi 789

https://github.com/wpilibsuite/WPILibPi/releases

FIRST Robotics Competition

Copy the image to your MicroSD card

Download and install Etcher to image the micro SD card. The micro SD card needs to be at
least 8 GB. A micro SD to USB dongle works well for writing to micro SD cards.

Flash the MicroSD card with the image using Etcher by selecting the zip file as the source,
your SD card as the destination and click “Flash”. Expect the process to take about 3 minutes
on a fairly fast laptop.

Testing the Raspberry PI

1. Put the micro SD card in a rPi 3 and apply power.
2. Connect the rPi 3 ethernet to a LAN or PC. Open a web browser and connect to http:/

/wpilibpi.local/ to open the web dashboard. On the first bootup the filesystem will
be writable, but later bootups will default to read only, so it’s necessary to click the
“writable” button to make changes.

Logging into the Raspberry PI

Most tasks with the rPi can be done from the web console interface. Sometimes for advanced
use such as program development on the rPi it is necessary to log in. To log in, use the default
Raspberry PI password:

Username: pi
Password: raspberry

790 Chapter 23. Vision Processing

https://www.balena.io/etcher/
https://www.amazon.com/gp/product/B0779V61XB

FIRST Robotics Competition

23.2.6 The Raspberry PI

FRC Console

The FRC® image for the Raspberry PI includes a console that can be viewed in any web
browser that makes it easy to:

• Look at the Raspberry PI status
• View the status of the background process running the camera
• View or change network settings
• Look at each camera plugged into the rPI and add additional cameras
• Load a new vision program onto the rPI

Setting the rPI to be Read-Only vs. Writable

The rPI is normally set to Read-Only which means that the file system cannot be changed.
This ensures that if power is removed without first shutting down the rPi the file system isn’t
corrupted. When settings are changed (following sections), the new settings cannot be saved
while the rPI file system is set as Read-Only. Buttons are provided that allow the file system
to be changed from Read-Only to Writable and back whenever changes are made. If the other
buttons that change information stored on the rPI cannot be press, check the Read-Only status
of the system.

23.2. Vision with WPILibPi 791

FIRST Robotics Competition

Status of the network connection to the rPI

There is a label in the top right corner of the console that indicates if the rPi is currently
connected. It will change from Connected to Disconnected if there is no longer a network
connection to the rPi.

System status

The system status shows what the CPU on the rPI is doing at any time. There are two columns
of status values, on being a 1 second average and the other a 5 second average. Shown is:

• free and available RAM on the PI
• CPU usage for user processes and system processes as well as idle time.
• And network bandwidth - which allows one to determine if the used camera bandwidth

is exceeding the maximum bandwidth allowed in the robot rules for any year.

792 Chapter 23. Vision Processing

FIRST Robotics Competition

Vision Status

Allows monitoring of the task which is running the camera code in the rPI, either one of
the default programs or your own program in Java, C++, or Python. You can also enable and
view the console output to see messages coming from the background camera service. In this
case there are number of messages about being unable to connect to NetworkTables (NT: con-
nect()) because in this example the rPI is simply connected to a laptop with no NetworkTables
server running (usually the roboRIO.)

Network Settings

The rPI network settings have options to connect to the PI:
• DHCP - the default name resolution usually used by the roboRIO. The default name is

wpilibpi.local.
• Static - where a fixed IP address, network mask, and router settings are filled in explicitly
• DHCP with Static Fallback - DHCP with Static Fallback - the PI will try to get an IP

address via DHCP, but if it can’t find a DHCP server, it will use the provided static IP
address and parameters

The picture above is showing the settings for both DHCP and Static IP Addressing. The mDNS
name for the rPi should always work regardless of the options selected above.

23.2. Vision with WPILibPi 793

FIRST Robotics Competition

Vision Settings

The Vision Settings are to set the parameters for each camera and whether the rPI should
be a NetworkTables client or server. There can only be one server on the network and the
roboRIO is always a server. Therefore when connected to a roboRIO, the rPI should always be
in client mode with the team number filled in. If testing on a desktop setup with no roboRIO
or anything acting as a server then it should be set to Server (Client switch is off).
To view and manipulate all the camera settings click on the camera in question. In this case
the camera is called “Camera rPi Camera 0” and clicking on the name reveals the current
camera view and the associated settings.
Manipulating the camera settings is reflected in the current camera view. The bottom of the
page shows all the possible camera modes (combinations of Width, Height, and frame rates)
that are supported by this camera.

Note: If the camera image is not visible on theOpen Stream screen then check the supported
video modes at the bottom of the page. Then go back to ‘Vision Settings’ and click on the

794 Chapter 23. Vision Processing

FIRST Robotics Competition

23.2. Vision with WPILibPi 795

FIRST Robotics Competition

camera in question and verify that the pixel format, width, height, and FPS are listed in the
supported video modes.

Getting the current settings to persist over reboots

The rPi will load all the camera settings on startup. Editing the camera configuration in the
above screen is temporary. To make the values persist click on the “Load Source Config From
Camera” button and the current settings will be filled in on the camera settings fields. Then
click “Save” at the bottom of the page. Note: you must set the file system Writeable in order
to save the settings. The Writeable button is at the top of the page.

There are some commonly used camera settings values shown in the camera settings (above).
These values Brightness, White Balance, and Exposure are loaded into the camera before the

796 Chapter 23. Vision Processing

FIRST Robotics Competition

user JSON file is applied. So if a user JSON file contains those settings they will overwrite
the ones from the text field.

Application

The Application tab shows the application that is currently running on the rPi.

Vision workflows

There is a sample vision program using OpenCV in each of the supported languages, C++,
Java, or Python. Each sample program can capture and stream video from the rPi. In addi-
tion, the samples have some minimal OpenCV. They are all set up to be extended to replace
the provided OpenCV sample code with the code needed for the robot application. The rPi
Application tab supports a number of programming workflows:

• Stream one or more cameras from the rPi for consumption on the driver station computer
and displayed using ShuffleBoard

• Edit and build one of the sample programs (one for each language: Java, C++ or Python)
on the rPi using the included toolchains

• Download a sample program for the chosen language and edit and build it on your de-
velopment computer. Then upload that built program back to the rPi

• Do everything yourself using completely custom applications and scripts (probably based
on one of the samples)

The running application can be changed by selecting one of the choices in the drop-down
menu. The choices are:

• Built-in multi camera streaming which streams whatever cameras are plugged into the
rPi. The camera configuration including number of cameras can be set on the “Vision
Settings” tab.

• Custom application which doesn’t upload anything to the rPi and assumes that the de-
veloper wants to have a custom program and script.

• Java, C++ or Python pre-installed sample programs that can be edited into your own
application.

• Java, C++, or Python uploaded program. Java programs require a .jar file with the
compiled program and C++ programs require an rPi executable to be uploaded to the
rPI.

When selecting one of the Upload options, a file chooser is presented where the jar, executable
or Python program can be selected and uploaded to the rPi. In the following picture an
Uploaded Java jar is chosen and the “Choose File” button will select a file and clicking on the
“Save” button will upload the selected file.
Note: in order to Save a new file onto the rPi, the file system has to be set writeable using
the “Writable” button at the top left of the web page. After saving the new file, set the file
system back to “Read-Only” so that it is protected against accidental changes.

23.2. Vision with WPILibPi 797

FIRST Robotics Competition

798 Chapter 23. Vision Processing

FIRST Robotics Competition

23.2.7 Using CameraServer

Grabbing Frames from CameraServer

The WPILibPi image comes with all the necessary libraries to make your own vision processing
system. In order to get the current frame from the camera, you can use the CameraServer
library. For information about CameraServer, the Read and Process Video: CameraServer
Class.
Python

from cscore import CameraServer
import cv2
import numpy as np

CameraServer.enableLogging()

camera = CameraServer.startAutomaticCapture()
camera.setResolution(width, height)

sink = cs.getVideo()

while True:
time, input_img = cvSink.grabFrame(input_img)

if time == 0: # There is an error
continue

23.2. Vision with WPILibPi 799

FIRST Robotics Competition

Note: OpenCV reads in the image as BGR, not RGB for historical reasons. Use cv2.
cvtColor if you want to change it to RGB.

Below is an example of an image that might be grabbed from CameraServer.

Sending frames to CameraServer

Sometimes, you may want to send processed video frames back to the CameraServer instance
for debugging purposes, or viewing in a dashboard application like Shuffleboard.
Python

#
CameraServer initialization code here
#

output = cs.putVideo("Name", width, height)

while True:
time, input_img = cvSink.grabFrame(input_img)

if time == 0: # There is an error
output.notifyError(sink.getError())
continue

#
Insert processing code here
#

output.putFrame(processed_img)

As an example, the processing code could outline the target in red, and show the corners in
yellow for debugging purposes.

800 Chapter 23. Vision Processing

FIRST Robotics Competition

Below is an example of a fully processed image that would be sent back to CameraServer and
displayed on the Driver Station computer.

23.2.8 Thresholding an Image

In order to turn a colored image, such as the one captured by your camera, into a binary
image, with the target as the “foreground”, we need to threshold the image using the hue,
saturation, and value of each pixel.

The HSV Model

Unlike RGB, HSV allows you to not only filter based on the colors of the pixels, but also by
the intensity of color and the brightness.

• Hue: Measures the color of the pixel.
• Saturation: Measures the intensity of color of the pixel.
• Value: Measures the brightness of the pixel.

23.2. Vision with WPILibPi 801

FIRST Robotics Competition

You can use OpenCV to convert a BGR image matrix to HSV.
Python

hsv_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2HSV)

Note: OpenCV’s hue range is from 1° to 180° instead of the common 1° to 360°. In order to
convert a common hue value to OpenCV, divide by 2.

Thresholding

We will use this field image as an example for the whole process of image processing.

802 Chapter 23. Vision Processing

FIRST Robotics Competition

By thresholding the image using HSV, you can separate the image into the vision target (fore-
ground), and the other things that the camera sees (background). The following code example
converts a HSV image into a binary image by thresholding with HSV values.
Python

binary_img = cv2.inRange(hsv_img, (min_hue, min_sat, min_val), (max_hue, max_sat, max_
↪→val))

Note: These values may have to be tuned on an per-venue basis, as ambient lighting may dif-
fer across venues. It is recommended to allow editing of these values through NetworkTables
in order to facilitate on-the-fly editing.

After thresholding, your image should look like this.

23.2. Vision with WPILibPi 803

FIRST Robotics Competition

As you can see, the thresholding process may not be 100% clean. You can use morphological
operations to deal with the noise.

23.2.9 Morphological Operations

Sometimes, after thresholding your image, you have unwanted noise in your binary image.
Morphological operations can help remove that noise from the image.

Kernel

The kernel is a simple shape where the origin is superimposed on each pixel of value 1 of
the binary image. OpenCV limits the kernel to a NxN matrix where N is an odd number. The
origin of the kernel is the center. A common kernel is

kernel =

1 1 1
1 1 1
1 1 1

Different kernels can affect the image differently, such as only eroding or dilating vertically.
For reference, this is our binary image we created:

804 Chapter 23. Vision Processing

FIRST Robotics Competition

Erosion

Erosion in computer vision is similar to erosion on soil. It takes away from the borders of
foreground objects. This process can remove noise from the background.
Python

kernel = np.ones((3, 3), np.uint8)
binary_img = cv2.erode(binary_img, kernel, iterations = 1)

23.2. Vision with WPILibPi 805

FIRST Robotics Competition

During erosion, if the superimposed kernel’s pixels are not contained completely by the binary
image’s pixels, the pixel that it was superimposed on is deleted.

Dilation

Dilation is opposite of erosion. Instead of taking away from the borders, it adds to them. This
process can remove small holes inside a larger region.
Python

kernel = np.ones((3, 3), np.uint8)
binary_img = cv2.dilate(binary_img, kernel, iterations = 1)

806 Chapter 23. Vision Processing

FIRST Robotics Competition

During dilation, every pixel of every superimposed kernel is included in the dilation.

Opening

Opening is erosion followed by dilation. This process removes noise without affecting the
shape of larger features.
Python

kernel = np.ones((3, 3), np.uint8)
binary_img = cv2.morphologyEx(binary_img, cv2.MORPH_OPEN, kernel)

23.2. Vision with WPILibPi 807

FIRST Robotics Competition

Note: In this specific case, it is appropriate to do more iterations of opening in order to get
rid of the pixels in the top right.

Closing

Closing is dilation followed by erosion. This process removes small holes or breaks without
affecting the shape of larger features.
Python

kernel = np.ones((3, 3), np.uint8)
binary_img = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)

808 Chapter 23. Vision Processing

FIRST Robotics Competition

23.2.10 Working with Contours

After thresholding and removing noise with morphological operations, you are now ready to
use OpenCV’s findContours method. This method allows you to generate contours based on
your binary image.

Finding and Filtering Contours

Python

_, contours, _ = cv2.findContours(binary_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_
↪→SIMPLE)

In cases where there is only one vision target, you can just take the largest contour and
assume that is the target you are looking for. When there is more than one vision target, you
can use size, shape, fullness, and other properties to filter unwanted contours out.
Python

if len(contours) > 0:
largest = contours[0]
for contour in contours:

(continues on next page)

23.2. Vision with WPILibPi 809

FIRST Robotics Competition

(continued from previous page)
if cv2.contourArea(contour) > cv2.contourArea(largest):

largest = contour

#
Contour processing code
#

If you draw the contour you just found, it should look something like this:

810 Chapter 23. Vision Processing

FIRST Robotics Competition

Extracting Information from Contours

Now that you’ve found the contour(s) that you want, you now want to get information about
it, such as the center, corners, and rotation.

Center

Python

rect = cv2.minAreaRect(contour)
center, _, _ = rect
center_x, center_y = center

Corners

Python

corners = cv2.convexHull(contour)
corners = cv2.approxPolyDP(corners, 0.1 * cv2.arcLength(contour), True)

Rotation

Python

_, _, rotation = cv2.fitEllipse(contour)

For more information on how you can use these values, see Measurements

Publishing to NetworkTables

You can use NetworkTables to send these properties to the Driver Station and the RoboRIO.
Additional processing could be done on the Raspberry Pi, or the RoboRIO itself.
Python

from networktables import NetworkTables

nt = NetworkTables.getTable('vision')

#
Initialization code here
#

while True:

#
Image processing code here
#

nt.putNumber('center_x', center_x)
nt.putNumber('center_y', center_y)

23.2. Vision with WPILibPi 811

FIRST Robotics Competition

23.2.11 Basic Vision Example

This is an example of a basic vision setup that posts the target’s location in the aiming coordi-
nate system described here to NetworkTables, and uses CameraServer to display a bounding
rectangle of the contour detected. This example will display the framerate of the processing
code on the images sent to CameraServer.
Python

from cscore import CameraServer
from networktables import NetworkTables

import cv2
import json
import numpy as np
import time

def main():
with open('/boot/frc.json') as f:

config = json.load(f)
camera = config['cameras'][0]

width = camera['width']
height = camera['height']

CameraServer.startAutomaticCapture()

input_stream = CameraServer.getVideo()
output_stream = CameraServer.putVideo('Processed', width, height)

Table for vision output information
vision_nt = NetworkTables.getTable('Vision')

Allocating new images is very expensive, always try to preallocate
img = np.zeros(shape=(240, 320, 3), dtype=np.uint8)

Wait for NetworkTables to start
time.sleep(0.5)

while True:
start_time = time.time()

frame_time, input_img = input_stream.grabFrame(img)
output_img = np.copy(input_img)

Notify output of error and skip iteration
if frame_time == 0:

output_stream.notifyError(input_stream.getError())
continue

Convert to HSV and threshold image
hsv_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2HSV)
binary_img = cv2.inRange(hsv_img, (65, 65, 200), (85, 255, 255))

_, contour_list, _ = cv2.findContours(binary_img, mode=cv2.RETR_EXTERNAL,␣
↪→method=cv2.CHAIN_APPROX_SIMPLE)

x_list = []
(continues on next page)

812 Chapter 23. Vision Processing

FIRST Robotics Competition

(continued from previous page)
y_list = []

for contour in contour_list:

Ignore small contours that could be because of noise/bad thresholding
if cv2.contourArea(contour) < 15:

continue

cv2.drawContours(output_img, contour, -1, color = (255, 255, 255), thickness␣
↪→= -1)

rect = cv2.minAreaRect(contour)
center, size, angle = rect
center = tuple([int(dim) for dim in center]) # Convert to int so we can draw

Draw rectangle and circle
cv2.drawContours(output_img, [cv2.boxPoints(rect).astype(int)], -1, color =␣

↪→(0, 0, 255), thickness = 2)
cv2.circle(output_img, center = center, radius = 3, color = (0, 0, 255),␣

↪→thickness = -1)

x_list.append((center[0] - width / 2) / (width / 2))
x_list.append((center[1] - width / 2) / (width / 2))

vision_nt.putNumberArray('target_x', x_list)
vision_nt.putNumberArray('target_y', y_list)

processing_time = time.time() - start_time
fps = 1 / processing_time
cv2.putText(output_img, str(round(fps, 1)), (0, 40), cv2.FONT_HERSHEY_SIMPLEX,␣

↪→1, (255, 255, 255))
output_stream.putFrame(output_img)

main()

23.2. Vision with WPILibPi 813

FIRST Robotics Competition

23.3 AprilTag Introduction

23.3.1 What Are AprilTags?

AprilTags are a system of visual tags developed by researchers at the University of Michigan
to provide low overhead, high accuracy localization for many different applications.
Additional information about the tag system and its creators can be found on their website
This document attempts to summarize the content for FIRST robotics related purposes.

Application to FRC

In the context of FRC, AprilTags are useful for helping your robot know where it is at on the
field, so it can align itself to some goal position.
AprilTags have been in development since 2011, and have been refined over the years to
increase the robustness and speed of detection.
Starting in 2023, FIRST is providing a number of tags, scattered throughout the field, each
at a known pose.
All of the tags are from the 16h5 family.

Note: Many of the pictures in this documentation are from the 36h11 family, which are
similar (but not identical) to the 16h5 actually in use for FRC. All the underlying concepts are
the same.

The AprilTag library implementation defines standards on how sets of tags should be de-
signed. Some of the possible tag families are described here.
FIRST has chosen the 16h5 family for 2023. This family of tags is made of a 4x4 grid of
pixels, each representing one bit of information. An additional black and white border must

814 Chapter 23. Vision Processing

https://april.eecs.umich.edu/software/apriltag
https://www.firstinspires.org/robotics/frc/blog/2022-2023-approved-devices-rules-preview-and-vision-target-update
https://www.ssontech.com/docs/SynthEyesUM_files/Choosing_an_AprilTag.html

FIRST Robotics Competition

be present around the outside of the bits.
While there are 216 = 65536 theoretical possible tags, only 30 are actually used. These are
chosen to:

1. Be robust against some bit flips (IE, issues where a bit has its color incorrectly identified).
2. Not involve “simple” geometric patterns likely to be found on things which are not tags.

(IE, squares, stripes, etc.)
3. Ensure the geometric pattern is asymmetric enough that you can always figure out which

way is up.

All tags will be printed such that the tag’s main “body” is 6 inches in length.

23.3. AprilTag Introduction 815

FIRST Robotics Competition

For home usage, tag files may be printed off and placed around your practice area. Mount
them to a rigid backing material to ensure the tag stays flat, as the processing algorithm
assumes the tags are flat.

816 Chapter 23. Vision Processing

FIRST Robotics Competition

Software Support

The main repository for the source code that detects and decodes AprilTags is located here.
WPILib has forked the repository to add new features for FRC. These include:

1. Building the source code for common FRC targets, including the roboRIO and Raspberry
Pi.

2. Adding Java Native Interface (JNI) support to allow invoking its functionality from Java
3. Gradle & Maven publishing support

Processing Technique

While most FRC teams should not have to implement their own code to identify AprilTags in
a camera image, it is useful to know the basics of how the underlying libraries function.
Original Image

An image from a camera is simply an array of values, corresponding to the color and bright-
ness of each pixel.
Remove Colors

23.3. AprilTag Introduction 817

https://github.com/AprilRobotics/apriltag

FIRST Robotics Competition

The first step is to convert the image to a grey-scale (brightness-only) image. Color informa-
tion is not needed to detect the black-and-white tags.
Decimate

818 Chapter 23. Vision Processing

FIRST Robotics Competition

The next step is to convert the image to a lower resolution. Working with fewer pixels helps
the algorithm work faster. The full-resolution image will be used later to refine early esti-
mates.
Adaptive Threshold

23.3. AprilTag Introduction 819

FIRST Robotics Competition

An adaptive threshold algorithm is run to classify each pixel as “definitely light”, “definitely
dark”, or “not sure”.
The threshold is calculated by looking at the pixel’s brightness, compared to a small neigh-
borhood of pixels around it.
Segmentation

820 Chapter 23. Vision Processing

FIRST Robotics Competition

Next, the known pixels are clumped together. Any clumps which are too small to reasonably
be a meaningful part of a tag are discarded.
Quad Detection

23.3. AprilTag Introduction 821

FIRST Robotics Competition

An algorithm for fitting a quadrilateral to each clump is now run:
• Identify likely “corner” candidates by pixels which are outliers in both dimensions.
• Iterate through all possible combinations of corners, evaluating the fit each time
• Pick the best-fit quadrilateral

Given the set of all quadralaterals, Identify a subset of quadrilaterals which is likely a tag.
A single large exterior quadrilateral with many interior quadrilateral is likely a good candi-
date.
If all has gone well so far, we are left with a four-sided region of pixels that is likely a valid
tag.
Decode ID

822 Chapter 23. Vision Processing

FIRST Robotics Competition

Now that we have one or more regions of pixels which we believe to be a valid AprilTag, we
need to identify which tag we are looking at. This is done by “decoding” the pattern of light
and dark squares on the inside.

• Calculate the expected interior pixel coordinates where the center of each bit should be
• Mark each location as “1” or “0” by comparing the pixel intensity to a threshold
• Find the tag ID which most closely matches what was seen in the image, allowing for

one or two bit errors.
It is possible there is no valid tag ID which matches the suspect tag. In this case, the decoding
process stops.
Fit External Quad

23.3. AprilTag Introduction 823

FIRST Robotics Competition

Now that we have a tag ID for the region of pixels, we need to do something useful with it.
For most FRC applications, we care about knowing the precise location of the corners of the
tag, or its center. In both cases, we expect the resolution-lowering operation we did at the
beginning to have distorted the image, and we want to undo those effects.
The algorithm to do this is:

• Use the detected tag location to define a region of interest in the original-resolution
image

• Calculate the gradient at pre-defined points in the region of interest to detect where the
image most sharply transitions between black to white

• Use these gradient measurements to rapidly re-fit an exterior quadrilateral at full reso-
lution

• Use geometry to calculate the exact center of the re-fit quadrilateral
Note that this step is optional, and can be skipped for faster image processing. However,
skipping it can induce significant errors into your robot’s behavior, depending on how you
are using the tag outputs.

824 Chapter 23. Vision Processing

FIRST Robotics Competition

Usage

2D Alignment

A simple strategy for using targets is to move the robot until the target is centered in the
image. Assuming the field and robot are constructed such that the gamepiece, scoring loca-
tion, vision target, and camera are all aligned, this method should proved a straightforward
method to automatically align the robot to the scoring position.
Using a camera, identify the centroid of the AprilTags in view. If the tag’s ID is correct, apply
drivetrain commands to rotate the robot left or right until the tag is centered in the camera
image.
This method does not require calibrating the camera or performing the homography step.

3D Alignment

A more advanced usage of AprilTags is to use their corner locations to help perform on-field
localization.
Each image is searched for AprilTags using the algorithm described on this page. Using
assumptions about how the camera’s lense distorts the 3d world onto the 2d array of pixels
in the camera, an estimate of the camera’s position relative to the tag is calculated. A good
camera calibration is required for the assumptions about its lens behavior to be accurate.

23.3. AprilTag Introduction 825

FIRST Robotics Competition

The tag’s ID is also decoded. from the image. Given each tag’s ID, the position of the tag on
the field can be looked up.
Knowing the position of the tag on the field, and the position of the camera relative to the
tag, the 3D geometry classes can be used to estimate the position of the camera on the field.
If the camera’s position on the robot is known, the robot’s position on the field can also be
estimated.
These estimates can be incorporated into the WPILib pose estimation classes.

2D to 3D Ambiguity

The process of translating the four known corners of the target in the image (two-dimensional)
into a real-world position relative to the camera (three-dimensional) is inherently ambiguous.
That is to say, there are multiple real-world positions that result in the target corners ending
up in the same spot in the camera image.
Humans can often use lighting or background clues to understand how objects are oriented in
space. However, computers do not have this benefit. They can be tricked by similar-looking
targets:

826 Chapter 23. Vision Processing

FIRST Robotics Competition

Resolving which position is “correct” can be done in a few different ways:
1. Use your odometry history from all sensors to pick the pose closest to where you expect

the robot to be.
2. Reject poses which are very unlikely (ex: outside the field perimeter, or up in the air)
3. Ignore pose estimates which are very close together (and hard to differentiate)
4. Use multiple cameras to look at the same target, such that at least one camera can

generate a good pose estimate
5. Look at many targets at once, using each to generate multiple pose estimates. Discard

the outlying estimates, use the ones which are tightly clustered together.

Adjustable Parameters

Decimation factor impacts how much the image is down-sampled before processing. In-
creasing it will increase detection speed, at the cost of not being able to see tags which are
far away.
Blur applies smoothing to the input image to decrease noise, which increases speed when
fitting quads to pixels, at the cost of precision. For most good cameras, this may be left at
zero.
Threads changes the number of parallel threads which the algorithm uses to process the
image. Certain steps may be sped up by allowing multithreading. In general, you want this
to be approximately equal to the number of physical cores in your CPU, minus the number of
cores which will be used for other processing tasks.
Detailed information about the tunable parameters can be found here.

23.3. AprilTag Introduction 827

https://github.com/AprilRobotics/apriltag/wiki/AprilTag-User-Guide#tuning-the-detector-parameters

FIRST Robotics Competition

Further Learning

The three major versions of AprilTags are described in three academic papers. It’s recom-
mended to read them in order, as each builds upon the previous:

• AprilTags v1

• AprilTags v2

• AprilTags v3

• Pose Ambiguity

23.4 Vision with GRIP

23.4.1 Introduction to GRIP

GRIP is a tool for developing computer vision algorithms interactively rather than through
trial and error coding. After developing your algorithm you may run GRIP in headless mode
on your roboRIO, on a Driver Station Laptop, or on a coprocessor connected to your robot
network. With Grip you choose vision operations to create a graphical pipeline that represents
the sequence of operations that are performed to complete the vision algorithm.
GRIP is based on OpenCV, one of the most popular computer vision software libraries used for
research, robotics, and vision algorithm implementations. The operations that are available
in GRIP are almost a 1 to 1 match with the operations available if you were hand coding the
same algorithm with some text-based programming language.

The GRIP user interface

The GRIP user interface consists of 4 parts:
• Image Sources are the ways of getting images into the GRIP pipeline. You can provide

images through attached cameras or files. Sources are almost always the beginning of
the image processing algorithm.

• Operation Palette contains the image processing steps from the OpenCV library that
you can chain together in the pipeline to form your algorithm. Clicking on an operation
in the palette adds it to the end of the pipeline. You can then use the left and right arrows
to move the operation within the pipeline.

• Pipeline is the sequence of steps that make up the algorithm. Each step (operation) in
the pipeline is connected to a previous step from the output of one step to an input to
the next step. The data flows from generally from left to right through the connections
that you create.

• Image Preview are shows previews of the result of each step that has it’s preview button
pressed. This makes it easy to debug algorithms by being able to preview the outputs of
each intermediate step.

828 Chapter 23. Vision Processing

FIRST Robotics Competition

Finding the yellow square

In this application we will try to find the yellow square in the image and display it’s position.
The setup is pretty simple, just a USB web camera connected to the computer looking down at
some colorful objects. The yellow plastic square is the thing that we’re interested in locating
in the image.

Enable the image source

The first step is to acquire an image. To use the source, click on the “Add Webcam” button and
select the camera number. In this case the Logitech USB camera that appeared as Webcam
0 and the computer monitor camera was Webcam 1. The web camera is selected in this case
to grab the image behind the computer as shown in the setup. Then select the image preview
button and the real-time display of the camera stream will be shown in the preview area.

Resize the image

In this case the camera resolution is too high for our purposes, and in fact the entire image
cannot even be viewed in the preview window. The “Resize” operation is clicked from the
Operation Palette to add it to the end of the pipeline. To help locate the Resize operation,
type “Resize” into the search box at the top of the palette. The steps are:

1. Type “Resize” into the search box on the palette
2. Click the Resize operation from the palette. It will appear in the pipeline.
3. Enter the x and y resize scale factor into the resize operation in the pipeline. In this case

0.25 was chosen for both.

23.4. Vision with GRIP 829

FIRST Robotics Competition

830 Chapter 23. Vision Processing

FIRST Robotics Competition

23.4. Vision with GRIP 831

FIRST Robotics Competition

832 Chapter 23. Vision Processing

FIRST Robotics Competition

4. Drag from the Webcam image output mat socket to the Resize image source mat socket.
A connection will be shown indicating that the camera output is being sent to the resize
input.

5. Click on the destination preview button on the “Resize” operation in the pipeline. The
smaller image will be displayed alongside the larger original image. You might need to
scroll horizontally to see both as shown.

6. Lastly, click the Webcam source preview button since there is no reason to look at both
the large image and the smaller image at the same time.

Find only the yellow parts of the image

The next step is to remove everything from the image that doesn’t match the yellow color of
the piece of plastic that is the object being detected. To do that a HSV Threshold operation
is chosen to set upper and lower limits of HSV values to indicate which pixels should be
included in the resultant binary image. Notice that the target area is white while everything
that wasn’t within the threshold values are shown in black. Again, as before:

1. Type HSV into the search box to find the HSV Threshold operation.
2. Click on the operation in the palette and it will appear at the end of the pipeline.
3. Connect the dst (output) socket on the resize operation to the input of the HSV Threshold.

23.4. Vision with GRIP 833

FIRST Robotics Competition

4. Enable the preview of the HSV Threshold operation so the result of the operation is
displayed in the preview window.

5. Adjust the Hue, Saturation, and Value parameters only the target object is shown in the
preview window.

Get rid of the noise and extraneous hits

This looks pretty good so far, but sometimes there is noise from other things that couldn’t
quite be filtered out. To illustrate one possible technique to reduce those occasional pixels
that were detected, an Erosion operation is chosen. Erosion will remove small groups of
pixels that are not part of the area of interest.

Mask just the yellow area from the original image

Here a new image is generated by taking the original image and masking (and operation) it
with the results of the erosion. This leaves just the yellow card as seen in the original image
with nothing else shown. And it makes it easy to visualize exactly what was being found
through the series of filters.

834 Chapter 23. Vision Processing

FIRST Robotics Competition

23.4. Vision with GRIP 835

FIRST Robotics Competition

Find the yellow area (blob)

The last step is actually detecting the yellow card using a Blob Detector. This operation looks
for a grouping of pixels that have some minimum area. In this case, the only non-black pixels
are from the yellow card after the filtering is done. You can see that a circle is drawn around
the detected portion of the image. In the release version of GRIP (watch for more updates
between now and kickoff) you will be able to send parameters about the detected blob to your
robot program using NetworkTables.

Status of GRIP

As you can see from this example, it is very easy and fast to be able to do simple object
recognition using GRIP. While this is a very simple example, it illustrates the basic principles
of using GRIP and feature extraction in general. Over the coming weeks the project team will
be posting updates to GRIP as more features are added. Currently it supports cameras (Axis
ethernet camera and web cameras) and image inputs. There is no provision for output yet
although NetworkTables and ROS (Robot Operating System) are planned.
You can either download a pre-built release of the code from the GitHub page “Releases”
section (https://github.com/WPIRoboticsProjects/GRIP) or you can clone the source reposi-
tory and built it yourself. Directions on building GRIP are on the project page. There is also
additional documentation on the project wiki.

836 Chapter 23. Vision Processing

https://github.com/WPIRoboticsProjects/GRIP

FIRST Robotics Competition

So, please play with GRiP and give us feedback here on the forum. If you find bugs, you can
either post them here or as a GitHub project issue on the project page.

23.4.2 Generating Code from GRIP

GRIP Code Generation

When running your vision algorithm on a small processor such as a roboRIO or Raspberry
PI it is encouraged to run OpenCV directly on the processor without the overhead of GRIP.
To facilitate this, GRIP can generate code in C++, Java, and Python for the pipeline that you
have created. This generated code can be added to your robot project and called directly
from your existing robot code.
Input sources such as cameras or image directories and output steps such as NetworkTables
are not generated. Your code must supply images as OpenCV mats. On the roboRIO, the
CameraServer class supplies images in that format. For getting results you can just use
generated getter methods for retrieving the resultant values such as contour x and y values.

Generating Code

To generate code, go to Tools > Generate Code. This will bring up a save dialog that lets
you create a C++, Java, or Python class that performs the steps in the GRIP pipeline.

If generating code to be used in a pre-existing project, choose a relevant directory to save the
pipeline to.

• C++ Users: the pipeline class is split into a header and implementation file
• Java Users: the generated class lacks a package declaration, so a declaration should be

added to match the directory where the file was saved.

23.4. Vision with GRIP 837

FIRST Robotics Competition

• Python Users: the module name will be identical to the class, so the import statement
will be something like from Pipeline import Pipeline

Structure of the Generated Code

Pipeline:
// Process -- this will run the pipeline
process(Mat source)

// Output accessors
getFooOutput()
getBar0Output()
getBar1Output()
...

Running the Pipeline

To run the Pipeline, call the process method with the sources (webcams, IP camera, image
file, etc) as arguments. This will expose the outputs of every operation in the pipeline with
the getFooOutput methods.

Getting the Results

Users are able to the outputs of every step in the pipeline. The outputs of these operations
would be accessible through their respective accessors. For example:

Operation Java/C++ getter Python variable
RGB Threshold getRgbThresholdOutput rgb_threshold_output
Blur getBlurOutput blur_output
CV Erode getCvErodeOutput mcv_erode_output
Find Contours getFindContoursOutput find_contours_output
Filter Contours getFilterContoursOutput filter_contours_output

If an operation appears multiple times in the pipeline, the accessors for those operations have
the number of that operation:

Operation Which appearance Accessor
Blur First getBlur0Output
Blur Second getBlur1Output
Blur Third getBlur2Output

838 Chapter 23. Vision Processing

FIRST Robotics Competition

23.4.3 Using Generated Code in a Robot Program

GRIP generates a class that can be added to an FRC® program that runs on a roboRIO and
without a lot of additional code, drive the robot based on the output.
Included here is a complete sample program that uses a GRIP pipeline that drives a robot
towards a piece of retroreflective material.
This program is designed to illustrate how the vision code works and does not necessarily
represent the best technique for writing your robot program. When writing your own program
be aware of the following considerations:

1. Using the camera output for steering the robot could be problematic. The camera
code in this example that captures and processes images runs at a much slower rate that
is desirable for a control loop for steering the robot. A better, and only slightly more
complex solution, is to get headings from the camera and it’s processing rate, then have
a much faster control loop steering to those headings using a gyro sensor.

2. Keep the vision code in the class that wraps the pipeline. A better way of writing
object oriented code is to subclass or instantiate the generated pipeline class and process
the OpenCV results there rather than in the robot program. In this example, the robot
code extracts the direction to drive by manipulating the resultant OpenCV contours. By
having the OpenCV code exposed throughout the robot program it makes it difficult to
change the vision algorithm should you have a better one.

Iterative program definitions

Java

package org.usfirst.frc.team190.robot;

import org.usfirst.frc.team190.grip.MyVisionPipeline;

import org.opencv.core.Rect;
import org.opencv.imgproc.Imgproc;

import edu.wpi.cscore.UsbCamera;
import edu.wpi.first.cameraserver.CameraServer;
import edu.wpi.first.wpilibj.drive.DifferentialDrive;
import edu.wpi.first.wpilibj.PWMSparkMax;
import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.vision.VisionRunner;
import edu.wpi.first.vision.VisionThread;

public class Robot extends TimedRobot {

private static final int IMG_WIDTH = 320;
private static final int IMG_HEIGHT = 240;

private VisionThread visionThread;
private double centerX = 0.0;
private DifferentialDrive drive;
private PWMSparkMax left;
private PWMSparkMax right;

private final Object imgLock = new Object();

23.4. Vision with GRIP 839

FIRST Robotics Competition

In this first part of the program you can see all the import statements for the WPILib classes
used for this program.

• The image width and height are defined as 320x240 pixels.
• The VisionThread is a WPILib class makes it easy to do your camera processing in a

separate thread from the rest of the robot program.
• centerX value will be the computed center X value of the detected target.
• DifferentialDrive encapsulates the drive motors on this robot and allows simplified

driving.
• imgLock is a variable to synchronize access to the data being simultaneously updated

with each image acquisition pass and the code that’s processing the coordinates and
steering the robot.

Java

@Override
public void robotInit() {

UsbCamera camera = CameraServer.startAutomaticCapture();
camera.setResolution(IMG_WIDTH, IMG_HEIGHT);

visionThread = new VisionThread(camera, new MyVisionPipeline(), pipeline -> {
if (!pipeline.filterContoursOutput().isEmpty()) {

Rect r = Imgproc.boundingRect(pipeline.filterContoursOutput().get(0));
synchronized (imgLock) {

centerX = r.x + (r.width / 2);
}

}
});
visionThread.start();

left = new PWMSparkMax(0);
right = new PWMSparkMax(1);
drive = new DifferentialDrive(left, right);

}

The robotInit() method is called once when the program starts up. It creates a Cam-
eraServer instance that begins capturing images at the requested resolution (IMG_WIDTH
by IMG_HEIGHT).
Next an instance of the classVisionThread is created. VisionThread begins capturing images
from the camera asynchronously in a separate thread. After processing each image, the
pipeline computed bounding box around the target is retrieved and it’s center X value is
computed. This centerX value will be the x pixel value of the center of the rectangle in the
image.
The VisionThread also takes a VisionPipeline instance (here, we have a subclass MyVision-
Pipeline generated by GRIP) as well as a callback that we use to handle the output of the
pipeline. In this example, the pipeline outputs a list of contours (outlines of areas in an im-
age) that mark goals or targets of some kind. The callback finds the bounding box of the
first contour in order to find its center, then saves that value in the variable centerX. Note
the synchronized block around the assignment: this makes sure the main robot thread will
always have the most up-to-date value of the variable, as long as it also uses synchronized
blocks to read the variable.
Java

840 Chapter 23. Vision Processing

FIRST Robotics Competition

@Override
public void autonomousPeriodic() {

double centerX;
synchronized (imgLock) {

centerX = this.centerX;
}
double turn = centerX - (IMG_WIDTH / 2);
drive.arcadeDrive(-0.6, turn * 0.005);

}

This, the final part of the program, is called repeatedly during the autonomous period of the
match. It gets the centerX pixel value of the target and subtracts half the image width to
change it to a value that is zero when the rectangle is centered in the image and positive
or negative when the target center is on the left or right side of the frame. That value
is used to steer the robot towards the target.
Note the synchronized block at the beginning. This takes a snapshot of the most recent
centerX value found by the VisionThread.

23.4.4 Using GRIP with a Kangaroo Computer

A recently available computer called the Kangaroo looks like a great platform for running
GRIP on FRC® robots. Some of the specs for this processor include:

• Quad core 1.4Ghz Atom processor
• HDMI port
• 2 USB ports (1 USB2 and 1 USB3)
• 2GB RAM
• 32GB Flash
• Flash card slot
• WiFi
• Battery with 4 hours running time
• Power supply
• Windows 10
• and a fingerprint reader

The advantage of this setup is that it offloads the roboRIO from doing image processing and
it is a normal Windows system so all of our software should work without modification. Be
sure to read the caveats at the end of this page before jumping in.
More detailed instructions for using a Kangaroo for running GRIP can be found in the
following PDF document created by Scott Taylor and FRC 1735. His explanation goes beyond
what is shown here, detailing how to get the GRIP program to auto-start on boot and many
other details.

Grip Plus Kangaroo

23.4. Vision with GRIP 841

FIRST Robotics Competition

Setup

The nice thing about this setup is that you just need to plug in a monitor, keyboard, mouse
and (in this case) the Microsoft web camera and you are good to go with programming the
GRIP pipeline. When you are finished, disconnect the keyboard, mouse and monitor and put
the Kangaroo on your robot. You will need to disable the WiFi on the Kangaroo and connect
it to the robot with a USB ethernet dongle to the extra ethernet port on the robot radio.
In this example you can see the Kangaroo computer (1) connected to a USB hub (3), keyboard,
and an HDMI monitor for programming. The USB hub is connected to the camera and mouse.

Sample GRIP program

Attached is the sample program running on the Kangaroo detecting the red heart on the little
foam robot in the image (left panel). It is doing a HSV threshold to only get that red color
then finding contours, and then filtering the contours using the size and solidity. At the end
of the pipeline, the values are being published to NetworkTables.

842 Chapter 23. Vision Processing

FIRST Robotics Competition

23.4. Vision with GRIP 843

FIRST Robotics Competition

Viewing Contours Report in NetworkTables

This is the output from the OutlineViewer (<username>/WPILib/tools/OutlineViewer.jar), run-
ning on a different computer as a server (since there is no roboRIO on the network in this
example) and the values being reported back for the single contour that the program detected
that met the requirements of the Filter Contours operation.

Considerations

The Kangaroo runs Windows 10, so care must to be taken to make sure GRIP will keep running
on the robot during a match or testing. For example, it should not try to do a Windows
Update, Virus scan refresh, go to sleep, etc. Once configured, it has the advantage of being
a normal Intel Architecture and should give predictable performance since it is running only
one application.

23.5 Vision on the RoboRIO

23.5.1 Using the CameraServer on the roboRIO

Simple CameraServer Program

The following program starts automatic capture of a USB camera like the Microsoft LifeCam
that is connected to the roboRIO. In this mode, the camera will capture frames and send
them to the dashboard. To view the images, create a CameraServer Stream Viewer widget
using the “View”, then “Add” menu in the dashboard. The images are unprocessed and just
forwarded from the camera to the dashboard.

844 Chapter 23. Vision Processing

FIRST Robotics Competition

Java

7 import edu.wpi.first.cameraserver.CameraServer;
8 import edu.wpi.first.wpilibj.TimedRobot;
9

10 /**
11 * Uses the CameraServer class to automatically capture video from a USB webcam and␣

↪→send it to the
12 * FRC dashboard without doing any vision processing. This is the easiest way to get␣

↪→camera images
13 * to the dashboard. Just add this to the robotInit() method in your program.
14 */
15 public class Robot extends TimedRobot {
16 @Override
17 public void robotInit() {
18 CameraServer.startAutomaticCapture();
19 }
20 }

C++

#include <cameraserver/CameraServer.h>
#include <frc/TimedRobot.h>
class Robot : public frc::TimedRobot {
public:
void RobotInit() override {

frc::CameraServer::StartAutomaticCapture();
}

};

#ifndef RUNNING_FRC_TESTS
int main() {
return frc::StartRobot<Robot>();

}

23.5. Vision on the RoboRIO 845

FIRST Robotics Competition

Advanced Camera Server Program

In the following example a thread created in robotInit() gets the Camera Server instance.
Each frame of the video is individually processed, in this case drawing a rectangle on the
image using the OpenCV rectangle() method. The resultant images are then passed to the
output stream and sent to the dashboard. You can replace the rectangle operation with
any image processing code that is necessary for your application. You can even annotate the
image using OpenCV methods to write targeting information onto the image being sent to the
dashboard.
Java

7 import edu.wpi.first.cameraserver.CameraServer;
8 import edu.wpi.first.cscore.CvSink;
9 import edu.wpi.first.cscore.CvSource;

10 import edu.wpi.first.cscore.UsbCamera;
11 import edu.wpi.first.wpilibj.TimedRobot;
12 import org.opencv.core.Mat;
13 import org.opencv.core.Point;
14 import org.opencv.core.Scalar;
15 import org.opencv.imgproc.Imgproc;
16

17 /**
18 * This is a demo program showing the use of OpenCV to do vision processing. The␣

↪→image is acquired
19 * from the USB camera, then a rectangle is put on the image and sent to the␣

↪→dashboard. OpenCV has
20 * many methods for different types of processing.
21 */
22 public class Robot extends TimedRobot {
23 Thread m_visionThread;
24

25 @Override
26 public void robotInit() {
27 m_visionThread =
28 new Thread(
29 () -> {
30 // Get the UsbCamera from CameraServer
31 UsbCamera camera = CameraServer.startAutomaticCapture();
32 // Set the resolution
33 camera.setResolution(640, 480);
34

35 // Get a CvSink. This will capture Mats from the camera
36 CvSink cvSink = CameraServer.getVideo();
37 // Setup a CvSource. This will send images back to the Dashboard
38 CvSource outputStream = CameraServer.putVideo("Rectangle", 640, 480);
39

40 // Mats are very memory expensive. Lets reuse this Mat.
41 Mat mat = new Mat();
42

43 // This cannot be 'true'. The program will never exit if it is. This
44 // lets the robot stop this thread when restarting robot code or
45 // deploying.
46 while (!Thread.interrupted()) {
47 // Tell the CvSink to grab a frame from the camera and put it
48 // in the source mat. If there is an error notify the output.
49 if (cvSink.grabFrame(mat) == 0) {

(continues on next page)

846 Chapter 23. Vision Processing

FIRST Robotics Competition

(continued from previous page)
50 // Send the output the error.
51 outputStream.notifyError(cvSink.getError());
52 // skip the rest of the current iteration
53 continue;
54 }
55 // Put a rectangle on the image
56 Imgproc.rectangle(
57 mat, new Point(100, 100), new Point(400, 400), new Scalar(255,␣

↪→255, 255), 5);
58 // Give the output stream a new image to display
59 outputStream.putFrame(mat);
60 }
61 });
62 m_visionThread.setDaemon(true);
63 m_visionThread.start();
64 }
65 }

C++

#include <cstdio>
#include <thread>

#include <cameraserver/CameraServer.h>
#include <frc/TimedRobot.h>
#include <opencv2/core/core.hpp>
#include <opencv2/core/types.hpp>
#include <opencv2/imgproc/imgproc.hpp>

/**
* This is a demo program showing the use of OpenCV to do vision processing. The
* image is acquired from the USB camera, then a rectangle is put on the image
* and sent to the dashboard. OpenCV has many methods for different types of
* processing.
*/
class Robot : public frc::TimedRobot {
private:
static void VisionThread() {

// Get the USB camera from CameraServer
cs::UsbCamera camera = frc::CameraServer::StartAutomaticCapture();
// Set the resolution
camera.SetResolution(640, 480);

// Get a CvSink. This will capture Mats from the Camera
cs::CvSink cvSink = frc::CameraServer::GetVideo();
// Setup a CvSource. This will send images back to the Dashboard
cs::CvSource outputStream =

frc::CameraServer::PutVideo("Rectangle", 640, 480);

// Mats are very memory expensive. Lets reuse this Mat.
cv::Mat mat;

while (true) {
// Tell the CvSink to grab a frame from the camera and
// put it
// in the source mat. If there is an error notify the

(continues on next page)

23.5. Vision on the RoboRIO 847

FIRST Robotics Competition

(continued from previous page)
// output.
if (cvSink.GrabFrame(mat) == 0) {

// Send the output the error.
outputStream.NotifyError(cvSink.GetError());
// skip the rest of the current iteration
continue;

}
// Put a rectangle on the image
rectangle(mat, cv::Point(100, 100), cv::Point(400, 400),

cv::Scalar(255, 255, 255), 5);
// Give the output stream a new image to display
outputStream.PutFrame(mat);

}
}

void RobotInit() override {
// We need to run our vision program in a separate thread. If not, our robot
// program will not run.
std::thread visionThread(VisionThread);
visionThread.detach();

}
};

#ifndef RUNNING_FRC_TESTS
int main() {
return frc::StartRobot<Robot>();

}
#endif

Notice that in these examples, the PutVideo() method writes the video to a named stream.
To view that stream on SmartDashboard or Shuffleboard, select that named stream. In this
case that is “Rectangle”.

23.5.2 Using Multiple Cameras

Switching the Driver Views

If you’re interested in just switching what the driver sees, and are using SmartDashboard, the
SmartDashboard CameraServer Stream Viewer has an option (“Selected Camera Path”) that
reads the givenNetworkTables key and changes the “Camera Choice” to that value (displaying
that camera). The robot code then just needs to set the NetworkTables key to the correct
camera name. Assuming “Selected Camera Path” is set to “CameraSelection”, the following
code uses the joystick 1 trigger button state to show camera1 and camera2.
Java

UsbCamera camera1;
UsbCamera camera2;
Joystick joy1 = new Joystick(0);
NetworkTableEntry cameraSelection;

@Override
public void robotInit() {

camera1 = CameraServer.startAutomaticCapture(0);
(continues on next page)

848 Chapter 23. Vision Processing

FIRST Robotics Competition

(continued from previous page)
camera2 = CameraServer.startAutomaticCapture(1);

cameraSelection = NetworkTableInstance.getDefault().getTable("").getEntry(
↪→"CameraSelection");
}

@Override
public void teleopPeriodic() {

if (joy1.getTriggerPressed()) {
System.out.println("Setting camera 2");
cameraSelection.setString(camera2.getName());

} else if (joy1.getTriggerReleased()) {
System.out.println("Setting camera 1");
cameraSelection.setString(camera1.getName());

}
}

C++

cs::UsbCamera camera1;
cs::UsbCamera camera2;
frc::Joystick joy1{0};

nt::NetworkTableEntry cameraSelection;

void RobotInit() override {
camera1 = frc::CameraServer::StartAutomaticCapture(0);
camera2 = frc::CameraServer::StartAutomaticCapture(1);

cameraSelection = nt::NetworkTableInstance::GetDefault().GetTable("")->GetEntry(
↪→"CameraSelection");
}

void TeleopPeriodic() override {
if (joy1.GetTriggerPressed()) {

std::cout << "Setting Camera 2" << std::endl;
cameraSelection.SetString(camera2.GetName());

} else if (joy1.GetTriggerReleased()) {
std::cout << "Setting Camera 1" << std::endl;
cameraSelection.SetString(camera1.GetName());

}
}

If you’re using some other dashboard, you can change the camera used by the camera server
dynamically. If you open a stream viewer nominally to camera1, the robot code will change
the stream contents to either camera1 or camera2 based on the joystick trigger.
Java

UsbCamera camera1;
UsbCamera camera2;
VideoSink server;
Joystick joy1 = new Joystick(0);

@Override
public void robotInit() {

camera1 = CameraServer.startAutomaticCapture(0);
(continues on next page)

23.5. Vision on the RoboRIO 849

FIRST Robotics Competition

(continued from previous page)
camera2 = CameraServer.startAutomaticCapture(1);
server = CameraServer.getServer();

}

@Override
public void teleopPeriodic() {

if (joy1.getTriggerPressed()) {
System.out.println("Setting camera 2");
server.setSource(camera2);

} else if (joy1.getTriggerReleased()) {
System.out.println("Setting camera 1");
server.setSource(camera1);

}
}

C++

cs::UsbCamera camera1;
cs::UsbCamera camera2;
cs::VideoSink server;
frc::Joystick joy1{0};
bool prevTrigger = false;

void RobotInit() override {
camera1 = frc::CameraServer::StartAutomaticCapture(0);
camera2 = frc::CameraServer::StartAutomaticCapture(1);
server = frc::CameraServer::GetServer();

}

void TeleopPeriodic() override {
if (joy1.GetTrigger() && !prevTrigger) {

std::cout << "Setting Camera 2" << std::endl;
server.SetSource(camera2);

} else if (!joy1.GetTrigger() && prevTrigger) {
std::cout << "Setting Camera 1" << std::endl;
server.SetSource(camera1);

}
prevTrigger = joy1.GetTrigger();

}

Keeping Streams Open

By default, the cscore library is pretty aggressive in turning off cameras not in use. What
this means is that when you switch cameras, it may disconnect from the camera not in use,
so switching back will have some delay as it reconnects to the camera. To keep both camera
connections open, use the SetConnectionStrategy() method to tell the library to keep the
streams open, even if you aren’t using them.
Java

UsbCamera camera1;
UsbCamera camera2;
VideoSink server;
Joystick joy1 = new Joystick(0);

(continues on next page)

850 Chapter 23. Vision Processing

FIRST Robotics Competition

(continued from previous page)
@Override
public void robotInit() {

camera1 = CameraServer.startAutomaticCapture(0);
camera2 = CameraServer.startAutomaticCapture(1);
server = CameraServer.getServer();

camera1.setConnectionStrategy(ConnectionStrategy.kKeepOpen);
camera2.setConnectionStrategy(ConnectionStrategy.kKeepOpen);

}

@Override
public void teleopPeriodic() {

if (joy1.getTriggerPressed()) {
System.out.println("Setting camera 2");
server.setSource(camera2);

} else if (joy1.getTriggerReleased()) {
System.out.println("Setting camera 1");
server.setSource(camera1);

}
}

C++

cs::UsbCamera camera1;
cs::UsbCamera camera2;
cs::VideoSink server;
frc::Joystick joy1{0};
bool prevTrigger = false;
void RobotInit() override {
camera1 = frc::CameraServer::StartAutomaticCapture(0);
camera2 = frc::CameraServer::StartAutomaticCapture(1);
server = frc::CameraServer::GetServer();
camera1.

↪→SetConnectionStrategy(cs::VideoSource::ConnectionStrategy::kConnectionKeepOpen);
camera2.

↪→SetConnectionStrategy(cs::VideoSource::ConnectionStrategy::kConnectionKeepOpen);
}

void TeleopPeriodic() override {
if (joy1.GetTrigger() && !prevTrigger) {

std::cout << "Setting Camera 2" << std::endl;
server.SetSource(camera2);

} else if (!joy1.GetTrigger() && prevTrigger) {
std::cout << "Setting Camera 1" << std::endl;
server.SetSource(camera1);

}
prevTrigger = joy1.GetTrigger();

}

Note: If both cameras are USB, you may run into USB bandwidth limitations with higher
resolutions, as in all of these cases the roboRIO is going to be streaming data from both
cameras to the roboRIO simultaneously (for a short period in options 1 and 2, and continuously
in option 3). It is theoretically possible for the library to avoid this simultaneity in the option
2 case (only), but this is not currently implemented.
Different cameras report bandwidth usage differently. The library will tell you if you’re hitting

23.5. Vision on the RoboRIO 851

FIRST Robotics Competition

the limit; you’ll get this error message:

could not start streaming due to USB bandwidth limitations;
try a lower resolution or a different pixel format
(VIDIOC_STREAMON: No space left on device)

If you’re using Option 3 it will give you this error during RobotInit(). Thus you should just
try your desired resolution and adjusting as necessary until you both don’t get that error and
don’t exceed the radio bandwidth limitations.

23.5.3 CameraServer Web Interface

When CameraServer opens a camera, it creates a webpage that you can use to view the cam-
era stream and view the effects of various camera settings. To connect to the web interface,
use a web browser to navigate to http://roboRIO-TEAM-frc.local:1181. There is no addi-
tional code needed other then Simple CameraServer Program.

Note: The port 1181 is used for the first camera. The port increments for additional camera,
so if you have two cameras, the replace 1181 above with 1182.

852 Chapter 23. Vision Processing

FIRST Robotics Competition

Camera Settings

The web server will show a live camera image and has sliders to adjust various camera set-
tings, such as brightness, contrast, sharpness and many other options. You can adjust the
values and see the results live, and then use the VideoCamera class to set those in your robot
code.

23.5. Vision on the RoboRIO 853

FIRST Robotics Competition

Camera Video Modes

One useful feature is the list of supported video modes at the bottom of the web page. This
shows all the supported modes that the camera supports to enable you to choose the one that
is the best combination of resolution and frame rate for your requirements.

854 Chapter 23. Vision Processing

24
Command-Based Programming

Note: Old (pre-2020) command-based is no longer available in 2023. Users should mi-
grate to the new command-based framework below. Documentation for old command-based
is available here.

This sequence of articles serves as an introduction to and reference for the WPILib command-
based framework.
For a collection of example projects using the command-based framework, see Command-
Based Examples.

24.1 What Is “Command-Based” Programming?

WPILib supports a robot programming methodology called “command-based” programming.
In general, “command-based” can refer both the general programming paradigm, and to the
set of WPILib library resources included to facilitate it.
“Command-based” programming is one possible design pattern for robot software. It is not
the only way to write a robot program, but it is a very effective one. Command-based robot
code tends to be clean, extensible, and (with some tricks) easy to re-use from year to year.
The command-based paradigm is also an example of declarative programming. The command-
based library allow users to define desired robot behaviors while minimizing the amount of
iteration-by-iteration robot logic that they must write. For example, in the command-based
program, a user can specify that “the robot should perform an action when a condition is
true” (note the use of a lambda):
Java

new Trigger(condition::get).onTrue(Commands.runOnce(() -> piston.set(DoubleSolenoid.
↪→Value.kForward)));

C++

Trigger([&condition] { return condition.Get()).OnTrue(frc2::cmd::RunOnce([&piston] {␣
↪→piston.Set(frc::DoubleSolenoid::kForward)));

855

https://docs.wpilib.org/en/2021/docs/software/old-commandbased/index.html

FIRST Robotics Competition

In contrast, without using command-based, the user would need to check the button state
every iteration, and perform the appropriate action based on the state of the button.
Java

if(condition.get()) {
if(!pressed) {

piston.set(DoubleSolenoid.Value.kForward);
pressed = true;

}
} else {
pressed = false;

}

C++

if(condition.Get()) {
if(!pressed) {

piston.Set(frc::DoubleSolenoid::kForward);
pressed = true;

}
} else {
pressed = false;

}

24.1.1 Subsystems and Commands

Subsystems
Gripper

DriveTrain

Wrist

Elevator

Arm

Ball...

MiniBot...

Commands

StowWrist

MoveToScoringPosition

DeployMiniBot

DriveFor...

Elevator...

DriveToG...LaunchMi...

Viewer does not support full SVG 1.1

The command-based pattern is based around two core abstractions: commands, and sub-
systems.
Commands represent actions the robot can take. Commands run when scheduled, until they
are interrupted or their end condition is met. Commands are very recursively composable:
commands can be composed to accomplish more-complicated tasks. See Commands for more
info.
Subsystems represent independently-controlled collections of robot hardware (such as mo-
tor controllers, sensors, pneumatic actuators, etc.) that operate together. Subsystems back
the resource-management system of command-based: only one command can use a given sub-
system at the same time. Subsystems allow users to “hide” the internal complexity of their
actual hardware from the rest of their code - this both simplifies the rest of the robot code,
and allows changes to the internal details of a subsystem’s hardware without also changing
the rest of the robot code.

856 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.1.2 How Commands Are Run

Note: For a more detailed explanation, see The Command Scheduler.

Commands are run by the CommandScheduler (Java, C++) singleton, which polls triggers
(such as buttons) for commands to schedule, preventing resource conflicts, and executing
scheduled commands. The scheduler’s run() method must be called; it is generally recom-
mended to call it from the robotPeriodic() method of the Robot class, which is run at a
default frequency of 50Hz (once every 20ms).
Multiple commands can run concurrently, as long as they do not require the same resources
on the robot. Resource management is handled on a per-subsystem basis: commands specify
which subsystems they interact with, and the scheduler will ensure that no more more than
one command requiring a given subsystem is scheduled at a time. This ensures that, for
example, users will not end up with two different pieces of code attempting to set the same
motor controller to different output values.

24.1.3 Command Compositions

It is often desirable to build complex commands from simple pieces. This is achievable by
creating a composition of commands. The command-based library provides several types of
command compositions for teams to use, and users may write their own. As command com-
positions are commands themselves, they may be used in a recursive composition. That is
to say - one can create a command compositions from multiple command compositions. This
provides an extremely powerful way of building complex robot actions from simple compo-
nents.

24.2 Commands

Commands represent actions the robot can take. Commands run when scheduled, until they
are interrupted or their end condition is met. Commands are represented in the command-
based library by the Command interface (Java, C++).

24.2.1 The Structure of a Command

Commands specify what the command will do in each of its possible states. This is done by
overriding the initialize(), execute(), and end() methods. Additionally, a command must
be able to tell the scheduler when (if ever) it has finished execution - this is done by overriding
the isFinished() method. All of these methods are defaulted to reduce clutter in user code:
initialize(), execute(), and end() are defaulted to simply do nothing, while isFinished()
is defaulted to return false (resulting in a command that never finishes naturally, and will run
until interrupted).

24.2. Commands 857

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html

FIRST Robotics Competition

Initialization

The initialize() method (Java, C++) marks the command start, and is called exactly once
per time a command is scheduled. The initialize() method should be used to place the
command in a known starting state for execution. Command objects may be reused and
scheduled multiple times, so any state or resources needed for the command’s functionality
should be initialized or opened in initialize (which will be called at the start of each use)
rather than the constructor (which is invoked only once on object allocation). It is also useful
for performing tasks that only need to be performed once per time scheduled, such as setting
motors to run at a constant speed or setting the state of a solenoid actuator.

Execution

The execute() method (Java, C++) is called repeatedly while the command is scheduled;
this is when the scheduler’s run() method is called (this is generally done in the main robot
periodic method, which runs every 20ms by default). The execute block should be used for
any task that needs to be done continually while the command is scheduled, such as updating
motor outputs to match joystick inputs, or using the output of a control loop.

Ending

The end(bool interrupted) method (Java, C++) is called once when the command ends,
whether it finishes normally (i.e. isFinished() returned true) or it was interrupted (either
by another command or by being explicitly canceled). The method argument specifies the
manner in which the command ended; users can use this to differentiate the behavior of their
command end accordingly. The end block should be used to “wrap up” command state in a
neat way, such as setting motors back to zero or reverting a solenoid actuator to a “default”
state. Any state or resources initialized in initialize() should be closed in end().

Specifying end conditions

The isFinished() method (Java, C++) is called repeatedly while the command is scheduled,
whenever the scheduler’s run() method is called. As soon as it returns true, the command’s
end() method is called and it ends. The isFinished() method is called after the execute()
method, so the command will execute once on the same iteration that it ends.

24.2.2 Command Properties

In addition to the four lifecycle methods described above, each Command also has three proper-
ties, defined by getter methods that should always return the same value with no side affects.

858 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#initialize()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#ad3f1971a1b44ecdd4683d766f831bccd
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#execute()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#a7d7ea1271f7dcc65c0ba3221d179b510
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#end(boolean)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#a134eda3756f00c667bb5415b23ee920c
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#end(boolean)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#af5e8c12152d195a4f3c06789366aac88

FIRST Robotics Competition

getRequirements

Each command should declare any subsystems it controls as requirements. This backs the
scheduler’s resource management mechanism, ensuring that no more than one command
requires a given subsystem at the same time. This prevents situations such as two different
pieces of code attempting to set the same motor controller to different output values.
Declaring requirements is done by overriding the getRequirements() method in the relevant
command class, by calling addRequirements(), or by using the requirements vararg (Java) /
initializer list (C++) parameter at the end of the parameter list of most command constructors
and factories in the library:
Java

Commands.run(intake::activate, intake);

C++

frc2::cmd::Run([&intake] { intake.Activate(); }, {&intake});

As a rule, command compositions require all subsystems their components require.

runsWhenDisabled

The runsWhenDisabled() method (Java, C++) returns a boolean/bool specifying whether
the command may run when the robot is disabled. With the default of returning false, the
command will be canceled when the robot is disabled and attempts to schedule it will do
nothing. Returning true will allow the command to run and be scheduled when the robot is
disabled.

Important: When the robot is disabled, PWM outputs are disabled and CAN motor con-
trollers may not apply voltage, regardless of runsWhenDisabled!

This property can be set either by overriding the runsWhenDisabled() method in the relevant
command class, or by using the ignoringDisable decorator (Java, C++):
Java

CommandBase mayRunDuringDisabled = Commands.run(() -> updateTelemetry()).
↪→ignoringDisable(true);

C++

frc2::CommandPtr mayRunDuringDisabled = frc2::cmd::Run([] { UpdateTelemetry(); }).
↪→IgnoringDisable(true);

As a rule, command compositions may run when disabled if all their component commands
set runsWhenDisabled as true.

24.2. Commands 859

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#runsWhenDisabled()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#a5113cbf3655ce8679dd48bf22700b2f4
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#ignoringDisable(boolean)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#acc67b15e71a66aafb7523ccdd0a7a834

FIRST Robotics Competition

getInterruptionBehavior

The getInterruptionBehavior() method (Java, C++) defines what happens if another com-
mand sharing a requirement is scheduled while this one is running. In the default behav-
ior, kCancelSelf, the current command will be canceled and the incoming command will be
scheduled successfully. If kCancelIncoming is returned, the incoming command’s schedul-
ing will be aborted and this command will continue running. Note that getInterruption-
Behavior only affects resolution of requirement conflicts: all commands can be canceled,
regardless of getInterruptionBehavior.

Note: This was previously controlled by the interruptible parameter passed when schedul-
ing a command, and is now a property of the command object.

This property can be set either by overriding the getInterruptionBehavior method in the
relevant command class, or by using the withInterruptBehavior() decorator (Java, C++):
Java

CommandBase noninteruptible = Commands.run(intake::activate, intake).
↪→withInterruptBehavior(Command.InterruptBehavior.kCancelIncoming);

C++

frc2::CommandPtr noninterruptible = frc2::cmd::Run([&intake] { intake.Activate(); },
↪→{&intake}).WithInterruptBehavior(Command::InterruptBehavior::kCancelIncoming);

As a rule, command compositions are kCancelIncoming if all their components are
kCancelIncoming as well.

24.2.3 Included Command Types

The command-based library includes many pre-written command types. Through the use of
lambdas, these commands can cover almost all use cases and teams should rarely need to
write custom command classes. Many of these commands are provided via static factory
functions in the Commands utility class (Java) or in the frc2::cmd namespace defined in the
Commands.h header (C++). Classes inheriting from Subsystem also have instance methods
that implicitly require this.

Running Actions

The most basic commands are actions the robot takes: setting voltage to a motor, changing
a solenoid’s direction, etc. For these commands, which typically consist of a method call or
two, the command-based library offers several factories to be construct commands inline with
one or more lambdas to be executed.
The runOnce factory, backed by the InstantCommand (Java, C++) class, creates a command
that calls a lambda once, and then finishes.
Java

860 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#getInterruptionBehavior()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#ab1e027e86fc5c9132914ca566a9845a8
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#withInterruptBehavior(edu.wpi.first.wpilibj2.command.Command.InterruptionBehavior)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html#a6583f966509478a29e7764a72c4bf177
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/InstantCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_instant_command.html

FIRST Robotics Competition

25 /** Grabs the hatch. */
26 public CommandBase grabHatchCommand() {
27 // implicitly require `this`
28 return this.runOnce(() -> m_hatchSolenoid.set(kForward));
29 }
30

31 /** Releases the hatch. */
32 public CommandBase releaseHatchCommand() {
33 // implicitly require `this`
34 return this.runOnce(() -> m_hatchSolenoid.set(kReverse));
35 }

C++ (Header)

20 /**
21 * Grabs the hatch.
22 */
23 frc2::CommandPtr GrabHatchCommand();
24

25 /**
26 * Releases the hatch.
27 */
28 frc2::CommandPtr ReleaseHatchCommand();

C++ (Source)

15 frc2::CommandPtr HatchSubsystem::GrabHatchCommand() {
16 // implicitly require `this`
17 return this->RunOnce(
18 [this] { m_hatchSolenoid.Set(frc::DoubleSolenoid::kForward); });
19 }
20

21 frc2::CommandPtr HatchSubsystem::ReleaseHatchCommand() {
22 // implicitly require `this`
23 return this->RunOnce(
24 [this] { m_hatchSolenoid.Set(frc::DoubleSolenoid::kReverse); });
25 }

The run factory, backed by the RunCommand (Java, C++) class, creates a command that calls
a lambda repeatedly, until interrupted.
Java

// A split-stick arcade command, with forward/backward controlled by the left
// hand, and turning controlled by the right.
new RunCommand(() -> m_robotDrive.arcadeDrive(

-driverController.getLeftY(),
driverController.getRightX()),
m_robotDrive)

C++

// A split-stick arcade command, with forward/backward controlled by the left
// hand, and turning controlled by the right.
frc2::RunCommand(
[this] {

m_drive.ArcadeDrive(
(continues on next page)

24.2. Commands 861

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/RunCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_run_command.html

FIRST Robotics Competition

(continued from previous page)
-m_driverController.GetLeftY(),
m_driverController.GetRightX());

},
{&m_drive}))

The startEnd factory, backed by the StartEndCommand (Java, C++) class, calls one lambda
when scheduled, and then a second lambda when interrupted.
Java

Commands.StartEnd(
// Start a flywheel spinning at 50% power
() -> m_shooter.shooterSpeed(0.5),
// Stop the flywheel at the end of the command
() -> m_shooter.shooterSpeed(0.0),
// Requires the shooter subsystem
m_shooter

)

C++

frc2::cmd::StartEnd(
// Start a flywheel spinning at 50% power
[this] { m_shooter.shooterSpeed(0.5); },
// Stop the flywheel at the end of the command
[this] { m_shooter.shooterSpeed(0.0); },
// Requires the shooter subsystem
{&m_shooter}

)

FunctionalCommand (Java, C++) accepts four lambdas that constitute the four command
lifecycle methods: a Runnable/std::function<void()> for each of initialize() and ex-
ecute(), a BooleanConsumer/std::function<void(bool)> for end(), and a BooleanSup-
plier/std::function<bool()> for isFinished().
Java

new FunctionalCommand(
// Reset encoders on command start
m_robotDrive::resetEncoders,
// Start driving forward at the start of the command
() -> m_robotDrive.arcadeDrive(kAutoDriveSpeed, 0),
// Stop driving at the end of the command
interrupted -> m_robotDrive.arcadeDrive(0, 0),
// End the command when the robot's driven distance exceeds the desired value
() -> m_robotDrive.getAverageEncoderDistance() >= kAutoDriveDistanceInches,
// Require the drive subsystem
m_robotDrive

)

C++

frc2::FunctionalCommand(
// Reset encoders on command start
[this] { m_drive.ResetEncoders(); },
// Start driving forward at the start of the command
[this] { m_drive.ArcadeDrive(ac::kAutoDriveSpeed, 0); },

(continues on next page)

862 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/StartEndCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_start_end_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/FunctionalCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_functional_command.html

FIRST Robotics Competition

(continued from previous page)
// Stop driving at the end of the command
[this] (bool interrupted) { m_drive.ArcadeDrive(0, 0); },
// End the command when the robot's driven distance exceeds the desired value
[this] { return m_drive.GetAverageEncoderDistance() >= kAutoDriveDistanceInches; },
// Requires the drive subsystem
{&m_drive}

)

To print a string and ending immediately, the library offers the Commands.
print(String)/frc2::cmd::Print(std::string_view) factory, backed by the Print-
Command (Java, C++) subclass of InstantCommand.

Waiting

Waiting for a certain condition to happen or adding a delay can be useful to synchronize
between different commands in a command composition or between other robot actions.
To wait and end after a specified period of time elapses, the library offers the Commands.
waitSeconds(double)/frc2::cmd::Wait(units::second_t) factory, backed by the Wait-
Command (Java, C++) class.
Java

// Ends 5 seconds after being scheduled
new WaitCommand(5.0)

C++

// Ends 5 seconds after being scheduled
frc2::WaitCommand(5.0_s)

To wait until a certain condition becomes true, the library offers the Commands.
waitUntil(BooleanSupplier)/frc2::cmd::WaitUntil(std::function<bool()>) factory,
backed by the WaitUntilCommand class (Java, C++).
Java

// Ends after m_limitSwitch.get() returns true
new WaitUntilCommand(m_limitSwitch::get)

C++

// Ends after m_limitSwitch.Get() returns true
frc2::WaitUntilCommand([&m_limitSwitch] { return m_limitSwitch.Get(); })

24.2. Commands 863

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/PrintCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_print_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/WaitCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_wait_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/WaitUntilCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_wait_until_command.html

FIRST Robotics Competition

Control Algorithm Commands

There are commands for various control setups:
• PIDCommand uses a PID controller. For more info, see PIDCommand.
• TrapezoidProfileCommand tracks a trapezoid motion profile. For more info, see Trape-
zoidProfileCommand.

• ProfiledPIDCommand combines PID control with trapezoid motion profiles. For more
info, see ProfiledPIDCommand.

• MecanumControllerCommand (Java, C++) is useful for controlling mecanum drivetrains.
See API docs and the MecanumControllerCommand (Java, C++) example project for
more info.

• SwerveControllerCommand (Java, C++) is useful for controlling swerve drivetrains. See
API docs and the SwerveControllerCommand (Java, C++) example project for more
info.

• RamseteCommand (Java, C++) is useful for path following with differential drivetrains
(“tank drive”). See API docs and the Trajectory Tutorial for more info.

24.2.4 Custom Command Classes

Users may also write custom command classes. As this is significantly more verbose, it’s
recommended to use the more concise factories mentioned above.

Note: In the C++ API, a CRTP is used to allow certain Command methods to work with the
object ownership model. Users should always extend the CommandHelper class when defining
their own command classes, as is shown below.

To write a custom command class, subclass the abstract CommandBase class (Java, C++), as
seen in the command-based template (Java, C++):
Java

7 import edu.wpi.first.wpilibj.templates.commandbased.subsystems.ExampleSubsystem;
8 import edu.wpi.first.wpilibj2.command.CommandBase;
9

10 /** An example command that uses an example subsystem. */
11 public class ExampleCommand extends CommandBase {
12 @SuppressWarnings({"PMD.UnusedPrivateField", "PMD.SingularField"})
13 private final ExampleSubsystem m_subsystem;
14

15 /**
16 * Creates a new ExampleCommand.
17 *
18 * @param subsystem The subsystem used by this command.
19 */
20 public ExampleCommand(ExampleSubsystem subsystem) {
21 m_subsystem = subsystem;
22 // Use addRequirements() here to declare subsystem dependencies.
23 addRequirements(subsystem);
24 }

C++

864 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/MecanumControllerCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_mecanum_controller_command.html
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mecanumcontrollercommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MecanumControllerCommand
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/SwerveControllerCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_swerve_controller_command.html
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/swervecontrollercommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SwerveControllerCommand
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/RamseteCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_ramsete_command.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibNewCommands/src/main/native/include/frc2/command/CommandHelper.h
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandBase.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_base.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased/commands/ExampleCommand.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/include/commands/ExampleCommand.h

FIRST Robotics Competition

5 #pragma once
6

7 #include <frc2/command/CommandBase.h>
8 #include <frc2/command/CommandHelper.h>
9

10 #include "subsystems/ExampleSubsystem.h"
11

12 /**
13 * An example command that uses an example subsystem.
14 *
15 * <p>Note that this extends CommandHelper, rather extending CommandBase
16 * directly; this is crucially important, or else the decorator functions in
17 * Command will *not* work!
18 */
19 class ExampleCommand
20 : public frc2::CommandHelper<frc2::CommandBase, ExampleCommand> {
21 public:
22 /**
23 * Creates a new ExampleCommand.
24 *
25 * @param subsystem The subsystem used by this command.
26 */
27 explicit ExampleCommand(ExampleSubsystem* subsystem);
28

29 private:
30 ExampleSubsystem* m_subsystem;
31 };

Inheriting from CommandBase rather than Command provides several convenience features. It
automatically overrides the getRequirements() method for users, returning a list of require-
ments that is empty by default, but can be added to with the addRequirements() method. It
also implements the Sendable interface, and so can be sent to the dashboard - this provides
a handy way for scheduling commands for testing (via a button on the dashboard) without
needing to bind them to buttons on a controller.

24.2.5 Simple Command Example

What might a functional command look like in practice? As before, below is a simple command
from the HatchBot example project (Java, C++) that uses the HatchSubsystem:
Java

5 package edu.wpi.first.wpilibj.examples.hatchbottraditional.commands;
6

7 import edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems.HatchSubsystem;
8 import edu.wpi.first.wpilibj2.command.CommandBase;
9

10 /**
11 * A simple command that grabs a hatch with the {@link HatchSubsystem}. Written␣

↪→explicitly for
12 * pedagogical purposes. Actual code should inline a command this simple with {@link
13 * edu.wpi.first.wpilibj2.command.InstantCommand}.
14 */
15 public class GrabHatch extends CommandBase {
16 // The subsystem the command runs on

(continues on next page)

24.2. Commands 865

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional

FIRST Robotics Competition

(continued from previous page)
17 private final HatchSubsystem m_hatchSubsystem;
18

19 public GrabHatch(HatchSubsystem subsystem) {
20 m_hatchSubsystem = subsystem;
21 addRequirements(m_hatchSubsystem);
22 }
23

24 @Override
25 public void initialize() {
26 m_hatchSubsystem.grabHatch();
27 }
28

29 @Override
30 public boolean isFinished() {
31 return true;
32 }
33 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandBase.h>
8 #include <frc2/command/CommandHelper.h>
9

10 #include "subsystems/HatchSubsystem.h"
11

12 /**
13 * A simple command that grabs a hatch with the HatchSubsystem. Written
14 * explicitly for pedagogical purposes. Actual code should inline a command
15 * this simple with InstantCommand.
16 *
17 * @see InstantCommand
18 */
19 class GrabHatch : public frc2::CommandHelper<frc2::CommandBase, GrabHatch> {
20 public:
21 explicit GrabHatch(HatchSubsystem* subsystem);
22

23 void Initialize() override;
24

25 bool IsFinished() override;
26

27 private:
28 HatchSubsystem* m_hatch;
29 };

C++ (Source)

5 #include "commands/GrabHatch.h"
6

7 GrabHatch::GrabHatch(HatchSubsystem* subsystem) : m_hatch(subsystem) {
8 AddRequirements(subsystem);
9 }

10

11 void GrabHatch::Initialize() {
12 m_hatch->GrabHatch();

(continues on next page)

866 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
13 }
14

15 bool GrabHatch::IsFinished() {
16 return true;
17 }

Notice that the hatch subsystem used by the command is passed into the command through
the command’s constructor. This is a pattern called dependency injection, and allows users
to avoid declaring their subsystems as global variables. This is widely accepted as a best-
practice - the reasoning behind this is discussed in a later section.
Notice also that the above command calls the subsystem method once from initialize, and then
immediately ends (as isFinished() simply returns true). This is typical for commands that
toggle the states of subsystems, and as such it would be more succinct to write this command
using the factories described above.
What about a more complicated case? Below is a drive command, from the same example
project:
Java

5 package edu.wpi.first.wpilibj.examples.hatchbottraditional.commands;
6

7 import edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems.DriveSubsystem;
8 import edu.wpi.first.wpilibj2.command.CommandBase;
9 import java.util.function.DoubleSupplier;

10

11 /**
12 * A command to drive the robot with joystick input (passed in as {@link␣

↪→DoubleSupplier}s). Written
13 * explicitly for pedagogical purposes - actual code should inline a command this␣

↪→simple with {@link
14 * edu.wpi.first.wpilibj2.command.RunCommand}.
15 */
16 public class DefaultDrive extends CommandBase {
17 private final DriveSubsystem m_drive;
18 private final DoubleSupplier m_forward;
19 private final DoubleSupplier m_rotation;
20

21 /**
22 * Creates a new DefaultDrive.
23 *
24 * @param subsystem The drive subsystem this command wil run on.
25 * @param forward The control input for driving forwards/backwards
26 * @param rotation The control input for turning
27 */
28 public DefaultDrive(DriveSubsystem subsystem, DoubleSupplier forward,␣

↪→DoubleSupplier rotation) {
29 m_drive = subsystem;
30 m_forward = forward;
31 m_rotation = rotation;
32 addRequirements(m_drive);
33 }
34

35 @Override
36 public void execute() {
37 m_drive.arcadeDrive(m_forward.getAsDouble(), m_rotation.getAsDouble());

(continues on next page)

24.2. Commands 867

FIRST Robotics Competition

(continued from previous page)
38 }
39 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandBase.h>
8 #include <frc2/command/CommandHelper.h>
9

10 #include "subsystems/DriveSubsystem.h"
11

12 /**
13 * A command to drive the robot with joystick input passed in through lambdas.
14 * Written explicitly for pedagogical purposes - actual code should inline a
15 * command this simple with RunCommand.
16 *
17 * @see RunCommand
18 */
19 class DefaultDrive
20 : public frc2::CommandHelper<frc2::CommandBase, DefaultDrive> {
21 public:
22 /**
23 * Creates a new DefaultDrive.
24 *
25 * @param subsystem The drive subsystem this command wil run on.
26 * @param forward The control input for driving forwards/backwards
27 * @param rotation The control input for turning
28 */
29 DefaultDrive(DriveSubsystem* subsystem, std::function<double()> forward,
30 std::function<double()> rotation);
31

32 void Execute() override;
33

34 private:
35 DriveSubsystem* m_drive;
36 std::function<double()> m_forward;
37 std::function<double()> m_rotation;
38 };

C++ (Source)

5 #include "commands/DefaultDrive.h"
6

7 #include <utility>
8

9 DefaultDrive::DefaultDrive(DriveSubsystem* subsystem,
10 std::function<double()> forward,
11 std::function<double()> rotation)
12 : m_drive{subsystem},
13 m_forward{std::move(forward)},
14 m_rotation{std::move(rotation)} {
15 AddRequirements({subsystem});
16 }
17

18 void DefaultDrive::Execute() {
(continues on next page)

868 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
19 m_drive->ArcadeDrive(m_forward(), m_rotation());
20 }

And then usage:
Java

59 // Configure default commands
60 // Set the default drive command to split-stick arcade drive
61 m_robotDrive.setDefaultCommand(
62 // A split-stick arcade command, with forward/backward controlled by the left
63 // hand, and turning controlled by the right.
64 new DefaultDrive(
65 m_robotDrive,
66 () -> -m_driverController.getLeftY(),
67 () -> -m_driverController.getRightX()));

C++

57 // Set up default drive command
58 m_drive.SetDefaultCommand(DefaultDrive(
59 &m_drive, [this] { return -m_driverController.GetLeftY(); },
60 [this] { return -m_driverController.GetRightX(); }));

Notice that this command does not override isFinished(), and thus will never end; this is
the norm for commands that are intended to be used as default commands. Once more, this
command is rather simple and calls the subsystem method only from one place, and as such,
could be more concisely written using factories:
Java

51 // Configure default commands
52 // Set the default drive command to split-stick arcade drive
53 m_robotDrive.setDefaultCommand(
54 // A split-stick arcade command, with forward/backward controlled by the left
55 // hand, and turning controlled by the right.
56 Commands.run(
57 () ->
58 m_robotDrive.arcadeDrive(
59 -m_driverController.getLeftY(), -m_driverController.getRightX()),
60 m_robotDrive));

C++

52 // Set up default drive command
53 m_drive.SetDefaultCommand(frc2::cmd::Run(
54 [this] {
55 m_drive.ArcadeDrive(-m_driverController.GetLeftY(),
56 -m_driverController.GetRightX());
57 },
58 {&m_drive}));

24.2. Commands 869

FIRST Robotics Competition

24.3 Command Compositions

Individual commands are capable of accomplishing a large variety of robot tasks, but the
simple three-state format can quickly become cumbersome when more advanced functionality
requiring extended sequences of robot tasks or coordination of multiple robot subsystems is
required. In order to accomplish this, users are encouraged to use the powerful command
composition functionality included in the command-based library.
As the name suggests, a command composition is a composition of one or more commands.
This allows code to be kept much cleaner and simpler, as the individual component commands
may be written independently of the code that combines them, greatly reducing the amount
of complexity at any given step of the process.
Most importantly, however, command compositions are themselves commands - they imple-
ment the Command interface. This allows command compositions to be further composed as a
recursive composition - that is, a command composition may contain other command compo-
sitions as components. This allows very powerful and concise inline expressions:
Java

// Will run fooCommand, and then a race between barCommand and bazCommand
button.onTrue(fooCommand.andThen(barCommand.raceWith(bazCommand)));

C++

// Will run fooCommand, and then a race between barCommand and bazCommand
button.OnTrue(std::move(fooCommand).AndThen(std::move(barCommand).
↪→RaceWith(std::move(bazCommand))));

As a rule, command compositions require all subsystems their components require, may run
when disabled if all their component set runsWhenDisabled as true, and are kCancelIncom-
ing if all their components are kCancelIncoming as well.
Command instances that have been passed to a command composition cannot be indepen-
dently scheduled or passed to a second command composition. Attempting to do so will
throw an exception and crash the user program. This is because composition members are run
through their encapsulating command composition, and errors could occur if those same com-
mand instances were independently scheduled at the same time as the group - the command
would be being run from multiple places at once, and thus could end up with inconsistent
internal state, causing unexpected and hard-to-diagnose behavior. The C++ command-based
library uses CommandPtr, a class with move-only semantics, so this type of mistake is easier
to avoid.

24.3.1 Composition Types

The command-based library includes various composition types. All of them can be con-
structed using factories that accept the member commands, and some can also be constructed
using decorators: methods that can be called on a command object, which is transformed into
a new object that is returned.

Important: After calling a decorator or being passed to a composition, the command object
cannot be reused! Use only the command object returned from the decorator.

870 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Repeating

The repeatedly() decorator (Java, C++), backed by the RepeatCommand class (Java, C++)
restarts the command each time it ends, so that it runs until interrupted.
Java

// Will run forever unless externally interrupted, restarting every time command.
↪→isFinished() returns true
Command repeats = command.repeatedly();

C++

// Will run forever unless externally interrupted, restarting every time command.
↪→IsFinished() returns true
frc2::CommandPtr repeats = std::move(command).Repeatedly();

Sequence

The Sequence factory (Java, C++), backed by the SequentialCommandGroup class (Java, C++),
runs a list of commands in sequence: the first command will be executed, then the second,
then the third, and so on until the list finishes. The sequential group finishes after the last
command in the sequence finishes. It is therefore usually important to ensure that each
command in the sequence does actually finish (if a given command does not finish, the next
command will never start!).
The andThen() (Java, C++) and beforeStarting() (Java, C++) decorators can be used to
construct a sequence composition with infix syntax.
Java

fooCommand.andThen(barCommand)

C++

std::move(fooCommand).AndThen(std::move(barCommand))

Repeating Sequence

As it’s a fairly common combination, the RepeatingSequence factory (Java, C++) creates a
Repeating Sequence that runs until interrupted, restarting from the first command each time
the last command finishes.

Parallel

There are three types of parallel compositions, differing based on when the composition fin-
ishes:

• The Parallel factory (Java, C++), backed by the ParallelCommandGroup class (Java,
C++), constructs a parallel composition that finishes when all members finish. The
alongWith decorator (Java, C++) does the same in infix notation.

24.3. Command Compositions 871

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#repeatedly()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#acc156a5299699110729918c3aa2b2694
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/RepeatCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_repeat_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#sequence(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#a2818c000b0b989bc66032847ecb3fed2
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/SequentialCommandGroup.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_sequential_command_group.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#andThen(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a4ea952f52baf9fb157bb42801be602c0
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#beforeStarting(edu.wpi.first.wpilibj2.command.Command)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a61e9a735d7b48dafd4b7499af8ff0c23
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#repeatingSequence(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#ae363301748047f753dcbe3eca0a10ced
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#parallel(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#a0ea0faa5d66fbe942917844936687172
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ParallelCommandGroup.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_parallel_command_group.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#alongWith(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a6b9700cd25277a3ac558d63301985f40

FIRST Robotics Competition

• The Race factory (Java, C++), backed by the ParallelRaceGroup class (Java, C++),
constructs a parallel composition that finishes as soon as any member finishes; all other
members are interrupted at that point. The raceWith decorator (Java, C++) does the
same in infix notation.

• The Deadline factory (Java, C++), ParallelDeadlineGroup (Java, C++) finishes when a
specific command (the “deadline”) ends; all other members still running at that point are
interrupted. The deadlineWith decorator (Java, C++) does the same in infix notation;
the comand the decorator was called on is the deadline.

Java

// Will be a parallel command group that ends after three seconds with all three␣
↪→commands running their full duration.
button.onTrue(Commands.parallel(twoSecCommand, oneSecCommand, threeSecCommand));

// Will be a parallel race group that ends after one second with the two and three␣
↪→second commands getting interrupted.
button.onTrue(Commands.race(twoSecCommand, oneSecCommand, threeSecCommand));

// Will be a parallel deadline group that ends after two seconds (the deadline) with␣
↪→the three second command getting interrupted (one second command already finished).
button.onTrue(Commands.deadline(twoSecCommand, oneSecCommand, threeSecCommand));

C++

// Will be a parallel command group that ends after three seconds with all three␣
↪→commands running their full duration.
button.OnTrue(frc2::cmd::Parallel(std::move(twoSecCommand), std::move(oneSecCommand),␣
↪→std::move(threeSecCommand)));

// Will be a parallel race group that ends after one second with the two and three␣
↪→second commands getting interrupted.
button.OnTrue(frc2::cmd::Race(std::move(twoSecCommand), std::move(oneSecCommand),␣
↪→std::move(threeSecCommand)));

// Will be a parallel deadline group that ends after two seconds (the deadline) with␣
↪→the three second command getting interrupted (one second command already finished).
button.OnTrue(frc2::cmd::Deadline(std::move(twoSecCommand), std::move(oneSecCommand),␣
↪→std::move(threeSecCommand)));

Adding Command End Conditions

The until() (Java, C++) decorator composes the command with an additional end condi-
tion. Note that the command the decorator was called on will see this end condition as an
interruption.
Java

// Will be interrupted if m_limitSwitch.get() returns true
button.onTrue(command.until(m_limitSwitch::get));

C++

// Will be interrupted if m_limitSwitch.get() returns true
button.OnTrue(command.Until([&m_limitSwitch] { return m_limitSwitch.Get(); }));

872 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#race(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#a3455ac77f921f355edae8baeb911ef40
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ParallelRaceGroup.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_parallel_race_group.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#raceWith(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a4d6c1761cef10bb79a727e43e89643d0
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#deadline(edu.wpi.first.wpilibj2.command.Command,edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#aad22f6f92f4dbbe7b5736e0e39e00184
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ParallelDeadlineGroup.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_parallel_deadline_group.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#deadlineWith(edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#afafe81bf1624eb0ef78b30232087b4bf
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#until(java.util.function.BooleanSupplier)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a4ffddf195a71e71d80e62df95fffdfcf

FIRST Robotics Competition

The withTimeout() decorator (Java, C++) is a specialization of until that uses a timeout as
the additional end condition.
Java

// Will time out 5 seconds after being scheduled, and be interrupted
button.onTrue(command.withTimeout(5));

C++

// Will time out 5 seconds after being scheduled, and be interrupted
button.OnTrue(command.WithTimeout(5.0_s));

Adding End Behavior

The finallyDo() (Java, C++) decorator composes the command with an a lambda that will
be called after the command’s end() method, with the same boolean parameter indicating
whether the command finished or was interrupted.
The handleInterrupt() (Java, C++) decorator composes the command with an a lambda
that will be called only when the command is interrupted.

Selecting Compositions

Sometimes it’s desired to run a command out of a few options based on sensor feedback or
other data known only at runtime. This can be useful for determining an auto routine, or
running a different command based on whether a game piece is present or not, and so on.
The Select factory (Java, C++), backed by the SelectCommand class (Java, C++), executes
one command from a map, based on a selector function called when scheduled.
Java

20 public class RobotContainer {
21 // The enum used as keys for selecting the command to run.
22 private enum CommandSelector {
23 ONE,
24 TWO,
25 THREE
26 }
27

28 // An example selector method for the selectcommand. Returns the selector that␣
↪→will select

29 // which command to run. Can base this choice on logical conditions evaluated at␣
↪→runtime.

30 private CommandSelector select() {
31 return CommandSelector.ONE;
32 }
33

34 // An example selectcommand. Will select from the three commands based on the␣
↪→value returned

35 // by the selector method at runtime. Note that selectcommand works on Object(),␣
↪→so the

36 // selector does not have to be an enum; it could be any desired type (string,␣
↪→integer,

(continues on next page)

24.3. Command Compositions 873

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#withTimeout(double)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#ac6b2e1e4f55ed905ec7d189b9288e3d0
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#finallyDo(edu.wpi.first.util.function.BooleanConsumer)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#abd0ae6c855d7cf1f1a33cda5575a7b8f
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#handleInterrupt(java.lang.Runnable)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a2a5580e71dfe356d2b261efe213f7c67
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#select(java.util.Map,java.util.function.Supplier)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#a56f9a9c571bd9da0a0b4612706d8db1c
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/SelectCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_select_command.html

FIRST Robotics Competition

(continued from previous page)
37 // boolean, double...)
38 private final Command m_exampleSelectCommand =
39 new SelectCommand(
40 // Maps selector values to commands
41 Map.ofEntries(
42 Map.entry(CommandSelector.ONE, new PrintCommand("Command one was␣

↪→selected!")),
43 Map.entry(CommandSelector.TWO, new PrintCommand("Command two was␣

↪→selected!")),
44 Map.entry(CommandSelector.THREE, new PrintCommand("Command three was␣

↪→selected!"))),
45 this::select);

C++ (Header)

24 // The enum used as keys for selecting the command to run.
25 enum CommandSelector { ONE, TWO, THREE };
26

27 // An example selector method for the selectcommand. Returns the selector
28 // that will select which command to run. Can base this choice on logical
29 // conditions evaluated at runtime.
30 CommandSelector Select() { return ONE; }
31

32 // The robot's subsystems and commands are defined here...
33

34 // An example selectcommand. Will select from the three commands based on the
35 // value returned by the selector method at runtime. Note that selectcommand
36 // takes a generic type, so the selector does not have to be an enum; it could
37 // be any desired type (string, integer, boolean, double...)
38 frc2::CommandPtr m_exampleSelectCommand = frc2::cmd::Select<CommandSelector>(
39 [this] { return Select(); },
40 // Maps selector values to commands
41 std::pair{ONE, frc2::cmd::Print("Command one was selected!")},
42 std::pair{TWO, frc2::cmd::Print("Command two was selected!")},
43 std::pair{THREE, frc2::cmd::Print("Command three was selected!")});

The Either factory (Java, C++), backed by the ConditionalCommand class (Java, C++), is a
specialization accepting two commands and a boolean selector function.
Java

// Runs either commandOnTrue or commandOnFalse depending on the value of m_
↪→limitSwitch.get()
new ConditionalCommand(commandOnTrue, commandOnFalse, m_limitSwitch::get)

C++

// Runs either commandOnTrue or commandOnFalse depending on the value of m_
↪→limitSwitch.get()
frc2::ConditionalCommand(commandOnTrue, commandOnFalse, [&m_limitSwitch] { return m_
↪→limitSwitch.Get(); })

The unless() decorator (Java, C++) composes a command with a condition that will prevent
it from running.
Java

874 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Commands.html#either(edu.wpi.first.wpilibj2.command.Command,edu.wpi.first.wpilibj2.command.Command,java.util.function.BooleanSupplier)
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc2_1_1cmd.html#a389d1d0055c3be03a852bfc88aaa2ee5
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ConditionalCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_conditional_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#unless(java.util.function.BooleanSupplier)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#a2be7f65d40f68581104ab1f6a1ba5e93

FIRST Robotics Competition

// Command will only run if the intake is deployed. If the intake gets deployed while␣
↪→the command is running, the command will not stop running
button.onTrue(command.unless(() -> !intake.isDeployed()));

C++

// Command will only run if the intake is deployed. If the intake gets deployed while␣
↪→the command is running, the command will not stop running
button.OnTrue(command.Unless([&intake] { return !intake.IsDeployed(); }));

ProxyCommand described below also has a constructor overload (Java, C++) that calls a
command-returning lambda at schedule-time and runs the returned command by proxy.

Scheduling Other Commands

By default, composition members are run through the command composition, and are never
themselves seen by the scheduler. Accordingly, their requirements are added to the group’s
requirements. While this is usually fine, sometimes it is undesirable for the entire command
group to gain the requirements of a single command. A good solution is to “fork off” from
the command group and schedule that command separately. However, this requires synchro-
nization between the composition and the individually-scheduled command.
ProxyCommand (Java, C++), also creatable using the .asProxy() decorator (Java, C++),
schedules a command “by proxy”: the command is scheduled when the proxy is scheduled,
and the proxy finishes when the command finishes. In the case of “forking off” from a com-
mand composition, this allows the group to track the command’s progress without it being in
the composition.
Java

// The sequence continues only after the proxied command ends
Commands.waitSeconds(5.0).asProxy()

.andThen(Commands.print("This will only be printed after the 5-second delay␣
↪→elapses!"))

C++

// The sequence continues only after the proxied command ends
frc2::cmd::Wait(5.0_s).AsProxy()

.AndThen(frc2::cmd::Print("This will only be printed after the 5-second delay␣
↪→elapses!"))

For cases that don’t need to track the proxied command, ScheduleCommand (Java, C++) sched-
ules a specified command and ends instantly.
Java

// ScheduleCommand ends immediately, so the sequence continues
new ScheduleCommand(Commands.waitSeconds(5.0))

.andThen(Commands.print("This will be printed immediately!"))

C++

// ScheduleCommand ends immediately, so the sequence continues
frc2::ScheduleCommand(frc2::cmd::Wait(5.0_s))

.AndThen(frc2::cmd::Print("This will be printed immediately!"))

24.3. Command Compositions 875

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ProxyCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_proxy_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ProxyCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_proxy_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html#asProxy()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_ptr.html#aa45784053431393e3277e5bc5ae7f751
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ScheduleCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_schedule_command.html

FIRST Robotics Competition

24.3.2 Subclassing Compositions

Command compositions can also be written as a constructor-only subclass of the most exterior
composition type, passing the composition members to the superclass constructor. Consider
the following from the Hatch Bot example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.hatchbottraditional.commands;
6

7 import edu.wpi.first.wpilibj.examples.hatchbottraditional.Constants.AutoConstants;
8 import edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems.DriveSubsystem;
9 import edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems.HatchSubsystem;

10 import edu.wpi.first.wpilibj2.command.SequentialCommandGroup;
11

12 /** A complex auto command that drives forward, releases a hatch, and then drives␣
↪→backward. */

13 public class ComplexAuto extends SequentialCommandGroup {
14 /**
15 * Creates a new ComplexAuto.
16 *
17 * @param drive The drive subsystem this command will run on
18 * @param hatch The hatch subsystem this command will run on
19 */
20 public ComplexAuto(DriveSubsystem drive, HatchSubsystem hatch) {
21 addCommands(
22 // Drive forward the specified distance
23 new DriveDistance(
24 AutoConstants.kAutoDriveDistanceInches, AutoConstants.kAutoDriveSpeed,␣

↪→drive),
25

26 // Release the hatch
27 new ReleaseHatch(hatch),
28

29 // Drive backward the specified distance
30 new DriveDistance(
31 AutoConstants.kAutoBackupDistanceInches, -AutoConstants.kAutoDriveSpeed,␣

↪→drive));
32 }
33 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandHelper.h>
8 #include <frc2/command/SequentialCommandGroup.h>
9

10 #include "Constants.h"
11 #include "commands/DriveDistance.h"
12 #include "commands/ReleaseHatch.h"
13

14 /**
15 * A complex auto command that drives forward, releases a hatch, and then drives
16 * backward.
17 */
18 class ComplexAuto
19 : public frc2::CommandHelper<frc2::SequentialCommandGroup, ComplexAuto> {

(continues on next page)

876 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional

FIRST Robotics Competition

(continued from previous page)
20 public:
21 /**
22 * Creates a new ComplexAuto.
23 *
24 * @param drive The drive subsystem this command will run on
25 * @param hatch The hatch subsystem this command will run on
26 */
27 ComplexAuto(DriveSubsystem* drive, HatchSubsystem* hatch);
28 };

C++ (Source)

5 #include "commands/ComplexAuto.h"
6

7 using namespace AutoConstants;
8

9 ComplexAuto::ComplexAuto(DriveSubsystem* drive, HatchSubsystem* hatch) {
10 AddCommands(
11 // Drive forward the specified distance
12 DriveDistance(kAutoDriveDistanceInches, kAutoDriveSpeed, drive),
13 // Release the hatch
14 ReleaseHatch(hatch),
15 // Drive backward the specified distance
16 DriveDistance(kAutoBackupDistanceInches, -kAutoDriveSpeed, drive));
17 }

The advantages and disadvantages of this subclassing approach in comparison to others are
discussed in Subclassing Command Groups.

24.4 Subsystems

Subsystems are the basic unit of robot organization in the command-based paradigm. A sub-
system is an abstraction for a collection of robot hardware that operates together as a unit.
Subsystems form an encapsulation for this hardware, “hiding” it from the rest of the robot
code and restricting access to it except through the subsystem’s public methods. Restricting
the access in this way provides a single convenient place for code that might otherwise be
duplicated in multiple places (such as scaling motor outputs or checking limit switches) if the
subsystem internals were exposed. It also allows changes to the specific details of how the
subsystem works (the “implementation”) to be isolated from the rest of robot code, making it
far easier to make substantial changes if/when the design constraints change.
Subsystems also serve as the backbone of the CommandScheduler’s resource management
system. Commands may declare resource requirements by specifying which subsystems they
interact with; the scheduler will never concurrently schedule more than one command that re-
quires a given subsystem. An attempt to schedule a command that requires a subsystem that
is already-in-use will either interrupt the currently-running command or be ignored, based
on the running command’s Interruption Behavior.
Subsystems can be associated with “default commands” that will be automatically scheduled
when no other command is currently using the subsystem. This is useful for “background”
actions such as controlling the robot drive, keeping an arm held at a setpoint, or stopping
motors when the subsystem isn’t used. Similar functionality can be achieved in the subsys-
tem’s periodic() method, which is run once per run of the scheduler; teams should try to
be consistent within their codebase about which functionality is achieved through either of

24.4. Subsystems 877

FIRST Robotics Competition

these methods. Subsystems are represented in the command-based library by the Subsystem
interface (Java, C++).

24.4.1 Creating a Subsystem

The recommended method to create a subsystem for most users is to subclass the abstract
SubsystemBase class (Java, C++), as seen in the command-based template (Java, C++):
Java

7 import edu.wpi.first.wpilibj2.command.CommandBase;
8 import edu.wpi.first.wpilibj2.command.SubsystemBase;
9

10 public class ExampleSubsystem extends SubsystemBase {
11 /** Creates a new ExampleSubsystem. */
12 public ExampleSubsystem() {}
13

14 /**
15 * Example command factory method.
16 *
17 * @return a command
18 */
19 public CommandBase exampleMethodCommand() {
20 // Inline construction of command goes here.
21 // Subsystem::RunOnce implicitly requires `this` subsystem.
22 return runOnce(
23 () -> {
24 /* one-time action goes here */
25 });
26 }
27

28 /**
29 * An example method querying a boolean state of the subsystem (for example, a␣

↪→digital sensor).
30 *
31 * @return value of some boolean subsystem state, such as a digital sensor.
32 */
33 public boolean exampleCondition() {
34 // Query some boolean state, such as a digital sensor.
35 return false;
36 }
37

38 @Override
39 public void periodic() {
40 // This method will be called once per scheduler run
41 }
42

43 @Override
44 public void simulationPeriodic() {
45 // This method will be called once per scheduler run during simulation
46 }
47 }

C++

878 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Subsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_subsystem.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/SubsystemBase.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_subsystem_base.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased/subsystems/ExampleSubsystem.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/include/subsystems/ExampleSubsystem.h

FIRST Robotics Competition

5 #pragma once
6

7 #include <frc2/command/CommandPtr.h>
8 #include <frc2/command/SubsystemBase.h>
9

10 class ExampleSubsystem : public frc2::SubsystemBase {
11 public:
12 ExampleSubsystem();
13

14 /**
15 * Example command factory method.
16 */
17 frc2::CommandPtr ExampleMethodCommand();
18

19 /**
20 * An example method querying a boolean state of the subsystem (for example, a
21 * digital sensor).
22 *
23 * @return value of some boolean subsystem state, such as a digital sensor.
24 */
25 bool ExampleCondition();
26

27 /**
28 * Will be called periodically whenever the CommandScheduler runs.
29 */
30 void Periodic() override;
31

32 /**
33 * Will be called periodically whenever the CommandScheduler runs during
34 * simulation.
35 */
36 void SimulationPeriodic() override;
37

38 private:
39 // Components (e.g. motor controllers and sensors) should generally be
40 // declared private and exposed only through public methods.
41 };

This class contains a few convenience features on top of the basic Subsystem interface: it
automatically calls the register() method in its constructor to register the subsystem with
the scheduler (this is necessary for the periodic() method to be called when the scheduler
runs), and also implements the Sendable interface so that it can be sent to the dashboard to
display/log relevant status information.
Advanced users seeking more flexibility may simply create a class that implements the Sub-
system interface.

24.4. Subsystems 879

FIRST Robotics Competition

24.4.2 Simple Subsystem Example

What might a functional subsystem look like in practice? Below is a simple pneumatically-
actuated hatch mechanism from the HatchBotTraditional example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.hatchbottraditional.subsystems;
6

7 import static edu.wpi.first.wpilibj.DoubleSolenoid.Value.kForward;
8 import static edu.wpi.first.wpilibj.DoubleSolenoid.Value.kReverse;
9

10 import edu.wpi.first.util.sendable.SendableBuilder;
11 import edu.wpi.first.wpilibj.DoubleSolenoid;
12 import edu.wpi.first.wpilibj.PneumaticsModuleType;
13 import edu.wpi.first.wpilibj.examples.hatchbottraditional.Constants.HatchConstants;
14 import edu.wpi.first.wpilibj2.command.SubsystemBase;
15

16 /** A hatch mechanism actuated by a single {@link DoubleSolenoid}. */
17 public class HatchSubsystem extends SubsystemBase {
18 private final DoubleSolenoid m_hatchSolenoid =
19 new DoubleSolenoid(
20 PneumaticsModuleType.CTREPCM,
21 HatchConstants.kHatchSolenoidPorts[0],
22 HatchConstants.kHatchSolenoidPorts[1]);
23

24 /** Grabs the hatch. */
25 public void grabHatch() {
26 m_hatchSolenoid.set(kForward);
27 }
28

29 /** Releases the hatch. */
30 public void releaseHatch() {
31 m_hatchSolenoid.set(kReverse);
32 }
33

34 @Override
35 public void initSendable(SendableBuilder builder) {
36 super.initSendable(builder);
37 // Publish the solenoid state to telemetry.
38 builder.addBooleanProperty("extended", () -> m_hatchSolenoid.get() == kForward,␣

↪→null);
39 }
40 }

C++ (Header)

5 #pragma once
6

7 #include <frc/DoubleSolenoid.h>
8 #include <frc/PneumaticsControlModule.h>
9 #include <frc2/command/SubsystemBase.h>

10

11 #include "Constants.h"
12

13 class HatchSubsystem : public frc2::SubsystemBase {
14 public:
15 HatchSubsystem();

(continues on next page)

880 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional

FIRST Robotics Competition

(continued from previous page)
16

17 // Subsystem methods go here.
18

19 /**
20 * Grabs the hatch.
21 */
22 void GrabHatch();
23

24 /**
25 * Releases the hatch.
26 */
27 void ReleaseHatch();
28

29 void InitSendable(wpi::SendableBuilder& builder) override;
30

31 private:
32 // Components (e.g. motor controllers and sensors) should generally be
33 // declared private and exposed only through public methods.
34 frc::DoubleSolenoid m_hatchSolenoid;
35 };

C++ (Source)

5 #include "subsystems/HatchSubsystem.h"
6

7 #include <wpi/sendable/SendableBuilder.h>
8

9 using namespace HatchConstants;
10

11 HatchSubsystem::HatchSubsystem()
12 : m_hatchSolenoid{frc::PneumaticsModuleType::CTREPCM,
13 kHatchSolenoidPorts[0], kHatchSolenoidPorts[1]} {}
14

15 void HatchSubsystem::GrabHatch() {
16 m_hatchSolenoid.Set(frc::DoubleSolenoid::kForward);
17 }
18

19 void HatchSubsystem::ReleaseHatch() {
20 m_hatchSolenoid.Set(frc::DoubleSolenoid::kReverse);
21 }
22

23 void HatchSubsystem::InitSendable(wpi::SendableBuilder& builder) {
24 SubsystemBase::InitSendable(builder);
25

26 // Publish the solenoid state to telemetry.
27 builder.AddBooleanProperty(
28 "extended",
29 [this] { return m_hatchSolenoid.Get() == frc::DoubleSolenoid::kForward; },
30 nullptr);
31 }

Notice that the subsystem hides the presence of the DoubleSolenoid from outside code (it is
declared private), and instead publicly exposes two higher-level, descriptive robot actions:
grabHatch() and releaseHatch(). It is extremely important that “implementation details”
such as the double solenoid be “hidden” in this manner; this ensures that code outside the
subsystem will never cause the solenoid to be in an unexpected state. It also allows the user
to change the implementation (for instance, a motor could be used instead of a pneumatic)

24.4. Subsystems 881

FIRST Robotics Competition

without any of the code outside of the subsystem having to change with it.
Alternatively, instead of writing void public methods that are called from commands, we can
define the public methods as factories that return a command. Consider the following from
the HatchBotInlined example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.hatchbotinlined.subsystems;
6

7 import static edu.wpi.first.wpilibj.DoubleSolenoid.Value.kForward;
8 import static edu.wpi.first.wpilibj.DoubleSolenoid.Value.kReverse;
9

10 import edu.wpi.first.util.sendable.SendableBuilder;
11 import edu.wpi.first.wpilibj.DoubleSolenoid;
12 import edu.wpi.first.wpilibj.PneumaticsModuleType;
13 import edu.wpi.first.wpilibj.examples.hatchbotinlined.Constants.HatchConstants;
14 import edu.wpi.first.wpilibj2.command.CommandBase;
15 import edu.wpi.first.wpilibj2.command.SubsystemBase;
16

17 /** A hatch mechanism actuated by a single {@link edu.wpi.first.wpilibj.
↪→DoubleSolenoid}. */

18 public class HatchSubsystem extends SubsystemBase {
19 private final DoubleSolenoid m_hatchSolenoid =
20 new DoubleSolenoid(
21 PneumaticsModuleType.CTREPCM,
22 HatchConstants.kHatchSolenoidPorts[0],
23 HatchConstants.kHatchSolenoidPorts[1]);
24

25 /** Grabs the hatch. */
26 public CommandBase grabHatchCommand() {
27 // implicitly require `this`
28 return this.runOnce(() -> m_hatchSolenoid.set(kForward));
29 }
30

31 /** Releases the hatch. */
32 public CommandBase releaseHatchCommand() {
33 // implicitly require `this`
34 return this.runOnce(() -> m_hatchSolenoid.set(kReverse));
35 }
36

37 @Override
38 public void initSendable(SendableBuilder builder) {
39 super.initSendable(builder);
40 // Publish the solenoid state to telemetry.
41 builder.addBooleanProperty("extended", () -> m_hatchSolenoid.get() == kForward,␣

↪→null);
42 }
43 }

C++ (Header)

5 #pragma once
6

7 #include <frc/DoubleSolenoid.h>
8 #include <frc/PneumaticsControlModule.h>
9 #include <frc2/command/CommandPtr.h>

10 #include <frc2/command/SubsystemBase.h>
(continues on next page)

882 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbotinlined
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotInlined

FIRST Robotics Competition

(continued from previous page)
11

12 #include "Constants.h"
13

14 class HatchSubsystem : public frc2::SubsystemBase {
15 public:
16 HatchSubsystem();
17

18 // Subsystem methods go here.
19

20 /**
21 * Grabs the hatch.
22 */
23 frc2::CommandPtr GrabHatchCommand();
24

25 /**
26 * Releases the hatch.
27 */
28 frc2::CommandPtr ReleaseHatchCommand();
29

30 void InitSendable(wpi::SendableBuilder& builder) override;
31

32 private:
33 // Components (e.g. motor controllers and sensors) should generally be
34 // declared private and exposed only through public methods.
35 frc::DoubleSolenoid m_hatchSolenoid;
36 };

C++ (Source)

5 #include "subsystems/HatchSubsystem.h"
6

7 #include <wpi/sendable/SendableBuilder.h>
8

9 using namespace HatchConstants;
10

11 HatchSubsystem::HatchSubsystem()
12 : m_hatchSolenoid{frc::PneumaticsModuleType::CTREPCM,
13 kHatchSolenoidPorts[0], kHatchSolenoidPorts[1]} {}
14

15 frc2::CommandPtr HatchSubsystem::GrabHatchCommand() {
16 // implicitly require `this`
17 return this->RunOnce(
18 [this] { m_hatchSolenoid.Set(frc::DoubleSolenoid::kForward); });
19 }
20

21 frc2::CommandPtr HatchSubsystem::ReleaseHatchCommand() {
22 // implicitly require `this`
23 return this->RunOnce(
24 [this] { m_hatchSolenoid.Set(frc::DoubleSolenoid::kReverse); });
25 }
26

27 void HatchSubsystem::InitSendable(wpi::SendableBuilder& builder) {
28 SubsystemBase::InitSendable(builder);
29

30 // Publish the solenoid state to telemetry.
31 builder.AddBooleanProperty(

(continues on next page)

24.4. Subsystems 883

FIRST Robotics Competition

(continued from previous page)
32 "extended",
33 [this] { return m_hatchSolenoid.Get() == frc::DoubleSolenoid::kForward; },
34 nullptr);
35 }

Note the qualification of the RunOnce factory used here: this isn’t the static factory in Com-
mands! Subsystems have similar instance factories that return commands requiring this
subsystem. Here, the Subsystem.runOnce(Runnable) factory (Java, C++) is used.
For a comparison between these options, see Instance Command Factory Methods.

24.4.3 Periodic

Subsystems have a periodic method that is called once every scheduler iteration (usually,
once every 20 ms). This method is typically used for telemetry and other periodic actions that
do not interfere with whatever command is requiring the subsystem.
Java

117 @Override
118 public void periodic() {
119 // Update the odometry in the periodic block
120 m_odometry.update(
121 Rotation2d.fromDegrees(getHeading()),
122 m_leftEncoder.getDistance(),
123 m_rightEncoder.getDistance());
124 m_fieldSim.setRobotPose(getPose());
125 }

C++ (Header)

30 void Periodic() override;

C++ (Source)

30 void DriveSubsystem::Periodic() {
31 // Implementation of subsystem periodic method goes here.
32 m_odometry.Update(m_gyro.GetRotation2d(),
33 units::meter_t{m_leftEncoder.GetDistance()},
34 units::meter_t{m_rightEncoder.GetDistance()});
35 m_fieldSim.SetRobotPose(m_odometry.GetPose());
36 }

There is also a simulationPeriodic() method that is similar to periodic() except that it is
only run during Simulation and can be used to update the state of the robot.

884 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/development/java/edu/wpi/first/wpilibj2/command/Subsystem.html#runOnce(java.lang.Runnable)
https://github.wpilib.org/allwpilib/docs/development/cpp/classfrc2_1_1_subsystem.html#a6b8b3b7dab6f54fb8635e335dad448fe

FIRST Robotics Competition

24.4.4 Default Commands

Note: In the C++ command-based library, the CommandScheduler owns the default com-
mand object.

“Default commands” are commands that run automatically whenever a subsystem is not being
used by another command. This can be useful for “background” actions such as controlling
the robot drive, or keeping an arm held at a setpoint.
Setting a default command for a subsystem is very easy; one simply calls CommandScheduler.
getInstance().setDefaultCommand(), or, more simply, the setDefaultCommand() method
of the Subsystem interface:
Java

CommandScheduler.getInstance().setDefaultCommand(exampleSubsystem, exampleCommand);

C++

CommandScheduler.GetInstance().SetDefaultCommand(exampleSubsystem,␣
↪→std::move(exampleCommand));

Java

exampleSubsystem.setDefaultCommand(exampleCommand);

C++

exampleSubsystem.SetDefaultCommand(std::move(exampleCommand));

Note: A command that is assigned as the default command for a subsystem must require
that subsystem.

24.5 Binding Commands to Triggers

Apart from autonomous commands, which are scheduled at the start of the autonomous pe-
riod, and default commands, which are automatically scheduled whenever their subsystem is
not currently in-use, the most common way to run a command is by binding it to a triggering
event, such as a button being pressed by a human operator. The command-based paradigm
makes this extremely easy to do.
As mentioned earlier, command-based is a declarative programming paradigm. Accordingly,
binding buttons to commands is done declaratively; the association of a button and a command
is “declared” once, during robot initialization. The library then does all the hard work of
checking the button state and scheduling (or canceling) the command as needed, behind-
the-scenes. Users only need to worry about designing their desired UI setup - not about
implementing it!
Command binding is done through the Trigger class (Java, C++).

24.5. Binding Commands to Triggers 885

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/Trigger.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_trigger.html

FIRST Robotics Competition

24.5.1 Getting a Trigger Instance

To bind commands to conditions, we need a Trigger object. There are three ways to get a
Trigger object:

HID Factories

The command-based HID classes contain factory methods returning a Trigger for a given
button. CommandGenericHID has an index-based button(int) factory (Java, C++), and its
subclasses CommandXboxController (Java, C++), CommandPS4Controller (Java, C++), and
CommandJoystick (Java, C++) have named factory methods for each button.
Java

CommandXboxController exampleCommandController = new CommandXboxController(1); //␣
↪→Creates a CommandXboxController on port 1.
Trigger xButton = exampleCommandController.x(); // Creates a new Trigger object for␣
↪→the `X` button on exampleCommandController

C++

frc2::CommandXboxController exampleCommandController{1} // Creates a␣
↪→CommandXboxController on port 1
frc2::Trigger xButton = exampleCommandController.X() // Creates a new Trigger object␣
↪→for the `X` button on exampleCommandController

JoystickButton

Alternatively, the regular HID classes can be used and passed to create an instance of Joy-
stickButton (Java, C++), a constructor-only subclass of Trigger:
Java

XboxController exampleController = new XboxController(2); // Creates an␣
↪→XboxController on port 2.
Trigger yButton = new JoystickButton(exampleController, XboxController.Button.kY.
↪→value); // Creates a new JoystickButton object for the `Y` button on␣
↪→exampleController

C++

frc::XboxController exampleController{2} // Creates an XboxController on port 2
frc2::JoystickButton yButton(&exampleStick, frc::XboxController::Button::kY); //␣
↪→Creates a new JoystickButton object for the `Y` button on exampleController

886 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/CommandGenericHID.html#button(int)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_generic_h_i_d.html#a661f49794a913615c94fba927e1072a8
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/CommandXboxController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_xbox_controller.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/CommandPS4Controller.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_p_s4_controller.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/CommandJoystick.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_joystick.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/button/JoystickButton.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_joystick_button.html

FIRST Robotics Competition

Arbitrary Triggers

While binding to HID buttons is by far the most common use case, users may want to bind
commands to arbitrary triggering events. This can be done inline by passing a lambda to the
constructor of Trigger:
Java

DigitalInput limitSwitch = new DigitalInput(3); // Limit switch on DIO 3

Trigger exampleTrigger = new Trigger(limitSwitch::get);

C++

frc::DigitalInput limitSwitch{3}; // Limit switch on DIO 3

frc2::Trigger exampleTrigger([&limitSwitch] { return limitSwitch.Get(); });

24.5.2 Trigger Bindings

Note: The C++ command-based library offers two overloads of each button binding method
- one that takes an rvalue reference (CommandPtr&&), and one that takes a raw pointer
(Command*). The rvalue overload moves ownership to the scheduler, while the raw pointer
overload leaves the user responsible for the lifespan of the command object. It is recom-
mended that users preferentially use the rvalue reference overload unless there is a specific
need to retain a handle to the command in the calling code.

There are a number of bindings available for the Trigger class. All of these bindings will
automatically schedule a command when a certain trigger activation event occurs - however,
each binding has different specific behavior.
Trigger objects do not need to survive past the call to a binding method, so the binding
methods may be simply called on a temp. Remember that button binding is declarative:
bindings only need to be declared once, ideally some time during robot initialization. The
library handles everything else.

Note: The Button subclass is deprecated, and usage of its binding methods should be re-
placed according to the respective deprecation messages in the API docs.

onTrue

This binding schedules a command when a trigger changes from false to true (or, accord-
ingly, when a button changes is initially pressed). The command will be scheduled on the
iteration when the state changes, and will not be scheduled again unless the trigger becomes
false and then true again (or the button is released and then re-pressed).
Java

52 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
53 m_driverController.a().onTrue(m_robotArm.setArmGoalCommand(2));

24.5. Binding Commands to Triggers 887

http://thbecker.net/articles/rvalue_references/section_01.html

FIRST Robotics Competition

C++

24 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
25 m_driverController.A().OnTrue(m_arm.SetArmGoalCommand(2_rad));

The onFalse binding is identical, only that it schedules on false instead of on true.

whileTrue

This binding schedules a command when a trigger changes from false to true (or, accord-
ingly, when a button is initially pressed) and cancels it when the trigger becomes false again
(or the button is released). The command will not be re-scheduled if it finishes while the trig-
ger is still true. For the command to restart if it finishes while the trigger is true, wrap the
command in a RepeatCommand, or use a RunCommand instead of an InstantCommand.
Java

114 // While holding the shoulder button, drive at half speed
115 new JoystickButton(m_driverController, Button.kRightBumper.value)
116 .whileTrue(new HalveDriveSpeed(m_robotDrive));

C++

75 // While holding the shoulder button, drive at half speed
76 frc2::JoystickButton(&m_driverController,
77 frc::XboxController::Button::kRightBumper)
78 .WhileTrue(HalveDriveSpeed(&m_drive).ToPtr());

The whileFalse binding is identical, only that it schedules on false and cancels on true.

toggleOnTrue

This binding toggles a command, scheduling it when a trigger changes from false to true
(or a button is initially pressed), and canceling it under the same condition if the command
is currently running. Note that while this functionality is supported, toggles are not a highly-
recommended option for user control, as they require the driver to keep track of the robot
state. The preferred method is to use two buttons; one to turn on and another to turn off.
Using a StartEndCommand or a ConditionalCommand is a good way to specify the commands
that you want to be want to be toggled between.
Java

myButton.toggleOnTrue(Commands.startEnd(mySubsystem::onMethod,
mySubsystem::offMethod,
mySubsystem));

C++

myButton.ToggleOnTrue(frc2::cmd::StartEnd([&] { mySubsystem.OnMethod(); },
[&] { mySubsystem.OffMethod(); },
{&mySubsystem}));

The toggleOnFalse binding is identical, only that it toggles on false instead of on true.

888 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/StartEndCommand.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ConditionalCommand.html

FIRST Robotics Competition

24.5.3 Chaining Calls

It is useful to note that the command binding methods all return the trigger that they were
called on, and thus can be chained to bind multiple commands to different states of the same
trigger. For example:
Java

exampleButton
// Binds a FooCommand to be scheduled when the button is pressed
.onTrue(new FooCommand())
// Binds a BarCommand to be scheduled when that same button is released
.onFalse(new BarCommand());

C++

exampleButton
// Binds a FooCommand to be scheduled when the button is pressed
.OnTrue(FooCommand().ToPtr())
// Binds a BarCommand to be scheduled when that same button is released
.OnFalse(BarCommand().ToPtr());

24.5.4 Composing Triggers

The Trigger class can be composed to create composite triggers through the and(), or(),
and negate() methods (or, in C++, the &&, ||, and ! operators). For example:
Java

// Binds an ExampleCommand to be scheduled when both the 'X' and 'Y' buttons of the␣
↪→driver gamepad are pressed
exampleCommandController.x()

.and(exampleCommandController.y())

.onTrue(new ExampleCommand());

C++

// Binds an ExampleCommand to be scheduled when both the 'X' and 'Y' buttons of the␣
↪→driver gamepad are pressed
(exampleCommandController.X()

&& exampleCommandController.Y())
.OnTrue(ExampleCommand().ToPtr());

24.5.5 Debouncing Triggers

To avoid rapid repeated activation, triggers (especially those originating from digital inputs)
can be debounced with the WPILib Debouncer class using the debounce method:
Java

// debounces exampleButton with a 0.1s debounce time, rising edges only
exampleButton.debounce(0.1).onTrue(new ExampleCommand());

// debounces exampleButton with a 0.1s debounce time, both rising and falling edges
(continues on next page)

24.5. Binding Commands to Triggers 889

FIRST Robotics Competition

(continued from previous page)
exampleButton.debounce(0.1, Debouncer.DebounceType.kBoth).onTrue(new␣
↪→ExampleCommand());

C++

// debounces exampleButton with a 100ms debounce time, rising edges only
exampleButton.Debounce(100_ms).OnTrue(ExampleCommand().ToPtr());

// debounces exampleButton with a 100ms debounce time, both rising and falling edges
exampleButton.Debounce(100_ms, Debouncer::DebounceType::Both).OnTrue(ExampleCommand().
↪→ToPtr());

24.6 Structuring a Command-Based Robot Project

While users are free to use the command-based libraries however they like (and advanced
users are encouraged to do so), new users may want some guidance on how to structure a
basic command-based robot project.
A standard template for a command-based robot project is included in the WPILib examples
repository (Java, C++). This section will walk users through the structure of this template.
The root package/directory generally will contain four classes:
Main, which is the main robot application (Java only). New users should not touch this class.
Robot, which is responsible for the main control flow of the robot code. RobotContainer,
which holds robot subsystems and commands, and is where most of the declarative robot
setup (e.g. button bindings) is performed. Constants, which holds globally-accessible con-
stants to be used throughout the robot.
The root directory will also contain two sub-packages/sub-directories: Subsystems contains
all user-defined subsystem classes. Commands contains all user-defined command classes.

24.6.1 Robot

As Robot (Java, C++ (Header), C++ (Source)) is responsible for the program’s control flow,
and command-based is an declarative paradigm designed to minimize the amount of attention
the user has to pay to explicit program control flow, the Robot class of a command-based
project should be mostly empty. However, there are a few important things that must be
included
Java

22 /**
23 * This function is run when the robot is first started up and should be used for␣

↪→any
24 * initialization code.
25 */
26 @Override
27 public void robotInit() {
28 // Instantiate our RobotContainer. This will perform all our button bindings,␣

↪→and put our
29 // autonomous chooser on the dashboard.

(continues on next page)

890 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/templates/commandbased
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/include/Robot.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/cpp/Robot.cpp

FIRST Robotics Competition

(continued from previous page)
30 m_robotContainer = new RobotContainer();
31 }

In Java, an instance of RobotContainer should be constructed during the robotInit()
method - this is important, as most of the declarative robot setup will be called from the
RobotContainer constructor.
In C++, this is not needed as RobotContainer is a value member and will be constructed
during the construction of Robot.
Java

33 /**
34 * This function is called every 20 ms, no matter the mode. Use this for items like␣

↪→diagnostics
35 * that you want ran during disabled, autonomous, teleoperated and test.
36 *
37 * <p>This runs after the mode specific periodic functions, but before LiveWindow␣

↪→and
38 * SmartDashboard integrated updating.
39 */
40 @Override
41 public void robotPeriodic() {
42 // Runs the Scheduler. This is responsible for polling buttons, adding newly-

↪→scheduled
43 // commands, running already-scheduled commands, removing finished or interrupted␣

↪→commands,
44 // and running subsystem periodic() methods. This must be called from the robot

↪→'s periodic
45 // block in order for anything in the Command-based framework to work.
46 CommandScheduler.getInstance().run();
47 }

C++ (Source)

11 /**
12 * This function is called every 20 ms, no matter the mode. Use
13 * this for items like diagnostics that you want to run during disabled,
14 * autonomous, teleoperated and test.
15 *
16 * <p> This runs after the mode specific periodic functions, but before
17 * LiveWindow and SmartDashboard integrated updating.
18 */
19 void Robot::RobotPeriodic() {
20 frc2::CommandScheduler::GetInstance().Run();
21 }

The inclusion of the CommandScheduler.getInstance().run() call in the robotPeriodic()
method is essential; without this call, the scheduler will not execute any scheduled commands.
Since TimedRobot runs with a default main loop frequency of 50Hz, this is the frequency with
which periodic command and subsystem methods will be called. It is not recommended for
new users to call this method from anywhere else in their code.
Java

56 /** This autonomous runs the autonomous command selected by your {@link␣
↪→RobotContainer} class. */

(continues on next page)

24.6. Structuring a Command-Based Robot Project 891

FIRST Robotics Competition

(continued from previous page)
57 @Override
58 public void autonomousInit() {
59 m_autonomousCommand = m_robotContainer.getAutonomousCommand();
60

61 // schedule the autonomous command (example)
62 if (m_autonomousCommand != null) {
63 m_autonomousCommand.schedule();
64 }
65 }

C++ (Source)

33 /**
34 * This autonomous runs the autonomous command selected by your {@link
35 * RobotContainer} class.
36 */
37 void Robot::AutonomousInit() {
38 m_autonomousCommand = m_container.GetAutonomousCommand();
39

40 if (m_autonomousCommand) {
41 m_autonomousCommand->Schedule();
42 }
43 }

The autonomousInit() method schedules an autonomous command returned by the Robot-
Container instance. The logic for selecting which autonomous command to run can be han-
dled inside of RobotContainer.
Java

71 @Override
72 public void teleopInit() {
73 // This makes sure that the autonomous stops running when
74 // teleop starts running. If you want the autonomous to
75 // continue until interrupted by another command, remove
76 // this line or comment it out.
77 if (m_autonomousCommand != null) {
78 m_autonomousCommand.cancel();
79 }
80 }

C++ (Source)

46 void Robot::TeleopInit() {
47 // This makes sure that the autonomous stops running when
48 // teleop starts running. If you want the autonomous to
49 // continue until interrupted by another command, remove
50 // this line or comment it out.
51 if (m_autonomousCommand) {
52 m_autonomousCommand->Cancel();
53 }
54 }

The teleopInit() method cancels any still-running autonomous commands. This is generally
good practice.
Advanced users are free to add additional code to the various init and periodic methods as
they see fit; however, it should be noted that including large amounts of imperative robot

892 Chapter 24. Command-Based Programming

FIRST Robotics Competition

code in Robot.java is contrary to the declarative design philosophy of the command-based
paradigm, and can result in confusingly-structured/disorganized code.

24.6.2 RobotContainer

This class (Java, C++ (Header), C++ (Source)) is where most of the setup for your command-
based robot will take place. In this class, you will define your robot’s subsystems and com-
mands, bind those commands to triggering events (such as buttons), and specify which com-
mand you will run in your autonomous routine. There are a few aspects of this class new
users may want explanations for:
Java

23 private final ExampleSubsystem m_exampleSubsystem = new ExampleSubsystem();

C++ (Header)

32 ExampleSubsystem m_subsystem;

Notice that subsystems are declared as private fields in RobotContainer. This is in stark
contrast to the previous incarnation of the command-based framework, but is much more-
aligned with agreed-upon object-oriented best-practices. If subsystems are declared as global
variables, it allows the user to access them from anywhere in the code. While this can make
certain things easier (for example, there would be no need to pass subsystems to commands
in order for those commands to access them), it makes the control flow of the program much
harder to keep track of as it is not immediately obvious which parts of the code can change or
be changed by which other parts of the code. This also circumvents the ability of the resource-
management system to do its job, as ease-of-access makes it easy for users to accidentally
make conflicting calls to subsystem methods outside of the resource-managed commands.
Java

61 return Autos.exampleAuto(m_exampleSubsystem);

C++ (Source)

34 return autos::ExampleAuto(&m_subsystem);

Since subsystems are declared as private members, they must be explicitly passed to com-
mands (a pattern called “dependency injection”) in order for those commands to call methods
on them. This is done here with ExampleCommand, which is passed a pointer to an Example-
Subsystem.
Java

35 /**
36 * Use this method to define your trigger->command mappings. Triggers can be␣

↪→created via the
37 * {@link Trigger#Trigger(java.util.function.BooleanSupplier)} constructor with an␣

↪→arbitrary
38 * predicate, or via the named factories in {@link
39 * edu.wpi.first.wpilibj2.command.button.CommandGenericHID}'s subclasses for {@link
40 * CommandXboxController Xbox}/{@link edu.wpi.first.wpilibj2.command.button.

↪→CommandPS4Controller
41 * PS4} controllers or {@link edu.wpi.first.wpilibj2.command.button.CommandJoystick␣

↪→Flight
(continues on next page)

24.6. Structuring a Command-Based Robot Project 893

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased/RobotContainer.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/include/RobotContainer.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/cpp/RobotContainer.cpp

FIRST Robotics Competition

(continued from previous page)
42 * joysticks}.
43 */
44 private void configureBindings() {
45 // Schedule `ExampleCommand` when `exampleCondition` changes to `true`
46 new Trigger(m_exampleSubsystem::exampleCondition)
47 .onTrue(new ExampleCommand(m_exampleSubsystem));
48

49 // Schedule `exampleMethodCommand` when the Xbox controller's B button is pressed,
50 // cancelling on release.
51 m_driverController.b().whileTrue(m_exampleSubsystem.exampleMethodCommand());
52 }

C++ (Source)

19 void RobotContainer::ConfigureBindings() {
20 // Configure your trigger bindings here
21

22 // Schedule `ExampleCommand` when `exampleCondition` changes to `true`
23 frc2::Trigger([this] {
24 return m_subsystem.ExampleCondition();
25 }).OnTrue(ExampleCommand(&m_subsystem).ToPtr());
26

27 // Schedule `ExampleMethodCommand` when the Xbox controller's B button is
28 // pressed, cancelling on release.
29 m_driverController.B().WhileTrue(m_subsystem.ExampleMethodCommand());
30 }

As mentioned before, the RobotContainer() constructor is where most of the declarative
setup for the robot should take place, including button bindings, configuring autonomous
selectors, etc. If the constructor gets too “busy,” users are encouraged to migrate code into
separate subroutines (such as the configureBindings() method included by default) which
are called from the constructor.
Java

54 /**
55 * Use this to pass the autonomous command to the main {@link Robot} class.
56 *
57 * @return the command to run in autonomous
58 */
59 public Command getAutonomousCommand() {
60 // An example command will be run in autonomous
61 return Autos.exampleAuto(m_exampleSubsystem);
62 }
63 }

C++ (Source)

32 frc2::CommandPtr RobotContainer::GetAutonomousCommand() {
33 // An example command will be run in autonomous
34 return autos::ExampleAuto(&m_subsystem);
35 }

Finally, the getAutonomousCommand() method provides a convenient way for users to send
their selected autonomous command to the main Robot class (which needs access to it to
schedule it when autonomous starts).

894 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.6.3 Constants

The Constants class (Java, C++ (Header)) (in C++ this is not a class, but simply a header file
in which several namespaces are defined) is where globally-accessible robot constants (such
as speeds, unit conversion factors, PID gains, and sensor/motor ports) can be stored. It is
recommended that users separate these constants into individual inner classes corresponding
to subsystems or robot modes, to keep variable names shorter.
In Java, all constants should be declared public static final so that they are globally
accessible and cannot be changed. In C++, all constants should be constexpr.
For more illustrative examples of what a constants class should look like in practice, see
those of the various command-based example projects:

• FrisbeeBot (Java, C++)
• GyroDriveCommands (Java, C++)
• Hatchbot (Java, C++)
• RapidReactCommandBot (Java, C++)

In Java, it is recommended that the constants be used from other classes by statically import-
ing the necessary inner class. An import static statement imports the static namespace of a
class into the class in which you are working, so that any static constants can be referenced
directly as if they had been defined in that class. In C++, the same effect can be attained
with using namespace:
Java

import static edu.wpi.first.wpilibj.templates.commandbased.Constants.OIConstants.*;

C++

using namespace OIConstants;

24.6.4 Subsystems

User-defined subsystems should go in this package/directory.

24.6.5 Commands

User-defined commands should go in this package/directory.

24.7 Organizing Command-Based Robot Projects

As robot code becomes more complicated, navigating, understanding, and maintaining the
code takes up more and more time and energy. Making changes to the code often becomes
more difficult, sometimes for reasons that have very little to do with the actual complexity
of the underlying logic. For a simplified example: putting the logic for many unrelated robot
functions into a single 1000-line file makes it difficult to find a specific piece of code within
that file, particularly under stress at a competition. But spreading out closely related logic
across dozens of tiny files is often just as difficult to navigate.

24.7. Organizing Command-Based Robot Projects 895

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/templates/commandbased/Constants.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/templates/commandbased/include/Constants.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/frisbeebot/Constants.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/Frisbeebot/include/Constants.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyrodrivecommands/Constants.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/GyroDriveCommands/include/Constants.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional/Constants.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional/include/Constants.h
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/rapidreactcommandbot/Constants.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/RapidReactCommandBot/include/Constants.h

FIRST Robotics Competition

This is not a problem unique to FRC, and in fact, good organization only becomes more and
more critical as software projects become bigger and bigger. The “best” organization sys-
tem is a perennial topic of debate, much like the “best” programming language, but in the
end, the choice (in both cases) comes down to the specific task at hand and the programmer
(or programmers) implementing said task. Even in the relatively small space of FRC robot
programming, there is no right answer. The best choice for a given team will depend on the
nature of the specific robot code, team structure, and pure personal preference.
This article discusses various facets of command-based robot program design that advanced
FRC programmers may want to be aware of when writing code. It is not a prescriptive tutorial,
though it presents some recommended best practices. If this level of choice seems daunting,
however, many teams have been highly successful while sticking closely to WPILib’s exam-
ple code and guidelines. However, this discussion may be of interest to intermediate and
advanced programmers who want to make their code not only effective, but flexible, easily
changeable, and sometimes even beautiful.

24.7.1 Why Care About Organization?

Good code organization will rarely make or break a team’s competitive ability—but it does
mean easier debugging, faster modifications, nicer-looking code, and happier programmers.
While it’s impossible to define “good” organization by way of what the code looks like from the
inside, it’s easier to define in terms of what the robot’s software looks like from the outside.

What Good Organization Looks Like

When code is well-designed and well-organized, the code’s internal structure is intuitive and
easily comprehensible. Cumbersome boilerplate is minimized, meaning that new robot func-
tionality can often be added with just a few lines of code. When a constant value (such as the
speed of the robot’s intake) needs to be changed, it only needs to change in one place. If mul-
tiple programmers are working together, they can easily understand each others’ work. Bugs
are rare, since it is difficult to accidentally introduce unintended behavior (such as creating a
command that does not require necessary subsystems). Implementing more advanced func-
tions like unit tests is easier, since the code is abstracted away from the physical hardware.
Programmers are happy (most of the time).

What Bad Organization Looks Like

Poorly organized code often has internal structure that makes little to no sense, even to who-
ever wrote it. When functionality has to be added or changed, it often breaks unrelated parts
of the robot: adding automatic shooter control might introduce a bug in the climbing se-
quence for unclear reasons. Alternatively, the organizational framework might be so strict
that it’s impossible to implement necessary behavior, requiring nasty hacks or workarounds.
Many lines of boilerplate code are needed for simple robot logic. Constants are scattered
across the codebase, and changing basic behavior often requires making the same change to
many different files. Collaboration among multiple programmers is difficult or impossible.

896 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.7.2 Defining Commands

In larger robot codebases, multiple copies of the same command need to be used in many
different places. For instance, a command that runs a robot’s intake might be used in teleop,
bound to a certain button; as part of a complicated command group for an autonomous rou-
tine; and as part of a self-test sequence.
As an example, let’s look at some ways to define a simple command that simply runs the
robot’s intake forward at full power until canceled.

Inline Commands

The easiest and most expressive way to do this is with a StartEndCommand:
Java

Command runIntake = Commands.startEnd(() -> intake.set(1), () -> intake.set(0),␣
↪→intake);

C++

frc2::CommandPtr runIntake = frc2::cmd::StartEnd([&intake] { intake.Set(1.0); }, [&
↪→intake] { intake.Set(0); }, {&intake});

This is sufficient for commands that are only used once. However, for a command like this that
might get used in many different autonomous routines and button bindings, inline commands
everywhere means a lot of repetitive code:
Java

// RobotContainer.java
intakeButton.whileTrue(Commands.startEnd(() -> intake.set(1.0), () -> intake.set(0),␣
↪→intake));

Command intakeAndShoot = Commands.startEnd(() -> intake.set(1.0), () -> intake.set(0),
↪→ intake)

.alongWith(new RunShooter(shooter));

Command autonomousCommand = Commands.sequence(
Commands.startEnd(() -> intake.set(1.0), () -> intake.set(0.0), intake).

↪→withTimeout(5.0),
Commands.waitSeconds(3.0),
Commands.startEnd(() -> intake.set(1.0), () -> intake.set(0.0), intake).

↪→withTimeout(5.0)
);

C++

intakeButton.WhileTrue(frc2::cmd::StartEnd([&intake] { intake.Set(1.0); }, [&intake]
↪→{ intake.Set(0); }, {&intake}));

frc2::CommandPtr intakeAndShoot = frc2::cmd::StartEnd([&intake] { intake.Set(1.0); },␣
↪→[&intake] { intake.Set(0); }, {&intake})

.AlongWith(RunShooter(&shooter).ToPtr());

frc2::CommandPtr autonomousCommand = frc2::cmd::Sequence(
(continues on next page)

24.7. Organizing Command-Based Robot Projects 897

FIRST Robotics Competition

(continued from previous page)
frc2::cmd::StartEnd([&intake] { intake.Set(1.0); }, [&intake] { intake.Set(0); }, {&

↪→intake}).WithTimeout(5.0_s),
frc2::cmd::Wait(3.0_s),
frc2::cmd::StartEnd([&intake] { intake.Set(1.0); }, [&intake] { intake.Set(0); }, {&

↪→intake}).WithTimeout(5.0_s)
);

Creating one StartEndCommand instance and putting it in a variable won’t work here, since
once an instance of a command is added to a command group it is effectively “owned” by that
command group and cannot be used in any other context.

Instance Command Factory Methods

One way to solve this quandary is using the “factory method” design pattern: a function
that returns a new object every invocation, according to some specification. Using command
composition, a factory method can construct a complex command object with merely a few
lines of code.
For example, a command like the intake-running command is conceptually related to exactly
one subsystem: the Intake. As such, it makes sense to put a runIntakeCommand method as
an instance method of the Intake class:

Note: In this document we will name factory methods as lowerCamelCaseCommand, but teams
may decide on other conventions. In general, it is recommended to end the method name with
Command if it might otherwise be confused with an ordinary method (e.g. intake.run might
be the name of a method that simply turns on the intake).

Java

public class Intake extends SubsystemBase {
// [code for motor controllers, configuration, etc.]
// ...

public Command runIntakeCommand() {
// implicitly requires `this`
return this.startEnd(() -> this.set(1.0), () -> this.set(0.0));

}
}

C++

frc2::CommandPtr Intake::RunIntakeCommand() {
// implicitly requires `this`
return this->StartEnd([this] { this->Set(1.0); }, [this] { this->Set(0); });

}

Notice how since we are in the Intake class, we no longer refer to intake; instead, we use
the this keyword to refer to the current instance.
Since we are inside the Intake class, technically we can access private variables and meth-
ods directly from within the runIntakeCommand method, thus not needing intermediary meth-
ods. (For example, the runIntakeCommand method can directly interface with the motor con-
troller objects instead of calling set().) On the other hand, these intermediary methods can

898 Chapter 24. Command-Based Programming

FIRST Robotics Competition

reduce code duplication and increase encapsulation. Like many other choices outlined in this
document, this tradeoff is a matter of personal preference on a case-by-case basis.
Using this new factory method in command groups and button bindings is highly expressive:
Java

intakeButton.whileTrue(intake.runIntakeCommand());

Command intakeAndShoot = intake.runIntakeCommand().alongWith(new RunShooter(shooter));

Command autonomousCommand = Commands.sequence(
intake.runIntakeCommand().withTimeout(5.0),
Commands.waitSeconds(3.0),
intake.runIntakeCommand().withTimeout(5.0)

);

C++

intakeButton.WhileTrue(intake.RunIntakeCommand());

frc2::CommandPtr intakeAndShoot = intake.RunIntakeCommand().AlongWith(RunShooter(&
↪→shooter).ToPtr());

frc2::CommandPtr autonomousCommand = frc2::cmd::Sequence(
intake.RunIntakeCommand().WithTimeout(5.0_s),
frc2::cmd::Wait(3.0_s),
intake.RunIntakeCommand().WithTimeout(5.0_s)

);

Adding a parameter to the runIntakeCommand method to provide the exact percentage to run
the intake is easy and allows for even more flexibility.
Java

public Command runIntakeCommand(double percent) {
return new StartEndCommand(() -> this.set(percent), () -> this.set(0.0), this);

}

C++

frc2::CommandPtr Intake::RunIntakeCommand() {
// implicitly requires `this`
return this->StartEnd([this, percent] { this->Set(percent); }, [this] { this->

↪→Set(0); });
}

For instance, this code creates a command group that runs the intake forwards for two sec-
onds, waits for two seconds, and then runs the intake backwards for five seconds.
Java

Command intakeRunSequence = intake.runIntakeCommand(1.0).withTimeout(2.0)
.andThen(Commands.waitSeconds(2.0))
.andThen(intake.runIntakeCommand(-1.0).withTimeout(5.0));

C++

24.7. Organizing Command-Based Robot Projects 899

FIRST Robotics Competition

frc2::CommandPtr intakeRunSequence = intake.RunIntakeCommand(1.0).WithTimeout(2.0_s)
.AndThen(frc2::cmd::Wait(2.0_s))
.AndThen(intake.RunIntakeCommand(-1.0).WithTimeout(5.0_s));

This approach is recommended for commands that are conceptually related to only a single
subsystem, and is very concise. However, it doesn’t fare well with commands related to more
than one subsystem: passing in other subsystem objects is unintuitive and can cause race
conditions and circular dependencies, and thus should be avoided. Therefore, this approach
is best suited for single-subsystem commands, and should be used only for those cases.

Static Command Factories

Instance factory methods work great for single-subsystem commands. However, complicated
robot actions (like the ones often required during the autonomous period) typically need to
coordinate multiple subsystems at once. When we want to define an inline command that
uses multiple subsystems, it doesn’t make sense for the command factory to live in any single
one of those subsystems. Instead, it can be cleaner to define the command factory methods
statically in some external class:

Note: The sequence and parallel static factories construct sequential and parallel com-
mand groups: this is equivalent to the andThen and alongWith decorators, but can be more
readable. Their use is a matter of personal preference.

Java

public class AutoRoutines {

public static Command driveAndIntake(Drivetrain drivetrain, Intake intake) {
return Commands.sequence(

Commands.parallel(
drivetrain.driveCommand(0.5, 0.5),
intake.runIntakeCommand(1.0)

).withTimeout(5.0),
Commands.parallel(

drivetrain.stopCommand();
intake.stopCommand();

)
);

}
}

C++

// TODO

900 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Non-Static Command Factories

If we want to avoid the verbosity of adding required subsystems as parameters to our factory
methods, we can instead construct an instance of our AutoRoutines class and inject our
subsystems through the constructor:
Java

public class AutoRoutines {

private Drivetrain drivetrain;

private Intake intake;

public AutoRoutines(Drivetrain drivetrain, Intake intake) {
this.drivetrain = drivetrain;
this.intake = intake;

}

public Command driveAndIntake() {
return Commands.sequence(

Commands.parallel(
drivetrain.driveCommand(0.5, 0.5),
intake.runIntakeCommand(1.0)

).withTimeout(5.0),
Commands.parallel(

drivetrain.stopCommand();
intake.stopCommand();

)
);

}

public Command driveThenIntake() {
return Commands.sequence(

drivetrain.driveCommand(0.5, 0.5).withTimeout(5.0),
drivetrain.stopCommand(),
intake.runIntakeCommand(1.0).withTimeout(5.0),
intake.stopCommand()

);
}

}

C++

// TODO

Then, elsewhere in our code, we can instantiate an single instance of this class and use it to
produce several commands:
Java

AutoRoutines autoRoutines = new AutoRoutines(this.drivetrain, this.intake);

Command driveAndIntake = autoRoutines.driveAndIntake();
Command driveThenIntake = autoRoutines.driveThenIntake();

Command drivingAndIntakingSequence = Commands.sequence(
autoRoutines.driveAndIntake(),

(continues on next page)

24.7. Organizing Command-Based Robot Projects 901

FIRST Robotics Competition

(continued from previous page)
autoRoutines.driveThenIntake()

);

C++

// TODO

Capturing State in Inline Commands

Inline commands are extremely concise and expressive, but do not offer explicit support for
commands that have their own internal state (such as a drivetrain trajectory following com-
mand, which may encapsulate an entire controller). This is often accomplished by instead
writing a Command class, which will be covered later in this article.
However, it is still possible to ergonomically write a stateful command composition using
inline syntax, so long as we are working within a factory method. To do so, we declare the state
as a method local and “capture” it in our inline definition. For example, consider the following
instance command factory to turn a drivetrain to a specific angle with a PID controller:

Note: The Subsystem.run and Subsystem.runOnce factory methods sugar the creation of a
RunCommand and an InstantCommand requiring this subsystem.

Java

public Command turnToAngle(double targetDegrees) {
// Create a controller for the inline command to capture
PIDController controller = new PIDController(Constants.kTurnToAngleP, 0, 0);
// We can do whatever configuration we want on the created state before returning␣

↪→from the factory
controller.setPositionTolerance(Constants.kTurnToAngleTolerance);

// Try to turn at a rate proportional to the heading error until we're at the␣
↪→setpoint, then stop

return run(() -> arcadeDrive(0,-controller.calculate(gyro.getHeading(),␣
↪→targetDegrees)))

.until(controller::atSetpoint)

.andThen(runOnce(() -> arcadeDrive(0, 0)));
}

C++

// TODO

This pattern works very well in Java so long as the captured state is “effectively final” - i.e., it is
never reassigned. This means that we cannot directly define and capture primitive types (e.g.
int, double, boolean) - to circumvent this, we need to wrap any state primitives in a mutable
container type (the same way PIDController wraps its internal kP, kI, and kD values).

902 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Writing Command Classes

Another possible way to define reusable commands is to write a class that represents the com-
mand. This is typically done by subclassing either CommandBase or one of the CommandGroup
classes.

Subclassing CommandBase

Returning to our simple intake command from earlier, we could do this by creating a new
subclass of CommandBase that implements the necessary initialize and end methods.
Java

public class RunIntakeCommand extends CommandBase {
private Intake m_intake;

public RunIntakeCommand(Intake intake) {
this.m_intake = intake;
addRequirements(intake);

}

@Override
public void initialize() {

m_intake.set(1.0);
}

@Override
public void end(boolean interrupted) {

m_intake.set(0.0);
}

// execute() defaults to do nothing
// isFinished() defaults to return false

}

C++

// TODO

This, however, is just as cumbersome as the original repetitive code, if not more verbose. The
only two lines that really matter in this entire file are the two calls to intake.set(), yet there
are over 20 lines of boilerplate code! Not to mention, doing this for a lot of robot actions
quickly clutters up a robot project with dozens of small files. Nevertheless, this might feel
more “natural,” particularly for programmers who prefer to stick closely to an object-oriented
model.
This approach should be used for commands with internal state (not subsystem state!), as
the class can have fields to manage said state. It may also be more intuitive to write com-
mands with complex logic as classes, especially for those less experienced with command
composition. As the command is detached from any specific subsystem class and the re-
quired subsystem objects are injected through the constructor, this approach deals well with
commands involving multiple subsystems.

24.7. Organizing Command-Based Robot Projects 903

FIRST Robotics Competition

Subclassing Command Groups

If we wish to write composite commands as their own classes, we may write a constructor-
only subclass of the most exterior group type. For example, an intake-then-outtake sequence
(with single-subsystem commands defined as instance factory methods) can look like this:
Java

public class IntakeThenOuttake extends SequentialCommandGroup {
public IntakeThenOuttake(Intake intake) {

super(
intake.runIntakeCommand(1.0).withTimeout(2.0),
new WaitCommand(2.0),
intake.runIntakeCommand(-1).withTimeout(5.0)

);
}

}

C++

// TODO

This is relatively short and minimizes boilerplate. It is also comfortable to use in a purely
object-oriented paradigm and may be more acceptable to novice programmers. However,
it has some downsides. For one, it is not immediately clear exactly what type of command
group this is from the constructor definition: it is better to define this in a more inline and
expressive way, particularly when nested command groups start showing up. Additionally, it
requires a new file for every single command group, even when the groups are conceptually
related.
As with factory methods, state can be defined and captured within the command group sub-
class constructor, if necessary.

Summary

Approach Primary Use
Case

Single-
subsystem
Com-
mands

Multi-
subsystem
Com-
mands

Stateful
Commands

Complex Logic
Commands

Instance Fac-
tory Methods

Single-
subsystem
commands

Excels at
them

No Yes, but
must obey
capture
rules

Yes

Subclassing
Command-
Base

Stateful
commands

Very ver-
bose

Relatively
verbose

Excels at
them

Yes; may be more
natural than
other approaches

Static and
Instance
Command
Factories

Multi-
subsystem
commands

Yes Yes Yes, but
must obey
capture
rules

Yes

Subclassing
Command
Groups

Multi-
subsystem
command
groups

Yes Yes Yes, but
must obey
capture
rules

Yes

904 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.8 The Command Scheduler

The CommandScheduler (Java, C++) is the class responsible for actually running commands.
Each iteration (ordinarily once per 20ms), the scheduler polls all registered buttons, sched-
ules commands for execution accordingly, runs the command bodies of all scheduled com-
mands, and ends those commands that have finished or are interrupted.
The CommandScheduler also runs the periodic() method of each registered Subsystem.

24.8.1 Using the Command Scheduler

The CommandScheduler is a singleton, meaning that it is a globally-accessible class with
only one instance. Accordingly, in order to access the scheduler, users must call the
CommandScheduler.getInstance() command.
For the most part, users do not have to call scheduler methods directly - almost all important
scheduler methods have convenience wrappers elsewhere (e.g. in the Command and Subsystem
interfaces).
However, there is one exception: users must call CommandScheduler.getInstance().run()
from the robotPeriodic() method of their Robot class. If this is not done, the scheduler will
never run, and the command framework will not work. The provided command-based project
template has this call already included.

24.8.2 The schedule() Method

To schedule a command, users call the schedule() method (Java, C++). This method takes a
command, and attempts to add it to list of currently-running commands, pending whether it
is already running or whether its requirements are available. If it is added, its initialize()
method is called.
This method walks through the following steps:

1. Verifies that the command isn’t in a composition.
2. No-op if scheduler is disabled, command is already scheduled, or robot is disabled and

command doesn’t <commands:runsWhenDisabled>.
3. If requirements are in use: * If all conflicting commands are interruptible, cancel them.

* If not, don’t schedule the new command.
4. Call initialize().

Java

202 private void schedule(Command command) {
203 if (command == null) {
204 DriverStation.reportWarning("Tried to schedule a null command", true);
205 return;
206 }
207 if (m_inRunLoop) {
208 m_toSchedule.add(command);
209 return;
210 }
211

(continues on next page)

24.8. The Command Scheduler 905

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#schedule(boolean,edu.wpi.first.wpilibj2.command.Command...)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#a26c120054ec626806d740f2c42d9dc4f

FIRST Robotics Competition

(continued from previous page)
212 requireNotComposed(command);
213

214 // Do nothing if the scheduler is disabled, the robot is disabled and the command␣
↪→doesn't

215 // run when disabled, or the command is already scheduled.
216 if (m_disabled
217 || isScheduled(command)
218 || RobotState.isDisabled() && !command.runsWhenDisabled()) {
219 return;
220 }
221

222 Set<Subsystem> requirements = command.getRequirements();
223

224 // Schedule the command if the requirements are not currently in-use.
225 if (Collections.disjoint(m_requirements.keySet(), requirements)) {
226 initCommand(command, requirements);
227 } else {
228 // Else check if the requirements that are in use have all have interruptible␣

↪→commands,
229 // and if so, interrupt those commands and schedule the new command.
230 for (Subsystem requirement : requirements) {
231 Command requiring = requiring(requirement);
232 if (requiring != null
233 && requiring.getInterruptionBehavior() == InterruptionBehavior.

↪→kCancelIncoming) {
234 return;
235 }
236 }
237 for (Subsystem requirement : requirements) {
238 Command requiring = requiring(requirement);
239 if (requiring != null) {
240 cancel(requiring);
241 }
242 }
243 initCommand(command, requirements);
244 }
245 }

181 private void initCommand(Command command, Set<Subsystem> requirements) {
182 m_scheduledCommands.add(command);
183 for (Subsystem requirement : requirements) {
184 m_requirements.put(requirement, command);
185 }
186 command.initialize();
187 for (Consumer<Command> action : m_initActions) {
188 action.accept(command);
189 }
190

191 m_watchdog.addEpoch(command.getName() + ".initialize()");

C++ (Source)

114 void CommandScheduler::Schedule(Command* command) {
115 if (m_impl->inRunLoop) {
116 m_impl->toSchedule.emplace_back(command);
117 return;

(continues on next page)

906 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
118 }
119

120 RequireUngrouped(command);
121

122 if (m_impl->disabled || m_impl->scheduledCommands.contains(command) ||
123 (frc::RobotState::IsDisabled() && !command->RunsWhenDisabled())) {
124 return;
125 }
126

127 const auto& requirements = command->GetRequirements();
128

129 wpi::SmallVector<Command*, 8> intersection;
130

131 bool isDisjoint = true;
132 bool allInterruptible = true;
133 for (auto&& i1 : m_impl->requirements) {
134 if (requirements.find(i1.first) != requirements.end()) {
135 isDisjoint = false;
136 allInterruptible &= (i1.second->GetInterruptionBehavior() ==
137 Command::InterruptionBehavior::kCancelSelf);
138 intersection.emplace_back(i1.second);
139 }
140 }
141

142 if (isDisjoint || allInterruptible) {
143 if (allInterruptible) {
144 for (auto&& cmdToCancel : intersection) {
145 Cancel(cmdToCancel);
146 }
147 }
148 m_impl->scheduledCommands.insert(command);
149 for (auto&& requirement : requirements) {
150 m_impl->requirements[requirement] = command;
151 }
152 command->Initialize();
153 for (auto&& action : m_impl->initActions) {
154 action(*command);
155 }
156 m_watchdog.AddEpoch(command->GetName() + ".Initialize()");
157 }
158 }

24.8.3 The Scheduler Run Sequence

Note: The initialize() method of each Command is called when the command is scheduled,
which is not necessarily when the scheduler runs (unless that command is bound to a button).

What does a single iteration of the scheduler’s run() method (Java, C++) actually do? The
following section walks through the logic of a scheduler iteration. For the full implementation,
see the source code (Java, C++).

24.8. The Command Scheduler 907

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#run()
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#aa5000fa52e320da7ba72c196f34aa0f5
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibNewCommands/src/main/java/edu/wpi/first/wpilibj2/command/CommandScheduler.java#L275-L356
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibNewCommands/src/main/native/cpp/frc2/command/CommandScheduler.cpp#L177-L253

FIRST Robotics Competition

Step 1: Run Subsystem Periodic Methods

First, the scheduler runs the periodic()method of each registered Subsystem. In simulation,
each subsystem’s simulationPeriodic() method is called as well.
Java

278 // Run the periodic method of all registered subsystems.
279 for (Subsystem subsystem : m_subsystems.keySet()) {
280 subsystem.periodic();
281 if (RobotBase.isSimulation()) {
282 subsystem.simulationPeriodic();
283 }
284 m_watchdog.addEpoch(subsystem.getClass().getSimpleName() + ".periodic()");
285 }

C++ (Source)

183 // Run the periodic method of all registered subsystems.
184 for (auto&& subsystem : m_impl->subsystems) {
185 subsystem.getFirst()->Periodic();
186 if constexpr (frc::RobotBase::IsSimulation()) {
187 subsystem.getFirst()->SimulationPeriodic();
188 }
189 m_watchdog.AddEpoch("Subsystem Periodic()");
190 }

Step 2: Poll Command Scheduling Triggers

Note: For more information on how trigger bindings work, see Binding Commands to Trig-
gers

Secondly, the scheduler polls the state of all registered triggers to see if any new commands
that have been bound to those triggers should be scheduled. If the conditions for scheduling
a bound command are met, the command is scheduled and its Initialize() method is run.
Java

290 // Poll buttons for new commands to add.
291 loopCache.poll();
292 m_watchdog.addEpoch("buttons.run()");

C++ (Source)

195 // Poll buttons for new commands to add.
196 loopCache->Poll();
197 m_watchdog.AddEpoch("buttons.Run()");

908 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Step 3: Run/Finish Scheduled Commands

Thirdly, the scheduler calls the execute() method of each currently-scheduled command, and
then checks whether the command has finished by calling the isFinished() method. If the
command has finished, the end() method is also called, and the command is de-scheduled
and its required subsystems are freed.
Note that this sequence of calls is done in order for each command - thus, one command may
have its end() method called before another has its execute() method called. Commands
are handled in the order they were scheduled.
Java

295 // Run scheduled commands, remove finished commands.
296 for (Iterator<Command> iterator = m_scheduledCommands.iterator(); iterator.

↪→hasNext();) {
297 Command command = iterator.next();
298

299 if (!command.runsWhenDisabled() && RobotState.isDisabled()) {
300 command.end(true);
301 for (Consumer<Command> action : m_interruptActions) {
302 action.accept(command);
303 }
304 m_requirements.keySet().removeAll(command.getRequirements());
305 iterator.remove();
306 m_watchdog.addEpoch(command.getName() + ".end(true)");
307 continue;
308 }
309

310 command.execute();
311 for (Consumer<Command> action : m_executeActions) {
312 action.accept(command);
313 }
314 m_watchdog.addEpoch(command.getName() + ".execute()");
315 if (command.isFinished()) {
316 command.end(false);
317 for (Consumer<Command> action : m_finishActions) {
318 action.accept(command);
319 }
320 iterator.remove();
321

322 m_requirements.keySet().removeAll(command.getRequirements());
323 m_watchdog.addEpoch(command.getName() + ".end(false)");
324 }
325 }

C++ (Source)

201 for (Command* command : m_impl->scheduledCommands) {
202 if (!command->RunsWhenDisabled() && frc::RobotState::IsDisabled()) {
203 Cancel(command);
204 continue;
205 }
206

207 command->Execute();
208 for (auto&& action : m_impl->executeActions) {
209 action(*command);
210 }

(continues on next page)

24.8. The Command Scheduler 909

FIRST Robotics Competition

(continued from previous page)
211 m_watchdog.AddEpoch(command->GetName() + ".Execute()");
212

213 if (command->IsFinished()) {
214 command->End(false);
215 for (auto&& action : m_impl->finishActions) {
216 action(*command);
217 }
218

219 for (auto&& requirement : command->GetRequirements()) {
220 m_impl->requirements.erase(requirement);
221 }
222

223 m_impl->scheduledCommands.erase(command);
224 m_watchdog.AddEpoch(command->GetName() + ".End(false)");
225 }
226 }

Step 4: Schedule Default Commands

Finally, any registered Subsystem has its default command scheduled (if it has one). Note
that the initialize() method of the default command will be called at this time.
Java

340 // Add default commands for un-required registered subsystems.
341 for (Map.Entry<Subsystem, Command> subsystemCommand : m_subsystems.entrySet()) {
342 if (!m_requirements.containsKey(subsystemCommand.getKey())
343 && subsystemCommand.getValue() != null) {
344 schedule(subsystemCommand.getValue());
345 }
346 }

C++ (Source)

240 // Add default commands for un-required registered subsystems.
241 for (auto&& subsystem : m_impl->subsystems) {
242 auto s = m_impl->requirements.find(subsystem.getFirst());
243 if (s == m_impl->requirements.end() && subsystem.getSecond()) {
244 Schedule({subsystem.getSecond().get()});
245 }
246 }

24.8.4 Disabling the Scheduler

The scheduler can be disabled by calling CommandScheduler.getInstance().disable().
When disabled, the scheduler’s schedule() and run() commands will not do anything.
The scheduler may be re-enabled by calling CommandScheduler.getInstance().enable().

910 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.8.5 Command Event Methods

Occasionally, it is desirable to have the scheduler execute a custom action whenever a cer-
tain command event (initialization, execution, or ending) occurs. This can be done with the
following methods:

• onCommandInitialize (Java, C++) runs a specified action whenever a command is ini-
tialized.

• onCommandExecute (Java, C++) runs a specified action whenever a command is executed.
• onCommandFinish (Java, C++) runs a specified action whenever a command finishes nor-

mally (i.e. the isFinished() method returned true).
• onCommandInterrupt (Java, C++) runs a specified action whenever a command is inter-

rupted (i.e. by being explicitly canceled or by another command that shares one of its
requirements).

A typical use-case for these methods is adding markers in an event log whenever a command
scheduling event takes place, as demonstrated in the following code from the HatchbotInlined
example project (Java, C++):
Java

73 // Set the scheduler to log Shuffleboard events for command initialize, interrupt,
↪→ finish

74 CommandScheduler.getInstance()
75 .onCommandInitialize(
76 command ->
77 Shuffleboard.addEventMarker(
78 "Command initialized", command.getName(), EventImportance.

↪→kNormal));
79 CommandScheduler.getInstance()
80 .onCommandInterrupt(
81 command ->
82 Shuffleboard.addEventMarker(
83 "Command interrupted", command.getName(), EventImportance.

↪→kNormal));
84 CommandScheduler.getInstance()
85 .onCommandFinish(
86 command ->
87 Shuffleboard.addEventMarker(
88 "Command finished", command.getName(), EventImportance.kNormal));

C++ (Source)

23 // Log Shuffleboard events for command initialize, execute, finish, interrupt
24 frc2::CommandScheduler::GetInstance().OnCommandInitialize(
25 [](const frc2::Command& command) {
26 frc::Shuffleboard::AddEventMarker(
27 "Command initialized", command.GetName(),
28 frc::ShuffleboardEventImportance::kNormal);
29 });
30 frc2::CommandScheduler::GetInstance().OnCommandExecute(
31 [](const frc2::Command& command) {
32 frc::Shuffleboard::AddEventMarker(
33 "Command executed", command.GetName(),
34 frc::ShuffleboardEventImportance::kNormal);
35 });

(continues on next page)

24.8. The Command Scheduler 911

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#onCommandInitialize(java.util.function.Consumer)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#a5f983f0e45b0500c96eebe52780324d4
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#onCommandExecute(java.util.function.Consumer)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#a58c538f4b8dd95e266e4a99167aa7f99
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#onCommandFinish(java.util.function.Consumer)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#a068e61446afe2341cc0651f0dfd2a55f
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html#onCommandInterrupt(java.util.function.Consumer)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html#ab5ba99a542aa778a76726d7c68461bf0
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbotinlined
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotInlined

FIRST Robotics Competition

(continued from previous page)
36 frc2::CommandScheduler::GetInstance().OnCommandFinish(
37 [](const frc2::Command& command) {
38 frc::Shuffleboard::AddEventMarker(
39 "Command finished", command.GetName(),
40 frc::ShuffleboardEventImportance::kNormal);
41 });
42 frc2::CommandScheduler::GetInstance().OnCommandInterrupt(
43 [](const frc2::Command& command) {
44 frc::Shuffleboard::AddEventMarker(
45 "Command interrupted", command.GetName(),
46 frc::ShuffleboardEventImportance::kNormal);
47 });

24.9 A Technical Discussion on C++ Commands

Note: This article assumes that you have a fair understanding of advanced C++ concepts,
including templates, smart pointers, inheritance, rvalue references, copy semantics, move
semantics, and CRTP. You do not need to understand the information within this article to use
the command-based framework in your robot code.

This article will help you understand the reasoning behind some of the decisions made in the
2020 command-based framework (such as the use of std::unique_ptr, CRTP in the form of
CommandHelper<Base, Derived>, etc.). You do not need to understand the information within
this article to use the command-based framework in your robot code.

Note: The model was further changed in 2023, as described below.

24.9.1 Ownership Model

The old command-based framework employed the use of raw pointers, meaning that users
had to use new (resulting in manual heap allocations) in their robot code. Since there was no
clear indication on who owned the commands (the scheduler, the command groups, or the
user themselves), it was not apparent who was supposed to take care of freeing the memory.
Several examples in the old command-based framework involved code like this:

#include "PlaceSoda.h"
#include "Elevator.h"
#include "Wrist.h"

PlaceSoda::PlaceSoda() {
AddSequential(new SetElevatorSetpoint(Elevator::TABLE_HEIGHT));
AddSequential(new SetWristSetpoint(Wrist::PICKUP));
AddSequential(new OpenClaw());

}

In the command-group above, the component commands of the command group were being
heap allocated and passed into AddSequential all in the same line. This meant that user had

912 Chapter 24. Command-Based Programming

FIRST Robotics Competition

no reference to that object in memory and therefore had no means of freeing the allocated
memory once the command group ended. The command group itself never freed the memory
and neither did the command scheduler. This led to memory leaks in robot programs (i.e.
memory was allocated on the heap but never freed).
This glaring problem was one of the reasons for the rewrite of the framework. A compre-
hensive ownership model was introduced with this rewrite, along with the usage of smart
pointers which will automatically free memory when they go out of scope.
Default commands are owned by the command scheduler whereas component commands
of command compositions are owned by the command composition. Other commands are
owned by whatever the user decides they should be owned by (e.g. a subsystem instance or
a RobotContainer instance). This means that the ownership of the memory allocated by any
commands or command compositions is clearly defined.

std::unique_ptr vs. std::shared_ptr

Using std::unique_ptr allows us to clearly determine who owns the object. Be-
cause an std::unique_ptr cannot be copied, there will never be more than
one instance of a std::unique_ptr that points to the same block of memory on
the heap. For example, a constructor for SequentialCommandGroup takes in a
std::vector<std::unique_ptr<Command>>&&. This means that it requires an rvalue
reference to a vector of std::unique_ptr<Command>. Let’s go through some example code
step-by-step to understand this better:

// Let's create a vector to store our commands that we want to run sequentially.
std::vector<std::unique_ptr<Command>> commands;

// Add an instant command that prints to the console.
commands.emplace_back(std::make_unique<InstantCommand>([]{ std::cout << "Hello"; },␣
↪→requirements));

// Add some other command: this can be something that a user has created.
commands.emplace_back(std::make_unique<MyCommand>(args, needed, for, this, command));

// Now the vector "owns" all of these commands. In its current state, when the vector␣
↪→is destroyed (i.e.
// it goes out of scope), it will destroy all of the commands we just added.

// Let's create a SequentialCommandGroup that will run these two commands␣
↪→sequentially.
auto group = SequentialCommandGroup(std::move(commands));

// Note that we MOVED the vector of commands into the sequential command group,␣
↪→meaning that the
// command group now has ownership of our commands. When we call std::move on the␣
↪→vector, all of its
// contents (i.e. the unique_ptr instances) are moved into the command group.

// Even if the vector were to be destroyed while the command group was running,␣
↪→everything would be OK
// since the vector does not own our commands anymore.

With std::shared_ptr, there is no clear ownership model because there can be multiple in-
stances of a std::shared_ptr that point to the same block of memory. If commands were in
std::shared_ptr instances, a command group or the command scheduler cannot take owner-

24.9. A Technical Discussion on C++ Commands 913

FIRST Robotics Competition

ship and free the memory once the command has finished executing because the user might
still unknowingly still have a std::shared_ptr instance pointing to that block of memory
somewhere in scope.

24.9.2 Use of CRTP

You may have noticed that in order to create a new command, you must extend Command-
Helper, providing the base class (usually frc2::CommandBase) and the class that you just
created. Let’s take a look at the reasoning behind this:

Command Decorators

The new command-based framework includes a feature known as “command decorators”,
which allows the user to something like this:

auto task = MyCommand().AndThen([] { std::cout << "This printed after my command␣
↪→ended."; },
requirements);

When task is scheduled, it will first execute MyCommand() and once that command has finished
executing, it will print the message to the console. The way this is achieved internally is by
using a sequential command group.
Recall from the previous section that in order to construct a sequential command group, we
need a vector of unique pointers to each command. Creating the unique pointer for the print
function is pretty trivial:

temp.emplace_back(
std::make_unique<InstantCommand>(std::move(toRun), requirements));

Here temp is storing the vector of commands that we need to pass into the SequentialCom-
mandGroup constructor. But before we add that InstantCommand, we need to add MyCommand()
to the SequentialCommandGroup. How do we do that?

temp.emplace_back(std::make_unique<MyCommand>(std::move(*this));

You might think it would be this straightforward, but that is not the case. Because this dec-
orator code is in the Command interface, *this refers to the Command in the subclass that you
are calling the decorator from and has the type of Command. Effectively, you will be trying to
move a Command instead of MyCommand. We could cast the this pointer to a MyCommand* and
then dereference it but we have no information about the subclass to cast to at compile-time.

Solutions to the Problem

Our initial solution to this was to create a virtual method in Command called TransferOwner-
ship() that every subclass of Command had to override. Such an override would have looked
like this:

std::unique_ptr<Command> TransferOwnership() && override {
return std::make_unique<MyCommand>(std::move(*this));

}

914 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Because the code would be in the derived subclass, *this would actually point to the desired
subclass instance and the user has the type info of the derived class to make the unique
pointer.
After a few days of deliberation, a CRTP method was proposed. Here, an intermediary derived
class of Command called CommandHelper would exist. CommandHelper would have two template
arguments, the original base class and the desired derived subclass. Let’s take a look at a
basic implementation of CommandHelper to understand this:

// In the real implementation, we use SFINAE to check that Base is actually a
// Command or a subclass of Command.
template<typename Base, typename Derived>
class CommandHelper : public Base {
// Here, we are just inheriting all of the superclass (base class) constructors.
using Base::Base;

// Here, we will override the TransferOwnership() method mentioned above.
std::unique_ptr<Command> TransferOwnership() && override {

// Previously, we mentioned that we had no information about the derived class
// to cast to at compile-time, but because of CRTP we do! It's one of our template
// arguments!
return std::make_unique<Derived>(std::move(*static_cast<Derived*>(this)));

}
};

Thus, making your custom commands extend CommandHelper instead of Command will auto-
matically implement this boilerplate for you and this is the reasoning behind asking teams to
use what may seem to be a rather obscure way of doing things.
Going back to our AndThen() example, we can now do the following:

// Because of how inheritance works, we will call the TransferOwnership()
// of the subclass. We are moving *this because TransferOwnership() can only
// be called on rvalue references.
temp.emplace_back(std::move(*this).TransferOwnership());

24.9.3 Lack of Advanced Decorators

Most of the C++ decorators take in std::function<void()> instead of actual commands
themselves. The idea of taking in actual commands in decorators such as AndThen(), Befor-
eStarting(), etc. was considered but then abandoned due to a variety of reasons.

Templating Decorators

Because we need to know the types of the commands that we are adding to a command group
at compile-time, we will need to use templates (variadic for multiple commands). However,
this might not seem like a big deal. The constructors for command groups do this anyway:

template <class... Types,
typename = std::enable_if_t<std::conjunction_v<

std::is_base_of<Command, std::remove_reference_t<Types>>...>>>
explicit SequentialCommandGroup(Types&&... commands) {
AddCommands(std::forward<Types>(commands)...);

}
(continues on next page)

24.9. A Technical Discussion on C++ Commands 915

FIRST Robotics Competition

(continued from previous page)

template <class... Types,
typename = std::enable_if_t<std::conjunction_v<

std::is_base_of<Command, std::remove_reference_t<Types>>...>>>
void AddCommands(Types&&... commands) {
std::vector<std::unique_ptr<Command>> foo;
((void)foo.emplace_back(std::make_unique<std::remove_reference_t<Types>>(

std::forward<Types>(commands))),
...);

AddCommands(std::move(foo));
}

Note: This is a secondary constructor for SequentialCommandGroup in addition to the vector
constructor that we described above.

However, when we make a templated function, its definition must be declared inline. This
means that we will need to instantiate the SequentialCommandGroup in the Command.h header,
which poses a problem. SequentialCommandGroup.h includes Command.h. If we include
SequentialCommandGroup.h inside of Command.h, we have a circular dependency. How do
we do it now then?
We use a forward declaration at the top of Command.h:

class SequentialCommandGroup;

class Command { ... };

And then we include SequentialCommandGroup.h in Command.cpp. If these decorator func-
tions were templated however, we cannot write definitions in the .cpp files, resulting in a
circular dependency.

Java vs C++ Syntax

These decorators usually save more verbosity in Java (because Java requires raw new calls)
than in C++, so in general, it does not make much of a syntanctic difference in C++ if you
create the command group manually in user code.

24.9.4 2023 Updates

After a few years in the new command-based framework, the recommended way to create
commands increasingly shifted towards inline commands, decorators, and factory methods.
With this paradigm shift, it became evident that the C++ commands model introduced in 2020
and described above has some pain points when used according to the new recommendations.
A significant root cause of most pain points was commands being passed by value in a non-
polymorphic way. This made object slicing mistakes rather easy, and changes in composition
structure could propagate type changes throughout the codebase: for example, if a Parallel-
RaceGroup were changed to a ParallelDeadlineGroup, those type changes would propagate
through the codebase. Passing around the object as a Command (as done in Java) would result
in object slicing.

916 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Additionally, various decorators weren’t supported in C++ due to reasons described above.
As long as decorators were rarely used and were mainly to reduce verbosity (where Java was
more verbose than C++), this was less of a problem. Once heavy usage of decorators was
recommended, this became more of an issue.

CommandPtr

Let’s recall the mention of std::unique_ptr far above: a value type with only move seman-
tics. This is the ownership model we want!
However, plainly using std::unique_ptr<Command> had some drawbacks. Primarily, imple-
menting decorators would be impossible: unique_ptr is defined in the standard library so we
can’t define methods on it, and any methods defined on Command wouldn’t have access to the
owning unique_ptr.
The solution is CommandPtr: a move-only value class wrapping unique_ptr, that we can define
methods on.
Commands should be passed around as CommandPtr, using std::move. All decorators, includ-
ing those not supported in C++ before, are defined on CommandPtr with rvalue-this. The use
of rvalues, move-only semantics, and clear ownership makes it very easy to avoid mistakes
such as adding the same command instance to more than one command composition.
In addition to decorators, CommandPtr instances also define utility methods such as Sched-
ule(), IsScheduled(). CommandPtr instances can be used in nearly almost every way com-
mand objects can be used in Java: they can be moved into trigger bindings, default commands,
and so on. For the few things that require a Command* (such as non-owning trigger bindings),
a raw pointer to the owned command can be retrieved using get().
There are multiple ways to get a CommandPtr instance:

• CommandPtr-returning factories are present in the frc2::cmd namespace in the
Commands.h header for almost all command types. For multi-command compositions,
there is a vector-taking overload as well as a variadic-templated overload for multiple
CommandPtr instances.

• All decorators, including those defined on Command, return CommandPtr. This has allowed
defining almost all decorators on Command, so a decorator chain can start from a Command.

• A ToPtr() method has been added to the CRTP, akin to TransferOwnership. This is
useful especially for user-defined command classes, as well as other command classes
that don’t have factories.

For instance, consider the following from the HatchbotInlined example project
<https://github.com/wpilibsuite/allwpilib/blob/v2023.2.1/wpilibcExamples/src/main/cpp/examples/HatchbotInlined/>:

33 frc2::CommandPtr autos::ComplexAuto(DriveSubsystem* drive,
34 HatchSubsystem* hatch) {
35 return frc2::cmd::Sequence(
36 // Drive forward the specified distance
37 frc2::FunctionalCommand(
38 // Reset encoders on command start
39 [drive] { drive->ResetEncoders(); },
40 // Drive forward while the command is executing
41 [drive] { drive->ArcadeDrive(kAutoDriveSpeed, 0); },
42 // Stop driving at the end of the command
43 [drive](bool interrupted) { drive->ArcadeDrive(0, 0); },
44 // End the command when the robot's driven distance exceeds the

(continues on next page)

24.9. A Technical Discussion on C++ Commands 917

FIRST Robotics Competition

(continued from previous page)
45 // desired value
46 [drive] {
47 return drive->GetAverageEncoderDistance() >=
48 kAutoDriveDistanceInches;
49 },
50 // Requires the drive subsystem
51 {drive})
52 .ToPtr(),
53 // Release the hatch
54 hatch->ReleaseHatchCommand(),
55 // Drive backward the specified distance
56 // Drive forward the specified distance
57 frc2::FunctionalCommand(
58 // Reset encoders on command start
59 [drive] { drive->ResetEncoders(); },
60 // Drive backward while the command is executing
61 [drive] { drive->ArcadeDrive(-kAutoDriveSpeed, 0); },
62 // Stop driving at the end of the command
63 [drive](bool interrupted) { drive->ArcadeDrive(0, 0); },
64 // End the command when the robot's driven distance exceeds the
65 // desired value
66 [drive] {
67 return drive->GetAverageEncoderDistance() <=
68 kAutoBackupDistanceInches;
69 },
70 // Requires the drive subsystem
71 {drive})
72 .ToPtr());
73 }

To avoid breakage, command compositions still use unique_ptr<Command>, so CommandPtr
instances can be destructured into a unique_ptr<Command> using the Unwrap() rvalue-this
method. For vectors, the static CommandPtr::UnwrapVector(vector<CommandPtr>) function
exists.

24.10 PID Control through PIDSubsystems and PIDCom-
mands

Note: For a description of the WPILib PID control features used by these command-based
wrappers, see PID Control in WPILib.

One of the most common control algorithms used in FRC® is the PID controller. WPILib of-
fers its own PIDController class to help teams implement this functionality on their robots. To
further help teams integrate PID control into a command-based robot project, the command-
based library includes two convenience wrappers for the PIDController class: PIDSubsys-
tem, which integrates the PID controller into a subsystem, and PIDCommand, which integrates
the PID controller into a command.

918 Chapter 24. Command-Based Programming

FIRST Robotics Competition

24.10.1 PIDSubsystems

The PIDSubsystem class (Java, C++) allows users to conveniently create a subsystem with a
built-in PIDController. In order to use the PIDSubsystem class, users must create a subclass
of it.

Creating a PIDSubsystem

Note: If periodic is overridden when inheriting from PIDSubsystem, make sure to call
super.periodic()! Otherwise, PID functionality will not work properly.

When subclassing PIDSubsystem, users must override two abstract methods to provide func-
tionality that the class will use in its ordinary operation:

getMeasurement()

Java

protected abstract double getMeasurement();

C++

virtual double GetMeasurement() = 0;

The getMeasurement method returns the current measurement of the process variable. The
PIDSubsystem will automatically call this method from its periodic() block, and pass its
value to the control loop.
Users should override this method to return whatever sensor reading they wish to use as their
process variable measurement.

useOutput()

Java

protected abstract void useOutput(double output, double setpoint);

C++

virtual void UseOutput(double output, double setpoint) = 0;

The useOutput() method consumes the output of the PID controller, and the current setpoint
(which is often useful for computing a feedforward). The PIDSubsystem will automatically
call this method from its periodic() block, and pass it the computed output of the control
loop.
Users should override this method to pass the final computed control output to their subsys-
tem’s motors.

24.10. PID Control through PIDSubsystems and PIDCommands 919

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/PIDSubsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_p_i_d_subsystem.html

FIRST Robotics Competition

Passing In the Controller

Users must also pass in a PIDController to the PIDSubsystem base class through the super-
class constructor call of their subclass. This serves to specify the PID gains, as well as the
period (if the user is using a non-standard main robot loop period).
Additional modifications (e.g. enabling continuous input) can be made to the controller in the
constructor body by calling getController().

Using a PIDSubsystem

Once an instance of a PIDSubsystem subclass has been created, it can be used by commands
through the following methods:

setSetpoint()

The setSetpoint() method can be used to set the setpoint of the PIDSubsystem. The sub-
system will automatically track to the setpoint using the defined output:
Java

// The subsystem will track to a setpoint of 5.
examplePIDSubsystem.setSetpoint(5);

C++

// The subsystem will track to a setpoint of 5.
examplePIDSubsystem.SetSetpoint(5);

enable() and disable()

The enable() and disable() methods enable and disable the PID control of the PIDSubsys-
tem. When the subsystem is enabled, it will automatically run the control loop and track the
setpoint. When it is disabled, no control is performed.
Additionally, the enable() method resets the internal PIDController, and the disable()
method calls the user-defined useOutput() method with both output and setpoint set to 0.

Full PIDSubsystem Example

What does a PIDSubsystem look like when used in practice? The following examples are taken
from the FrisbeeBot example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.frisbeebot.subsystems;
6

7 import edu.wpi.first.math.controller.PIDController;
8 import edu.wpi.first.math.controller.SimpleMotorFeedforward;
9 import edu.wpi.first.wpilibj.Encoder;

10 import edu.wpi.first.wpilibj.examples.frisbeebot.Constants.ShooterConstants;
(continues on next page)

920 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/frisbeebot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Frisbeebot

FIRST Robotics Competition

(continued from previous page)
11 import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;
12 import edu.wpi.first.wpilibj2.command.PIDSubsystem;
13

14 public class ShooterSubsystem extends PIDSubsystem {
15 private final PWMSparkMax m_shooterMotor = new PWMSparkMax(ShooterConstants.

↪→kShooterMotorPort);
16 private final PWMSparkMax m_feederMotor = new PWMSparkMax(ShooterConstants.

↪→kFeederMotorPort);
17 private final Encoder m_shooterEncoder =
18 new Encoder(
19 ShooterConstants.kEncoderPorts[0],
20 ShooterConstants.kEncoderPorts[1],
21 ShooterConstants.kEncoderReversed);
22 private final SimpleMotorFeedforward m_shooterFeedforward =
23 new SimpleMotorFeedforward(
24 ShooterConstants.kSVolts, ShooterConstants.kVVoltSecondsPerRotation);
25

26 /** The shooter subsystem for the robot. */
27 public ShooterSubsystem() {
28 super(new PIDController(ShooterConstants.kP, ShooterConstants.kI,␣

↪→ShooterConstants.kD));
29 getController().setTolerance(ShooterConstants.kShooterToleranceRPS);
30 m_shooterEncoder.setDistancePerPulse(ShooterConstants.kEncoderDistancePerPulse);
31 setSetpoint(ShooterConstants.kShooterTargetRPS);
32 }
33

34 @Override
35 public void useOutput(double output, double setpoint) {
36 m_shooterMotor.setVoltage(output + m_shooterFeedforward.calculate(setpoint));
37 }
38

39 @Override
40 public double getMeasurement() {
41 return m_shooterEncoder.getRate();
42 }
43

44 public boolean atSetpoint() {
45 return m_controller.atSetpoint();
46 }
47

48 public void runFeeder() {
49 m_feederMotor.set(ShooterConstants.kFeederSpeed);
50 }
51

52 public void stopFeeder() {
53 m_feederMotor.set(0);
54 }
55 }

C++ (Header)

5 #pragma once
6

7 #include <frc/Encoder.h>
8 #include <frc/controller/SimpleMotorFeedforward.h>
9 #include <frc/motorcontrol/PWMSparkMax.h>

(continues on next page)

24.10. PID Control through PIDSubsystems and PIDCommands 921

FIRST Robotics Competition

(continued from previous page)
10 #include <frc2/command/PIDSubsystem.h>
11 #include <units/angle.h>
12

13 class ShooterSubsystem : public frc2::PIDSubsystem {
14 public:
15 ShooterSubsystem();
16

17 void UseOutput(double output, double setpoint) override;
18

19 double GetMeasurement() override;
20

21 bool AtSetpoint();
22

23 void RunFeeder();
24

25 void StopFeeder();
26

27 private:
28 frc::PWMSparkMax m_shooterMotor;
29 frc::PWMSparkMax m_feederMotor;
30 frc::Encoder m_shooterEncoder;
31 frc::SimpleMotorFeedforward<units::turns> m_shooterFeedforward;
32 };

C++ (Source)

5 #include "subsystems/ShooterSubsystem.h"
6

7 #include <frc/controller/PIDController.h>
8

9 #include "Constants.h"
10

11 using namespace ShooterConstants;
12

13 ShooterSubsystem::ShooterSubsystem()
14 : PIDSubsystem{frc2::PIDController{kP, kI, kD}},
15 m_shooterMotor(kShooterMotorPort),
16 m_feederMotor(kFeederMotorPort),
17 m_shooterEncoder(kEncoderPorts[0], kEncoderPorts[1]),
18 m_shooterFeedforward(kS, kV) {
19 m_controller.SetTolerance(kShooterToleranceRPS.value());
20 m_shooterEncoder.SetDistancePerPulse(kEncoderDistancePerPulse);
21 SetSetpoint(kShooterTargetRPS.value());
22 }
23

24 void ShooterSubsystem::UseOutput(double output, double setpoint) {
25 m_shooterMotor.SetVoltage(units::volt_t{output} +
26 m_shooterFeedforward.Calculate(kShooterTargetRPS));
27 }
28

29 bool ShooterSubsystem::AtSetpoint() {
30 return m_controller.AtSetpoint();
31 }
32

33 double ShooterSubsystem::GetMeasurement() {
34 return m_shooterEncoder.GetRate();

(continues on next page)

922 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
35 }
36

37 void ShooterSubsystem::RunFeeder() {
38 m_feederMotor.Set(kFeederSpeed);
39 }
40

41 void ShooterSubsystem::StopFeeder() {
42 m_feederMotor.Set(0);
43 }

Using a PIDSubsystem with commands can be very simple:
Java

private final Command m_spinUpShooter = Commands.runOnce(m_shooter::enable, m_
↪→shooter);
private final Command m_stopShooter = Commands.runOnce(m_shooter::disable, m_

↪→shooter);

// We can bind commands while retaining references to them in RobotContainer

// Spin up the shooter when the 'A' button is pressed
m_driverController.a().onTrue(m_spinUpShooter);

// Turn off the shooter when the 'B' button is pressed
m_driverController.b().onTrue(m_stopShooter);

C++ (Header)

45 frc2::CommandPtr m_spinUpShooter =
46 frc2::cmd::RunOnce([this] { m_shooter.Enable(); }, {&m_shooter});
47

48 frc2::CommandPtr m_stopShooter =
49 frc2::cmd::RunOnce([this] { m_shooter.Disable(); }, {&m_shooter});

C++ (Source)

25 // We can bind commands while keeping their ownership in RobotContainer
26

27 // Spin up the shooter when the 'A' button is pressed
28 m_driverController.A().OnTrue(m_spinUpShooter.get());
29

30 // Turn off the shooter when the 'B' button is pressed
31 m_driverController.B().OnTrue(m_stopShooter.get());

24.10.2 PIDCommand

The PIDCommand class allows users to easily create commands with a built-in PIDController.

24.10. PID Control through PIDSubsystems and PIDCommands 923

FIRST Robotics Competition

Creating a PIDCommand

A PIDCommand can be created two ways - by subclassing the PIDCommand class, or by defining
the command inline. Both methods ultimately extremely similar, and ultimately the choice of
which to use comes down to where the user desires that the relevant code be located.

Note: If subclassing PIDCommand and overriding any methods, make sure to call the super
version of those methods! Otherwise, PID functionality will not work properly.

In either case, a PIDCommand is created by passing the necessary parameters to its constructor
(if defining a subclass, this can be done with a super() call):
Java

27 /**
28 * Creates a new PIDCommand, which controls the given output with a PIDController.
29 *
30 * @param controller the controller that controls the output.
31 * @param measurementSource the measurement of the process variable
32 * @param setpointSource the controller's setpoint
33 * @param useOutput the controller's output
34 * @param requirements the subsystems required by this command
35 */
36 public PIDCommand(
37 PIDController controller,
38 DoubleSupplier measurementSource,
39 DoubleSupplier setpointSource,
40 DoubleConsumer useOutput,
41 Subsystem... requirements) {

C++

29 /**
30 * Creates a new PIDCommand, which controls the given output with a
31 * PIDController.
32 *
33 * @param controller the controller that controls the output.
34 * @param measurementSource the measurement of the process variable
35 * @param setpointSource the controller's reference (aka setpoint)
36 * @param useOutput the controller's output
37 * @param requirements the subsystems required by this command
38 */
39 PIDCommand(PIDController controller,
40 std::function<double()> measurementSource,
41 std::function<double()> setpointSource,
42 std::function<void(double)> useOutput,
43 std::initializer_list<Subsystem*> requirements);

924 Chapter 24. Command-Based Programming

FIRST Robotics Competition

controller

The controller parameter is the PIDController object that will be used by the command.
By passing this in, users can specify the PID gains and the period for the controller (if the
user is using a nonstandard main robot loop period).
When subclassing PIDCommand, additional modifications (e.g. enabling continuous input) can
be made to the controller in the constructor body by calling getController().

measurementSource

The measurementSource parameter is a function (usually passed as a lambda) that returns the
measurement of the process variable. Passing in the measurementSource function in PIDCom-
mand is functionally analogous to overriding the getMeasurement() function in PIDSubsystem.
When subclassing PIDCommand, advanced users may further modify the measurement supplier
by modifying the class’s m_measurement field.

setpointSource

The setpointSource parameter is a function (usually passed as a lambda) that returns the
current setpoint for the control loop. If only a constant setpoint is needed, an overload exists
that takes a constant setpoint rather than a supplier.
When subclassing PIDCommand, advanced users may further modify the setpoint supplier by
modifying the class’s m_setpoint field.

useOutput

The useOutput parameter is a function (usually passed as a lambda) that consumes the out-
put and setpoint of the control loop. Passing in the useOutput function in PIDCommand is
functionally analogous to overriding the useOutput() function in PIDSubsystem.
When subclassing PIDCommand, advanced users may further modify the output consumer by
modifying the class’s m_useOutput field.

requirements

Like all inlineable commands, PIDCommand allows the user to specify its subsystem require-
ments as a constructor parameter.

24.10. PID Control through PIDSubsystems and PIDCommands 925

FIRST Robotics Competition

Full PIDCommand Example

What does a PIDCommand look like when used in practice? The following examples are from
the GyroDriveCommands example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.gyrodrivecommands.commands;
6

7 import edu.wpi.first.math.controller.PIDController;
8 import edu.wpi.first.wpilibj.examples.gyrodrivecommands.Constants.DriveConstants;
9 import edu.wpi.first.wpilibj.examples.gyrodrivecommands.subsystems.DriveSubsystem;

10 import edu.wpi.first.wpilibj2.command.PIDCommand;
11

12 /** A command that will turn the robot to the specified angle. */
13 public class TurnToAngle extends PIDCommand {
14 /**
15 * Turns to robot to the specified angle.
16 *
17 * @param targetAngleDegrees The angle to turn to
18 * @param drive The drive subsystem to use
19 */
20 public TurnToAngle(double targetAngleDegrees, DriveSubsystem drive) {
21 super(
22 new PIDController(DriveConstants.kTurnP, DriveConstants.kTurnI,␣

↪→DriveConstants.kTurnD),
23 // Close loop on heading
24 drive::getHeading,
25 // Set reference to target
26 targetAngleDegrees,
27 // Pipe output to turn robot
28 output -> drive.arcadeDrive(0, output),
29 // Require the drive
30 drive);
31

32 // Set the controller to be continuous (because it is an angle controller)
33 getController().enableContinuousInput(-180, 180);
34 // Set the controller tolerance - the delta tolerance ensures the robot is␣

↪→stationary at the
35 // setpoint before it is considered as having reached the reference
36 getController()
37 .setTolerance(DriveConstants.kTurnToleranceDeg, DriveConstants.

↪→kTurnRateToleranceDegPerS);
38 }
39

40 @Override
41 public boolean isFinished() {
42 // End when the controller is at the reference.
43 return getController().atSetpoint();
44 }
45 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandHelper.h>
8 #include <frc2/command/PIDCommand.h>

(continues on next page)

926 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyrodrivecommands
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GyroDriveCommands

FIRST Robotics Competition

(continued from previous page)
9

10 #include "subsystems/DriveSubsystem.h"
11

12 /**
13 * A command that will turn the robot to the specified angle.
14 */
15 class TurnToAngle : public frc2::CommandHelper<frc2::PIDCommand, TurnToAngle> {
16 public:
17 /**
18 * Turns to robot to the specified angle.
19 *
20 * @param targetAngleDegrees The angle to turn to
21 * @param drive The drive subsystem to use
22 */
23 TurnToAngle(units::degree_t target, DriveSubsystem* drive);
24

25 bool IsFinished() override;
26 };

C++ (Source)

5 #include "commands/TurnToAngle.h"
6

7 #include <frc/controller/PIDController.h>
8

9 using namespace DriveConstants;
10

11 TurnToAngle::TurnToAngle(units::degree_t target, DriveSubsystem* drive)
12 : CommandHelper{frc2::PIDController{kTurnP, kTurnI, kTurnD},
13 // Close loop on heading
14 [drive] { return drive->GetHeading().value(); },
15 // Set reference to target
16 target.value(),
17 // Pipe output to turn robot
18 [drive](double output) { drive->ArcadeDrive(0, output); },
19 // Require the drive
20 {drive}} {
21 // Set the controller to be continuous (because it is an angle controller)
22 m_controller.EnableContinuousInput(-180, 180);
23 // Set the controller tolerance - the delta tolerance ensures the robot is
24 // stationary at the setpoint before it is considered as having reached the
25 // reference
26 m_controller.SetTolerance(kTurnTolerance.value(), kTurnRateTolerance.value());
27

28 AddRequirements({drive});
29 }
30

31 bool TurnToAngle::IsFinished() {
32 return GetController().AtSetpoint();
33 }

And, for an inlined example:
Java

64 // Stabilize robot to drive straight with gyro when left bumper is held
65 new JoystickButton(m_driverController, Button.kL1.value)

(continues on next page)

24.10. PID Control through PIDSubsystems and PIDCommands 927

FIRST Robotics Competition

(continued from previous page)
66 .whileTrue(
67 new PIDCommand(
68 new PIDController(
69 DriveConstants.kStabilizationP,
70 DriveConstants.kStabilizationI,
71 DriveConstants.kStabilizationD),
72 // Close the loop on the turn rate
73 m_robotDrive::getTurnRate,
74 // Setpoint is 0
75 0,
76 // Pipe the output to the turning controls
77 output -> m_robotDrive.arcadeDrive(-m_driverController.getLeftY(),␣

↪→output),
78 // Require the robot drive
79 m_robotDrive));

C++

34 // Stabilize robot to drive straight with gyro when L1 is held
35 frc2::JoystickButton(&m_driverController, frc::PS4Controller::Button::kL1)
36 .WhileTrue(
37 frc2::PIDCommand(
38 frc2::PIDController{dc::kStabilizationP, dc::kStabilizationI,
39 dc::kStabilizationD},
40 // Close the loop on the turn rate
41 [this] { return m_drive.GetTurnRate(); },
42 // Setpoint is 0
43 0,
44 // Pipe the output to the turning controls
45 [this](double output) {
46 m_drive.ArcadeDrive(m_driverController.GetLeftY(), output);
47 },
48 // Require the robot drive
49 {&m_drive})

24.11 Motion Profiling through TrapezoidProfileSubsys-
tems and TrapezoidProfileCommands

Note: For a description of the WPILib motion profiling features used by these command-
based wrappers, see Trapezoidal Motion Profiles in WPILib.

Note: The TrapezoidProfile command wrappers are generally intended for composition
with custom or external controllers. For combining trapezoidal motion profiling with WPILib’s
PIDController, see Combining Motion Profiling and PID in Command-Based.

When controlling a mechanism, is often desirable to move it smoothly between two positions,
rather than to abruptly change its setpoint. This is called “motion-profiling,” and is supported
in WPILib through the TrapezoidProfile class (Java, C++).
To further help teams integrate motion profiling into their command-based robot projects,

928 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/trajectory/TrapezoidProfile.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_trapezoid_profile.html

FIRST Robotics Competition

WPILib includes two convenience wrappers for the TrapezoidProfile class: Trapezoid-
ProfileSubsystem, which automatically generates and executes motion profiles in its peri-
odic() method, and the TrapezoidProfileCommand, which executes a single user-provided
TrapezoidProfile.

24.11.1 TrapezoidProfileSubsystem

Note: In C++, the TrapezoidProfileSubsystem class is templated on the unit type used
for distance measurements, which may be angular or linear. The passed-in values must have
units consistent with the distance units, or a compile-time error will be thrown. For more
information on C++ units, see The C++ Units Library.

The TrapezoidProfileSubsystem class (Java, C++) will automatically create and execute
trapezoidal motion profiles to reach the user-provided goal state. To use the TrapezoidPro-
fileSubsystem class, users must create a subclass of it.

Creating a TrapezoidProfileSubsystem

Note: If periodic is overridden when inheriting from TrapezoidProfileSubsystem, make
sure to call super.periodic()! Otherwise, motion profiling functionality will not work prop-
erly.

When subclassing TrapezoidProfileSubsystem, users must override a single abstract
method to provide functionality that the class will use in its ordinary operation:

useState()

Java

protected abstract void useState(TrapezoidProfile.State state);

C++

virtual void UseState(State state) = 0;

The useState() method consumes the current state of the motion profile. The Trapezoid-
ProfileSubsystem will automatically call this method from its periodic() block, and pass
it the motion profile state corresponding to the subsystem’s current progress through the
motion profile.
Users may do whatever they want with this state; a typical use case (as shown in the Full
TrapezoidProfileSubsystem Example) is to use the state to obtain a setpoint and a feedforward
for an external “smart” motor controller.

24.11. Motion Profiling through TrapezoidProfileSubsystems and
TrapezoidProfileCommands

929

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/TrapezoidProfileSubsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_trapezoid_profile_subsystem.html

FIRST Robotics Competition

Constructor Parameters

Users must pass in a set of TrapezoidProfile.Constraints to the TrapezoidProfileSub-
system base class through the superclass constructor call of their subclass. This serves to
constrain the automatically-generated profiles to a given maximum velocity and acceleration.
Users must also pass in an initial position for the mechanism.
Advanced users may pass in an alternate value for the loop period, if a non-standard main
loop period is being used.

Using a TrapezoidProfileSubsystem

Once an instance of a TrapezoidProfileSubsystem subclass has been created, it can be used
by commands through the following methods:

setGoal()

Note: If you wish to set the goal to a simple distance with an implicit target velocity of zero,
an overload of setGoal() exists that takes a single distance value, rather than a full motion
profile state.

The setGoal() method can be used to set the goal state of the TrapezoidProfileSubsystem.
The subsystem will automatically execute a profile to the goal, passing the current state at
each iteration to the provided useState() method.
Java

// The subsystem will execute a profile to a position of 5 and a velocity of 3.
examplePIDSubsystem.setGoal(new TrapezoidProfile.State(5, 3);

C++

// The subsystem will execute a profile to a position of 5 meters and a velocity of 3␣
↪→mps.
examplePIDSubsyste.SetGoal({5_m, 3_mps});

enable() and disable()

The enable() and disable() methods enable and disable the motion profiling control of the
TrapezoidProfileSubsystem. When the subsystem is enabled, it will automatically run the
control loop and call useState() periodically. When it is disabled, no control is performed.

930 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Full TrapezoidProfileSubsystem Example

What does a TrapezoidProfileSubsystem look like when used in practice? The following
examples are taking from the ArmbotOffobard example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.armbotoffboard.subsystems;
6

7 import edu.wpi.first.math.controller.ArmFeedforward;
8 import edu.wpi.first.math.trajectory.TrapezoidProfile;
9 import edu.wpi.first.wpilibj.examples.armbotoffboard.Constants.ArmConstants;

10 import edu.wpi.first.wpilibj.examples.armbotoffboard.ExampleSmartMotorController;
11 import edu.wpi.first.wpilibj2.command.Command;
12 import edu.wpi.first.wpilibj2.command.Commands;
13 import edu.wpi.first.wpilibj2.command.TrapezoidProfileSubsystem;
14

15 /** A robot arm subsystem that moves with a motion profile. */
16 public class ArmSubsystem extends TrapezoidProfileSubsystem {
17 private final ExampleSmartMotorController m_motor =
18 new ExampleSmartMotorController(ArmConstants.kMotorPort);
19 private final ArmFeedforward m_feedforward =
20 new ArmFeedforward(
21 ArmConstants.kSVolts, ArmConstants.kGVolts,
22 ArmConstants.kVVoltSecondPerRad, ArmConstants.kAVoltSecondSquaredPerRad);
23

24 /** Create a new ArmSubsystem. */
25 public ArmSubsystem() {
26 super(
27 new TrapezoidProfile.Constraints(
28 ArmConstants.kMaxVelocityRadPerSecond, ArmConstants.

↪→kMaxAccelerationRadPerSecSquared),
29 ArmConstants.kArmOffsetRads);
30 m_motor.setPID(ArmConstants.kP, 0, 0);
31 }
32

33 @Override
34 public void useState(TrapezoidProfile.State setpoint) {
35 // Calculate the feedforward from the sepoint
36 double feedforward = m_feedforward.calculate(setpoint.position, setpoint.

↪→velocity);
37 // Add the feedforward to the PID output to get the motor output
38 m_motor.setSetpoint(
39 ExampleSmartMotorController.PIDMode.kPosition, setpoint.position, feedforward␣

↪→/ 12.0);
40 }
41

42 public Command setArmGoalCommand(double kArmOffsetRads) {
43 return Commands.runOnce(() -> setGoal(kArmOffsetRads), this);
44 }
45 }

C++ (Header)

5 #pragma once
6

7 #include <frc/controller/ArmFeedforward.h>
8 #include <frc2/command/Commands.h>

(continues on next page)

24.11. Motion Profiling through TrapezoidProfileSubsystems and
TrapezoidProfileCommands

931

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armbotoffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArmBotOffboard

FIRST Robotics Competition

(continued from previous page)
9 #include <frc2/command/TrapezoidProfileSubsystem.h>

10 #include <units/angle.h>
11

12 #include "ExampleSmartMotorController.h"
13

14 /**
15 * A robot arm subsystem that moves with a motion profile.
16 */
17 class ArmSubsystem : public frc2::TrapezoidProfileSubsystem<units::radians> {
18 using State = frc::TrapezoidProfile<units::radians>::State;
19

20 public:
21 ArmSubsystem();
22

23 void UseState(State setpoint) override;
24

25 frc2::CommandPtr SetArmGoalCommand(units::radian_t goal);
26

27 private:
28 ExampleSmartMotorController m_motor;
29 frc::ArmFeedforward m_feedforward;
30 };

C++ (Source)

5 #include "subsystems/ArmSubsystem.h"
6

7 #include "Constants.h"
8

9 using namespace ArmConstants;
10 using State = frc::TrapezoidProfile<units::radians>::State;
11

12 ArmSubsystem::ArmSubsystem()
13 : frc2::TrapezoidProfileSubsystem<units::radians>(
14 {kMaxVelocity, kMaxAcceleration}, kArmOffset),
15 m_motor(kMotorPort),
16 m_feedforward(kS, kG, kV, kA) {
17 m_motor.SetPID(kP, 0, 0);
18 }
19

20 void ArmSubsystem::UseState(State setpoint) {
21 // Calculate the feedforward from the sepoint
22 units::volt_t feedforward =
23 m_feedforward.Calculate(setpoint.position, setpoint.velocity);
24 // Add the feedforward to the PID output to get the motor output
25 m_motor.SetSetpoint(ExampleSmartMotorController::PIDMode::kPosition,
26 setpoint.position.value(), feedforward / 12_V);
27 }
28

29 frc2::CommandPtr ArmSubsystem::SetArmGoalCommand(units::radian_t goal) {
30 return frc2::cmd::RunOnce([this, goal] { this->SetGoal(goal); }, {this});
31 }

Using a TrapezoidProfileSubsystem with commands can be quite simple:
Java

932 Chapter 24. Command-Based Programming

FIRST Robotics Competition

52 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
53 m_driverController.a().onTrue(m_robotArm.setArmGoalCommand(2));
54

55 // Move the arm to neutral position when the 'B' button is pressed.
56 m_driverController
57 .b()
58 .onTrue(m_robotArm.setArmGoalCommand(Constants.ArmConstants.kArmOffsetRads));

C++

24 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
25 m_driverController.A().OnTrue(m_arm.SetArmGoalCommand(2_rad));
26

27 // Move the arm to neutral position when the 'B' button is pressed.
28 m_driverController.B().OnTrue(
29 m_arm.SetArmGoalCommand(ArmConstants::kArmOffset));

24.11.2 TrapezoidProfileCommand

Note: In C++, the TrapezoidProfileCommand class is templated on the unit type used for
distance measurements, which may be angular or linear. The passed-in values must have
units consistent with the distance units, or a compile-time error will be thrown. For more
information on C++ units, see The C++ Units Library.

The TrapezoidProfileCommand class (Java, C++) allows users to create a command that will
execute a single TrapezoidProfile, passing its current state at each iteration to a user-
defined function.

Creating a TrapezoidProfileCommand

A TrapezoidProfileCommand can be created two ways - by subclassing the TrapezoidPro-
fileCommand class, or by defining the command inline. Both methods ultimately extremely
similar, and ultimately the choice of which to use comes down to where the user desires that
the relevant code be located.

Note: If subclassing TrapezoidProfileCommand and overriding any methods, make sure to
call the super version of those methods! Otherwise, motion profiling functionality will not
work properly.

In either case, a TrapezoidProfileCommand is created by passing the necessary parameters
to its constructor (if defining a subclass, this can be done with a super() call):
Java

25 /**
26 * Creates a new TrapezoidProfileCommand that will execute the given {@link␣

↪→TrapezoidProfile}.
27 * Output will be piped to the provided consumer function.
28 *
29 * @param profile The motion profile to execute.

(continues on next page)

24.11. Motion Profiling through TrapezoidProfileSubsystems and
TrapezoidProfileCommands

933

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/TrapezoidProfileCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_trapezoid_profile_command.html

FIRST Robotics Competition

(continued from previous page)
30 * @param output The consumer for the profile output.
31 * @param requirements The subsystems required by this command.
32 */
33 public TrapezoidProfileCommand(
34 TrapezoidProfile profile, Consumer<State> output, Subsystem... requirements) {

C++

35 public:
36 /**
37 * Creates a new TrapezoidProfileCommand that will execute the given
38 * TrapezoidalProfile. Output will be piped to the provided consumer function.
39 *
40 * @param profile The motion profile to execute.
41 * @param output The consumer for the profile output.
42 * @param requirements The list of requirements.
43 */
44 TrapezoidProfileCommand(frc::TrapezoidProfile<Distance> profile,
45 std::function<void(State)> output,

profile

The profile parameter is the TrapezoidProfile object that will be executed by the com-
mand. By passing this in, users specify the start state, end state, and motion constraints of
the profile that the command will use.

output

The output parameter is a function (usually passed as a lambda) that consumes the output and
setpoint of the control loop. Passing in the useOutput function in PIDCommand is functionally
analogous to overriding the useState() function in PIDSubsystem.

requirements

Like all inlineable commands, TrapezoidProfileCommand allows the user to specify its sub-
system requirements as a constructor parameter.

Full TrapezoidProfileCommand Example

What does a TrapezoidProfileSubsystem look like when used in practice? The following
examples are taking from the DriveDistanceOffboard example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.drivedistanceoffboard.commands;
6

7 import edu.wpi.first.math.trajectory.TrapezoidProfile;
8 import edu.wpi.first.wpilibj.examples.drivedistanceoffboard.Constants.DriveConstants;
9 import edu.wpi.first.wpilibj.examples.drivedistanceoffboard.subsystems.DriveSubsystem;

(continues on next page)

934 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/drivedistanceoffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DriveDistanceOffboard

FIRST Robotics Competition

(continued from previous page)
10 import edu.wpi.first.wpilibj2.command.TrapezoidProfileCommand;
11

12 /** Drives a set distance using a motion profile. */
13 public class DriveDistanceProfiled extends TrapezoidProfileCommand {
14 /**
15 * Creates a new DriveDistanceProfiled command.
16 *
17 * @param meters The distance to drive.
18 * @param drive The drive subsystem to use.
19 */
20 public DriveDistanceProfiled(double meters, DriveSubsystem drive) {
21 super(
22 new TrapezoidProfile(
23 // Limit the max acceleration and velocity
24 new TrapezoidProfile.Constraints(
25 DriveConstants.kMaxSpeedMetersPerSecond,
26 DriveConstants.kMaxAccelerationMetersPerSecondSquared),
27 // End at desired position in meters; implicitly starts at 0
28 new TrapezoidProfile.State(meters, 0)),
29 // Pipe the profile state to the drive
30 setpointState -> drive.setDriveStates(setpointState, setpointState),
31 // Require the drive
32 drive);
33 // Reset drive encoders since we're starting at 0
34 drive.resetEncoders();
35 }
36 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandHelper.h>
8 #include <frc2/command/TrapezoidProfileCommand.h>
9

10 #include "subsystems/DriveSubsystem.h"
11

12 class DriveDistanceProfiled
13 : public frc2::CommandHelper<frc2::TrapezoidProfileCommand<units::meters>,
14 DriveDistanceProfiled> {
15 public:
16 DriveDistanceProfiled(units::meter_t distance, DriveSubsystem* drive);
17 };

C++ (Source)

5 #include "commands/DriveDistanceProfiled.h"
6

7 #include "Constants.h"
8

9 using namespace DriveConstants;
10

11 DriveDistanceProfiled::DriveDistanceProfiled(units::meter_t distance,
12 DriveSubsystem* drive)
13 : CommandHelper{
14 frc::TrapezoidProfile<units::meters>{

(continues on next page)

24.11. Motion Profiling through TrapezoidProfileSubsystems and
TrapezoidProfileCommands

935

FIRST Robotics Competition

(continued from previous page)
15 // Limit the max acceleration and velocity
16 {kMaxSpeed, kMaxAcceleration},
17 // End at desired position in meters; implicitly starts at 0
18 {distance, 0_mps}},
19 // Pipe the profile state to the drive
20 [drive](auto setpointState) {
21 drive->SetDriveStates(setpointState, setpointState);
22 },
23 // Require the drive
24 {drive}} {
25 // Reset drive encoders since we're starting at 0
26 drive->ResetEncoders();
27 }

And, for an inlined example:
Java

66 // Do the same thing as above when the 'B' button is pressed, but defined inline
67 m_driverController
68 .b()
69 .onTrue(
70 new TrapezoidProfileCommand(
71 new TrapezoidProfile(
72 // Limit the max acceleration and velocity
73 new TrapezoidProfile.Constraints(
74 DriveConstants.kMaxSpeedMetersPerSecond,
75 DriveConstants.kMaxAccelerationMetersPerSecondSquared),
76 // End at desired position in meters; implicitly starts at 0
77 new TrapezoidProfile.State(3, 0)),
78 // Pipe the profile state to the drive
79 setpointState -> m_robotDrive.setDriveStates(setpointState,␣

↪→setpointState),
80 // Require the drive
81 m_robotDrive)
82 .beforeStarting(m_robotDrive::resetEncoders)
83 .withTimeout(10));

C++

37 // Do the same thing as above when the 'B' button is pressed, but defined
38 // inline
39 m_driverController.B().OnTrue(
40 frc2::TrapezoidProfileCommand<units::meters>(
41 frc::TrapezoidProfile<units::meters>(
42 // Limit the max acceleration and velocity
43 {DriveConstants::kMaxSpeed, DriveConstants::kMaxAcceleration},
44 // End at desired position in meters; implicitly starts at 0
45 {3_m, 0_mps}),
46 // Pipe the profile state to the drive
47 [this](auto setpointState) {
48 m_drive.SetDriveStates(setpointState, setpointState);
49 },
50 // Require the drive
51 {&m_drive})
52 // Convert to CommandPtr
53 .ToPtr()

(continues on next page)

936 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
54 .BeforeStarting(
55 frc2::cmd::RunOnce([this]() { m_drive.ResetEncoders(); }, {}))
56 .WithTimeout(10_s));

24.12 Combining Motion Profiling and PID in Command-
Based

Note: For a description of the WPILib PID control features used by these command-based
wrappers, see PID Control in WPILib.

A common FRC® controls solution is to pair a trapezoidal motion profile for setpoint gener-
ation with a PID controller for setpoint tracking. To facilitate this, WPILib includes its own
ProfiledPIDController class. To further aid teams in integrating this functionality into their
robots, the command-based framework contains two convenience wrappers for the Profiled-
PIDController class: ProfiledPIDSubsystem, which integrates the controller into a subsys-
tem, and ProfiledPIDCommand, which integrates the controller into a command.

24.12.1 ProfiledPIDSubsystem

Note: In C++, the ProfiledPIDSubsystem class is templated on the unit type used for
distance measurements, which may be angular or linear. The passed-in values must have
units consistent with the distance units, or a compile-time error will be thrown. For more
information on C++ units, see The C++ Units Library.

The ProfiledPIDSubsystem class (Java, C++) allows users to conveniently create a subsys-
tem with a built-in PIDController. In order to use the ProfiledPIDSubsystem class, users
must create a subclass of it.

Creating a ProfiledPIDSubsystem

Note: If periodic is overridden when inheriting from ProfiledPIDSubsystem, make sure
to call super.periodic()! Otherwise, control functionality will not work properly.

When subclassing ProfiledPIDSubsystem, users must override two abstract methods to pro-
vide functionality that the class will use in its ordinary operation:

24.12. Combining Motion Profiling and PID in Command-Based 937

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ProfiledPIDSubsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_profiled_p_i_d_subsystem.html

FIRST Robotics Competition

getMeasurement()

Java

protected abstract double getMeasurement();

C++

virtual Distance_t GetMeasurement() = 0;

The getMeasurement method returns the current measurement of the process variable. The
PIDSubsystem will automatically call this method from its periodic() block, and pass its
value to the control loop.
Users should override this method to return whatever sensor reading they wish to use as their
process variable measurement.

useOutput()

Java

protected abstract void useOutput(double output, State setpoint);

C++

virtual void UseOutput(double output, State setpoint) = 0;

The useOutput() method consumes the output of the Profiled PID controller, and the current
setpoint state (which is often useful for computing a feedforward). The PIDSubsystem will
automatically call this method from its periodic() block, and pass it the computed output of
the control loop.
Users should override this method to pass the final computed control output to their subsys-
tem’s motors.

Passing In the Controller

Users must also pass in a ProfiledPIDController to the ProfiledPIDSubsystem base class
through the superclass constructor call of their subclass. This serves to specify the PID gains,
the motion profile constraints, and the period (if the user is using a non-standard main robot
loop period).
Additional modifications (e.g. enabling continuous input) can be made to the controller in the
constructor body by calling getController().

938 Chapter 24. Command-Based Programming

FIRST Robotics Competition

Using a ProfiledPIDSubsystem

Once an instance of a PIDSubsystem subclass has been created, it can be used by commands
through the following methods:

setGoal()

Note: If you wish to set the goal to a simple distance with an implicit target velocity of zero,
an overload of setGoal() exists that takes a single distance value, rather than a full motion
profile state.

The setGoal() method can be used to set the setpoint of the PIDSubsystem. The subsystem
will automatically track to the setpoint using the defined output:
Java

// The subsystem will track to a goal of 5 meters and velocity of 3 meters per second.
examplePIDSubsystem.setGoal(5, 3);

C++

// The subsystem will track to a goal of 5 meters and velocity of 3 meters per second.
examplePIDSubsystem.SetGoal({5_m, 3_mps});

enable() and disable()

The enable() and disable() methods enable and disable the automatic control of the Pro-
filedPIDSubsystem. When the subsystem is enabled, it will automatically run the motion
profile and the control loop and track to the goal. When it is disabled, no control is per-
formed.
Additionally, the enable() method resets the internal ProfiledPIDController, and the dis-
able() method calls the user-defined useOutput() method with both output and setpoint set
to 0.

Full ProfiledPIDSubsystem Example

What does a PIDSubsystem look like when used in practice? The following examples are taken
from the ArmBot example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.armbot.subsystems;
6

7 import edu.wpi.first.math.controller.ArmFeedforward;
8 import edu.wpi.first.math.controller.ProfiledPIDController;
9 import edu.wpi.first.math.trajectory.TrapezoidProfile;

10 import edu.wpi.first.wpilibj.Encoder;
11 import edu.wpi.first.wpilibj.examples.armbot.Constants.ArmConstants;
12 import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;
13 import edu.wpi.first.wpilibj2.command.ProfiledPIDSubsystem;

(continues on next page)

24.12. Combining Motion Profiling and PID in Command-Based 939

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armbot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArmBot

FIRST Robotics Competition

(continued from previous page)
14

15 /** A robot arm subsystem that moves with a motion profile. */
16 public class ArmSubsystem extends ProfiledPIDSubsystem {
17 private final PWMSparkMax m_motor = new PWMSparkMax(ArmConstants.kMotorPort);
18 private final Encoder m_encoder =
19 new Encoder(ArmConstants.kEncoderPorts[0], ArmConstants.kEncoderPorts[1]);
20 private final ArmFeedforward m_feedforward =
21 new ArmFeedforward(
22 ArmConstants.kSVolts, ArmConstants.kGVolts,
23 ArmConstants.kVVoltSecondPerRad, ArmConstants.kAVoltSecondSquaredPerRad);
24

25 /** Create a new ArmSubsystem. */
26 public ArmSubsystem() {
27 super(
28 new ProfiledPIDController(
29 ArmConstants.kP,
30 0,
31 0,
32 new TrapezoidProfile.Constraints(
33 ArmConstants.kMaxVelocityRadPerSecond,
34 ArmConstants.kMaxAccelerationRadPerSecSquared)),
35 0);
36 m_encoder.setDistancePerPulse(ArmConstants.kEncoderDistancePerPulse);
37 // Start arm at rest in neutral position
38 setGoal(ArmConstants.kArmOffsetRads);
39 }
40

41 @Override
42 public void useOutput(double output, TrapezoidProfile.State setpoint) {
43 // Calculate the feedforward from the sepoint
44 double feedforward = m_feedforward.calculate(setpoint.position, setpoint.

↪→velocity);
45 // Add the feedforward to the PID output to get the motor output
46 m_motor.setVoltage(output + feedforward);
47 }
48

49 @Override
50 public double getMeasurement() {
51 return m_encoder.getDistance() + ArmConstants.kArmOffsetRads;
52 }
53 }

C++ (Header)

5 #pragma once
6

7 #include <frc/Encoder.h>
8 #include <frc/controller/ArmFeedforward.h>
9 #include <frc/motorcontrol/PWMSparkMax.h>

10 #include <frc2/command/ProfiledPIDSubsystem.h>
11 #include <units/angle.h>
12

13 /**
14 * A robot arm subsystem that moves with a motion profile.
15 */
16 class ArmSubsystem : public frc2::ProfiledPIDSubsystem<units::radians> {

(continues on next page)

940 Chapter 24. Command-Based Programming

FIRST Robotics Competition

(continued from previous page)
17 using State = frc::TrapezoidProfile<units::radians>::State;
18

19 public:
20 ArmSubsystem();
21

22 void UseOutput(double output, State setpoint) override;
23

24 units::radian_t GetMeasurement() override;
25

26 private:
27 frc::PWMSparkMax m_motor;
28 frc::Encoder m_encoder;
29 frc::ArmFeedforward m_feedforward;
30 };

C++ (Source)

5 #include "subsystems/ArmSubsystem.h"
6

7 #include "Constants.h"
8

9 using namespace ArmConstants;
10 using State = frc::TrapezoidProfile<units::radians>::State;
11

12 ArmSubsystem::ArmSubsystem()
13 : frc2::ProfiledPIDSubsystem<units::radians>(
14 frc::ProfiledPIDController<units::radians>(
15 kP, 0, 0, {kMaxVelocity, kMaxAcceleration})),
16 m_motor(kMotorPort),
17 m_encoder(kEncoderPorts[0], kEncoderPorts[1]),
18 m_feedforward(kS, kG, kV, kA) {
19 m_encoder.SetDistancePerPulse(kEncoderDistancePerPulse.value());
20 // Start arm in neutral position
21 SetGoal(State{kArmOffset, 0_rad_per_s});
22 }
23

24 void ArmSubsystem::UseOutput(double output, State setpoint) {
25 // Calculate the feedforward from the sepoint
26 units::volt_t feedforward =
27 m_feedforward.Calculate(setpoint.position, setpoint.velocity);
28 // Add the feedforward to the PID output to get the motor output
29 m_motor.SetVoltage(units::volt_t{output} + feedforward);
30 }
31

32 units::radian_t ArmSubsystem::GetMeasurement() {
33 return units::radian_t{m_encoder.GetDistance()} + kArmOffset;
34 }

Using a ProfiledPIDSubsystem with commands can be very simple:
Java

55 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
56 m_driverController
57 .a()
58 .onTrue(
59 Commands.runOnce(

(continues on next page)

24.12. Combining Motion Profiling and PID in Command-Based 941

FIRST Robotics Competition

(continued from previous page)
60 () -> {
61 m_robotArm.setGoal(2);
62 m_robotArm.enable();
63 },
64 m_robotArm));

C++

32 // Move the arm to 2 radians above horizontal when the 'A' button is pressed.
33 m_driverController.A().OnTrue(frc2::cmd::RunOnce(
34 [this] {
35 m_arm.SetGoal(2_rad);
36 m_arm.Enable();
37 },
38 {&m_arm}));

24.12.2 ProfiledPIDCommand

Note: In C++, the ProfiledPIDCommand class is templated on the unit type used for distance
measurements, which may be angular or linear. The passed-in values must have units con-
sistent with the distance units, or a compile-time error will be thrown. For more information
on C++ units, see The C++ Units Library.

The ProfiledPIDCommand class (Java, C++) allows users to easily create commands with a
built-in ProfiledPIDController.

Creating a PIDCommand

A ProfiledPIDCommand can be created two ways - by subclassing the ProfiledPIDCommand
class, or by defining the command inline. Both methods ultimately extremely similar, and
ultimately the choice of which to use comes down to where the user desires that the relevant
code be located.

Note: If subclassing ProfiledPIDCommand and overriding any methods, make sure to call
the super version of those methods! Otherwise, control functionality will not work properly.

In either case, a ProfiledPIDCommand is created by passing the necessary parameters to its
constructor (if defining a subclass, this can be done with a super() call):
Java

29 /**
30 * Creates a new PIDCommand, which controls the given output with a␣

↪→ProfiledPIDController. Goal
31 * velocity is specified.
32 *
33 * @param controller the controller that controls the output.
34 * @param measurementSource the measurement of the process variable
35 * @param goalSource the controller's goal

(continues on next page)

942 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/ProfiledPIDCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_profiled_p_i_d_command.html

FIRST Robotics Competition

(continued from previous page)
36 * @param useOutput the controller's output
37 * @param requirements the subsystems required by this command
38 */
39 public ProfiledPIDCommand(
40 ProfiledPIDController controller,
41 DoubleSupplier measurementSource,
42 Supplier<State> goalSource,
43 BiConsumer<Double, State> useOutput,
44 Subsystem... requirements) {

C++

39 /**
40 * Creates a new PIDCommand, which controls the given output with a
41 * ProfiledPIDController.
42 *
43 * @param controller the controller that controls the output.
44 * @param measurementSource the measurement of the process variable
45 * @param goalSource the controller's goal
46 * @param useOutput the controller's output
47 * @param requirements the subsystems required by this command
48 */
49 ProfiledPIDCommand(frc::ProfiledPIDController<Distance> controller,
50 std::function<Distance_t()> measurementSource,
51 std::function<State()> goalSource,
52 std::function<void(double, State)> useOutput,
53 std::initializer_list<Subsystem*> requirements)

controller

The controller parameter is the ProfiledPIDController object that will be used by the
command. By passing this in, users can specify the PID gains, the motion profile constraints,
and the period for the controller (if the user is using a nonstandard main robot loop period).
When subclassing ProfiledPIDCommand, additional modifications (e.g. enabling continuous
input) can be made to the controller in the constructor body by calling getController().

measurementSource

The measurementSource parameter is a function (usually passed as a lambda) that returns
the measurement of the process variable. Passing in the measurementSource function in
ProfiledPIDCommand is functionally analogous to overriding the getMeasurement() function
in ProfiledPIDSubsystem.
When subclassing ProfiledPIDCommand, advanced users may further modify the measure-
ment supplier by modifying the class’s m_measurement field.

24.12. Combining Motion Profiling and PID in Command-Based 943

FIRST Robotics Competition

goalSource

The goalSource parameter is a function (usually passed as a lambda) that returns the current
goal state for the mechanism. If only a constant goal is needed, an overload exists that takes
a constant goal rather than a supplier. Additionally, if goal velocities are desired to be zero,
overloads exist that take a constant distance rather than a full profile state.
When subclassing ProfiledPIDCommand, advanced users may further modify the setpoint sup-
plier by modifying the class’s m_goal field.

useOutput

The useOutput parameter is a function (usually passed as a lambda) that consumes the output
and setpoint state of the control loop. Passing in the useOutput function in ProfiledPIDCom-
mand is functionally analogous to overriding the useOutput() function in ProfiledPIDSubsys-
tem.
When subclassing ProfiledPIDCommand, advanced users may further modify the output con-
sumer by modifying the class’s m_useOutput field.

requirements

Like all inlineable commands, ProfiledPIDCommand allows the user to specify its subsystem
requirements as a constructor parameter.

Full ProfiledPIDCommand Example

What does a ProfiledPIDCommand look like when used in practice? The following examples
are from the GyroDriveCommands example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.gyrodrivecommands.commands;
6

7 import edu.wpi.first.math.controller.ProfiledPIDController;
8 import edu.wpi.first.math.trajectory.TrapezoidProfile;
9 import edu.wpi.first.wpilibj.examples.gyrodrivecommands.Constants.DriveConstants;

10 import edu.wpi.first.wpilibj.examples.gyrodrivecommands.subsystems.DriveSubsystem;
11 import edu.wpi.first.wpilibj2.command.ProfiledPIDCommand;
12

13 /** A command that will turn the robot to the specified angle using a motion profile.␣
↪→*/

14 public class TurnToAngleProfiled extends ProfiledPIDCommand {
15 /**
16 * Turns to robot to the specified angle using a motion profile.
17 *
18 * @param targetAngleDegrees The angle to turn to
19 * @param drive The drive subsystem to use
20 */
21 public TurnToAngleProfiled(double targetAngleDegrees, DriveSubsystem drive) {
22 super(
23 new ProfiledPIDController(
24 DriveConstants.kTurnP,

(continues on next page)

944 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyrodrivecommands
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GyroDriveCommands

FIRST Robotics Competition

(continued from previous page)
25 DriveConstants.kTurnI,
26 DriveConstants.kTurnD,
27 new TrapezoidProfile.Constraints(
28 DriveConstants.kMaxTurnRateDegPerS,
29 DriveConstants.kMaxTurnAccelerationDegPerSSquared)),
30 // Close loop on heading
31 drive::getHeading,
32 // Set reference to target
33 targetAngleDegrees,
34 // Pipe output to turn robot
35 (output, setpoint) -> drive.arcadeDrive(0, output),
36 // Require the drive
37 drive);
38

39 // Set the controller to be continuous (because it is an angle controller)
40 getController().enableContinuousInput(-180, 180);
41 // Set the controller tolerance - the delta tolerance ensures the robot is␣

↪→stationary at the
42 // setpoint before it is considered as having reached the reference
43 getController()
44 .setTolerance(DriveConstants.kTurnToleranceDeg, DriveConstants.

↪→kTurnRateToleranceDegPerS);
45 }
46

47 @Override
48 public boolean isFinished() {
49 // End when the controller is at the reference.
50 return getController().atGoal();
51 }
52 }

C++ (Header)

5 #pragma once
6

7 #include <frc2/command/CommandHelper.h>
8 #include <frc2/command/ProfiledPIDCommand.h>
9

10 #include "subsystems/DriveSubsystem.h"
11

12 /**
13 * A command that will turn the robot to the specified angle using a motion
14 * profile.
15 */
16 class TurnToAngleProfiled
17 : public frc2::CommandHelper<frc2::ProfiledPIDCommand<units::radians>,
18 TurnToAngleProfiled> {
19 public:
20 /**
21 * Turns to robot to the specified angle using a motion profile.
22 *
23 * @param targetAngleDegrees The angle to turn to
24 * @param drive The drive subsystem to use
25 */
26 TurnToAngleProfiled(units::degree_t targetAngleDegrees,
27 DriveSubsystem* drive);

(continues on next page)

24.12. Combining Motion Profiling and PID in Command-Based 945

FIRST Robotics Competition

(continued from previous page)
28

29 bool IsFinished() override;
30 };

C++ (Source)

5 #include "commands/TurnToAngleProfiled.h"
6

7 #include <frc/controller/ProfiledPIDController.h>
8

9 using namespace DriveConstants;
10

11 TurnToAngleProfiled::TurnToAngleProfiled(units::degree_t target,
12 DriveSubsystem* drive)
13 : CommandHelper{
14 frc::ProfiledPIDController<units::radians>{
15 kTurnP, kTurnI, kTurnD, {kMaxTurnRate, kMaxTurnAcceleration}},
16 // Close loop on heading
17 [drive] { return drive->GetHeading(); },
18 // Set reference to target
19 target,
20 // Pipe output to turn robot
21 [drive](double output, auto setpointState) {
22 drive->ArcadeDrive(0, output);
23 },
24 // Require the drive
25 {drive}} {
26 // Set the controller to be continuous (because it is an angle controller)
27 GetController().EnableContinuousInput(-180_deg, 180_deg);
28 // Set the controller tolerance - the delta tolerance ensures the robot is
29 // stationary at the setpoint before it is considered as having reached the
30 // reference
31 GetController().SetTolerance(kTurnTolerance, kTurnRateTolerance);
32

33 AddRequirements({drive});
34 }
35

36 bool TurnToAngleProfiled::IsFinished() {
37 return GetController().AtGoal();
38 }

24.13 2020 Command-Based Rewrite: What Changed?

This article provides a summary of changes from the original command-based framework to
the 2020 rewrite. This summary is not necessarily comprehensive - for rigorous documenta-
tion, as always, refer to the API docs (Java, C++).

946 Chapter 24. Command-Based Programming

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/package-summary.html
https://github.wpilib.org/allwpilib/docs/release/cpp/

FIRST Robotics Competition

24.13.1 Package Location

The new command-based framework is located in the wpilibj2 package for Java, and in
the frc2 namespace for C++. The new framework must be installed using the instructions:
WPILib Command Libraries.

24.13.2 Major Architectural Changes

The overall structure of the command-based framework has remained largely the same. How-
ever, there are some still a few major architectural changes that users should be aware of:

Commands and Subsystems as Interfaces

Command (Java, C++) and Subsystem (Java, C++) are both now interfaces as opposed to ab-
stract classes, allowing advanced users more potential flexibility. CommandBase and Subsys-
temBase abstract base classes are still provided for convenience, but are not required. For
more information, see Commands and Subsystems.

Multiple Command Group Classes

The CommandGroup class no longer exists, and has been replaced by a number of narrower
classes that can be recursively composed to create more-complicated group structures. For
more information see Command Compositions.

Inline Command Definitions

Previously, users were required to write a subclass of Command in almost all cases where a
command was needed. Many of the new commands are designed to allow inline definition
of command functionality, and so can be used without the need for an explicit subclass. For
more information, see Included Command Types.

Injection of Command Dependencies

While not an actual change to the coding of the library, the recommended use pattern for the
new command-based framework utilizes injection of subsystem dependencies into commands,
so that subsystems are not declared as globals. This is a cleaner, more maintainable, and
more reusable pattern than the global subsystem pattern promoted previously. For more
information, see Structuring a Command-Based Robot Project.

24.13. 2020 Command-Based Rewrite: What Changed? 947

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Subsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_subsystem.html

FIRST Robotics Competition

Command Ownership (C++ Only)

The previous command framework required users to use raw pointers for all commands,
resulting in nearly-unavoidable memory leaks in all C++ command-based projects, as well
as leaving room for common errors such as double-allocating commands within command-
groups.
The new command framework offers ownership management for all commands. Default com-
mands and commands bound to buttons are typically owned by the scheduler, and component
commands are owned by their encapsulating command groups. As a result, users should gen-
erally never heap-allocate a command with new unless there is a very good reason to do so.
Transfer of ownership is done using perfect forwarding, meaning rvalues will be moved and
lvalues will be copied (rvalue/lvalue explanation).

24.13.3 Changes to the Scheduler

• Scheduler has been renamed to CommandScheduler (Java, C++).
• Interruptibility of commands is now the responsibility of the scheduler, not the com-

mands, and can be specified during the call to schedule.
• Users can now pass actions to the scheduler which are taken whenever a command is

scheduled, interrupted, or ends normally. This is highly useful for cases such as event
logging.

24.13.4 Changes to Subsystem

Note: For more information on subsystems, see Subsystems.

• As noted earlier, Subsystem is now an interface (Java, C++); the closest equivalent of the
old Subsystem is the new SubsystemBase class. Many of the Sendable-related construc-
tor overloads have been removed to reduce clutter; users can call the setters directly
from their own constructor, if needed.

• initDefaultCommand has been removed; subsystems no longer need to “know about”
their default commands, which are instead registered directly with the CommandSched-
uler. The new setDefaultCommand method simply wraps the CommandScheduler call.

• Subsystems no longer “know about” the commands currently requiring them; this is
handled exclusively by the CommandScheduler. A convenience wrapper on the Command-
Scheduler method is provided, however.

948 Chapter 24. Command-Based Programming

https://cpppatterns.com/patterns/perfect-forwarding.html
http://thbecker.net/articles/rvalue_references/section_01.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/CommandScheduler.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command_scheduler.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Subsystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_subsystem.html

FIRST Robotics Competition

24.13.5 Changes to Command

Note: For more information on commands, see Commands.

• As noted earlier, Command is now an interface (Java, C++); the closest equivalent of the
old Command is the new CommandBase class. Many of the Sendable-related constructor
overloads have been removed to reduce clutter; users can call the setters directly from
their own constructor, if needed.

• Commands no longer handle their own scheduling state; this is now the responsibility of
the scheduler.

• The interrupted() method has been rolled into the end() method, which now takes
a parameter specifying whether the command was interrupted (false if it ended nor-
mally).

• The requires() method has been renamed to addRequirement().
• void setRunsWhenDisabled(boolean disabled) has been replaced by an overridable
runsWhenDisabled method.

• void setInterruptible(boolean interruptible) has been replaced by an overridable
getInterruptionBehavior method.

• Several “decorator” methods have been added to allow easy inline modification of com-
mands (e.g. adding a timeout).

• (C++ only) In order to allow the decorators to work with the command ownership model,
a CRTP is used via the CommandHelper class. Any user-defined Command subclass Foo
must extend CommandHelper<Foo, Base> where Base is the desired base class.

24.13.6 Changes to PIDSubsystem/PIDCommand

Note: For more information, see PID Control through PIDSubsystems and PIDCommands,
and PID Control in WPILib

• Following the changes to PIDController, these classes now run synchronously from the
main robot loop.

• The PIDController is now injected through the constructor, removing many of the for-
warding methods. It can be modified after construction with getController().

• PIDCommand is intended largely for inline use, as shown in the GyroDriveCommands ex-
ample (Java, C++).

• If users wish to use PIDCommand more “traditionally,” overriding the protected return-
PIDInput() and usePIDOutput(double output) methods has been replaced by modify-
ing the protected m_measurement and m_useOutput fields. Similarly, rather than calling
setSetpoint, users can modify the protected m_setpoint field.

24.13. 2020 Command-Based Rewrite: What Changed? 949

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/Command.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_command.html
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibNewCommands/src/main/native/include/frc2/command/CommandHelper.h
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyrodrivecommands
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GyroDriveCommands

FIRST Robotics Competition

24.14 Passing Functions As Parameters

In order to provide a concise inline syntax, the command-based library often accepts functions
as parameters of constructors, factories, and decorators. Fortunately, both Java and C++
offer users the ability to pass functions as objects:

24.14.1 Method References (Java)

In Java, a reference to a function that can be passed as a parameter is called a method ref-
erence. The general syntax for a method reference is object::method. Note that no method
parameters are included, since the method itself is passed. The method is not being called
- it is being passed to another piece of code (in this case, a command) so that that code can
call it when needed. For further information on method references, see Method References.

24.14.2 Lambda Expressions (Java)

While method references work well for passing a function that has already been written, often
it is inconvenient/wasteful to write a function solely for the purpose of sending as a method
reference, if that function will never be used elsewhere. To avoid this, Java also supports a
feature called “lambda expressions.” A lambda expression is an inline method definition - it
allows a function to be defined inside of a parameter list. For specifics on how to write Java
lambda expressions, see Lambda Expressions in Java.

24.14.3 Lambda Expressions (C++)

Warning: Due to complications in C++ semantics, capturing this in a C++ lambda
can cause a null pointer exception if done from a component command of a command
composition. Whenever possible, C++ users should capture relevant command members
explicitly and by value. For more details, see here.

C++ lacks a close equivalent to Java method references - pointers to member functions are
generally not directly usable as parameters due to the presence of the implicit this param-
eter. However, C++ does offer lambda expressions - in addition, the lambda expressions
offered by C++ are in many ways more powerful than those in Java. For specifics on how to
write C++ lambda expressions, see Lambda Expressions in C++.

950 Chapter 24. Command-Based Programming

https://github.com/wpilibsuite/allwpilib/issues/3109

25
Kinematics and Odometry

25.1 Introduction to Kinematics and The Chassis Speeds
Class

25.1.1 What is kinematics?

The brand new kinematics suite contains classes for differential drive, swerve drive, and
mecanum drive kinematics and odometry. The kinematics classes help convert between a
universal ChassisSpeeds object, containing linear and angular velocities for a robot to usable
speeds for each individual type of drivetrain i.e. left and right wheel speeds for a differential
drive, four wheel speeds for a mecanum drive, or individual module states (speed and angle)
for a swerve drive.

25.1.2 What is odometry?

Odometry involves using sensors on the robot to create an estimate of the position of the
robot on the field. In FRC, these sensors are typically several encoders (the exact number
depends on the drive type) and a gyroscope to measure robot angle. The odometry classes
utilize the kinematics classes along with periodic user inputs about speeds (and angles in the
case of swerve) to create an estimate of the robot’s location on the field.

25.1.3 The Chassis Speeds Class

The ChassisSpeeds object is essential to the new WPILib kinematics and odometry suite.
The ChassisSpeeds object represents the speeds of a robot chassis. This struct has three
components:

• vx: The velocity of the robot in the x (forward) direction.
• vy: The velocity of the robot in the y (sideways) direction. (Positive values mean the

robot is moving to the left).
• omega: The angular velocity of the robot in radians per second.

951

FIRST Robotics Competition

Note: A non-holonomic drivetrain (i.e. a drivetrain that cannot move sideways, ex: a differ-
ential drive) will have a vy component of zero because of its inability to move sideways.

25.1.4 Constructing a ChassisSpeeds object

The constructor for the ChassisSpeeds object is very straightforward, accepting three argu-
ments for vx, vy, and omega. In Java, vx and vy must be in meters per second. In C++, the
units library may be used to provide a linear velocity using any linear velocity unit.
Java

// The robot is moving at 3 meters per second forward, 2 meters
// per second to the right, and rotating at half a rotation per
// second counterclockwise.
var speeds = new ChassisSpeeds(3.0, -2.0, Math.PI);

C++

// The robot is moving at 3 meters per second forward, 2 meters
// per second to the right, and rotating at half a rotation per
// second counterclockwise.
frc::ChassisSpeeds speeds{3.0_mps, -2.0_mps,
units::radians_per_second_t(std::numbers::pi)};

25.1.5 Creating a ChassisSpeeds Object from Field-Relative Speeds

A ChassisSpeeds object can also be created from a set of field-relative speeds when the robot
angle is given. This converts a set of desired velocities relative to the field (for example, to-
ward the opposite alliance station and toward the right field boundary) to a ChassisSpeeds
object which represents speeds that are relative to the robot frame. This is useful for imple-
menting field-oriented controls for a swerve or mecanum drive robot.
The static ChassisSpeeds.fromFieldRelativeSpeeds (Java) / Chassis-
Speeds::FromFieldRelativeSpeeds (C++) method can be used to generate the Chas-
sisSpeeds object from field-relative speeds. This method accepts the vx (relative to the
field), vy (relative to the field), omega, and the robot angle.
Java

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
ChassisSpeeds speeds = ChassisSpeeds.fromFieldRelativeSpeeds(
2.0, 2.0, Math.PI / 2.0, Rotation2d.fromDegrees(45.0));

C++

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation

(continues on next page)

952 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

(continued from previous page)
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
frc::ChassisSpeeds speeds = frc::ChassisSpeeds::FromFieldRelativeSpeeds(
2_mps, 2_mps, units::radians_per_second_t(std::numbers::pi / 2.0), Rotation2d(45_

↪→deg));

Note: The angular velocity is not explicitly stated to be “relative to the field” because the
angular velocity is the same as measured from a field perspective or a robot perspective.

25.2 Differential Drive Kinematics

The DifferentialDriveKinematics class is a useful tool that converts between a Chassis-
Speeds object and a DifferentialDriveWheelSpeeds object, which contains velocities for
the left and right sides of a differential drive robot.

25.2.1 Constructing the Kinematics Object

The DifferentialDriveKinematics object accepts one constructor argument, which is the
track width of the robot. This represents the distance between the two sets of wheels on a
differential drive.

Note: In Java, the track width must be in meters. In C++, the units library can be used to
pass in the track width using any length unit.

25.2.2 Converting Chassis Speeds to Wheel Speeds

The toWheelSpeeds(ChassisSpeeds speeds) (Java) / ToWheelSpeeds(ChassisSpeeds
speeds) (C++) method should be used to convert a ChassisSpeeds object to a Differen-
tialDriveWheelSpeeds object. This is useful in situations where you have to convert a linear
velocity (vx) and an angular velocity (omega) to left and right wheel velocities.
Java

// Creating my kinematics object: track width of 27 inches
DifferentialDriveKinematics kinematics =
new DifferentialDriveKinematics(Units.inchesToMeters(27.0));

// Example chassis speeds: 2 meters per second linear velocity,
// 1 radian per second angular velocity.
var chassisSpeeds = new ChassisSpeeds(2.0, 0, 1.0);

// Convert to wheel speeds
DifferentialDriveWheelSpeeds wheelSpeeds = kinematics.toWheelSpeeds(chassisSpeeds);

// Left velocity
double leftVelocity = wheelSpeeds.leftMetersPerSecond;

(continues on next page)

25.2. Differential Drive Kinematics 953

FIRST Robotics Competition

(continued from previous page)

// Right velocity
double rightVelocity = wheelSpeeds.rightMetersPerSecond;

C++

// Creating my kinematics object: track width of 27 inches
frc::DifferentialDriveKinematics kinematics{27_in};

// Example chassis speeds: 2 meters per second linear velocity,
// 1 radian per second angular velocity.
frc::ChassisSpeeds chassisSpeeds{2_mps, 0_mps, 1_rad_per_s};

// Convert to wheel speeds. Here, we can use C++17's structured bindings
// feature to automatically split the DifferentialDriveWheelSpeeds
// struct into left and right velocities.
auto [left, right] = kinematics.ToWheelSpeeds(chassisSpeeds);

25.2.3 Converting Wheel Speeds to Chassis Speeds

One can also use the kinematics object to convert individual wheel speeds (left and right) to
a singular ChassisSpeeds object. The toChassisSpeeds(DifferentialDriveWheelSpeeds
speeds) (Java) / ToChassisSpeeds(DifferentialDriveWheelSpeeds speeds) (C++) method
should be used to achieve this.
Java

// Creating my kinematics object: track width of 27 inches
DifferentialDriveKinematics kinematics =
new DifferentialDriveKinematics(Units.inchesToMeters(27.0));

// Example differential drive wheel speeds: 2 meters per second
// for the left side, 3 meters per second for the right side.
var wheelSpeeds = new DifferentialDriveWheelSpeeds(2.0, 3.0);

// Convert to chassis speeds.
ChassisSpeeds chassisSpeeds = kinematics.toChassisSpeeds(wheelSpeeds);

// Linear velocity
double linearVelocity = chassisSpeeds.vxMetersPerSecond;

// Angular velocity
double angularVelocity = chassisSpeeds.omegaRadiansPerSecond;

C++

// Creating my kinematics object: track width of 27 inches
frc::DifferentialDriveKinematics kinematics{27_in};

// Example differential drive wheel speeds: 2 meters per second
// for the left side, 3 meters per second for the right side.
frc::DifferentialDriveWheelSpeeds wheelSpeeds{2_mps, 3_mps};

// Convert to chassis speeds. Here we can use C++17's structured bindings
(continues on next page)

954 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

(continued from previous page)
// feature to automatically split the ChassisSpeeds struct into its 3 components.
// Note that because a differential drive is non-holonomic, the vy variable
// will be equal to zero.
auto [linearVelocity, vy, angularVelocity] = kinematics.ToChassisSpeeds(wheelSpeeds);

25.3 Differential Drive Odometry

A user can use the differential drive kinematics classes in order to perform odometry. WPILib
contains a DifferentialDriveOdometry class that can be used to track the position of a
differential drive robot on the field.

Note: Because this method only uses encoders and a gyro, the estimate of the robot’s
position on the field will drift over time, especially as your robot comes into contact with other
robots during gameplay. However, odometry is usually very accurate during the autonomous
period.

25.3.1 Creating the Odometry Object

The DifferentialDriveOdometry class constructor requires three mandatory arguments and
one optional argument. The mandatory arguments are:

• The angle reported by your gyroscope (as a Rotation2d)
• The initial left and right encoder readings. In Java, these are each a double, and must

represent the distance traveled by each side in meters. In C++, the units library must
be used to represent your wheel positions.

The optional argument is the starting pose of your robot on the field (as a Pose2d). By default,
the robot will start at x = 0, y = 0, theta = 0.

Note: 0 degrees / radians represents the robot angle when the robot is facing directly toward
your opponent’s alliance station. As your robot turns to the left, your gyroscope angle should
increase. The Gyro interface supplies getRotation2d/GetRotation2d that you can use for this
purpose. See Field Coordinate System for more information about the coordinate system.

Java

// Creating my odometry object. Here,
// our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing forward.
DifferentialDriveOdometry m_odometry = new DifferentialDriveOdometry(
m_gyro.getRotation2d(),
m_leftEncoder.getDistance(), m_rightEncoder.getDistance(),
new Pose2d(5.0, 13.5, new Rotation2d()));

C++

25.3. Differential Drive Odometry 955

FIRST Robotics Competition

// Creating my odometry object. Here,
// our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing forward.
frc::DifferentialDriveOdometry m_odometry{
m_gyro.GetRotation2d(),
units::meter_t{m_leftEncoder.GetDistance()},
units::meter_t{m_rightEncoder.GetDistance()},
frc::Pose2d{5_m, 13.5_m, 0_rad}};

25.3.2 Updating the Robot Pose

The update method can be used to update the robot’s position on the field. This method must
be called periodically, preferably in the periodic() method of a Subsystem. The update
method returns the new updated pose of the robot. This method takes in the gyro angle of
the robot, along with the left encoder distance and right encoder distance.

Note: If the robot is moving forward in a straight line, both distances (left and right) must
be increasing positively – the rate of change must be positive.

Java

@Override
public void periodic() {
// Get the rotation of the robot from the gyro.
var gyroAngle = m_gyro.getRotation2d();

// Update the pose
m_pose = m_odometry.update(gyroAngle,

m_leftEncoder.getDistance(),
m_rightEncoder.getDistance());

}

C++

void Periodic() override {
// Get the rotation of the robot from the gyro.
frc::Rotation2d gyroAngle = m_gyro.GetRotation2d();

// Update the pose
m_pose = m_odometry.Update(gyroAngle,

units::meter_t{m_leftEncoder.GetDistance()},
units::meter_t{m_rightEncoder.GetDistance()});

}

956 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

25.3.3 Resetting the Robot Pose

The robot pose can be reset via the resetPosition method. This method accepts four argu-
ments: the current gyro angle, the left and right wheel positions, and the new field-relative
pose.

Important: If at any time, you decide to reset your gyroscope or encoders, the resetPosi-
tion method MUST be called with the new gyro angle and wheel distances.

Note: A full example of a differential drive robot with odometry is available here: C++ /
Java.

In addition, the GetPose (C++) / getPoseMeters (Java) methods can be used to retrieve the
current robot pose without an update.

25.4 Swerve Drive Kinematics

The SwerveDriveKinematics class is a useful tool that converts between a ChassisSpeeds
object and several SwerveModuleState objects, which contains velocities and angles for each
swerve module of a swerve drive robot.

25.4.1 The swerve module state class

The SwerveModuleState class contains information about the velocity and angle of a singular
module of a swerve drive. The constructor for a SwerveModuleState takes in two arguments,
the velocity of the wheel on the module, and the angle of the module.

Note: In Java, the velocity of the wheel must be in meters per second. In C++, the units
library can be used to provide the velocity using any linear velocity unit.

Note: An angle of 0 corresponds to the modules facing forward.

25.4.2 Constructing the kinematics object

The SwerveDriveKinematics class accepts a variable number of constructor arguments, with
each argument being the location of a swerve module relative to the robot center (as a Trans-
lation2d. The number of constructor arguments corresponds to the number of swerve mod-
ules.

Note: A swerve drive must have 2 or more modules.

25.4. Swerve Drive Kinematics 957

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DifferentialDriveBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/differentialdrivebot

FIRST Robotics Competition

Note: In C++, the class is templated on the number of modules. Therefore, when
constructing a SwerveDriveKinematics object as a member variable of a class, the num-
ber of modules must be passed in as a template argument. For example, for a typical
swerve drive with four modules, the kinematics object must be constructed as follows:
frc::SwerveDriveKinematics<4> m_kinematics{...}.

The locations for the modules must be relative to the center of the robot. Positive x values
represent moving toward the front of the robot whereas positive y values represent moving
toward the left of the robot.
Java

// Locations for the swerve drive modules relative to the robot center.
Translation2d m_frontLeftLocation = new Translation2d(0.381, 0.381);
Translation2d m_frontRightLocation = new Translation2d(0.381, -0.381);
Translation2d m_backLeftLocation = new Translation2d(-0.381, 0.381);
Translation2d m_backRightLocation = new Translation2d(-0.381, -0.381);

// Creating my kinematics object using the module locations
SwerveDriveKinematics m_kinematics = new SwerveDriveKinematics(
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation, m_backRightLocation

);

C++

// Locations for the swerve drive modules relative to the robot center.
frc::Translation2d m_frontLeftLocation{0.381_m, 0.381_m};
frc::Translation2d m_frontRightLocation{0.381_m, -0.381_m};
frc::Translation2d m_backLeftLocation{-0.381_m, 0.381_m};
frc::Translation2d m_backRightLocation{-0.381_m, -0.381_m};

// Creating my kinematics object using the module locations.
frc::SwerveDriveKinematics<4> m_kinematics{
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation,
m_backRightLocation};

25.4.3 Converting chassis speeds to module states

The toSwerveModuleStates(ChassisSpeeds speeds) (Java) / ToSwerveMod-
uleStates(ChassisSpeeds speeds) (C++) method should be used to convert a Chas-
sisSpeeds object to a an array of SwerveModuleState objects. This is useful in situations
where you have to convert a forward velocity, sideways velocity, and an angular velocity into
individual module states.
The elements in the array that is returned by this method are the same order in which the
kinematics object was constructed. For example, if the kinematics object was constructed
with the front left module location, front right module location, back left module location,
and the back right module location in that order, the elements in the array would be the front
left module state, front right module state, back left module state, and back right module
state in that order.
Java

958 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

// Example chassis speeds: 1 meter per second forward, 3 meters
// per second to the left, and rotation at 1.5 radians per second
// counterclockwise.
ChassisSpeeds speeds = new ChassisSpeeds(1.0, 3.0, 1.5);

// Convert to module states
SwerveModuleState[] moduleStates = kinematics.toSwerveModuleStates(speeds);

// Front left module state
SwerveModuleState frontLeft = moduleStates[0];

// Front right module state
SwerveModuleState frontRight = moduleStates[1];

// Back left module state
SwerveModuleState backLeft = moduleStates[2];

// Back right module state
SwerveModuleState backRight = moduleStates[3];

C++

// Example chassis speeds: 1 meter per second forward, 3 meters
// per second to the left, and rotation at 1.5 radians per second
// counterclockwise.
frc::ChassisSpeeds speeds{1_mps, 3_mps, 1.5_rad_per_s};

// Convert to module states. Here, we can use C++17's structured
// bindings feature to automatically split up the array into its
// individual SwerveModuleState components.
auto [fl, fr, bl, br] = kinematics.ToSwerveModuleStates(speeds);

Module angle optimization

The SwerveModuleState class contains a static optimize() (Java) / Optimize() (C++)
method that is used to “optimize” the speed and angle setpoint of a given SwerveModuleState
to minimize the change in heading. For example, if the angular setpoint of a certain module
from inverse kinematics is 90 degrees, but your current angle is -89 degrees, this method
will automatically negate the speed of the module setpoint and make the angular setpoint -90
degrees to reduce the distance the module has to travel.
This method takes two parameters: the desired state (usually from the toSwerveMod-
uleStates method) and the current angle. It will return the new optimized state which you
can use as the setpoint in your feedback control loop.
Java

var frontLeftOptimized = SwerveModuleState.optimize(frontLeft,
new Rotation2d(m_turningEncoder.getDistance()));

C++

auto flOptimized = frc::SwerveModuleState::Optimize(fl,
units::radian_t(m_turningEncoder.GetDistance()));

25.4. Swerve Drive Kinematics 959

FIRST Robotics Competition

Field-oriented drive

Recall that a ChassisSpeeds object can be created from a set of desired field-oriented speeds.
This feature can be used to get module states from a set of desired field-oriented speeds.
Java

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
ChassisSpeeds speeds = ChassisSpeeds.fromFieldRelativeSpeeds(
2.0, 2.0, Math.PI / 2.0, Rotation2d.fromDegrees(45.0));

// Now use this in our kinematics
SwerveModuleState[] moduleStates = kinematics.toSwerveModuleStates(speeds);

C++

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
frc::ChassisSpeeds speeds = frc::ChassisSpeeds::FromFieldRelativeSpeeds(
2_mps, 2_mps, units::radians_per_second_t(std::numbers::pi / 2.0), Rotation2d(45_

↪→deg));

// Now use this in our kinematics
auto [fl, fr, bl, br] = kinematics.ToSwerveModuleStates(speeds);

Using custom centers of rotation

Sometimes, rotating around one specific corner might be desirable for certain evasive maneu-
vers. This type of behavior is also supported by the WPILib classes. The same ToSwerveMod-
uleStates() method accepts a second parameter for the center of rotation (as a Transla-
tion2d). Just like the wheel locations, the Translation2d representing the center of rotation
should be relative to the robot center.

Note: Because all robots are a rigid frame, the provided vx and vy velocities from the
ChassisSpeeds object will still apply for the entirety of the robot. However, the omega from
the ChassisSpeeds object will be measured from the center of rotation.

For example, one can set the center of rotation on a certain module and if the provided Chas-
sisSpeeds object has a vx and vy of zero and a non-zero omega, the robot will appear to rotate
around that particular swerve module.

960 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

25.4.4 Converting module states to chassis speeds

One can also use the kinematics object to convert an array of SwerveModuleState objects to
a singular ChassisSpeeds object. The toChassisSpeeds(SwerveModuleState... states)
(Java) / ToChassisSpeeds(SwerveModuleState... states) (C++) method can be used to
achieve this.
Java

// Example module states
var frontLeftState = new SwerveModuleState(23.43, Rotation2d.fromDegrees(-140.19));
var frontRightState = new SwerveModuleState(23.43, Rotation2d.fromDegrees(-39.81));
var backLeftState = new SwerveModuleState(54.08, Rotation2d.fromDegrees(-109.44));
var backRightState = new SwerveModuleState(54.08, Rotation2d.fromDegrees(-70.56));

// Convert to chassis speeds
ChassisSpeeds chassisSpeeds = kinematics.toChassisSpeeds(
frontLeftState, frontRightState, backLeftState, backRightState);

// Getting individual speeds
double forward = chassisSpeeds.vxMetersPerSecond;
double sideways = chassisSpeeds.vyMetersPerSecond;
double angular = chassisSpeeds.omegaRadiansPerSecond;

C++

// Example module States
frc::SwerveModuleState frontLeftState{23.43_mps, Rotation2d(-140.19_deg)};
frc::SwerveModuleState frontRightState{23.43_mps, Rotation2d(-39.81_deg)};
frc::SwerveModuleState backLeftState{54.08_mps, Rotation2d(-109.44_deg)};
frc::SwerveModuleState backRightState{54.08_mps, Rotation2d(-70.56_deg)};

// Convert to chassis speeds. Here, we can use C++17's structured bindings
// feature to automatically break up the ChassisSpeeds struct into its
// three components.
auto [forward, sideways, angular] = kinematics.ToChassisSpeeds(
frontLeftState, frontRightState, backLeftState, backRightState);

25.5 Swerve Drive Odometry

A user can use the swerve drive kinematics classes in order to perform odometry. WPILib
contains a SwerveDriveOdometry class that can be used to track the position of a swerve drive
robot on the field.

Note: Because this method only uses encoders and a gyro, the estimate of the robot’s
position on the field will drift over time, especially as your robot comes into contact with other
robots during gameplay. However, odometry is usually very accurate during the autonomous
period.

25.5. Swerve Drive Odometry 961

FIRST Robotics Competition

25.5.1 Creating the odometry object

The SwerveDriveOdometry<int NumModules> class constructor requires one template argu-
ment (only C++), three mandatory arguments, and one optional argument. The template
argument (only C++) is an integer representing the number of swerve modules.
The mandatory arguments are:

• The kinematics object that represents your swerve drive (as a SwerveDriveKinematics
instance)

• The angle reported by your gyroscope (as a Rotation2d)
• The initial positions of the swerve modules (as an array of SwerveModulePosition). In

Java, this must be constructed with each wheel position in meters. In C++, the units
library must be used to represent your wheel positions. It is important that the order
in which you pass the SwerveModulePosition objects is the same as the order in which
you created the kinematics object.

The fourth optional argument is the starting pose of your robot on the field (as a Pose2d). By
default, the robot will start at x = 0, y = 0, theta = 0.

Note: 0 degrees / radians represents the robot angle when the robot is facing directly toward
your opponent’s alliance station. As your robot turns to the left, your gyroscope angle should
increase. The Gyro interface supplies getRotation2d/GetRotation2d that you can use for this
purpose. See Field Coordinate System for more information about the coordinate system.

Java

// Locations for the swerve drive modules relative to the robot center.
Translation2d m_frontLeftLocation = new Translation2d(0.381, 0.381);
Translation2d m_frontRightLocation = new Translation2d(0.381, -0.381);
Translation2d m_backLeftLocation = new Translation2d(-0.381, 0.381);
Translation2d m_backRightLocation = new Translation2d(-0.381, -0.381);

// Creating my kinematics object using the module locations
SwerveDriveKinematics m_kinematics = new SwerveDriveKinematics(
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation, m_backRightLocation

);

// Creating my odometry object from the kinematics object and the initial wheel␣
↪→positions.
// Here, our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing the opposing alliance wall.
SwerveDriveOdometry m_odometry = new SwerveDriveOdometry(
m_kinematics, m_gyro.getRotation2d(),
new SwerveModulePosition[] {

m_frontLeftModule.getPosition(),
m_frontRightModule.getPosition(),
m_backLeftModule.getPosition(),
m_backRightModule.getPosition()

}, new Pose2d(5.0, 13.5, new Rotation2d()));

C++

// Locations for the swerve drive modules relative to the robot center.
frc::Translation2d m_frontLeftLocation{0.381_m, 0.381_m};

(continues on next page)

962 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

(continued from previous page)
frc::Translation2d m_frontRightLocation{0.381_m, -0.381_m};
frc::Translation2d m_backLeftLocation{-0.381_m, 0.381_m};
frc::Translation2d m_backRightLocation{-0.381_m, -0.381_m};

// Creating my kinematics object using the module locations.
frc::SwerveDriveKinematics<4> m_kinematics{
m_frontLeftLocation, m_frontRightLocation,
m_backLeftLocation, m_backRightLocation

};

// Creating my odometry object from the kinematics object. Here,
// our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing forward.
frc::SwerveDriveOdometry<4> m_odometry{m_kinematics, m_gyro.GetRotation2d(),
{m_frontLeft.GetPosition(), m_frontRight.GetPosition(),
m_backLeft.GetPosition(), m_backRight.GetPosition()},
frc::Pose2d{5_m, 13.5_m, 0_rad}};

25.5.2 Updating the robot pose

The update method of the odometry class updates the robot position on the field. The update
method takes in the gyro angle of the robot, along with an array of SwerveModulePosition
objects. It is important that the order in which you pass the SwerveModulePosition objects
is the same as the order in which you created the kinematics object.
This update method must be called periodically, preferably in the periodic() method of a
Subsystem. The update method returns the new updated pose of the robot.
Java

@Override
public void periodic() {
// Get the rotation of the robot from the gyro.
var gyroAngle = m_gyro.getRotation2d();

// Update the pose
m_pose = m_odometry.update(gyroAngle,

new SwerveModulePosition[] {
m_frontLeftModule.getPosition(), m_frontRightModule.getPosition(),
m_backLeftModule.getPosition(), m_backRightModule.getPosition()

});
}

C++

void Periodic() override {
// Get the rotation of the robot from the gyro.
frc::Rotation2d gyroAngle = m_gyro.GetRotation2d();

// Update the pose
m_pose = m_odometry.Update(gyroAngle,

{
m_frontLeftModule.GetPosition(), m_frontRightModule.GetPosition(),
m_backLeftModule.GetPosition(), m_backRightModule.GetPosition()

(continues on next page)

25.5. Swerve Drive Odometry 963

FIRST Robotics Competition

(continued from previous page)
};

}

25.5.3 Resetting the Robot Pose

The robot pose can be reset via the resetPosition method. This method accepts three argu-
ments: the current gyro angle, an array of the current module positions (as in the constructor
and update method), and the new field-relative pose.

Important: If at any time, you decide to reset your gyroscope or wheel encoders, the re-
setPosition method MUST be called with the new gyro angle and wheel encoder positions.

Note: The implementation of getPosition() / GetPosition() above is left to the user. The
idea is to get the module position (distance and angle) from each module. For a full example,
see here: C++ / Java.

In addition, the GetPose (C++) / getPoseMeters (Java) methods can be used to retrieve the
current robot pose without an update.

25.6 Mecanum Drive Kinematics

The MecanumDriveKinematics class is a useful tool that converts between a ChassisSpeeds
object and a MecanumDriveWheelSpeeds object, which contains velocities for each of the four
wheels on a mecanum drive.

25.6.1 Constructing the Kinematics Object

The MecanumDriveKinematics class accepts four constructor arguments, with each argument
being the location of a wheel relative to the robot center (as a Translation2d). The order for
the arguments is front left, front right, back left, and back right. The locations for the wheels
must be relative to the center of the robot. Positive x values represent moving toward the
front of the robot whereas positive y values represent moving toward the left of the robot.
Java

// Locations of the wheels relative to the robot center.
Translation2d m_frontLeftLocation = new Translation2d(0.381, 0.381);
Translation2d m_frontRightLocation = new Translation2d(0.381, -0.381);
Translation2d m_backLeftLocation = new Translation2d(-0.381, 0.381);
Translation2d m_backRightLocation = new Translation2d(-0.381, -0.381);

// Creating my kinematics object using the wheel locations.
MecanumDriveKinematics m_kinematics = new MecanumDriveKinematics(
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation, m_backRightLocation

);

C++

964 Chapter 25. Kinematics and Odometry

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SwerveBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/swervebot

FIRST Robotics Competition

// Locations of the wheels relative to the robot center.
frc::Translation2d m_frontLeftLocation{0.381_m, 0.381_m};
frc::Translation2d m_frontRightLocation{0.381_m, -0.381_m};
frc::Translation2d m_backLeftLocation{-0.381_m, 0.381_m};
frc::Translation2d m_backRightLocation{-0.381_m, -0.381_m};

// Creating my kinematics object using the wheel locations.
frc::MecanumDriveKinematics m_kinematics{
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation,
m_backRightLocation};

25.6.2 Converting Chassis Speeds to Wheel Speeds

The toWheelSpeeds(ChassisSpeeds speeds) (Java) / ToWheelSpeeds(ChassisSpeeds
speeds) (C++) method should be used to convert a ChassisSpeeds object to a Mecanum-
DriveWheelSpeeds object. This is useful in situations where you have to convert a forward
velocity, sideways velocity, and an angular velocity into individual wheel speeds.
Java

// Example chassis speeds: 1 meter per second forward, 3 meters
// per second to the left, and rotation at 1.5 radians per second
// counterclockwise.
ChassisSpeeds speeds = new ChassisSpeeds(1.0, 3.0, 1.5);

// Convert to wheel speeds
MecanumDriveWheelSpeeds wheelSpeeds = kinematics.toWheelSpeeds(speeds);

// Get the individual wheel speeds
double frontLeft = wheelSpeeds.frontLeftMetersPerSecond
double frontRight = wheelSpeeds.frontRightMetersPerSecond
double backLeft = wheelSpeeds.rearLeftMetersPerSecond
double backRight = wheelSpeeds.rearRightMetersPerSecond

C++

// Example chassis speeds: 1 meter per second forward, 3 meters
// per second to the left, and rotation at 1.5 radians per second
// counterclockwise.
frc::ChassisSpeeds speeds{1_mps, 3_mps, 1.5_rad_per_s};

// Convert to wheel speeds. Here, we can use C++17's structured
// bindings feature to automatically split up the MecanumDriveWheelSpeeds
// struct into it's individual components
auto [fl, fr, bl, br] = kinematics.ToWheelSpeeds(speeds);

25.6. Mecanum Drive Kinematics 965

FIRST Robotics Competition

Field-oriented drive

Recall that a ChassisSpeeds object can be created from a set of desired field-oriented speeds.
This feature can be used to get wheel speeds from a set of desired field-oriented speeds.
Java

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
ChassisSpeeds speeds = ChassisSpeeds.fromFieldRelativeSpeeds(
2.0, 2.0, Math.PI / 2.0, Rotation2d.fromDegrees(45.0));

// Now use this in our kinematics
MecanumDriveWheelSpeeds wheelSpeeds = kinematics.toWheelSpeeds(speeds);

C++

// The desired field relative speed here is 2 meters per second
// toward the opponent's alliance station wall, and 2 meters per
// second toward the left field boundary. The desired rotation
// is a quarter of a rotation per second counterclockwise. The current
// robot angle is 45 degrees.
frc::ChassisSpeeds speeds = frc::ChassisSpeeds::FromFieldRelativeSpeeds(
2_mps, 2_mps, units::radians_per_second_t(std::numbers::pi / 2.0), Rotation2d(45_

↪→deg));

// Now use this in our kinematics
auto [fl, fr, bl, br] = kinematics.ToWheelSpeeds(speeds);

Using custom centers of rotation

Sometimes, rotating around one specific corner might be desirable for certain evasive ma-
neuvers. This type of behavior is also supported by the WPILib classes. The same ToWheel-
Speeds() method accepts a second parameter for the center of rotation (as a Translation2d).
Just like the wheel locations, the Translation2d representing the center of rotation should
be relative to the robot center.

Note: Because all robots are a rigid frame, the provided vx and vy velocities from the
ChassisSpeeds object will still apply for the entirety of the robot. However, the omega from
the ChassisSpeeds object will be measured from the center of rotation.

For example, one can set the center of rotation on a certain wheel and if the provided Chas-
sisSpeeds object has a vx and vy of zero and a non-zero omega, the robot will appear to rotate
around that particular wheel.

966 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

25.6.3 Converting wheel speeds to chassis speeds

One can also use the kinematics object to convert a MecanumDriveWheelSpeeds object to a
singular ChassisSpeeds object. The toChassisSpeeds(MecanumDriveWheelSpeeds speeds)
(Java) / ToChassisSpeeds(MecanumDriveWheelSpeeds speeds) (C++) method can be used
to achieve this.
Java

// Example wheel speeds
var wheelSpeeds = new MecanumDriveWheelSpeeds(-17.67, 20.51, -13.44, 16.26);

// Convert to chassis speeds
ChassisSpeeds chassisSpeeds = kinematics.toChassisSpeeds(wheelSpeeds);

// Getting individual speeds
double forward = chassisSpeeds.vxMetersPerSecond;
double sideways = chassisSpeeds.vyMetersPerSecond;
double angular = chassisSpeeds.omegaRadiansPerSecond;

C++

// Example wheel speeds
frc::MecanumDriveWheelSpeeds wheelSpeeds{-17.67_mps, 20.51_mps, -13.44_mps, 16.26_mps}
↪→;

// Convert to chassis speeds. Here, we can use C++17's structured bindings
// feature to automatically break up the ChassisSpeeds struct into its
// three components.
auto [forward, sideways, angular] = kinematics.ToChassisSpeeds(wheelSpeeds);

25.7 Mecanum Drive Odometry

A user can use the mecanum drive kinematics classes in order to perform odometry. WPILib
contains a MecanumDriveOdometry class that can be used to track the position of a mecanum
drive robot on the field.

Note: Because this method only uses encoders and a gyro, the estimate of the robot’s
position on the field will drift over time, especially as your robot comes into contact with other
robots during gameplay. However, odometry is usually very accurate during the autonomous
period.

25.7. Mecanum Drive Odometry 967

FIRST Robotics Competition

25.7.1 Creating the odometry object

The MecanumDriveOdometry class constructor requires three mandatory arguments and one
optional argument.
The mandatory arguments are:

• The kinematics object that represents your mecanum drive (as a MecanumDriveKinemat-
ics instance)

• The angle reported by your gyroscope (as a Rotation2d)
• The initial positions of the wheels (as MecanumDriveWheelPositions). In Java, this must

be constructed with each wheel position in meters. In C++, the units library must be
used to represent your wheel positions.

The fourth optional argument is the starting pose of your robot on the field (as a Pose2d). By
default, the robot will start at x = 0, y = 0, theta = 0.

Note: 0 degrees / radians represents the robot angle when the robot is facing directly toward
your opponent’s alliance station. As your robot turns to the left, your gyroscope angle should
increase. The Gyro interface supplies getRotation2d/GetRotation2d that you can use for this
purpose. See Field Coordinate System for more information about the coordinate system.

Java

// Locations of the wheels relative to the robot center.
Translation2d m_frontLeftLocation = new Translation2d(0.381, 0.381);
Translation2d m_frontRightLocation = new Translation2d(0.381, -0.381);
Translation2d m_backLeftLocation = new Translation2d(-0.381, 0.381);
Translation2d m_backRightLocation = new Translation2d(-0.381, -0.381);

// Creating my kinematics object using the wheel locations.
MecanumDriveKinematics m_kinematics = new MecanumDriveKinematics(
m_frontLeftLocation, m_frontRightLocation, m_backLeftLocation, m_backRightLocation

);

// Creating my odometry object from the kinematics object and the initial wheel␣
↪→positions.
// Here, our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing the opposing alliance wall.
MecanumDriveOdometry m_odometry = new MecanumDriveOdometry(
m_kinematics,
m_gyro.getRotation2d(),
new MecanumDriveWheelPositions(

m_frontLeftEncoder.getDistance(), m_frontRightEncoder.getDistance(),
m_backLeftEncoder.getDistance(), m_backRightEncoder.getDistance()

),
new Pose2d(5.0, 13.5, new Rotation2d())

);

C++

// Locations of the wheels relative to the robot center.
frc::Translation2d m_frontLeftLocation{0.381_m, 0.381_m};
frc::Translation2d m_frontRightLocation{0.381_m, -0.381_m};
frc::Translation2d m_backLeftLocation{-0.381_m, 0.381_m};

(continues on next page)

968 Chapter 25. Kinematics and Odometry

FIRST Robotics Competition

(continued from previous page)
frc::Translation2d m_backRightLocation{-0.381_m, -0.381_m};

// Creating my kinematics object using the wheel locations.
frc::MecanumDriveKinematics m_kinematics{
m_frontLeftLocation, m_frontRightLocation,
m_backLeftLocation, m_backRightLocation

};

// Creating my odometry object from the kinematics object. Here,
// our starting pose is 5 meters along the long end of the field and in the
// center of the field along the short end, facing forward.
frc::MecanumDriveOdometry m_odometry{
m_kinematics,
m_gyro.GetRotation2d(),
frc::MecanumDriveWheelPositions{

units::meter_t{m_frontLeftEncoder.GetDistance()},
units::meter_t{m_frontRightEncoder.GetDistance()},
units::meter_t{m_backLeftEncoder.GetDistance()},
units::meter_t{m_backRightEncoder.GetDistance()}

},
frc::Pose2d{5_m, 13.5_m, 0_rad}};

25.7.2 Updating the robot pose

The update method of the odometry class updates the robot position on the field. The up-
date method takes in the gyro angle of the robot, along with a MecanumDriveWheelPositions
object representing the position of each of the 4 wheels on the robot. This update method
must be called periodically, preferably in the periodic() method of a Subsystem. The update
method returns the new updated pose of the robot.
Java

@Override
public void periodic() {
// Get my wheel positions
var wheelPositions = new MecanumDriveWheelPositions(

m_frontLeftEncoder.getDistance(), m_frontRightEncoder.getDistance(),
m_backLeftEncoder.getDistance(), m_backRightEncoder.getDistance());

// Get the rotation of the robot from the gyro.
var gyroAngle = m_gyro.getRotation2d();

// Update the pose
m_pose = m_odometry.update(gyroAngle, wheelPositions);

}

C++

void Periodic() override {
// Get my wheel positions
frc::MecanumDriveWheelPositions wheelPositions{

units::meter_t{m_frontLeftEncoder.GetDistance()},
units::meter_t{m_frontRightEncoder.GetDistance()},
units::meter_t{m_backLeftEncoder.GetDistance()},

(continues on next page)

25.7. Mecanum Drive Odometry 969

FIRST Robotics Competition

(continued from previous page)
units::meter_t{m_backRightEncoder.GetDistance()}};

// Get the rotation of the robot from the gyro.
frc::Rotation2d gyroAngle = m_gyro.GetRotation2d();

// Update the pose
m_pose = m_odometry.Update(gyroAngle, wheelPositions);

}

25.7.3 Resetting the Robot Pose

The robot pose can be reset via the resetPosition method. This method accepts three argu-
ments: the current gyro angle, the current wheel positions, and the new field-relative pose.

Important: If at any time, you decide to reset your gyroscope or encoders, the resetPosi-
tion method MUST be called with the new gyro angle and wheel positions.

Note: A full example of a mecanum drive robot with odometry is available here: C++ / Java.

In addition, the GetPose (C++) / getPoseMeters (Java) methods can be used to retrieve the
current robot pose without an update.

970 Chapter 25. Kinematics and Odometry

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MecanumBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mecanumbot

26
NetworkTables

This section outlines the details of using the NetworkTables (v4) API to communicate infor-
mation across the robot network.

Important: The code examples in this section are not intended for the user to copy-paste.
Ensure that the following documentation is thoroughly read and the API (Java, C++, Python)
is consulted when necessary.

26.1 What is NetworkTables

NetworkTables is an implementation of a publish-subscribe messaging system. Values are
published to named “topics” either on the robot, driver station, or potentially an attached
coprocessor, and the values are automatically distributed to all subscribers to the topic. For
example, a driver station laptop might receive camera images over the network, perform
some vision processing algorithm, and come up with some values to sent back to the robot.
The values might be an X, Y, and Distance. By writing these results to NetworkTables topics
called “X”, “Y”, and “Distance” they can be read by the robot shortly after being written. Then
the robot can act upon them. Similarly, the robot program can write sensor values to topics
and those can be read and plotted in real time on a dashboard application.
NetworkTables can be used by programs on the robot in Java, C++, or LabVIEW, and is built
into each version of WPILib.

26.1.1 NetworkTables Concepts

First, let’s define some terms:
• Topic: a named data channel. Topics have a fixed data type (for the lifetime of the topic)

and mutable properties.
• Publisher: defines the topic and creates and sends timestamped data values.
• Subscriber: receives timestamped data value updates to one or more topics.

971

https://github.wpilib.org/allwpilib/docs/release/java/index.html
https://github.wpilib.org/allwpilib/docs/release/cpp/index.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/api.html
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

FIRST Robotics Competition

• Entry: a combined publisher and subscriber. The subscriber is always active, but the
publisher is not created until a publish operation is performed (e.g. a value is “set”,
aka published, on the entry). This may be more convenient than maintaining a separate
publisher and subscriber.

• Property: named information (metadata) about a topic stored and updated separately
from the topic’s data. A topic may have any number of properties. A property’s value
can be any data type that can be represented in JSON.

NetworkTables supports a range of data types, including boolean, numeric, string, and arrays
of those types. Supported numeric data types are single or double precision floating point,
or 64-bit integer. There is also the option of storing raw data (an array of bytes), which can
be used for representing binary encoded structured data. Types are represented as strings
for efficiency reasons. There is also an enumeration for the most common types in the Net-
workTables API.
Topics are created when the first publisher announces the topic and are removed when the
last publisher stops publishing. It’s possible to subscribe to a topic that has not yet been
created/published.
Topics have properties. Properties are initially set by the first publisher, but may be changed
at any time. Similarly to values, property changes to a topic are propagated to all subscribers
to that topic. Properties are structured data (JSON), but at the top level are simply a key/value
store (a JSON map). Some properties have defined behavior, but arbitrary ones can be set by
the application.
Publishers specify the topic’s data type; while there can be multiple publishers to a single
topic, they must all be publishing the same data type. This is enforced by the NetworkTables
server (the first publisher “wins”). Typically single-topic subscribers also specify what data
type they’re expecting to receive on a topic and thus won’t receive value updates of other
types.

26.1.2 Retained and Persistent Topics

While by default topics are transitory and disappear after the last publisher stops publishing,
topics can be marked as retained (via setting the “retained” property to true) to prevent
them from disappearing. For retained topics, the server acts as an implicit publisher of the
last value, and will keep doing so as long as the server is running. This is primarily useful for
configuration values; e.g. an autonomous mode selection published by a dashboard should
set the topic as retained so its value is preserved in case the dashboard disconnects.
Additionally, topics can be marked as persistent via setting the “persistent” property to true.
These operate similarly to retained topics, but in addition, persistent topic values are auto-
matically saved to a file on the server and when the server starts up again, the topic is created
and its last value is published by the server.

972 Chapter 26. NetworkTables

FIRST Robotics Competition

26.1.3 Value Propagation

The server keeps a copy of the last published value for every topic. When a subscriber initially
subscribes to a topic, the server sends the last published value. After that initial value, new
value updates are communicated to subscribers each time the publisher sends a new value.
NetworkTables is a client/server system; clients do not talk directly to each other, but rather
communicate via the server. Typically, the robot program is the server, and other pieces
of software on other computers (e.g. the driver station or a coprocessor) are clients that
connect to it. Thus, when a coprocessor (client) publishes a value, the value is sent first from
the coprocessor (client) to the robot program (server), and then the robot program distributes
that value to any subscribers (e.g. the robot program local program, or other clients such as
dashboards).
The server does not send topic changes or value updates to clients that have not subscribed
to the topic.
By default, NetworkTables sends value updates periodically, batching the data to help limit the
number of small packets being sent over the network. Also, by default, only the most recent
value is transmitted; any intermediate value changes made between network transmissions
are discarded. This behavior can be changed via publish/subscribe options–publishers and
subscribers can indicate that all value updates should be preserved and communicated via
the “send all” option. In addition, it is possible to force NetworkTables to “flush” all current
updates to the network; this is useful for minimizing latency.

26.1.4 Timestamps

All NetworkTable value updates are timestamped at the time they are published. Timestamps
in NetworkTables are measured in integer microseconds.
NetworkTables automatically synchronizes time between the server and clients. Each client
maintains an offset between the client local time and the server time, so when a client pub-
lishes a value, it stores a timestamp in local time and calculates the equivalent server times-
tamp. The server timestamp is what is communicated over the network to any subscribers.
This makes it possible e.g. for a robot program to get a reasonable estimation of the time
when a value was published on a coprocessor relative to the current time.
Because of this, two timestamps are visible through the API: a server timestamp indicating
the time (estimated) on the server, and a local timestamp indicating the time on the client.
When the RoboRIO is the NetworkTables server, the server timestamp is the same as the FPGA
timestamp returned by Timer.getFPGATimestamp() (except the units are different: Network-
Tables uses microseconds, while getFPGATimestamp() returns seconds).

26.1.5 NetworkTables Organization

Data is organized in NetworkTables in a hierarchy much like a filesystem’s folders and files.
There can be multiple subtables (folders) and topics (files) that may be nested in whatever
way fits the data organization desired. At the top level (NetworkTableInstance: Java, C++,
Python), topic names are handled similar to absolute paths in a filesystem: subtables are
represented as a long topic name with slashes (“/”) separating the nested subtable and value
names. A NetworkTable (Java, C++, Python) object represents a single subtable (folder),
so topic names are relative to the NetworkTable’s base path: e.g. for a root table called
“SmartDashboard” with a topic named “xValue”, the same topic can be accessed via Network-
TableInstance as a topic named “/SmartDashboard/xValue”. However, unlike a filesystem,

26.1. What is NetworkTables 973

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/NetworkTableInstance.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_network_table_instance.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/NetworkTableInstance.html#ntcore.NetworkTableInstance
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/NetworkTable.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_network_table.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/NetworkTable.html#ntcore.NetworkTable

FIRST Robotics Competition

subtables don’t really exist in the same way folders do, as there is no way to represent an
empty subtable on the network–a subtable “appears” only as long as there are topics pub-
lished within it.
OutlineViewer is a utility for exploring the values stored in NetworkTables, and can show
either a flat view (topics with absolute paths) or a nested view (subtables and topics).
There are some default tables that are created automatically when a robot program starts up:

Table
name

Use

/Smart-
Dash-
board

Used to store values written to the SmartDashboard or Shuffleboard using the
SmartDashboard.put() set of methods.

/LiveWin-
dow

Used to store Test mode (Test on the Driver Station) values. Typically these
are Subsystems and the associated sensors and actuators.

/FMSInfo Information about the currently running match that comes from the Driver
Station and the Field Management System

26.1.6 NetworkTables API Variants

There are two major variants of the NetworkTables API. The object-oriented API (C++ and
Java) is recommended for robot code and general team use, and provides classes that help en-
sure correct use of the API. For advanced use cases such as writing object-oriented wrappers
for other programming languages, there’s also a C/C++ handle-based API.

26.1.7 Lifetime Management

Publishers, subscribers, and entries only exist as long as the objects exist.
In Java, a common bug is to create a subscriber or publisher and not properly release it by
calling close(), as this will result in the object lingering around for an unknown period of
time and not releasing resources properly. This is less common of an issue in robot programs,
as long as the publisher or subscriber object is stored in an instance variable that persists for
the life of the program.
In C++, publishers, subscribers, and entries are RAII, which means they are automatically
destroyed when they go out of scope. NetworkTableInstance is an exception to this; it is
designed to be explicitly destroyed, so it’s not necessary to maintain a global instance of it.
Python is similar to Java, except that subscribers or publishers are released when they are
garbage collected.

974 Chapter 26. NetworkTables

FIRST Robotics Competition

26.2 NetworkTables Tables and Topics

26.2.1 Using the NetworkTable Class

The NetworkTable (Java, C++, Python) class is an API abstraction that represents a single
“folder” (or “table”) of topics as described in NetworkTables Organization. The NetworkTable
class stores the base path to the table and provides functions to get topics within the table,
automatically prepending the table path.

26.2.2 Getting a Topic

A Topic (Java, C++, Python) object (or NT_Topic handle) represents a topic. This has a 1:1
correspondence with the topic’s name, and will not change as long as the instance exists.
Unlike publishers and subscribers, it is not necessary to store a Topic object.
Having a Topic object or handle does not mean the topic exists or is of the correct type. For
convenience when creating publishers and subscribers, there are type-specific Topic classes
(e.g. BooleanTopic: Java, C++, Python), but there is no check at the Topic level to ensure
that the topic’s type actually matches. The preferred method to get a type-specific topic to
call the appropriate type-specific getter, but it’s also possible to directly convert a generic
Topic into a type-specific Topic class. Note: the handle-based API does not have a concept of
type-specific classes.
Java

NetworkTableInstance inst = NetworkTableInstance.getDefault();
NetworkTable table = inst.getTable("datatable");

// get a topic from a NetworkTableInstance
// the topic name in this case is the full name
DoubleTopic dblTopic = inst.getDoubleTopic("/datatable/X");

// get a topic from a NetworkTable
// the topic name in this case is the name within the table;
// this line and the one above reference the same topic
DoubleTopic dblTopic = table.getDoubleTopic("X");

// get a type-specific topic from a generic Topic
Topic genericTopic = inst.getTopic("/datatable/X");
DoubleTopic dblTopic = new DoubleTopic(genericTopic);

C++

nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();
std::shared_ptr<nt::NetworkTable> table = inst.GetTable("datatable");

// get a topic from a NetworkTableInstance
// the topic name in this case is the full name
nt::DoubleTopic dblTopic = inst.GetDoubleTopic("/datatable/X");

// get a topic from a NetworkTable
// the topic name in this case is the name within the table;
// this line and the one above reference the same topic
nt::DoubleTopic dblTopic = table->GetDoubleTopic("X");

(continues on next page)

26.2. NetworkTables Tables and Topics 975

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/NetworkTable.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_network_table.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/NetworkTable.html#ntcore.NetworkTable
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/Topic.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_topic.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/Topic.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/BooleanTopic.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_boolean_topic.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/BooleanTopic.html

FIRST Robotics Competition

(continued from previous page)

// get a type-specific topic from a generic Topic
nt::Topic genericTopic = inst.GetTopic("/datatable/X");
nt::DoubleTopic dblTopic{genericTopic};

C++ (handle-based)

NT_Instance inst = nt::GetDefaultInstance();

// get a topic from a NetworkTableInstance
NT_Topic topic = nt::GetTopic(inst, "/datatable/X");

C

NT_Instance inst = NT_GetDefaultInstance();

// get a topic from a NetworkTableInstance
NT_Topic topic = NT_GetTopic(inst, "/datatable/X");

Python

import ntcore

inst = ntcore.NetworkTableInstance.getDefault()
table = inst.getTable("datatable")

get a topic from a NetworkTableInstance
the topic name in this case is the full name
dblTopic = inst.getDoubleTopic("/datatable/X")

get a topic from a NetworkTable
the topic name in this case is the name within the table;
this line and the one above reference the same topic
dblTopic = table.getDoubleTopic("X")

get a type-specific topic from a generic Topic
genericTopic = inst.getTopic("/datatable/X")
dblTopic = new DoubleTopic(genericTopic)

26.3 Publishing and Subscribing to a Topic

26.3.1 Publishing to a Topic

In order to create a topic and publish values to it, it’s necessary to create a publisher.
NetworkTable publishers are represented as type-specific Publisher objects (e.g. Boolean-
Publisher: Java, C++, Python). Publishers are only active as long as the Publisher object
exists. Typically you want to keep publishing longer than the local scope of a function, so it’s
necessary to store the Publisher object somewhere longer term, e.g. in an instance variable.
In Java, the close() method needs be called to stop publishing; in C++ this is handled by the
destructor. C++ publishers are moveable and non-copyable. In Python the close() method
should be called to stop publishing, but it will also be closed when the object is garbage
collected.

976 Chapter 26. NetworkTables

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/BooleanPublisher.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_boolean_publisher.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/BooleanPublisher.html

FIRST Robotics Competition

In the handle-based APIs, there is only the non-type-specific NT_Publisher handle; the user is
responsible for keeping track of the type of the publisher and using the correct type-specific
set methods.
Publishing values is done via a set() operation. By default, this operation uses the current
time, but a timestamp may optionally be specified. Specifying a timestamp can be useful when
multiple values should have the same update timestamp. The timestamp units are integer
microseconds (see example code for how to get a current timestamp that is consistent with
the library).
Java

public class Example {
// the publisher is an instance variable so its lifetime matches that of the class
final DoublePublisher dblPub;

public Example(DoubleTopic dblTopic) {
// start publishing; the return value must be retained (in this case, via
// an instance variable)
dblPub = dblTopic.publish();

// publish options may be specified using PubSubOption
dblPub = dblTopic.publish(PubSubOption.keepDuplicates(true));

// publishEx provides additional options such as setting initial
// properties and using a custom type string. Using a custom type string for
// types other than raw and string is not recommended. The properties string
// must be a JSON map.
dblPub = dblTopic.publishEx("double", "{\"myprop\": 5}");

}

public void periodic() {
// publish a default value
dblPub.setDefault(0.0);

// publish a value with current timestamp
dblPub.set(1.0);
dblPub.set(2.0, 0); // 0 = use current time

// publish a value with a specific timestamp; NetworkTablesJNI.now() can
// be used to get the current time. On the roboRIO, this is the same as
// the FPGA timestamp (e.g. RobotController.getFPGATime())
long time = NetworkTablesJNI.now();
dblPub.set(3.0, time);

// publishers also implement the appropriate Consumer functional interface;
// this example assumes void myFunc(DoubleConsumer func) exists
myFunc(dblPub);

}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop publishing
public void close() {

// stop publishing
dblPub.close();

}
}

26.3. Publishing and Subscribing to a Topic 977

FIRST Robotics Competition

C++

class Example {
// the publisher is an instance variable so its lifetime matches that of the class
// publishing is automatically stopped when dblPub is destroyed by the class␣

↪→destructor
nt::DoublePublisher dblPub;

public:
explicit Example(nt::DoubleTopic dblTopic) {

// start publishing; the return value must be retained (in this case, via
// an instance variable)
dblPub = dblTopic.Publish();

// publish options may be specified using PubSubOptions
dblPub = dblTopic.Publish({.keepDuplicates = true});

// PublishEx provides additional options such as setting initial
// properties and using a custom type string. Using a custom type string for
// types other than raw and string is not recommended. The properties must
// be a JSON map.
dblPub = dblTopic.PublishEx("double", {{"myprop", 5}});

}

void Periodic() {
// publish a default value
dblPub.SetDefault(0.0);

// publish a value with current timestamp
dblPub.Set(1.0);
dblPub.Set(2.0, 0); // 0 = use current time

// publish a value with a specific timestamp; nt::Now() can
// be used to get the current time.
int64_t time = nt::Now();
dblPub.Set(3.0, time);

}
};

C++ (handle-based)

class Example {
// the publisher is an instance variable, but since it's a handle, it's
// not automatically released, so we need a destructor
NT_Publisher dblPub;

public:
explicit Example(NT_Topic dblTopic) {

// start publishing. It's recommended that the type string be standard
// for all types except string and raw.
dblPub = nt::Publish(dblTopic, NT_DOUBLE, "double");

// publish options may be specified using PubSubOptions
dblPub = nt::Publish(dblTopic, NT_DOUBLE, "double",

{.keepDuplicates = true});

// PublishEx allows setting initial properties. The
// properties must be a JSON map.

(continues on next page)

978 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
dblPub = nt::PublishEx(dblTopic, NT_DOUBLE, "double", {{"myprop", 5}});

}

void Periodic() {
// publish a default value
nt::SetDefaultDouble(dblPub, 0.0);

// publish a value with current timestamp
nt::SetDouble(dblPub, 1.0);
nt::SetDouble(dblPub, 2.0, 0); // 0 = use current time

// publish a value with a specific timestamp; nt::Now() can
// be used to get the current time.
int64_t time = nt::Now();
nt::SetDouble(dblPub, 3.0, time);

}

~Example() {
// stop publishing
nt::Unpublish(dblPub);

}
};

C

// This code assumes that a NT_Topic dblTopic variable already exists

// start publishing. It's recommended that the type string be standard
// for all types except string and raw.
NT_Publisher dblPub = NT_Publish(dblTopic, NT_DOUBLE, "double", NULL, 0);

// publish options may be specified
struct NT_PubSubOptions options;
memset(&options, 0, sizeof(options));
options.structSize = sizeof(options);
options.keepDuplicates = 1; // true
NT_Publisher dblPub = NT_Publish(dblTopic, NT_DOUBLE, "double", &options);

// PublishEx allows setting initial properties. The properties string must
// be a JSON map.
NT_Publisher dblPub =

NT_PublishEx(dblTopic, NT_DOUBLE, "double", "{\"myprop\", 5}", NULL, 0);

// publish a default value
NT_SetDefaultDouble(dblPub, 0.0);

// publish a value with current timestamp
NT_SetDouble(dblPub, 1.0);
NT_SetDouble(dblPub, 2.0, 0); // 0 = use current time

// publish a value with a specific timestamp; NT_Now() can
// be used to get the current time.
int64_t time = NT_Now();
NT_SetDouble(dblPub, 3.0, time);

// stop publishing
NT_Unpublish(dblPub);

26.3. Publishing and Subscribing to a Topic 979

FIRST Robotics Competition

Python

class Example:
def __init__(self, dblTopic: ntcore.DoubleTopic):

start publishing; the return value must be retained (in this case, via
an instance variable)
self.dblPub = dblTopic.publish()

publish options may be specified using PubSubOption
self.dblPub = dblTopic.publish(ntcore.PubSubOptions(keepDuplicates=True))

publishEx provides additional options such as setting initial
properties and using a custom type string. Using a custom type string for
types other than raw and string is not recommended. The properties string
must be a JSON map.
self.dblPub = dblTopic.publishEx("double", '{"myprop": 5}')

def periodic(self):
publish a default value
self.dblPub.setDefault(0.0)

publish a value with current timestamp
self.dblPub.set(1.0)
self.dblPub.set(2.0, 0) # 0 = use current time

publish a value with a specific timestamp with microsecond resolution.
On the roboRIO, this is the same as the FPGA timestamp (e.g.
RobotController.getFPGATime())
self.dblPub.set(3.0, ntcore._now())

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop publishing
def close(self):

stop publishing
self.dblPub.close()

26.3.2 Subscribing to a Topic

A subscriber receives value updates made to a topic. Similar to publishers, NetworkTable
subscribers are represented as type-specific Subscriber classes (e.g. BooleanSubscriber:
Java, C++, Python) that must be stored somewhere to continue subscribing.
Subscribers have a range of different ways to read received values. It’s possible to just read
the most recent value using get(), read the most recent value, along with its timestamp,
using getAtomic(), or get an array of all value changes since the last call using readQueue()
or readQueueValues().
Java

public class Example {
// the subscriber is an instance variable so its lifetime matches that of the class
final DoubleSubscriber dblSub;

public Example(DoubleTopic dblTopic) {
(continues on next page)

980 Chapter 26. NetworkTables

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/BooleanSubscriber.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_boolean_subscriber.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/BooleanSubscriber.html

FIRST Robotics Competition

(continued from previous page)
// start subscribing; the return value must be retained.
// the parameter is the default value if no value is available when get() is␣

↪→called
dblSub = dblTopic.subscribe(0.0);

// subscribe options may be specified using PubSubOption
dblSub =

dblTopic.subscribe(0.0, PubSubOption.keepDuplicates(true), PubSubOption.
↪→pollStorage(10));

// subscribeEx provides the options of using a custom type string.
// Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblSub = dblTopic.subscribeEx("double", 0.0);

}

public void periodic() {
// simple get of most recent value; if no value has been published,
// returns the default value passed to the subscribe() function
double val = dblSub.get();

// get the most recent value; if no value has been published, returns
// the passed-in default value
double val = dblSub.get(-1.0);

// subscribers also implement the appropriate Supplier interface, e.g.␣
↪→DoubleSupplier

double val = dblSub.getAsDouble();

// get the most recent value, along with its timestamp
TimestampedDouble tsVal = dblSub.getAtomic();

// read all value changes since the last call to readQueue/readQueueValues
// readQueue() returns timestamps; readQueueValues() does not.
TimestampedDouble[] tsUpdates = dblSub.readQueue();
double[] valUpdates = dblSub.readQueueValues();

}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop subscribing
public void close() {

// stop subscribing
dblSub.close();

}
}

C++

class Example {
// the subscriber is an instance variable so its lifetime matches that of the class
// subscribing is automatically stopped when dblSub is destroyed by the class␣

↪→destructor
nt::DoubleSubscriber dblSub;

public:
(continues on next page)

26.3. Publishing and Subscribing to a Topic 981

FIRST Robotics Competition

(continued from previous page)
explicit Example(nt::DoubleTopic dblTopic) {

// start subscribing; the return value must be retained.
// the parameter is the default value if no value is available when get() is␣

↪→called
dblSub = dblTopic.Subscribe(0.0);

// subscribe options may be specified using PubSubOptions
dblSub =

dblTopic.subscribe(0.0,
{.pollStorage = 10, .keepDuplicates = true});

// SubscribeEx provides the options of using a custom type string.
// Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblSub = dblTopic.SubscribeEx("double", 0.0);

}

void Periodic() {
// simple get of most recent value; if no value has been published,
// returns the default value passed to the Subscribe() function
double val = dblSub.Get();

// get the most recent value; if no value has been published, returns
// the passed-in default value
double val = dblSub.Get(-1.0);

// get the most recent value, along with its timestamp
nt::TimestampedDouble tsVal = dblSub.GetAtomic();

// read all value changes since the last call to ReadQueue/ReadQueueValues
// ReadQueue() returns timestamps; ReadQueueValues() does not.
std::vector<nt::TimestampedDouble> tsUpdates = dblSub.ReadQueue();
std::vector<double> valUpdates = dblSub.ReadQueueValues();

}
};

C++ (handle-based)

class Example {
// the subscriber is an instance variable, but since it's a handle, it's
// not automatically released, so we need a destructor
NT_Subscriber dblSub;

public:
explicit Example(NT_Topic dblTopic) {

// start subscribing
// Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblSub = nt::Subscribe(dblTopic, NT_DOUBLE, "double");

// subscribe options may be specified using PubSubOptions
dblSub =

nt::Subscribe(dblTopic, NT_DOUBLE, "double",
{.pollStorage = 10, .keepDuplicates = true});

}

(continues on next page)

982 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
void Periodic() {

// get the most recent value; if no value has been published, returns
// the passed-in default value
double val = nt::GetDouble(dblSub, 0.0);

// get the most recent value, along with its timestamp
nt::TimestampedDouble tsVal = nt::GetAtomic(dblSub, 0.0);

// read all value changes since the last call to ReadQueue/ReadQueueValues
// ReadQueue() returns timestamps; ReadQueueValues() does not.
std::vector<nt::TimestampedDouble> tsUpdates = nt::ReadQueueDouble(dblSub);
std::vector<double> valUpdates = nt::ReadQueueValuesDouble(dblSub);

}

~Example() {
// stop subscribing
nt::Unsubscribe(dblSub);

}

C

// This code assumes that a NT_Topic dblTopic variable already exists

// start subscribing
// Using a custom type string for types other than raw and string is not recommended.
NT_Subscriber dblSub = NT_Subscribe(dblTopic, NT_DOUBLE, "double", NULL, 0);

// subscribe options may be specified using NT_PubSubOptions
struct NT_PubSubOptions options;
memset(&options, 0, sizeof(options));
options.structSize = sizeof(options);
options.keepDuplicates = 1; // true
options.pollStorage = 10;
NT_Subscriber dblSub = NT_Subscribe(dblTopic, NT_DOUBLE, "double", &options);

// get the most recent value; if no value has been published, returns
// the passed-in default value
double val = NT_GetDouble(dblSub, 0.0);

// get the most recent value, along with its timestamp
struct NT_TimestampedDouble tsVal;
NT_GetAtomic(dblSub, 0.0, &tsVal);
NT_DisposeTimestamped(&tsVal);

// read all value changes since the last call to ReadQueue/ReadQueueValues
// ReadQueue() returns timestamps; ReadQueueValues() does not.
size_t tsUpdatesLen;
struct NT_TimestampedDouble* tsUpdates = NT_ReadQueueDouble(dblSub, &tsUpdatesLen);
NT_FreeQueueDouble(tsUpdates, tsUpdatesLen);

size_t valUpdatesLen;
double* valUpdates = NT_ReadQueueValuesDouble(dblSub, &valUpdatesLen);
NT_FreeDoubleArray(valUpdates, valUpdatesLen);

// stop subscribing
NT_Unsubscribe(dblSub);

26.3. Publishing and Subscribing to a Topic 983

FIRST Robotics Competition

Python

class Example:
def __init__(self, dblTopic: ntcore.DoubleTopic):

start subscribing; the return value must be retained.
the parameter is the default value if no value is available when get() is␣

↪→called
self.dblSub = dblTopic.subscribe(0.0)

subscribe options may be specified using PubSubOption
self.dblSub = dblTopic.subscribe(

0.0, ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10)
)

subscribeEx provides the options of using a custom type string.
Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblSub = dblTopic.subscribeEx("double", 0.0)

def periodic(self):
simple get of most recent value; if no value has been published,
returns the default value passed to the subscribe() function
val = self.dblSub.get()

get the most recent value; if no value has been published, returns
the passed-in default value
val = self.dblSub.get(-1.0)

get the most recent value, along with its timestamp
tsVal = self.dblSub.getAtomic()

read all value changes since the last call to readQueue
readQueue() returns timestamps
tsUpdates = self.dblSub.readQueue()

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop subscribing
def close(self):

stop subscribing
self.dblSub.close()

26.3.3 Using Entry to Both Subscribe and Publish

An entry is a combined publisher and subscriber. The subscriber is always active, but the
publisher is not created until a publish operation is performed (e.g. a value is “set”, aka
published, on the entry). This may be more convenient than maintaining a separate publisher
and subscriber. Similar to publishers and subscribers, NetworkTable entries are represented
as type-specific Entry classes (e.g. BooleanEntry: Java, C++, Python) that must be retained
to continue subscribing (and publishing).
Java

public class Example {
// the entry is an instance variable so its lifetime matches that of the class

(continues on next page)

984 Chapter 26. NetworkTables

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/BooleanEntry.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_boolean_entry.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/BooleanEntry.html

FIRST Robotics Competition

(continued from previous page)
final DoubleEntry dblEntry;

public Example(DoubleTopic dblTopic) {
// start subscribing; the return value must be retained.
// the parameter is the default value if no value is available when get() is␣

↪→called
dblEntry = dblTopic.getEntry(0.0);

// publish and subscribe options may be specified using PubSubOption
dblEntry =

dblTopic.getEntry(0.0, PubSubOption.keepDuplicates(true), PubSubOption.
↪→pollStorage(10));

// getEntryEx provides the options of using a custom type string.
// Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblEntry = dblTopic.getEntryEx("double", 0.0);

}

public void periodic() {
// entries support all the same methods as subscribers:
double val = dblEntry.get();
double val = dblEntry.get(-1.0);
double val = dblEntry.getAsDouble();
TimestampedDouble tsVal = dblEntry.getAtomic();
TimestampedDouble[] tsUpdates = dblEntry.readQueue();
double[] valUpdates = dblEntry.readQueueValues();

// entries also support all the same methods as publishers; the first time
// one of these is called, an internal publisher is automatically created
dblEntry.setDefault(0.0);
dblEntry.set(1.0);
dblEntry.set(2.0, 0); // 0 = use current time
long time = NetworkTablesJNI.now();
dblEntry.set(3.0, time);
myFunc(dblEntry);

}

public void unpublish() {
// you can stop publishing while keeping the subscriber alive
dblEntry.unpublish();

}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop subscribing
public void close() {

// stop subscribing/publishing
dblEntry.close();

}
}

C++

class Example {
// the entry is an instance variable so its lifetime matches that of the class

(continues on next page)

26.3. Publishing and Subscribing to a Topic 985

FIRST Robotics Competition

(continued from previous page)
// subscribing/publishing is automatically stopped when dblEntry is destroyed by
// the class destructor
nt::DoubleEntry dblEntry;

public:
explicit Example(nt::DoubleTopic dblTopic) {

// start subscribing; the return value must be retained.
// the parameter is the default value if no value is available when get() is␣

↪→called
dblEntry = dblTopic.GetEntry(0.0);

// publish and subscribe options may be specified using PubSubOptions
dblEntry =

dblTopic.GetEntry(0.0,
{.pollStorage = 10, .keepDuplicates = true});

// GetEntryEx provides the options of using a custom type string.
// Using a custom type string for types other than raw and string is not␣

↪→recommended.
dblEntry = dblTopic.GetEntryEx("double", 0.0);

}

void Periodic() {
// entries support all the same methods as subscribers:
double val = dblEntry.Get();
double val = dblEntry.Get(-1.0);
nt::TimestampedDouble tsVal = dblEntry.GetAtomic();
std::vector<nt::TimestampedDouble> tsUpdates = dblEntry.ReadQueue();
std::vector<double> valUpdates = dblEntry.ReadQueueValues();

// entries also support all the same methods as publishers; the first time
// one of these is called, an internal publisher is automatically created
dblEntry.SetDefault(0.0);
dblEntry.Set(1.0);
dblEntry.Set(2.0, 0); // 0 = use current time
int64_t time = nt::Now();
dblEntry.Set(3.0, time);

}

void Unpublish() {
// you can stop publishing while keeping the subscriber alive
dblEntry.Unpublish();

}
};

C++ (handle-based)

class Example {
// the entry is an instance variable, but since it's a handle, it's
// not automatically released, so we need a destructor
NT_Entry dblEntry;

public:
explicit Example(NT_Topic dblTopic) {

// start subscribing
// Using a custom type string for types other than raw and string is not␣

(continues on next page)

986 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
↪→recommended.

dblEntry = nt::GetEntry(dblTopic, NT_DOUBLE, "double");

// publish and subscribe options may be specified using PubSubOptions
dblEntry =

nt::GetEntry(dblTopic, NT_DOUBLE, "double",
{.pollStorage = 10, .keepDuplicates = true});

}

void Periodic() {
// entries support all the same methods as subscribers:
double val = nt::GetDouble(dblEntry, 0.0);
nt::TimestampedDouble tsVal = nt::GetAtomic(dblEntry, 0.0);
std::vector<nt::TimestampedDouble> tsUpdates = nt::ReadQueueDouble(dblEntry);
std::vector<double> valUpdates = nt::ReadQueueValuesDouble(dblEntry);

// entries also support all the same methods as publishers; the first time
// one of these is called, an internal publisher is automatically created
nt::SetDefaultDouble(dblPub, 0.0);
nt::SetDouble(dblPub, 1.0);
nt::SetDouble(dblPub, 2.0, 0); // 0 = use current time
int64_t time = nt::Now();
nt::SetDouble(dblPub, 3.0, time);

}

void Unpublish() {
// you can stop publishing while keeping the subscriber alive
nt::Unpublish(dblEntry);

}

~Example() {
// stop publishing and subscribing
nt::ReleaseEntry(dblEntry);

}

C

// This code assumes that a NT_Topic dblTopic variable already exists

// start subscribing
// Using a custom type string for types other than raw and string is not recommended.
NT_Entry dblEntry = NT_GetEntryEx(dblTopic, NT_DOUBLE, "double", NULL, 0);

// publish and subscribe options may be specified using NT_PubSubOptions
struct NT_PubSubOptions options;
memset(&options, 0, sizeof(options));
options.structSize = sizeof(options);
options.keepDuplicates = 1; // true
options.pollStorage = 10;
NT_Entry dblEntry = NT_GetEntryEx(dblTopic, NT_DOUBLE, "double", &options);

// entries support all the same methods as subscribers:
double val = NT_GetDouble(dblEntry, 0.0);

struct NT_TimestampedDouble tsVal;
NT_GetAtomic(dblEntry, 0.0, &tsVal);

(continues on next page)

26.3. Publishing and Subscribing to a Topic 987

FIRST Robotics Competition

(continued from previous page)
NT_DisposeTimestamped(&tsVal);

size_t tsUpdatesLen;
struct NT_TimestampedDouble* tsUpdates = NT_ReadQueueDouble(dblEntry, &tsUpdatesLen);
NT_FreeQueueDouble(tsUpdates, tsUpdatesLen);

size_t valUpdatesLen;
double* valUpdates = NT_ReadQueueValuesDouble(dblEntry, &valUpdatesLen);
NT_FreeDoubleArray(valUpdates, valUpdatesLen);

// entries also support all the same methods as publishers; the first time
// one of these is called, an internal publisher is automatically created
NT_SetDefaultDouble(dblPub, 0.0);
NT_SetDouble(dblPub, 1.0);
NT_SetDouble(dblPub, 2.0, 0); // 0 = use current time
int64_t time = NT_Now();
NT_SetDouble(dblPub, 3.0, time);

// you can stop publishing while keeping the subscriber alive
// it's not necessary to call this before NT_ReleaseEntry()
NT_Unpublish(dblEntry);

// stop subscribing
NT_ReleaseEntry(dblEntry);

Python

class Example:
def __init__(self, dblTopic: ntcore.DoubleTopic):

start subscribing; the return value must be retained.
the parameter is the default value if no value is available when get() is␣

↪→called
self.dblEntry = dblTopic.getEntry(0.0)

publish and subscribe options may be specified using PubSubOption
self.dblEntry = dblTopic.getEntry(

0.0, ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10)
)

getEntryEx provides the options of using a custom type string.
Using a custom type string for types other than raw and string is not␣

↪→recommended.
self.dblEntry = dblTopic.getEntryEx("double", 0.0)

def periodic(self):
entries support all the same methods as subscribers:
val = self.dblEntry.get()
val = self.dblEntry.get(-1.0)
val = self.dblEntry.getAsDouble()
tsVal = self.dblEntry.getAtomic()
tsUpdates = self.dblEntry.readQueue()

entries also support all the same methods as publishers; the first time
one of these is called, an internal publisher is automatically created
self.dblEntry.setDefault(0.0)

(continues on next page)

988 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
self.dblEntry.set(1.0)
self.dblEntry.set(2.0, 0) # 0 = use current time
time = ntcore._now()
self.dblEntry.set(3.0, time)

def unpublish(self):
you can stop publishing while keeping the subscriber alive
self.dblEntry.unpublish()

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop subscribing
def close(self):

stop subscribing/publishing
self.dblEntry.close()

26.3.4 Using GenericEntry, GenericPublisher, and GenericSubscriber

For the most robust code, using the type-specific Publisher, Subscriber, and Entry classes is
recommended, but in some cases it may be easier to write code that uses type-specific get and
set function calls instead of having the NetworkTables type be exposed via the class (object)
type. The GenericPublisher (Java, C++, Python), GenericSubscriber (Java, C++, Python),
and GenericEntry (Java, C++, Python) classes enable this approach.
Java

public class Example {
// the entry is an instance variable so its lifetime matches that of the class
final GenericPublisher pub;
final GenericSubscriber sub;
final GenericEntry entry;

public Example(Topic topic) {
// start subscribing; the return value must be retained.
// when publishing, a type string must be provided
pub = topic.genericPublish("double");

// subscribing can optionally include a type string
// unlike type-specific subscribers, no default value is provided
sub = topic.genericSubscribe();
sub = topic.genericSubscribe("double");

// when getting an entry, the type string is also optional; if not provided
// the publisher data type will be determined by the first publisher-creating call
entry = topic.getGenericEntry();
entry = topic.getGenericEntry("double");

// publish and subscribe options may be specified using PubSubOption
pub = topic.genericPublish("double",

PubSubOption.keepDuplicates(true), PubSubOption.pollStorage(10));
sub =

topic.genericSubscribe(PubSubOption.keepDuplicates(true), PubSubOption.
↪→pollStorage(10));

entry =
(continues on next page)

26.3. Publishing and Subscribing to a Topic 989

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/GenericPublisher.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_generic_publisher.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/GenericPublisher.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/GenericSubscriber.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_generic_subscriber.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/GenericSubscriber.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/GenericEntry.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_generic_entry.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/GenericEntry.html

FIRST Robotics Competition

(continued from previous page)
topic.getGenericEntry(PubSubOption.keepDuplicates(true), PubSubOption.

↪→pollStorage(10));

// genericPublishEx provides the option of setting initial properties.
pub = topic.genericPublishEx("double", "{\"retained\": true}",

PubSubOption.keepDuplicates(true), PubSubOption.pollStorage(10));
}

public void periodic() {
// generic subscribers and entries have typed get operations; a default must be␣

↪→provided
double val = sub.getDouble(-1.0);
double val = entry.getDouble(-1.0);

// they also support an untyped get (also meets Supplier<NetworkTableValue>␣
↪→interface)

NetworkTableValue val = sub.get();
NetworkTableValue val = entry.get();

// they also support readQueue
NetworkTableValue[] updates = sub.readQueue();
NetworkTableValue[] updates = entry.readQueue();

// publishers and entries have typed set operations; these return false if the
// topic already exists with a mismatched type
boolean success = pub.setDefaultDouble(1.0);
boolean success = pub.setBoolean(true);

// they also implement a generic set and Consumer<NetworkTableValue> interface
boolean success = entry.set(NetworkTableValue.makeDouble(...));
boolean success = entry.accept(NetworkTableValue.makeDouble(...));

}

public void unpublish() {
// you can stop publishing an entry while keeping the subscriber alive
entry.unpublish();

}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop subscribing/publishing
public void close() {

pub.close();
sub.close();
entry.close();

}
}

C++

class Example {
// the entry is an instance variable so its lifetime matches that of the class
// subscribing/publishing is automatically stopped when dblEntry is destroyed by
// the class destructor
nt::GenericPublisher pub;
nt::GenericSubscriber sub;

(continues on next page)

990 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
nt::GenericEntry entry;

public:
Example(nt::Topic topic) {

// start subscribing; the return value must be retained.
// when publishing, a type string must be provided
pub = topic.GenericPublish("double");

// subscribing can optionally include a type string
// unlike type-specific subscribers, no default value is provided
sub = topic.GenericSubscribe();
sub = topic.GenericSubscribe("double");

// when getting an entry, the type string is also optional; if not provided
// the publisher data type will be determined by the first publisher-creating call
entry = topic.GetEntry();
entry = topic.GetEntry("double");

// publish and subscribe options may be specified using PubSubOptions
pub = topic.GenericPublish("double",

{.pollStorage = 10, .keepDuplicates = true});
sub = topic.GenericSubscribe(

{.pollStorage = 10, .keepDuplicates = true});
entry = topic.GetGenericEntry(

{.pollStorage = 10, .keepDuplicates = true});

// genericPublishEx provides the option of setting initial properties.
pub = topic.genericPublishEx("double", {{"myprop", 5}},

{.pollStorage = 10, .keepDuplicates = true});
}

void Periodic() {
// generic subscribers and entries have typed get operations; a default must be␣

↪→provided
double val = sub.GetDouble(-1.0);
double val = entry.GetDouble(-1.0);

// they also support an untyped get
nt::NetworkTableValue val = sub.Get();
nt::NetworkTableValue val = entry.Get();

// they also support readQueue
std::vector<nt::NetworkTableValue> updates = sub.ReadQueue();
std::vector<nt::NetworkTableValue> updates = entry.ReadQueue();

// publishers and entries have typed set operations; these return false if the
// topic already exists with a mismatched type
bool success = pub.SetDefaultDouble(1.0);
bool success = pub.SetBoolean(true);

// they also implement a generic set and Consumer<NetworkTableValue> interface
bool success = entry.Set(nt::NetworkTableValue::MakeDouble(...));

}

void Unpublish() {
// you can stop publishing an entry while keeping the subscriber alive

(continues on next page)

26.3. Publishing and Subscribing to a Topic 991

FIRST Robotics Competition

(continued from previous page)
entry.Unpublish();

}
};

Python

class Example:
def __init__(self, topic: ntcore.Topic):

start subscribing; the return value must be retained.
when publishing, a type string must be provided
self.pub = topic.genericPublish("double")

subscribing can optionally include a type string
unlike type-specific subscribers, no default value is provided
self.sub = topic.genericSubscribe()
self.sub = topic.genericSubscribe("double")

when getting an entry, the type string is also optional; if not provided
the publisher data type will be determined by the first publisher-creating␣

↪→call
self.entry = topic.getGenericEntry()
self.entry = topic.getGenericEntry("double")

publish and subscribe options may be specified using PubSubOption
self.pub = topic.genericPublish(

"double", ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10)
)
self.sub = topic.genericSubscribe(

ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10)
)
self.entry = topic.getGenericEntry(

ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10)
)

genericPublishEx provides the option of setting initial properties.
self.pub = topic.genericPublishEx(

"double",
'{"retained": true}',
ntcore.PubSubOptions(keepDuplicates=True, pollStorage=10),

)

def periodic(self):
generic subscribers and entries have typed get operations; a default must␣

↪→be provided
val = self.sub.getDouble(-1.0)
val = self.entry.getDouble(-1.0)

they also support an untyped get (also meets Supplier<NetworkTableValue>␣
↪→interface)

val = self.sub.get()
val = self.entry.get()

they also support readQueue
updates = self.sub.readQueue()
updates = self.entry.readQueue()

(continues on next page)

992 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)

publishers and entries have typed set operations; these return false if the
topic already exists with a mismatched type
success = self.pub.setDefaultDouble(1.0)
success = self.pub.setBoolean(True)

they also implement a generic set
success = self.entry.set(ntcore.Value.makeDouble(...))

def unpublish(self):
you can stop publishing an entry while keeping the subscriber alive
self.entry.unpublish()

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop subscribing/publishing
def close(self):

self.pub.close()
self.sub.close()
self.entry.close()

26.3.5 Subscribing to Multiple Topics

While in most cases it’s only necessary to subscribe to individual topics, it is sometimes useful
(e.g. in dashboard applications) to subscribe and get value updates for changes to multiple
topics. Listeners (see Listening for Changes) can be used directly, but creating a MultiSub-
scriber (Java, C++) allows specifying subscription options and reusing the same subscriber
for multiple listeners.
Java

public class Example {
// the subscriber is an instance variable so its lifetime matches that of the class
final MultiSubscriber multiSub;
final NetworkTableListenerPoller poller;

public Example(NetworkTableInstance inst) {
// start subscribing; the return value must be retained.
// provide an array of topic name prefixes
multiSub = new MultiSubscriber(inst, new String[] {"/table1/", "/table2/"});

// subscribe options may be specified using PubSubOption
multiSub = new MultiSubscriber(inst, new String[] {"/table1/", "/table2/"},

PubSubOption.keepDuplicates(true));

// to get value updates from a MultiSubscriber, it's necessary to create a␣
↪→listener

// (see the listener documentation for more details)
poller = new NetworkTableListenerPoller(inst);
poller.addListener(multiSub, EnumSet.of(NetworkTableEvent.Kind.kValueAll));

}

public void periodic() {
// read value events

(continues on next page)

26.3. Publishing and Subscribing to a Topic 993

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/MultiSubscriber.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_multi_subscriber.html

FIRST Robotics Competition

(continued from previous page)
NetworkTableEvent[] events = poller.readQueue();

for (NetworkTableEvent event : events) {
NetworkTableValue value = event.valueData.value;

}
}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop subscribing
public void close() {

// close listener
poller.close();
// stop subscribing
multiSub.close();

}
}

C++

class Example {
// the subscriber is an instance variable so its lifetime matches that of the class
// subscribing is automatically stopped when multiSub is destroyed by the class␣

↪→destructor
nt::MultiSubscriber multiSub;
nt::NetworkTableListenerPoller poller;

public:
explicit Example(nt::NetworkTableInstance inst) {

// start subscribing; the return value must be retained.
// provide an array of topic name prefixes
multiSub = nt::MultiSubscriber{inst, {{"/table1/", "/table2/"}}};

// subscribe options may be specified using PubSubOption
multiSub = nt::MultiSubscriber{inst, {{"/table1/", "/table2/"}},

{.keepDuplicates = true}};

// to get value updates from a MultiSubscriber, it's necessary to create a␣
↪→listener

// (see the listener documentation for more details)
poller = nt::NetworkTableListenerPoller{inst};
poller.AddListener(multiSub, nt::EventFlags::kValueAll);

}

void Periodic() {
// read value events
std::vector<nt::Event> events = poller.ReadQueue();

for (auto&& event : events) {
nt::NetworkTableValue value = event.GetValueEventData()->value;

}
}

};

C++ (handle-based)

994 Chapter 26. NetworkTables

FIRST Robotics Competition

class Example {
// the subscriber is an instance variable, but since it's a handle, it's
// not automatically released, so we need a destructor
NT_MultiSubscriber multiSub;
NT_ListenerPoller poller;

public:
explicit Example(NT_Inst inst) {

// start subscribing; the return value must be retained.
// provide an array of topic name prefixes
multiSub = nt::SubscribeMultiple(inst, {{"/table1/", "/table2/"}});

// subscribe options may be specified using PubSubOption
multiSub = nt::SubscribeMultiple(inst, {{"/table1/", "/table2/"}},

{.keepDuplicates = true});

// to get value updates from a MultiSubscriber, it's necessary to create a␣
↪→listener

// (see the listener documentation for more details)
poller = nt::CreateListenerPoller(inst);
nt::AddPolledListener(poller, multiSub, nt::EventFlags::kValueAll);

}

void Periodic() {
// read value events
std::vector<nt::Event> events = nt::ReadListenerQueue(poller);

for (auto&& event : events) {
nt::NetworkTableValue value = event.GetValueEventData()->value;

}
}

~Example() {
// close listener
nt::DestroyListenerPoller(poller);
// stop subscribing
nt::UnsubscribeMultiple(multiSub);

}

C

// This code assumes that a NT_Inst inst variable already exists

// start subscribing
// provide an array of topic name prefixes
struct NT_String prefixes[2];
prefixes[0].str = "/table1/";
prefixes[0].len = 8;
prefixes[1].str = "/table2/";
prefixes[1].len = 8;
NT_MultiSubscriber multiSub = NT_SubscribeMultiple(inst, prefixes, 2, NULL, 0);

// subscribe options may be specified using NT_PubSubOptions
struct NT_PubSubOptions options;
memset(&options, 0, sizeof(options));
options.structSize = sizeof(options);
options.keepDuplicates = 1; // true

(continues on next page)

26.3. Publishing and Subscribing to a Topic 995

FIRST Robotics Competition

(continued from previous page)
NT_MultiSubscriber multiSub = NT_SubscribeMultiple(inst, prefixes, 2, &options);

// to get value updates from a MultiSubscriber, it's necessary to create a listener
// (see the listener documentation for more details)
NT_ListenerPoller poller = NT_CreateListenerPoller(inst);
NT_AddPolledListener(poller, multiSub, NT_EVENT_VALUE_ALL);

// read value events
size_t eventsLen;
struct NT_Event* events = NT_ReadListenerQueue(poller, &eventsLen);

for (size_t i = 0; i < eventsLen; i++) {
NT_Value* value = &events[i].data.valueData.value;

}

NT_DisposeEventArray(events, eventsLen);

// close listener
NT_DestroyListenerPoller(poller);
// stop subscribing
NT_UnsubscribeMultiple(multiSub);

Python

class Example:
def __init__(self, inst: ntcore.NetworkTableInstance):

start subscribing; the return value must be retained.
provide an array of topic name prefixes
self.multiSub = ntcore.MultiSubscriber(inst, ["/table1/", "/table2/"])

subscribe options may be specified using PubSubOption
self.multiSub = ntcore.MultiSubscriber(

inst, ["/table1/", "/table2/"], ntcore.PubSubOptions(keepDuplicates=True)
)

to get value updates from a MultiSubscriber, it's necessary to create a␣
↪→listener

(see the listener documentation for more details)
self.poller = ntcore.NetworkTableListenerPoller(inst)
self.poller.addListener(self.multiSub, ntcore.EventFlags.kValueAlls)

def periodic(self):
read value events
events = self.poller.readQueue()

for event in events:
value: ntcore.Value = event.data.value

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop subscribing
def close(self):

close listener
self.poller.close()
stop subscribing
self.multiSub.close()

996 Chapter 26. NetworkTables

FIRST Robotics Competition

26.3.6 Publish/Subscribe Options

Publishers and subscribers have various options that affect their behavior. Options can only
be set at the creation of the publisher, subscriber, or entry. Options set on an entry affect both
the publisher and subscriber portions of the entry. The above examples show how options can
be set when creating a publisher or subscriber.
Subscriber options:

• pollStorage: Polling storage size for a subscription. Specifies the maximum number
of updates NetworkTables should store between calls to the subscriber’s readQueue()
function. If zero, defaults to 1 if sendAll is false, 20 if sendAll is true.

• topicsOnly: Don’t send value changes, only topic announcements. Defaults to false. As
a client doesn’t get topic announcements for topics it is not subscribed to, this option
may be used with MultiSubscriber to get topic announcements for a particular topic
name prefix, without also getting all value changes.

• excludePublisher: Used to exclude a single publisher’s updates from being queued to
the subscriber’s readQueue() function. This is primarily useful in scenarios where you
don’t want local value updates to be “echoed back” to a local subscriber. Regardless of
this setting, the topic value is updated–this only affects readQueue() on this subscriber.

• disableRemote: If true, remote value updates are not queued for readQueue(). De-
faults to false. Regardless of this setting, the topic value is updated–this only affects
readQueue() on this subscriber.

• disableLocal: If true, local value updates are not queued for readQueue(). Defaults to
false. Regardless of this setting, the topic value is updated–this only affects readQueue()
on this subscriber.

Subscriber and publisher options:
• periodic: How frequently changes will be sent over the network, in seconds. Network-

Tables may send more frequently than this (e.g. use a combined minimum period for all
values) or apply a restricted range to this value. The default is 0.1 seconds. For pub-
lishers, it specifies how frequently local changes should be sent over the network; for
subscribers, it is a request to the server to send server changes at the requested rate.
Note that regardless of the setting of this option, only value changes are sent, unless the
keepDuplicates option is set.

• sendAll: If true, send all value changes over the network. Defaults to false. As with
periodic, this is a request to the server for subscribers and a behavior change for pub-
lishers.

• keepDuplicates: If true, preserves duplicate value changes (rather than ignoring them).
Defaults to false. As with periodic, this is a request to the server for subscribers and a
behavior change for publishers.

Entry options:
• excludeSelf: Provides the same behavior as excludePublisher for the entry’s internal

publisher. Defaults to false.

26.3. Publishing and Subscribing to a Topic 997

FIRST Robotics Competition

26.3.7 NetworkTableEntry

NetworkTableEntry (Java, C++, Python) is a class that exists for backwards compatibility.
New code should prefer using type-specific Publisher and Subscriber classes, or GenericEntry
if non-type-specific access is needed.
It is similar to GenericEntry in that it supports both publishing and subscribing in a sin-
gle object. However, unlike GenericEntry, NetworkTableEntry is not released (e.g. unsub-
scribes/unpublishes) if close() is called (in Java) or the object is destroyed (in C++); instead,
it operates similar to Topic, in that only a single NetworkTableEntry exists for each topic and
it lasts for the lifetime of the instance.

26.4 NetworkTables Instances

The NetworkTables implementation supports simultaneous operation of multiple “instances.”
Each instance has a completely independent set of topics, publishers, subscribers, and
client/server state. This feature is mainly useful for unit testing. It allows a single program
to be a member of two NetworkTables “networks” that contain different (and unrelated) sets
of topics, or running both client and server instances in a single program.
For most general usage, you should use the “default” instance, as all current dashboard pro-
grams can only connect to a single NetworkTables server at a time. Normally the default
instance is set up on the robot as a server, and used for communication with the dashboard
program running on your driver station computer. This is what the SmartDashboard and
LiveWindow classes use.
However, if you wanted to do unit testing of your robot program’s NetworkTables communi-
cations, you could set up your unit tests such that they create a separate client instance (still
within the same program) and have it connect to the server instance that the main robot code
is running.
The NetworkTableInstance (Java, C++, Python) class provides the API abstraction for in-
stances. The number of instances that can be simultaneously created is limited to 16 (includ-
ing the default instance), so when using multiple instances in cases such as unit testing code,
it’s important to destroy instances that are no longer needed.
Destroying a NetworkTableInstance frees all resources related to the instance. All classes or
handles that reference the instance (e.g. Topics, Publishers, and Subscribers) are invalidated
and may result in unexpected behavior if used after the instance is destroyed–in particular, in-
stance handles are reused so it’s possible for a handle “left over” from a previously destroyed
instance to refer to an unexpected resource in a newly created instance.
Java

// get the default NetworkTable instance
NetworkTableInstance defaultInst = NetworkTableInstance.getDefault();

// create a NetworkTable instance
NetworkTableInstance inst = NetworkTableInstance.create();

// destroy a NetworkTable instance
inst.close();

C++

998 Chapter 26. NetworkTables

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/NetworkTableEntry.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_network_table_entry.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/NetworkTableEntry.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/networktables/NetworkTableInstance.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classnt_1_1_network_table_instance.html
https://robotpy.readthedocs.io/projects/pyntcore/en/stable/ntcore/NetworkTableInstance.html

FIRST Robotics Competition

// get the default NetworkTable instance
nt::NetworkTableInstance defaultInst = nt::NetworkTableInstance::GetDefault();

// create a NetworkTable instance
nt::NetworkTableInstance inst = nt::NetworkTableInstance::Create();

// destroy a NetworkTable instance; NetworkTableInstance objects are not RAII
nt::NetworkTableInstance::Destroy(inst);

C++ (handle-based)

// get the default NetworkTable instance
NT_Instance defaultInst = nt::GetDefaultInstance();

// create a NetworkTable instance
NT_Instance inst = nt::CreateInstance();

// destroy a NetworkTable instance
nt::DestroyInstance(inst);

C

// get the default NetworkTable instance
NT_Instance defaultInst = NT_GetDefaultInstance();

// create a NetworkTable instance
NT_Instance inst = NT_CreateInstance();

// destroy a NetworkTable instance
NT_DestroyInstance(inst);

Python

import ntcore

get the default NetworkTable instance
defaultInst = ntcore.NetworkTableInstance.getDefault()

create a NetworkTable instance
inst = ntcore.NetworkTableInstance.create()

destroy a NetworkTable instance
ntcore.NetworkTableInstance.destroy(inst)

26.5 NetworkTables Networking

The advantage of the robot program being the server is that it’s at a known network name
(and typically at a known address) that is based on the team number. This is why it’s possible
in both the NetworkTables client API and in most dashboards to simply provide the team
number, rather than a server address. As the robot program is the server, note this means
the NetworkTables server is running on the local computer when running in simulation.

26.5. NetworkTables Networking 999

FIRST Robotics Competition

26.5.1 Starting a NetworkTables Server

Java

NetworkTableInstance inst = NetworkTableInstance.getDefault();
inst.startServer();

C++

nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();
inst.StartServer();

C++ (handle-based)

NT_Inst inst = nt::GetDefaultInstance();
nt::StartServer(inst, "networktables.json", "", NT_DEFAULT_PORT3, NT_DEFAULT_PORT4);

C

NT_Inst inst = NT_GetDefaultInstance();
NT_StartServer(inst, "networktables.json", "", NT_DEFAULT_PORT3, NT_DEFAULT_PORT4);

Python

import ntcore

inst = ntcore.NetworkTableInstance.getDefault()
inst.startServer()

26.5.2 Starting a NetworkTables Client

Java

NetworkTableInstance inst = NetworkTableInstance.getDefault();

// start a NT4 client
inst.startClient4("example client");

// connect to a roboRIO with team number TEAM
inst.setServerTeam(TEAM);

// starting a DS client will try to get the roboRIO address from the DS application
inst.startDSClient();

// connect to a specific host/port
inst.setServer("host", NetworkTableInstance.kDefaultPort4)

C++

nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();

// start a NT4 client
inst.StartClient4("example client");

// connect to a roboRIO with team number TEAM
(continues on next page)

1000 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
inst.SetServerTeam(TEAM);

// starting a DS client will try to get the roboRIO address from the DS application
inst.StartDSClient();

// connect to a specific host/port
inst.SetServer("host", NT_DEFAULT_PORT4)

C++ (handle-based)

NT_Inst inst = nt::GetDefaultInstance();

// start a NT4 client
nt::StartClient4(inst, "example client");

// connect to a roboRIO with team number TEAM
nt::SetServerTeam(inst, TEAM);

// starting a DS client will try to get the roboRIO address from the DS application
nt::StartDSClient(inst);

// connect to a specific host/port
nt::SetServer(inst, "host", NT_DEFAULT_PORT4)

C

NT_Inst inst = NT_GetDefaultInstance();

// start a NT4 client
NT_StartClient4(inst, "example client");

// connect to a roboRIO with team number TEAM
NT_SetServerTeam(inst, TEAM);

// starting a DS client will try to get the roboRIO address from the DS application
NT_StartDSClient(inst);

// connect to a specific host/port
NT_SetServer(inst, "host", NT_DEFAULT_PORT4)

Python

import ntcore

inst = ntcore.NetworkTableInstance.getDefault()

start a NT4 client
inst.startClient4("example client")

connect to a roboRIO with team number TEAM
inst.setServerTeam(TEAM)

starting a DS client will try to get the roboRIO address from the DS application
inst.startDSClient()

connect to a specific host/port
inst.setServer("host", ntcore.NetworkTableInstance.kDefaultPort4)

26.5. NetworkTables Networking 1001

FIRST Robotics Competition

26.6 Listening for Changes

A common use case for NetworkTables is where a coprocessor generates values that need to
be sent to the robot. For example, imagine that some image processing code running on a
coprocessor computes the heading and distance to a goal and sends those values to the robot.
In this case it might be desirable for the robot program to be notified when new values arrive.
There are a few different ways to detect that a topic’s value has changed; the easiest way is
to periodically call a subscriber’s get(), readQueue(), or readQueueValues() function from
the robot’s periodic loop, as shown below:
Java

public class Example {
final DoubleSubscriber ySub;
double prev;

public Example() {
// get the default instance of NetworkTables
NetworkTableInstance inst = NetworkTableInstance.getDefault();

// get the subtable called "datatable"
NetworkTable datatable = inst.getTable("datatable");

// subscribe to the topic in "datatable" called "Y"
ySub = datatable.getDoubleTopic("Y").subscribe(0.0);

}

public void periodic() {
// get() can be used with simple change detection to the previous value
double value = ySub.get();
if (value != prev) {
prev = value; // save previous value
System.out.println("X changed value: " + value);

}

// readQueueValues() provides all value changes since the last call;
// this way it's not possible to miss a change by polling too slowly
for (double iterVal : ySub.readQueueValues()) {
System.out.println("X changed value: " + iterVal);

}

// readQueue() is similar to readQueueValues(), but provides timestamps
// for each change as well
for (TimestampedDouble tsValue : ySub.readQueue()) {
System.out.println("X changed value: " + tsValue.value + " at local time " +␣

↪→tsValue.timestamp);
}

}

// may not be necessary for robot programs if this class lives for
// the length of the program
public void close() {

ySub.close();
}

}

C++

1002 Chapter 26. NetworkTables

FIRST Robotics Competition

class Example {
nt::DoubleSubscriber ySub;
double prev = 0;

public:
Example() {

// get the default instance of NetworkTables
nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();

// get the subtable called "datatable"
auto datatable = inst.GetTable("datatable");

// subscribe to the topic in "datatable" called "Y"
ySub = datatable->GetDoubleTopic("Y").Subscribe(0.0);

}

void Periodic() {
// Get() can be used with simple change detection to the previous value
double value = ySub.Get();
if (value != prev) {
prev = value; // save previous value
fmt::print("X changed value: {}\n", value);

}

// ReadQueueValues() provides all value changes since the last call;
// this way it's not possible to miss a change by polling too slowly
for (double iterVal : ySub.ReadQueueValues()) {
fmt::print("X changed value: {}\n", iterVal);

}

// ReadQueue() is similar to ReadQueueValues(), but provides timestamps
// for each change as well
for (nt::TimestampedDouble tsValue : ySub.ReadQueue()) {
fmt::print("X changed value: {} at local time {}\n", tsValue.value, tsValue.

↪→timestamp);
}

}
};

C++ (handle-based)

class Example {
NT_Subscriber ySub;
double prev = 0;

public:
Example() {

// get the default instance of NetworkTables
NT_Inst inst = nt::GetDefaultInstance();

// subscribe to the topic in "datatable" called "Y"
ySub = nt::Subscribe(nt::GetTopic(inst, "/datatable/Y"), NT_DOUBLE, "double");

}

void Periodic() {
// Get() can be used with simple change detection to the previous value
double value = nt::GetDouble(ySub, 0.0);

(continues on next page)

26.6. Listening for Changes 1003

FIRST Robotics Competition

(continued from previous page)
if (value != prev) {
prev = value; // save previous value
fmt::print("X changed value: {}\n", value);

}

// ReadQueue() provides all value changes since the last call;
// this way it's not possible to miss a change by polling too slowly
for (nt::TimestampedDouble value : nt::ReadQueueDouble(ySub)) {
fmt::print("X changed value: {} at local time {}\n", tsValue.value, tsValue.

↪→timestamp);
}

}
};

Python

class Example:
def __init__(self) -> None:

get the default instance of NetworkTables
inst = ntcore.NetworkTableInstance.getDefault()

get the subtable called "datatable"
datatable = inst.getTable("datatable")

subscribe to the topic in "datatable" called "Y"
self.ySub = datatable.getDoubleTopic("Y").subscribe(0.0)

self.prev = 0

def periodic(self):
get() can be used with simple change detection to the previous value
value = self.ySub.get()
if value != self.prev:

self.prev = value
save previous value
print("X changed value: " + value)

readQueue() provides all value changes since the last call;
this way it's not possible to miss a change by polling too slowly
for tsValue in self.ySub.readQueue():

print(f"X changed value: {tsValue.value} at local time {tsValue.time}")

may not be necessary for robot programs if this class lives for
the length of the program
def close(self):

self.ySub.close()

With a command-based robot, it’s also possible to use NetworkBooleanEvent to link boolean
topic changes to callback actions (e.g. running commands).
While these functions suffice for value changes on a single topic, they do not provide insight
into changes to topics (when a topic is published or unpublished, or when a topic’s properties
change) or network connection changes (e.g. when a client connects or disconnects). They
also don’t provide a way to get in-order updates for value changes across multiple topics. For
these needs, NetworkTables provides an event listener facility.

1004 Chapter 26. NetworkTables

FIRST Robotics Competition

The easiest way to use listeners is via NetworkTableInstance. For more automatic
control over listener lifetime (particularly in C++), and to operate without a back-
ground thread, NetworkTables also provides separate classes for both polled listeners
(NetworkTableListenerPoller), which store events into an internal queue that must be pe-
riodically read to get the queued events, and threaded listeners (NetworkTableListener),
which call a callback function from a background thread.

26.6.1 NetworkTableEvent

All listener callbacks take a single NetworkTableEvent parameter, and similarly, reading a
listener poller returns an array of NetworkTableEvent. The event contains information in-
cluding what kind of event it is (e.g. a value update, a new topic, a network disconnect), the
handle of the listener that caused the event to be generated, and more detailed information
that depends on the type of the event (connection information for connection events, topic
information for topic-related events, value data for value updates, and the log message for
log message events).

26.6.2 Using NetworkTableInstance to Listen for Changes

The below example listens to various kinds of events using NetworkTableInstance. The lis-
tener callback provided to any of the addListener functions will be called asynchronously from
a background thread when a matching event occurs.

Warning: Because the listener callback is called from a separate background thread, it’s
important to use thread-safe synchronization approaches such as mutexes or atomics to
pass data to/from the main code and the listener callback function.

The addListener functions in NetworkTableInstance return a listener handle. This can be
used to remove the listener later.
Java

public class Example {
final DoubleSubscriber ySub;
// use an AtomicReference to make updating the value thread-safe
final AtomicReference<Double> yValue = new AtomicReference<Double>();
// retain listener handles for later removal
int connListenerHandle;
int valueListenerHandle;
int topicListenerHandle;

public Example() {
// get the default instance of NetworkTables
NetworkTableInstance inst = NetworkTableInstance.getDefault();

// add a connection listener; the first parameter will cause the
// callback to be called immediately for any current connections
connListenerHandle = inst.addConnectionListener(true, event -> {
if (event.is(NetworkTableEvent.Kind.kConnected)) {

System.out.println("Connected to " + event.connInfo.remote_id);
} else if (event.is(NetworkTableEvent.Kind.kDisconnected)) {

System.out.println("Disconnected from " + event.connInfo.remote_id);
(continues on next page)

26.6. Listening for Changes 1005

FIRST Robotics Competition

(continued from previous page)
}

});

// get the subtable called "datatable"
NetworkTable datatable = inst.getTable("datatable");

// subscribe to the topic in "datatable" called "Y"
ySub = datatable.getDoubleTopic("Y").subscribe(0.0);

// add a listener to only value changes on the Y subscriber
valueListenerHandle = inst.addListener(

ySub,
EnumSet.of(NetworkTableEvent.Kind.kValueAll),
event -> {
// can only get doubles because it's a DoubleSubscriber, but
// could check value.isDouble() here too
yValue.set(event.valueData.value.getDouble());

});

// add a listener to see when new topics are published within datatable
// the string array is an array of topic name prefixes.
topicListenerHandle = inst.addListener(

new String[] { datatable.getPath() + "/" },
EnumSet.of(NetworkTableEvent.Kind.kTopic),
event -> {
if (event.is(NetworkTableEvent.Kind.kPublish)) {

// topicInfo.name is the full topic name, e.g. "/datatable/X"
System.out.println("newly published " + event.topicInfo.name);

}
});

}

public void periodic() {
// get the latest value by reading the AtomicReference; set it to null
// when we read to ensure we only get value changes
Double value = yValue.getAndSet(null);
if (value != null) {
System.out.println("got new value " + value);

}
}

// may not be needed for robot programs if this class exists for the
// lifetime of the program
public void close() {

NetworkTableInstance inst = NetworkTableInstance.getDefault();
inst.removeListener(topicListenerHandle);
inst.removeListener(valueListenerHandle);
inst.removeListener(connListenerHandle);
ySub.close();

}
}

C++

class Example {
nt::DoubleSubscriber ySub;

(continues on next page)

1006 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
// use a mutex to make updating the value and flag thread-safe
wpi::mutex mutex;
double yValue;
bool yValueUpdated = false;
// retain listener handles for later removal
NT_Listener connListenerHandle;
NT_Listener valueListenerHandle;
NT_Listener topicListenerHandle;

public:
Example() {

// get the default instance of NetworkTables
nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();

// add a connection listener; the first parameter will cause the
// callback to be called immediately for any current connections
connListenerHandle = inst.AddConnectionListener(true, [] (const nt::Event& event)

↪→{
if (event.Is(nt::EventFlags::kConnected)) {

fmt::print("Connected to {}\n", event.GetConnectionInfo()->remote_id);
} else if (event.Is(nt::EventFlags::kDisconnected)) {

fmt::print("Disconnected from {}\n", event.GetConnectionInfo()->remote_id);
}

});

// get the subtable called "datatable"
auto datatable = inst.GetTable("datatable");

// subscribe to the topic in "datatable" called "Y"
ySub = datatable.GetDoubleTopic("Y").Subscribe(0.0);

// add a listener to only value changes on the Y subscriber
valueListenerHandle = inst.AddListener(

ySub,
nt::EventFlags::kValueAll,
[this] (const nt::Event& event) {
// can only get doubles because it's a DoubleSubscriber, but
// could check value.IsDouble() here too
std::scoped_lock lock{mutex};
yValue = event.GetValueData()->value.GetDouble();
yValueUpdated = true;

});

// add a listener to see when new topics are published within datatable
// the string array is an array of topic name prefixes.
topicListenerHandle = inst.AddListener(

{{fmt::format("{}/", datatable->GetPath())}},
nt::EventFlags::kTopic,
[] (const nt::Event& event) {
if (event.Is(nt::EventFlags::kPublish)) {

// name is the full topic name, e.g. "/datatable/X"
fmt::print("newly published {}\n", event.GetTopicInfo()->name);

}
});

}

(continues on next page)

26.6. Listening for Changes 1007

FIRST Robotics Competition

(continued from previous page)
void Periodic() {

// get the latest value by reading the value; set it to false
// when we read to ensure we only get value changes
wpi::scoped_lock lock{mutex};
if (yValueUpdated) {
yValueUpdated = false;
fmt::print("got new value {}\n", yValue);

}
}

~Example() {
nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();
inst.RemoveListener(connListenerHandle);
inst.RemoveListener(valueListenerHandle);
inst.RemoveListener(topicListenerHandle);

}
};

Python

import ntcore
import threading

class Example:
def __init__(self) -> None:

get the default instance of NetworkTables
inst = ntcore.NetworkTableInstance.getDefault()

Use a mutex to ensure thread safety
self.lock = threading.Lock()
self.yValue = None

add a connection listener; the first parameter will cause the
callback to be called immediately for any current connections
def _connect_cb(event: ntcore.Event):

if event.is_(ntcore.EventFlags.kConnected):
print("Connected to", event.data.remote_id)

elif event.is_(ntcore.EventFlags.kDisconnected):
print("Disconnected from", event.data.remote_id)

self.connListenerHandle = inst.addConnectionListener(True, _connect_cb)

get the subtable called "datatable"
datatable = inst.getTable("datatable")

subscribe to the topic in "datatable" called "Y"
self.ySub = datatable.getDoubleTopic("Y").subscribe(0.0)

add a listener to only value changes on the Y subscriber
def _on_ysub(event: ntcore.Event):

can only get doubles because it's a DoubleSubscriber, but
could check value.isDouble() here too
with self.lock:

self.yValue = event.data.value.getDouble()

(continues on next page)

1008 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
self.valueListenerHandle = inst.addListener(

self.ySub, ntcore.EventFlags.kValueAll, _on_ysub
)

add a listener to see when new topics are published within datatable
the string array is an array of topic name prefixes.
def _on_pub(event: ntcore.Event):

if event.is_(ntcore.EventFlags.kPublish):
topicInfo.name is the full topic name, e.g. "/datatable/X"
print("newly published", event.data.name)

self.topicListenerHandle = inst.addListener(
[datatable.getPath() + "/"], ntcore.EventFlags.kTopic, _on_pub

)

def periodic(self):
get the latest value by reading the value; set it to null
when we read to ensure we only get value changes
with self.lock:

value, self.yValue = self.yValue, None

if value is not None:
print("got new value", value)

may not be needed for robot programs if this class exists for the
lifetime of the program
def close(self):

inst = ntcore.NetworkTableInstance.getDefault()
inst.removeListener(self.topicListenerHandle)
inst.removeListener(self.valueListenerHandle)
inst.removeListener(self.connListenerHandle)
self.ySub.close()

26.7 Writing a Simple NetworkTables Robot Program

In a robot program, a NetworkTables server is automatically started on the default instance.
So it’s only necessary to get the default instance to start publishing or subscribing and have
it visible over the network.
The example robot program below publishes incrementing X and Y values to a table named
datatable. The values for X and Y can be easily viewed using the OutlineViewer program
that shows the NetworkTables hierarchy and all the values associated with each topic.
Java

package edu.wpi.first.wpilibj.templates;

import edu.wpi.first.wpilibj.TimedRobot;
import edu.wpi.first.networktables.DoublePublisher;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableInstance;

public class EasyNetworkTableExample extends TimedRobot {
DoublePublisher xPub;

(continues on next page)

26.7. Writing a Simple NetworkTables Robot Program 1009

FIRST Robotics Competition

(continued from previous page)
DoublePublisher yPub;

public void robotInit() {
// Get the default instance of NetworkTables that was created automatically
// when the robot program starts
NetworkTableInstance inst = NetworkTableInstance.getDefault();

// Get the table within that instance that contains the data. There can
// be as many tables as you like and exist to make it easier to organize
// your data. In this case, it's a table called datatable.
NetworkTable table = inst.getTable("datatable");

// Start publishing topics within that table that correspond to the X and Y values
// for some operation in your program.
// The topic names are actually "/datatable/x" and "/datatable/y".
xPub = table.getDoubleTopic("x").publish();
yPub = table.getDoubleTopic("y").publish();

}

double x = 0;
double y = 0;

public void teleopPeriodic() {
// Publish values that are constantly increasing.
xPub.set(x);
yPub.set(y);
x += 0.05;
y += 1.0;

}
}

C++

#include <frc/TimedRobot.h>
#include <networktables/DoubleTopic.h>
#include <networktables/NetworkTable.h>
#include <networktables/NetworkTableInstance.h>

class EasyNetworkExample : public frc::TimedRobot {
public:
nt::DoublePublisher xPub;
nt::DoublePublisher yPub;

void RobotInit() {
// Get the default instance of NetworkTables that was created automatically
// when the robot program starts
auto inst = nt::NetworkTableInstance::GetDefault();

// Get the table within that instance that contains the data. There can
// be as many tables as you like and exist to make it easier to organize
// your data. In this case, it's a table called datatable.
auto table = inst.GetTable("datatable");

// Start publishing topics within that table that correspond to the X and Y values
// for some operation in your program.
// The topic names are actually "/datatable/x" and "/datatable/y".

(continues on next page)

1010 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
xPub = table->GetDoubleTopic("x").Publish();
yPub = table->GetDoubleTopic("y").Publish();

}

double x = 0;
double y = 0;

void TeleopPeriodic() {
// Publish values that are constantly increasing.
xPub.Set(x);
yPub.Set(y);
x += 0.05;
y += 0.05;

}
}

START_ROBOT_CLASS(EasyNetworkExample)

Python

#!/usr/bin/env python3

import ntcore
import wpilib

class EasyNetworkTableExample(wpilib.TimedRobot):
def robotInit(self) -> None:

Get the default instance of NetworkTables that was created automatically
when the robot program starts
inst = ntcore.NetworkTableInstance.getDefault()

Get the table within that instance that contains the data. There can
be as many tables as you like and exist to make it easier to organize
your data. In this case, it's a table called datatable.
table = inst.getTable("datatable")

Start publishing topics within that table that correspond to the X and Y␣
↪→values

for some operation in your program.
The topic names are actually "/datatable/x" and "/datatable/y".
self.xPub = table.getDoubleTopic("x").publish()
self.yPub = table.getDoubleTopic("y").publish()

self.x = 0
self.y = 0

def teleopPeriodic(self) -> None:
Publish values that are constantly increasing.
self.xPub.set(self.x)
self.yPub.set(self.y)
self.x += 0.05
self.y += 1.0

if __name__ == "__main__":
wpilib.run(EasyNetworkTableExample)

26.7. Writing a Simple NetworkTables Robot Program 1011

FIRST Robotics Competition

26.8 Creating a Client-side Program

If all you need to do is have your robot program communicate with a COTS coprocessor or a
dashboard running on the Driver Station laptop, then the previous examples of writing robot
programs are sufficient. But if you would like to write some custom client code that would run
on the drivers station or on a coprocessor then you need to know how to build NetworkTables
programs for those (non-roboRIO) platforms.
A basic client program looks like the following example.
Java

import edu.wpi.first.networktables.DoubleSubscriber;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableInstance;
import edu.wpi.first.networktables.NetworkTablesJNI;
import edu.wpi.first.util.CombinedRuntimeLoader;

import java.io.IOException;

import edu.wpi.first.cscore.CameraServerJNI;
import edu.wpi.first.math.WPIMathJNI;
import edu.wpi.first.util.WPIUtilJNI;

public class Program {
public static void main(String[] args) throws IOException {

NetworkTablesJNI.Helper.setExtractOnStaticLoad(false);
WPIUtilJNI.Helper.setExtractOnStaticLoad(false);
WPIMathJNI.Helper.setExtractOnStaticLoad(false);
CameraServerJNI.Helper.setExtractOnStaticLoad(false);

CombinedRuntimeLoader.loadLibraries(Program.class, "wpiutiljni", "wpimathjni",
↪→ "ntcorejni",

"cscorejnicvstatic");
new Program().run();

}

public void run() {
NetworkTableInstance inst = NetworkTableInstance.getDefault();
NetworkTable table = inst.getTable("datatable");
DoubleSubscriber xSub = table.getDoubleTopic("x").subscribe(0.0);
DoubleSubscriber ySub = table.getDoubleTopic("y").subscribe(0.0);
inst.startClient4("example client");
inst.setServer("localhost"); // where TEAM=190, 294, etc, or use inst.

↪→setServer("hostname") or similar
inst.startDSClient(); // recommended if running on DS computer; this gets the␣

↪→robot IP from the DS
while (true) {

try {
Thread.sleep(1000);

} catch (InterruptedException ex) {
System.out.println("interrupted");
return;

}
double x = xSub.get();
double y = ySub.get();

(continues on next page)

1012 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
System.out.println("X: " + x + " Y: " + y);

}
}

}

C++

#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <networktables/NetworkTableInstance.h>
#include <networktables/NetworkTable.h>
#include <networktables/DoubleTopic.h>

int main() {
auto inst = nt::NetworkTableInstance::GetDefault();
auto table = inst.GetTable("datatable");
auto xSub = table->GetDoubleTopic("x").Subscribe(0.0);
auto ySub = table->GetDoubleTopic("y").Subscribe(0.0);
inst.StartClient4("example client");
inst.SetServerTeam(TEAM); // where TEAM=190, 294, etc, or use inst.setServer(

↪→"hostname") or similar
inst.StartDSClient(); // recommended if running on DS computer; this gets the␣

↪→robot IP from the DS
while (true) {

using namespace std::chrono_literals;
std::this_thread::sleep_for(1s);
double x = xSub.Get();
double y = ySub.Get();
fmt::print("X: {} Y: {}\n", x, y);

}
}

C++ (handle-based)

#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <ntcore_cpp.h>

int main() {
NT_Inst inst = nt::GetDefaultInstance();
NT_Subscriber xSub =

nt::Subscribe(nt::GetTopic(inst, "/datatable/x"), NT_DOUBLE, "double");
NT_Subscriber ySub =

nt::Subscribe(nt::GetTopic(inst, "/datatable/y"), NT_DOUBLE, "double");
nt::StartClient4(inst, "example client");
nt::SetServerTeam(inst, TEAM, 0); // where TEAM=190, 294, etc, or use inst.

↪→setServer("hostname") or similar
nt::StartDSClient(inst, 0); // recommended if running on DS computer; this gets␣

↪→the robot IP from the DS
while (true) {

using namespace std::chrono_literals;
std::this_thread::sleep_for(1s);
double x = nt::GetDouble(xSub, 0.0);
double y = nt::GetDouble(ySub, 0.0);

(continues on next page)

26.8. Creating a Client-side Program 1013

FIRST Robotics Competition

(continued from previous page)
fmt::print("X: {} Y: {}\n", x, y);

}
}

C

#include <stdio.h>
#include <threads.h>
#include <time.h>
#include <networktables/ntcore.h>

int main() {
NT_Instance inst = NT_GetDefaultInstance();
NT_Subscriber xSub =

NT_Subscribe(NT_GetTopic(inst, "/datatable/x"), NT_DOUBLE, "double", NULL, 0);
NT_Subscriber ySub =

NT_Subscribe(NT_GetTopic(inst, "/datatable/y"), NT_DOUBLE, "double", NULL, 0);
NT_StartClient4(inst, "example client");
NT_SetServerTeam(inst, TEAM); // where TEAM=190, 294, etc, or use inst.setServer(

↪→"hostname") or similar
NT_StartDSClient(inst); // recommended if running on DS computer; this gets the␣

↪→robot IP from the DS
while (true) {

thrd_sleep(&(struct timespec){.tv_sec=1}, NULL);
double x = NT_GetDouble(xSub, 0.0);
double y = NT_GetDouble(ySub, 0.0);
printf("X: %f Y: %f\n", x, y);

}
}

Python

#!/usr/bin/env python3

import ntcore
import time

if __name__ == "__main__":
inst = ntcore.NetworkTableInstance.getDefault()
table = inst.getTable("datatable")
xSub = table.getDoubleTopic("x").subscribe(0)
ySub = table.getDoubleTopic("y").subscribe(0)
inst.startClient4("example client")
inst.setServerTeam(TEAM) # where TEAM=190, 294, etc, or use inst.setServer(

↪→"hostname") or similar
inst.startDSClient() # recommended if running on DS computer; this gets the robot␣

↪→IP from the DS

while True:
time.sleep(1)

x = xSub.get()
y = ySub.get()
print(f"X: {x} Y: {y}")

In this example an instance of NetworkTables is created and subscribers are created to ref-
erence the values of “x” and “y” from a table called “datatable”.

1014 Chapter 26. NetworkTables

FIRST Robotics Competition

Then this instance is started as a NetworkTables client with the team number (the roboRIO
is always the server). Additionally, if the program is running on the Driver Station computer,
by using the startDSClient() method, NetworkTables will get the robot IP address from the
Driver Station.
Then this sample program simply loops once a second and gets the values for x and y and
prints them on the console. In a more realistic program, the client might be processing or
generating values for the robot to consume.

26.8.1 Building using Gradle

Example build.gradle files are provided in the StandaloneAppSamples Repository Update the
GradleRIO version to correspond to the desired WPILib version.
Java

1 plugins {
2 id "java"
3 id 'application'
4 id 'com.github.johnrengelman.shadow' version '7.1.2'
5 id "edu.wpi.first.GradleRIO" version "2023.2.1"
6 id 'edu.wpi.first.WpilibTools' version '1.1.0'
7 }
8

9 mainClassName = 'Program'
10

11 wpilibTools.deps.wpilibVersion = wpi.versions.wpilibVersion.get()
12

13 def nativeConfigName = 'wpilibNatives'
14 def nativeConfig = configurations.create(nativeConfigName)
15

16 def nativeTasks = wpilibTools.createExtractionTasks {
17 configurationName = nativeConfigName
18 }
19

20 nativeTasks.addToSourceSetResources(sourceSets.main)
21 nativeConfig.dependencies.add wpilibTools.deps.wpilib("wpimath")
22 nativeConfig.dependencies.add wpilibTools.deps.wpilib("wpinet")
23 nativeConfig.dependencies.add wpilibTools.deps.wpilib("wpiutil")
24 nativeConfig.dependencies.add wpilibTools.deps.wpilib("ntcore")
25 nativeConfig.dependencies.add wpilibTools.deps.cscore()
26

27 dependencies {
28 implementation wpilibTools.deps.wpilibJava("wpiutil")
29 implementation wpilibTools.deps.wpilibJava("wpimath")
30 implementation wpilibTools.deps.wpilibJava("wpinet")
31 implementation wpilibTools.deps.wpilibJava("ntcore")
32 implementation wpilibTools.deps.wpilibJava("cscore")
33

34 implementation group: "com.fasterxml.jackson.core", name: "jackson-annotations",␣
↪→version: wpi.versions.jacksonVersion.get()

35 implementation group: "com.fasterxml.jackson.core", name: "jackson-core",␣
↪→version: wpi.versions.jacksonVersion.get()

36 implementation group: "com.fasterxml.jackson.core", name: "jackson-databind",␣
↪→version: wpi.versions.jacksonVersion.get()

37

(continues on next page)

26.8. Creating a Client-side Program 1015

https://github.com/wpilibsuite/StandaloneAppSamples

FIRST Robotics Competition

(continued from previous page)
38 implementation group: "org.ejml", name: "ejml-simple", version: wpi.versions.

↪→ejmlVersion.get()
39 }
40

41 shadowJar {
42 archiveBaseName = "TestApplication"
43 archiveVersion = ""
44 exclude("module-info.class")
45 archiveClassifier.set(wpilibTools.currentPlatform.platformName)
46 }
47

48 wrapper {
49 gradleVersion = '7.5.1'
50 }

C++
Uncomment the appropriate platform as highlighted.

1 plugins {
2 id "cpp"
3 id "edu.wpi.first.GradleRIO" version "2023.2.1"
4 }
5

6 // Disable local cache, as it won't have the cross artifact necessary
7 wpi.maven.useLocal = false
8

9 // Set to true to run simulation in debug mode
10 wpi.cpp.debugSimulation = false
11

12 def appName = "TestApplication"
13

14 nativeUtils.withCrossLinuxArm64()
15 //nativeUtils.withCrossLinuxArm32() // Uncomment to build for arm32. targetPlatform␣

↪→below also needs to be fixed
16

17 model {
18 components {
19 "${appName}"(NativeExecutableSpec) {
20 //targetPlatform wpi.platforms.desktop // Uncomment to build on whatever␣

↪→the native platform currently is
21 targetPlatform wpi.platforms.linuxarm64
22 //targetPlatform wpi.platforms.linuxarm32 // Uncomment to build for arm32
23

24 sources.cpp {
25 source {
26 srcDir 'src/main/cpp'
27 include '**/*.cpp', '**/*.cc'
28 }
29 exportedHeaders {
30 srcDir 'src/main/include'
31 }
32 }
33

34 // Enable run tasks for this component
35 wpi.cpp.enableExternalTasks(it)
36

(continues on next page)

1016 Chapter 26. NetworkTables

FIRST Robotics Competition

(continued from previous page)
37 wpi.cpp.deps.wpilibStatic(it)
38 }
39 }
40 }
41

42 wrapper {
43 gradleVersion = '7.5.1'
44 }

26.8.2 Building Python

For Python, refer to the RobotPy pyntcore install documentation.

26.9 Migrating from NetworkTables 3.0 to NetworkTables
4.0

NetworkTables 4.0 (new for 2023) has a number of significant API breaking changes from
NetworkTables 3.0, the version of NetworkTables used from 2016-2022.

26.9.1 NetworkTableEntry

While NetworkTableEntry can still be used (for backwards compatibility), users are encour-
aged to migrate to use of type-specific Publisher/Subscriber/Entry classes as appropriate,
or if necessary, GenericEntry (see Publishing and Subscribing to a Topic. It’s important to
note that unlike NetworkTableEntry, these classes need to have appropriate lifetime man-
agement. Some functionality (e.g. persistent settings) has also moved to Topic properties
(see NetworkTables Tables and Topics).
NT3 code (was):
Java

public class Example {
final NetworkTableEntry yEntry;
final NetworkTableEntry outEntry;

public Example() {
NetworkTableInstance inst = NetworkTableInstance.getDefault();

// get the subtable called "datatable"
NetworkTable datatable = inst.getTable("datatable");

// get the entry in "datatable" called "Y"
yEntry = datatable.getEntry("Y");

// get the entry in "datatable" called "Out"
outEntry = datatable.getEntry("Out");

}

(continues on next page)

26.9. Migrating from NetworkTables 3.0 to NetworkTables 4.0 1017

https://robotpy.readthedocs.io/en/stable/install/pynetworktables.html

FIRST Robotics Competition

(continued from previous page)
public void periodic() {

// read a double value from Y, and set Out to that value multiplied by 2
double value = yEntry.getDouble(0.0); // default to 0
outEntry.setDouble(value * 2);

}
}

C++

class Example {
nt::NetworkTableEntry yEntry;
nt::NetworkTableEntry outEntry;

public:
Example() {

nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();

// get the subtable called "datatable"
auto datatable = inst.GetTable("datatable");

// get the entry in "datatable" called "Y"
yEntry = datatable->GetEntry("Y");

// get the entry in "datatable" called "Out"
outEntry = datatable->GetEntry("Out");

}

void Periodic() {
// read a double value from Y, and set Out to that value multiplied by 2
double value = yEntry.GetDouble(0.0); // default to 0
outEntry.SetDouble(value * 2);

}
};

Python

class Example:
def __init__(self):

inst = ntcore.NetworkTableInstance.getDefault()

get the subtable called "datatable"
datatable = inst.getTable("datatable")

get the entry in "datatable" called "Y"
self.yEntry = datatable.getEntry("Y")

get the entry in "datatable" called "Out"
self.outEntry = datatable.getEntry("Out")

def periodic(self):
read a double value from Y, and set Out to that value multiplied by 2
value = self.yEntry.getDouble(0.0) # default to 0
self.outEntry.setDouble(value * 2)

Recommended NT4 equivalent (should be):
Java

1018 Chapter 26. NetworkTables

FIRST Robotics Competition

public class Example {
final DoubleSubscriber ySub;
final DoublePublisher outPub;

public Example() {
NetworkTableInstance inst = NetworkTableInstance.getDefault();

// get the subtable called "datatable"
NetworkTable datatable = inst.getTable("datatable");

// subscribe to the topic in "datatable" called "Y"
// default value is 0
ySub = datatable.getDoubleTopic("Y").subscribe(0.0);

// publish to the topic in "datatable" called "Out"
outPub = datatable.getDoubleTopic("Out").publish();

}

public void periodic() {
// read a double value from Y, and set Out to that value multiplied by 2
double value = ySub.get();
outPub.set(value * 2);

}

// often not required in robot code, unless this class doesn't exist for
// the lifetime of the entire robot program, in which case close() needs to be
// called to stop subscribing
public void close() {

ySub.close();
outPub.close();

}
}

C++

class Example {
nt::DoubleSubscriber ySub;
nt::DoublePublisher outPub;

public:
Example() {

nt::NetworkTableInstance inst = nt::NetworkTableInstance::GetDefault();

// get the subtable called "datatable"
auto datatable = inst.GetTable("datatable");

// subscribe to the topic in "datatable" called "Y"
// default value is 0
ySub = datatable->GetDoubleTopic("Y").Subscribe(0.0);

// publish to the topic in "datatable" called "Out"
outPub = datatable->GetDoubleTopic("Out").Publish();

}

void Periodic() {
// read a double value from Y, and set Out to that value multiplied by 2
double value = ySub.Get();

(continues on next page)

26.9. Migrating from NetworkTables 3.0 to NetworkTables 4.0 1019

FIRST Robotics Competition

(continued from previous page)
outPub.Set(value * 2);

}
};

Python

class Example:
def __init__(self) -> None:

inst = ntcore.NetworkTableInstance.getDefault()

get the subtable called "datatable"
datatable = inst.getTable("datatable")

subscribe to the topic in "datatable" called "Y"
default value is 0
self.ySub = datatable.getDoubleTopic("Y").subscribe(0.0)

publish to the topic in "datatable" called "Out"
self.outPub = datatable.getDoubleTopic("Out").publish()

def periodic(self):
read a double value from Y, and set Out to that value multiplied by 2
value = self.ySub.get()
self.outPub.set(value * 2)

often not required in robot code, unless this class doesn't exist for
the lifetime of the entire robot program, in which case close() needs to be
called to stop subscribing
def close(self):

self.ySub.close()
self.outPub.close()

26.9.2 Shuffleboard

In WPILib’s Shuffleboard classes, usage of NetworkTableEntry has been replaced with use
of GenericEntry. In C++, since GenericEntry is non-copyable, return values now return a
reference rather than a value.

1020 Chapter 26. NetworkTables

FIRST Robotics Competition

26.9.3 Force Set Operations

Force set operations have been removed, as it’s no longer possible to change a topic’s type
once it’s been published. In most cases calls to forceSet can simply be replaced with set, but
more complex scenarios may require a different design approach (e.g. splitting into different
topics).

26.9.4 Listeners

The separate connection, value, and log listeners/events have been unified into a single lis-
tener/event. The NetworkTable-level listeners have also been removed. Listeners in many
cases can be replaced with subscriber readQueue() calls, but if listeners are still required,
they can be used via NetworkTableInstance (see Listening for Changes for more informa-
tion).

26.9.5 Client/Server Operations

Starting a NetworkTable server now requires specifying both the NT3 port and the NT4 port.
For a NT4-only server, the NT3 port can be specified as 0.
A NetworkTable client can only operate in NT3 mode or NT4 mode, not both (there is no
provision for automatic fallback). As such, the startClient() call has been replaced by
startClient3() and startClient4(). The client must also specify a unique name for itself–
the server will reject connection attempts with duplicate names.

26.9.6 C++ Changes

C++ values are now returned/used as value objects (plain nt::Value) instead of shared point-
ers to them (std::shared_ptr<nt::Value>).

26.10 Reading Array Values Published by NetworkTables

This article describes how to read values published by NetworkTables using a program run-
ning on the robot. This is useful when using computer vision where the images are processed
on your driver station laptop and the results stored into NetworkTables possibly using a sepa-
rate vision processor like a raspberry pi, or a tool on the robot like GRIP, or a python program
to do the image processing.
Very often the values are for one or more areas of interest such as goals or game pieces and
multiple instances are returned. In the example below, several x, y, width, height, and areas
are returned by the image processor and the robot program can sort out which of the returned
values are interesting through further processing.

26.10. Reading Array Values Published by NetworkTables 1021

FIRST Robotics Competition

26.10.1 Verify the NetworkTables Topics Being Published

You can verify the names of the NetworkTables topics used for publishing the values by
using the Outline Viewer application. It is a C++ program in your user directory in the
wpilib/<YEAR>/tools folder. The application is started by selecting the “WPILib” menu in
Visual Studio Code then Start Tool then “OutlineViewer”. In this example, with the image
processing program running (GRIP) you can see the values being put into NetworkTables.
In this case the values are stored in a table called GRIP and a sub-table called myContoursRe-
port. You can see that the values are in brackets and there are 2 values in this case for each
topic. The NetworkTables topic names are centerX, centerY, area, height and width.
Both of the following examples are extremely simplified programs that just illustrate the use
of NetworkTables. All the code is in the robotInit() method so it’s only run when the program
starts up. In your programs, you would more likely get the values in code that is evaluating
which direction to aim the robot in a command or a control loop during the autonomous or
teleop periods.

1022 Chapter 26. NetworkTables

FIRST Robotics Competition

26.10.2 Writing a Program to Access the Topics

Java

DoubleArraySubscriber areasSub;

@Override
public void robotInit() {

NetworkTable table = NetworkTableInstance.getDefault().getTable("GRIP/
↪→mycontoursReport");
areasSub = table.getDoubleArrayTopic("area").subscribe(new double[] {});

}

@Override
public void teleopPeriodic() {

double[] areas = areasSub.get();

System.out.print("areas: ");

for (double area : areas) {
System.out.print(area + " ");

}

System.out.println();
}

C++

nt::DoubleArraySubscriber areasSub;

void Robot::RobotInit() override {
auto table = nt::NetworkTableInstance::GetDefault().GetTable("GRIP/

↪→myContoursReport");
areasSub = table->GetDoubleArrayTopic("area").Subscribe({});

}

void Robot::TeleopPeriodic() override {
std::cout << "Areas: ";

std::vector<double> arr = areasSub.Get();

for (double val : arr) {
std::cout << val << " ";

}

std::cout << std::endl;
}

Python

def robotInit(self):
table = ntcore.NetworkTableInstance.getDefault().getTable("GRIP/mycontoursReport")
self.areasSub = table.getDoubleArrayTopic("area").subscribe([])

def teleopPeriodic(self):
areas = self.areasSub.get()
print("Areas:", areas)

26.10. Reading Array Values Published by NetworkTables 1023

FIRST Robotics Competition

The steps to getting the values and, in this program, printing them are:
1. Declare the table variable that will hold the instance of the subtable that have the values.
2. Initialize the subtable instance so that it can be used later for retrieving the values.
3. Read the array of values from NetworkTables. In the case of a communicating programs,

it’s possible that the program producing the output being read here might not yet be
available when the robot program starts up. To avoid issues of the data not being ready,
a default array of values is supplied. This default value will be returned if the Network-
Tables topic hasn’t yet been published. This code will loop over the value of areas every
20ms.

26.10.3 Program Output

In this case the program is only looking at the array of areas, but in a real example all the
values would more likely be used. Using the Riolog in VS Code or the Driver Station log you
can see the values as they are retrieved. This program is using a sample static image so they
areas don’t change, but you can imagine with a camera on your robot, the values would be
changing constantly.

1024 Chapter 26. NetworkTables

27
Path Planning

Path Planning is the process of creating and following trajectories. These paths use the
WPILib trajectory APIs for generation and a Ramsete Controller for following. This section
highlights the process of characterizing your robot for system identification, trajectory follow-
ing and usage of PathWeaver. Users may also want to read the generic trajectory following
documents for additional information about the API and non-commandbased usage.

27.1 Notice on Swerve Support

Swerve support in path following has a couple of limitations that teams need to be aware of:
• WPILib currently does not support swerve in simulation, please see this pull request.
• SysID only supports tuning the swerve heading using a General Mechanism project and

does not regularly support module velocity data. A workaround is to lock the module’s
heading into place. This can be done via blocking module rotation using something like
a block of wood.

• Pathweaver and Trajectory following currently do not incorporate independent heading.
Path following using the WPILib trajectory framework on swerve will be the same as a
DifferentialDrive robot.

We are sorry for the inconvenience.

27.1.1 System Identification

Introduction to System Identification

What is “System Identification?”

In Control Theory, system identification is the process of determining a mathematical model
for the behavior of a system through statistical analysis of its inputs and outputs.
This model is a rule describing how input voltage affects the way our measurements (typi-
cally encoder data) evolve in time. A “system identification” routine takes such a model and
a dataset and attempts to fit parameters which would make your model most closely-match

1025

https://github.com/wpilibsuite/allwpilib/pull/3374

FIRST Robotics Competition

the dataset. Generally, the model is not perfect - the real-world data are polluted by both
measurement noise (e.g. timing errors, encoder resolution limitations) and system noise (un-
modeled forces acting on the system, like vibrations). However, even an imperfect model is
usually “good enough” to give us accurate feedforward control of the mechanism, and even
to estimate optimal gains for feedback control.

Assumed Behavioral Model

If you haven’t yet, read the full explanation of the feedforward equations used by the WPILib
toolsuite in The Permanent-Magnet DC Motor Feedforward Equation.
The process of System Identification is to determine concrete values for the coefficients in
the model that best-reflect the behavior of your particular real-world system.
To determine numeric values for each coefficient in our model, a curve-fitting technique
(such as least-squares regression) is applied to measurements taken from the real mecha-
nism. Careful selection of the data-producing experiments helps improve the accuracy of the
curve-fitting.
Once these coefficients have been determined, we can then take a given desired velocity and
acceleration for the motor and calculate the voltage that should be applied to achieve it. This
is very useful - not only for, say, following motion profiles, but also for making mechanisms
more controllable in open-loop control, because your joystick inputs will more closely match
the actual mechanism motion.
Some of the tools in this toolsuite introduce additional terms into the above equation to ac-
count for known differences from the simple case described above - details for each tool can
be found below:

The WPILib System Identification Tool (SysId)

The WPILib system identification tool consists of an application that runs on the user’s PC
and matching robot code that runs on the user’s robot. The PC application will send control
signals to the robot over NetworkTables, while the robot sends data back to the application.
The application then processes the data and determines model parameters for the user’s robot
mechanism, as well as producing diagnostic plots. Data can be saved (in JSON format) for
future use, if desired.

Included Tools

Note: With a bit of ingenuity, these tools can be used to accurately characterize a surpris-
ingly large variety of robot mechanisms. Even if your mechanism does not seem to obviously
match any of the tools, an understanding of the system equations often reveals that one of
the included routines will do.

The System Identification toolsuite currently supports:
• Simple Motor Setups
• Drivetrains
• Elevators

1026 Chapter 27. Path Planning

FIRST Robotics Competition

• Arms
Several of these options use identical robot-side code, and differ only in the analysis routine
used to interpret the data.

Simple Motor Identification

The simple motor identification tool determines the best-fit parameters for the equation:

V = kS · sgn(ḋ) + kV · ḋ+ kA · d̈

where V is the applied voltage, d is the displacement (position) of the drive, ḋ is its velocity,
and d̈ is its acceleration. This is the model for a permanent-magnet dc motor with no loading
other than friction and inertia, as mentioned above, and is an accurate model for flywheels,
turrets, and horizontal linear sliders.

Drivetrain Identification

The drivetrain identification tool determines the best-fit parameters for the equation:

V = kS · sgn(ḋ) + kV · ḋ+ kA · d̈

where V is the applied voltage, d is the displacement (position) of the drive, ḋ is its velocity,
and d̈ is its acceleration. This is the same modeling equation as is used in the simple mo-
tor identification - however, the drivetrain identification tool is specifically set up to run on
differential drives, and will characterize each side of the drive independently if desired.
The drivetrain identification tool can also determine the effective trackwidth of your robot
using a gyro. More information on how to run the identification is available in the track width
identification article.

Elevator Identification

The elevator identification tool determines the best-fit parameters for the equation:

V = kG+ kS · sgn(ḋ) + kV · ḋ+ kA · d̈

where V is the applied voltage, d is the displacement (position) of the elevator, ḋ is its velocity,
and d̈ is its acceleration. The constant term (kG) is added to correctly account for the effect
of gravity.

Arm Identification

The arm identification tool determines the best-fit parameters for the equation:

V = kG · cos(θ) + kS · sgn(θ̇) + kV · θ̇ + kA · θ̈

where V is the applied voltage, θ is the angular displacement (position) of the arm, θ̇ is its
angular velocity, and θ̈ is its angular acceleration. The cosine term (kG) is added to correctly
account for the effect of gravity.

27.1. Notice on Swerve Support 1027

FIRST Robotics Competition

Installing the System Identification Tool

The system identification tool (also referred to as sysid) is included with the WPILib Installer.

Note: The old Python characterization tool from previous years is no longer supported.

Launching the System Identification Tool

The system identification tool can be opened from the Start Tool option in VS Code or by
using the shortcut inside the WPILib Tools desktop folder (Windows).

Configuring a Project

To use the toolsuite, we first need to configure the settings for your specific mechanism.

Configure Project Parameters

In order to run on your robot, the tool must know some parameters about how your robot is
set up.
First, you need to use the Analysis Type field to select the appropriate project config. General
Mechanism is for non-drivetrain mechanisms (e.g. Simple Motor, Arm, Elevator), Drivetrain
is for Drivetrain mechanisms, and Romi is for the Romi robots. This allows you to fill out the
parameters specific to the type of system you are using.

The rest of the Generator widget is focused on the proper settings based off of the analysis
type:

1028 Chapter 27. Path Planning

FIRST Robotics Competition

Motor Controller Selection

The Motor / Motor Controller Selection allows you to add ports for each motor controller that
will be used. The + and - buttons let you add and remove ports respectively.

Note: If you are plugging in your encoders into motor controllers make sure that the motor
controller type and port(s) are the first ones you specify.

Each motor port contains the following parts:
• Motor Port is where you add the port number for a specific controller
• Inverted should be checked if the motorcontroller should be inverted
• Motor Controller is the type of motor controller that will be used.

Encoder Selection

The Encoder Selection allows you to configure the encoders that will be used. The types of
encoder you can use will vary with the first motor controller type specified (see note above).

Encoder Types

• General Types (consistent across all motor controller selections): roboRIO corresponds
to any encoders that are plugged into the roboRIO, CANCoder corresponds to the CTRE
CANCoder.

• TalonSRX: Built-in corresponds to any quadrature encoder plugged into the encoder
port, Tachometer corresponds to the CTRE Tachometer plugged into the encoder port.

• TalonFX: Built-in corresponds to the integrated encoder on the TalonFX motor.
• Spark MAX: Encoder Port refers to an encoder plugged into the encoder port, Data
Port refers to an encoder plugged into the data port.

• Venom: Built-in refers to an encoder plugged into the Venom’s encoder port.

27.1. Notice on Swerve Support 1029

https://docs.revrobotics.com/sparkmax/feature-description/encoder-port
https://docs.revrobotics.com/sparkmax/feature-description/data-port

FIRST Robotics Competition

Encoder Settings

Here are the following settings that can be configured (although the settings that are visible
will vary by the previously selected encoder type):

• Ports (either A and B or CANCoder Port
• Encoder Inverted should be checked if a positive motor power doesn’t correspond to a

positive increase in encoder values
• Samples Per Average is how many samples will be averaged per velocity measurement.

A value greater than one can help reduce encoder noise and 5-10 is recommended for
encoders with high CPR. Only mess with this setting if a previous run of SysId resulted
in extremely noisy data.

• Reduce Encoding should be checked if using high resolution encoders (e.g. CTRE Mag
Encoders or REV Through Bore Encoder) that are plugged into the roboRIO. This uses
the Encoder class 1x decoding to reduce velocity noise. If this is checked, you will have
to update your team’s robot code to also use 1x decoding on the encoders.

• Time Measurement Window is the period of time in milliseconds that the velocity mea-
surement will be taken across. This setting can reduce measurement lag at the cost
of possibly introducing more noise. Only modify this if data lag is impeding accurate
control and data collection.

Encoder Parameters

Counts Per Revolution is the encoder counts per revolution for your encoder which is generally
specified on a datasheet. Common values include:

• CTRE Magnetic Encoder: 4096
• Falcon 500 Integrated: 2048
• REV Throughbore: 8192
• NEO (and NEO 550) Integrated Encoders (REV already handles this value): 1

Gearing is the gearing between the encoder and output shaft. For example, an magnetic
encoder on a kit chassis would have a gearing of one as it is on a 1:1 ratio with the output
shaft. However, if is was an integrated encoder in a motor that was in the gearbox, the
gearing would be 10.71 (per Andymark) since there is now gearing between the encoder and
the output shaft.

1030 Chapter 27. Path Planning

FIRST Robotics Competition

Gyro Parameters (Drivetrain Only)

Gyro lets you select the type of supported gyro. Gyro Parameter lets you configure additional
settings needed to configure the previously specified gyro.

Loading and Saving Configurations

Once your robot configuration is set, you may save it to a location/name of your choice with
the Save button:

Accordingly, you can also load an existing config file with the Load Config button:

Deploying Project

Once your project has been configured, it’s time to deploy the robot project to run the iden-
tification routine.

Team/IP is where you set your team number or IP. You can then deploy the code with the
Deploy label.

27.1. Notice on Swerve Support 1031

FIRST Robotics Competition

Running the Identification Routine

Once the code has been deployed, we can now run the system identification routine, and
record the resulting data for analysis.

Note: Ensure you have sufficient space around the robot before running any identification
routine! The drive identification requires at least 10’ of space, ideally closer to 20’. The robot
drive can not be accurately characterized while on blocks.

Connect to the Robot

Next, we must connect to the robot. Select “Client” at the top of the Logger window and enter
your team number. To characterize a simulated robot program, you can type in localhost.
Finally, press the Apply button. The NetworkTables connection indicator will be visible next
to the Apply button.

If the tool does not seem to be successfully connecting, try rebooting the robot. Eventually,
the status should change to NT Connected, indicating the tool is successfully communicating
with the robot.

1032 Chapter 27. Path Planning

FIRST Robotics Competition

Project Parameters

Mechanism controls what data is sampled and how gravity is expected to affect the analysis.
Unit Type is the units you are using and the units that SysID will export the gains in.
Units Per Rotation defines anything that affects the change from rotations of the output shaft
to the units selected above. As an example say you are using a KOP chassis and units of
meters. The gearing is already accounted for in the generator. We have to take into account
how our wheel will change the distance we have traveled per rotation. The standard chassis
has 6” (0.1524 meters) diameter wheels, so to get the circumference we need to multiply by
Pi. The calculation looks like:

UnitsPerRotation = 0.1524 · π

Voltage Parameters

Quasistatic Ramp Rate controls how quickly the voltage will ramp up during the quasistatic
tests. The goal here is to get the voltage ramped up enough that a trend emerges. If the
amount of space you have to run the robot is small you might need to slightly increase this
ramp rate.
Dynamic Step Voltage is the voltage that will be applied immediately on start to determine
how your robot accelerates. If your robot is short on space you should slightly reduce the
voltage.

Running Tests

A standard motor identification routine consists of two types of tests:
• Quasistatic: In this test, the mechanism is gradually sped-up such that the voltage

corresponding to acceleration is negligible (hence, “as if static”).
• Dynamic: In this test, a constant ‘step voltage’ is given to the mechanism, so that the

behavior while accelerating can be determined.
Each test type is run both forwards and backwards, for four tests in total, corresponding to
the four buttons.

27.1. Notice on Swerve Support 1033

FIRST Robotics Competition

The tests can be run in any order, but running a “backwards” test directly after a “forwards”
test is generally advisable (as it will more or less reset the mechanism to its original position).
Follow the instructions in the pop-up windows after pressing each test button.

Track Width

You can determine the track width of the robot by selecting the Drivetrain (Angular) test. This
will also provide angular Kv and Ka parameters.
This test will spin your robot to determine an empirical trackwidth. It compares how far
the wheel encoders drove against the reported rotation from the gyroscope. To get the best
results your wheels should maintain contact with the ground.

Note: For high-friction wheels (like pneumatic tires), the empirical trackwidth calculated by
sysid may be significantly different from the real trackwidth (e.g., off by a factor of 2). The
empirical value should be preferred over the real one in robot code.

The entire routine should look something like this:
After all four tests have been completed, you can select the folder location for the save file
and click Save.

This will save the data as a JSON file with the specified location/name. A timestamp
(%Y%m%d-%H%M) will be appended to the chosen filename. Additionally, the name of the file
saved will be shown in the Program Log.

Note: The number of samples collected for each test will be displayed in the Program Log.

Analyzing Data

Important: WPILib standardizes on SI units, so its recommended that the Units option is
set to Meters.

Once we have data from an identification routine, we can analyze it using the Analyzer and
Diagnostic Plots widgets.

1034 Chapter 27. Path Planning

FIRST Robotics Competition

Loading your Data File

Now it’s time to load the data file we saved from the logger tool. Click on Select.

In the resulting file dialog, select the JSON file you want to analyze. If the file appears to be
malformed, an error will be shown.

27.1. Notice on Swerve Support 1035

FIRST Robotics Competition

Running Feedforward Analysis

Note: For information on what the calculated feedback gains mean, see The Permanent-
Magnet DC Motor Feedforward Equation. For information on using the calculated feedback
gains in code, see feedforward control.

Click the dropdown arrow on the Feedforward Section.

Note: If you would like to change units, you will have to press the Override Units button
and fill out the information on the popup.

The computed mechanism system parameters will then be displayed.

1036 Chapter 27. Path Planning

FIRST Robotics Competition

Viewing Diagnostics

Goodness-of-Fit Metrics

There are three numerical accuracy metrics that are computed with this tool: acceleration
r-squared, simulated velocity r-squared, and the simulated velocity RMSE.

The acceleration r-squared is the fraction of the variance in measured acceleration (used as
the independent variable in the SysId regression) explained by the linear model. This can be
quite variable, because acceleration is very susceptible to system noise. Assuming the other
fit metrics are acceptable, values near 1 indicate an “ideal” mechanism with few disturbances,
while values near 0 indicate a noisy mechanism with substantial physical vibrations/losses.
The simulated velocity r-squared is the fraction of the variance in measured velocity explained
by a noiseless simulation of the motor movement stepped forward with the constants deter-
mined from the regression. A value north of .9 indicates a good fit.
The simulated velocity RMSE is the standard deviation of the velocity error from the simulated
model. This is a good estimation of the amount of process noise present during the test
routine, and can be used as a low-end estimate for the model noise term in state-space control.

27.1. Notice on Swerve Support 1037

FIRST Robotics Competition

Diagnostic Plots

SysId also produces several diagnostic plots to help users evaluate the quality of their model
fit.

Time-Domain Plots

Note: To improve plot quality, the diagnostic plots are separated by direction. Be sure to
view both the forward and backward plots when troubleshooting!

The Time-Domain Diagnostics plots display velocity versus time over the course of the ana-
lyzed tests. These should look something like this:

1038 Chapter 27. Path Planning

FIRST Robotics Competition

The velocity time domain plots contain three sets of data: Raw Data, Filtered Data, and Sim-
ulation. The Raw Data is the recorded data from your robot, the Filtered Data is the data
after a median filter has been applied to the data, and the Simulation represents the velocity
predictions of a model based off of the feedforward gains from the tool (these are used to
calculate the “sim” error metrics mentioned above).
A successful quasistatic graph will be very nearly linear, while a successful dynamic graph
will be an approximately exponential approach of the steady-speed.
Deviation from this behavior is a sign of an error, either in your robot setup, analysis settings,
or your test procedure.

Acceleration-Velocity Plot

The acceleration-versus-velocity plot displays the mechanism velocity versus the portion of
acceleration corresponding to factors other than friction (ideally, this would leave only back-
EMF) and applied voltage across all of the tests.

This plot should be quite linear, with patches of relatively noiseless quasistatic data intermixed
with quite-noisy dynamic data. The noise on the dynamic sections of the plot may be reduced
by increasing the Window Size setting.

27.1. Notice on Swerve Support 1039

FIRST Robotics Competition

However, if your robot or mechanism has low mass compared to the motor power, this may
“eat” what little meaningful acceleration data you have. In these cases kA will tend towards
zero and can be ignored for feedforward purposes. However, if kA cannot be accurately
measured, the calculated feedback gains are likely to be inaccurate, and manual tuning may
be required.

Common Failure Modes

When something has gone wrong with the identification, diagnostic plots and console output
provide crucial clues as towhat has gone wrong. This section describes some common failures
encountered while running the system identification tool, the identifying features of their
diagnostic plots, and the steps that can be taken to fix them.

Improperly Set Motion Threshold

One of the most-common errors is an inappropriate value for the motion threshold.

1040 Chapter 27. Path Planning

FIRST Robotics Competition

Velocity Threshold Too Low

The presence of a “leading tail” (emphasized by added red circle) in the quasistatic time-
domain plot indicates that the Velocity Threshold setting is too low, and thus data points from
before the robot begins to move are being included.
To solve this, increase the velocity threshold and re-analyze the data.

27.1. Notice on Swerve Support 1041

FIRST Robotics Competition

Motion Threshold Too High

While not nearly as problematic as a too-low threshold, a velocity threshold that is too high
will result in a large “gap” in the acceleration-versus-velocity plot.
To solve this, decrease the velocity threshold and re-analyze the data.

Noisy Velocity Signals

Note: There are two types of noise that affect mechanical systems - signal noise and system
noise. Signal noise corresponds to measurement error, while system noise corresponds to
actual physical motion that is unaccounted-for by your model (e.g. vibration). If SysId sug-
gests that your system is noisy, you must figure out which of the two types of noise is at play
- signal noise is often easier to eliminate than system noise.

Many FRC setups suffer from poorly-installed encoders - errors in shaft concentricity (for

1042 Chapter 27. Path Planning

FIRST Robotics Competition

optical encoders) and magnet location (For magnetic encoders) can both contribute to noisy
velocity signals, as can inappropriate filtering settings. Encoder noise will be immediately
visible in your diagnostic plots, as can be seen above. Encoder noise is especially common on
the toughbox mini gearboxes provided in the kit of parts.
System parameters can sometimes be accurately determined even from data polluted by en-
coder noise by increasing the window size setting. However, this sort of encoder noise is
problematic for robot code much the same way it is problematic for the system identification
tool. As the root cause of the noise is not known, it is recommended to try a different encoder
setup if this is observed, either by moving the encoders to a different shaft, replacing them
with a different type of encoder, or increasing the sample per average in project generation
(adds an additional layer of filtering).

Feedback Analysis

Important: These gains are, in effect, “educated guesses” - they are not guaranteed to be
perfect, and should be viewed as a “starting point” for further tuning.

To view the feedback constants, click on the dropdown arrow on the Feedback section.

This view can be used to calculate optimal feedback gains for a PD or P controller for your
mechanism (via LQR).

27.1. Notice on Swerve Support 1043

https://www.andymark.com/products/toughbox-mini-options

FIRST Robotics Competition

Enter Controller Parameters

Note: The “Spark Max” preset assumes that the user has configured the controller to operate
in the units of analysis with the SPARK MAX API’s position/velocity scaling factor feature.

The calculated feedforward gains are dimensioned quantities. Unfortunately, not much at-
tention is often paid to the units of PID gains in FRC® controls, and so the various typical
options for PID controller implementations differ in their unit conventions (which are often
not made clear to the user).
To specify the correct settings for your PID controller, use the following options.

• Gain Settings Preset This drop-down menu will auto-populate the remaining fields with
likely settings for one of a number of common FRC controller setups. Note that some
settings, such as post-encoder gearing, PPR, and the presence of a follower motor must
still be manually specified (as the analyzer has no way of knowing these without user
input), and that others may vary from the given defaults depending on user setup.

• Controller Period This is the execution period of the control loop, in seconds. The default

1044 Chapter 27. Path Planning

FIRST Robotics Competition

RIO loop rate is 50Hz, corresponding to a period of 0.02s. The onboard controllers on
most “smart controllers” run at 1Khz, or a period of 0.001s.

• Max Controller Output This is the maximum value of the controller output, with respect
to the PID calculation. Most controllers calculate outputs with a maximum value of 1,
but Talon controllers have a maximum output of 1023.

• Time-Normalized Controller This specifies whether the PID calculation is normalized to
the period of execution, which affects the scaling of the D gain.

• Controller Type This specifies whether the controller is an onboard RIO loop, or is run-
ning on a smart motor controller such as a Talon or a SPARK MAX.

• Post-Encoder Gearing This specifies the gearing between the encoder and the mech-
anism itself. This is necessary for control loops that do not allow user-specified unit
scaling in their PID computations (e.g. those running on Talons). This will be disabled if
not relevant.

• Encoder EPR This specifies the edges-per-revolution (not cycles per revolution) of the
encoder used, which is needed in the same cases as Post-Encoder Gearing.

• Has Follower Whether there is a motor controller following the controller running the
control loop, if the control loop is being run on a peripheral device. This changes the
effective loop period.

• Follower Update Period The rate at which the follower (if present) is updated. By default,
this is 100Hz (every 0.01s) for the Talon SRX, Talon FX, and the SPARK MAX, but can be
changed.

Note: If you select a smart motor controller as the preset (e.g. TalonSRX, SPARK MAX,
etc.) the Convert Gains checkbox will be automatically checked. This means the tool will
convert your gains so that they can be used through the smart motor controller’s PID methods.
Therefore, if you would like to use WPILib’s PID Loops, you must uncheck that box.

Measurement Delays

Note: If you are using default smart motor controller settings or WPILib PID Control without
additional filtering, SysId handles this for you.

Many “smart motor controllers” (such as the Talon SRX, Venom, Talon FX, and SPARK MAX)
apply substantial low-pass filtering to their encoder velocity measurements, which can intro-
duce a significant amount of phase lag. This can cause the calculated gains for velocity loops
to be unstable. This can be accounted for with the Measurement Delay box.
However, the measurement delays have already been calculated for the default settings of
the previously mentioned motor controllers so for most users this is handled by selecting the
right preset in Gain Settings Preset.
The following only applies if the user decides to implement their own custom filtering settings
(e.g. adding a moving average filter to a WPILib PID loop or changing smart motorcontroller
measurement period and/or measurement window size) as the measurement delay must be
recalculated. Here is the general formula that can be used for filters with moving windows

27.1. Notice on Swerve Support 1045

FIRST Robotics Competition

(e.g. median filter + moving average filter):

d =
T (n− 1)

2

Where T is the period at which measurements are sampled (RIO default is 20 ms) and n is the
size of the moving window used.

Specify Optimality Criteria

Finally, the user must specify what will be considered an “optimal” controller. This takes
the form of desired tolerances for the system error and control effort - note that it is not
guaranteed that the system will obey these tolerances at all times.

As a rule, smaller values for the Max Acceptable Error and larger values for the Max Accept-
able Control Effort will result in larger gains - this will result in larger control efforts, which
can grant better setpoint-tracking but may cause more violent behavior and greater wear on
components.
The Max Acceptable Control Effort should never exceed 12V, as that corresponds to full bat-
tery voltage, and ideally should be somewhat lower than this.

1046 Chapter 27. Path Planning

FIRST Robotics Competition

Select Loop Type

It is typical to control mechanisms with both position and velocity PIDs, depending on appli-
cation. Either can be selected using the drop-down Loop Type menu.

Additional Utilities and Tools

This page mainly covers useful information about additional functionality that this tool pro-
vides.

27.1. Notice on Swerve Support 1047

FIRST Robotics Competition

JSON Converters

There are a two JSON Utility tools that can be used in the JSON Converters tab: FRC-Char
Converter and JSON to CSV Converter.

The FRC-Char Converter reads in an FRC-Char JSON and converts it into a SysId JSON that
the tool can read.
The JSON to CSV Converter takes a SysId JSON and outputs a CSV file. If the JSON had
Drivetrain Mechanism data, the columns are: Timestamp (s), Test, Left Volts (V) , Right
Volts (V), Left Position ({0}), Right Position ({units}), Left Velocity ({units}/
s), Right Velocity ({units}/s), Gyro Position (deg), Gyro Rate (deg/s). If the JSON
had General Mechanism data, the CSV has the following columns: Timestamp (s), Test,
Volts (V), Position({units}), Velocity ({units}/s).

ImGui Tips

The following are essentially handy features that come with the ImGui framework that SysId
uses:

Showing and Hiding Plot Data

To add or remove certain data from the plots, click on the color of the data that you would
like to hide or remove.
For example, if we want to hide sim data, we can click the green color box.

1048 Chapter 27. Path Planning

FIRST Robotics Competition

Auto Sizing Plots

If you zoom in to plots and want to revert back to the normally sized plots, just double click
on the plot and it will automatically resize it.
Here is a plot that is zoomed in:

After double clicking, it is automatically resized:

27.1. Notice on Swerve Support 1049

FIRST Robotics Competition

Setting Slider Values

To set the value of a slider as a number rather than sliding the widget, you can CTRL + Click
the slider and it will allow you to input a number.
Here is a regular slider:

Here is the input after double clicking the slider:

1050 Chapter 27. Path Planning

FIRST Robotics Competition

27.1.2 Trajectory Tutorial

This is full tutorial for implementing trajectory generation and following on a differential-
drive robot. The full code used in this tutorial can be found in the RamseteCommand example
project (Java, C++).

Trajectory Tutorial Overview

Note: Before following this tutorial, it is helpful (but not strictly necessary) to have a baseline
familiarity with WPILib’s PID control, feedforward, and trajectory features.

Note: The robot code in this tutorial uses the command-based framework. The command-
based framework is strongly recommended for beginning and intermediate teams.

The goal of this tutorial is to provide “end-to-end” instruction on implementing a trajectory-
following autonomous routine for a differential-drive robot. By following this tutorial, readers
will learn how to:

1. Accurately characterize their robot’s drivetrain to obtain accurate feedforward calcula-
tions and approximate feedback gains.

2. Configure a drive subsystem to track the robot’s pose using WPILib’s odometry library.
3. Generate a simple trajectory through a set of waypoints using WPILib’s TrajectoryGen-

erator class.
4. Follow the generated trajectory in an autonomous routine using WPILib’s RamseteCom-

mand class with the calculated feedforward/feedback gains and pose.
This tutorial is intended to be approachable for teams without a great deal of programming
expertise. While the WPILib library offers significant flexibility in the manner in which its
trajectory-following features are implemented, closely following the implementation outlined
in this tutorial should provide teams with a relatively-simple, clean, and repeatable solution
for autonomous movement.
The full robot code for this tutorial can be found in the RamseteCommand Example Project
(Java, C++).

Why Trajectory Following?

FRC® games often feature autonomous tasks that require a robot to effectively and accurately
move from a known starting location to a known scoring location. Historically, the most
common solution for this sort of task in FRC has been a “drive-turn-drive” approach - that
is, drive forward by a known distance, turn by a known angle, and drive forward by another
known distance.
While the “drive-turn-drive” approach is certainly functional, in recent years teams have be-
gun tracking smooth trajectories which require the robot to drive and turn at the same time.
While this is a fundamentally more-complicated technical task, it offers significant benefits: in
particular, since the robot no longer has to stop to change directions, the paths can be driven
much faster, allowing a robot to score more game pieces during the autonomous period.

27.1. Notice on Swerve Support 1051

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand

FIRST Robotics Competition

Beginning in 2020, WPILib now supplies teams with working, advanced code solutions for
trajectory generation and tracking, significantly lowering the “barrier-to-entry” for this kind
of advanced and effective autonomous motion.

Required Equipment

To follow this tutorial, you will need ready access to the following materials:
1. A differential-drive robot (such as the AndyMark AM14U5), equipped with:
• Quadrature encoders for measuring the wheel rotation of each side of the drive.
• A gyroscope for measuring robot heading.

2. A driver-station computer configured with:
• FRC Driver Station.
• WPILib.
• The System Identification Toolsuite.

Step 1: Characterizing Your Robot Drive

Note: For detailed instructions on using the System Identification tool, see its dedicated
documentation.

Note: The drive identification process requires ample space for the robot to drive. Be sure
to have at least a 10’ stretch (ideally closer to 20’) in which the robot can drive during the
identification routine.

Note: The identification data for this tutorial has been generously provided by Team 5190,
who generated it as part of a demonstration of this functionality at the 2019 North Carolina
State University P2P Workshop.

Before accurately following a path with a robot, it is important to have an accurate model for
how the robot moves in response to its control inputs. Determining such a model is a process
called “system identification.” WPILib’s System Identification tool can accurately determine
such a model.

Gathering the Data

We begin by gathering our drive identification data.
1. Configure and Deploy a robot project.
2. Run the identification Routine.

1052 Chapter 27. Path Planning

https://www.andymark.com/products/am14u5-6-wheel-drop-center-robot-drive-base-first-kit-of-parts-chassis

FIRST Robotics Competition

Analyzing the Data

Once the identification routine has been run and the data file has been saved, it is time to
open it in the analysis pane.

Checking Diagnostics

Per the system identification guide, we first view the diagnostics to ensure that our data look
reasonable:

As our data look reasonably linear, and the fit metrics are within acceptable parameters, we
proceed to the next step.

27.1. Notice on Swerve Support 1053

FIRST Robotics Competition

Record Feedforward Gains

Note: Feedforward gains do not, in general, transfer across robots. Do not use the gains
from this tutorial for your own robot.

We now record the feedforward gains calculated by the tool:

Since our wheel diameter was specified in meters, our feedforward gains are in the following
units:

• kS: Volts
• kV: Volts * Seconds / Meters
• kA: Volts * Seconds^2 / Meters

If you have specified your units correctly, your feedforward gains will likely be within an
order of magnitude of the ones reported here (a possible exception exists for kA, which may
be vanishingly small if your robot is light). If they are not, it is possible you specified one
of your drive parameters incorrectly when generating your robot project. A good test for
this is to calculate the “theoretical” value of kV, which is 12 volts divided by the theoretical
free speed of your drivetrain (which is, in turn, the free speed of the motor times the wheel
circumference divided by the gear reduction). This value should agree very closely with the
kV measured by the tool - if it does not, you have likely made an error somewhere.

1054 Chapter 27. Path Planning

FIRST Robotics Competition

Calculate Feedback Gains

Note: Feedback gains do not, in general, transfer across robots. Do not use the gains from
this tutorial for your own robot.

We now calculate the feedback gains for the PID control that we will use to follow the path.
Trajectory following with WPILib’s RAMSETE controller uses velocity closed-loop control, so
we first select Velocity mode in the identification tool:

Since we will be using the WPILib PIDController for our velocity loop, we furthermore select
the WPILib (2020-) option from the drop-down “presets” menu. This is very important, as
the feedback gains will not be in the correct units if we do not select the correct preset:

27.1. Notice on Swerve Support 1055

FIRST Robotics Competition

Finally, we calculate and record the feedback gains for our control loop. Since it is a velocity
controller, only a P gain is required:

1056 Chapter 27. Path Planning

FIRST Robotics Competition

Assuming we have done everything correctly, our proportional gain will be in units of Volts *
Seconds / Meters. Thus, our calculated gain means that, for each meter per second of velocity
error, the controller will output an additional 3.38 volts.

Step 2: Entering the Calculated Constants

Note: In C++, it is important that the feedforward constants be entered as the correct unit
type. For more information on C++ units, see The C++ Units Library.

Now that we have our system constants, it is time to place them in our code. The recom-
mended place for this is the Constants file of the standard command-based project structure.
The relevant parts of the constants file from the RamseteCommand Example Project (Java,
C++) can be seen below.

27.1. Notice on Swerve Support 1057

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand

FIRST Robotics Competition

Feedforward/Feedback Gains

Firstly, we must enter the feedforward and feedback gains which we obtained from the iden-
tification tool.

Note: Feedforward and feedback gains do not, in general, transfer across robots. Do not
use the gains from this tutorial for your own robot.

Java

39 // These are example values only - DO NOT USE THESE FOR YOUR OWN ROBOT!
40 // These characterization values MUST be determined either experimentally or␣

↪→theoretically
41 // for *your* robot's drive.
42 // The Robot Characterization Toolsuite provides a convenient tool for obtaining␣

↪→these
43 // values for your robot.
44 public static final double ksVolts = 0.22;
45 public static final double kvVoltSecondsPerMeter = 1.98;
46 public static final double kaVoltSecondsSquaredPerMeter = 0.2;
47

48 // Example value only - as above, this must be tuned for your drive!
49 public static final double kPDriveVel = 8.5;

C++ (Header)

47 // These are example values only - DO NOT USE THESE FOR YOUR OWN ROBOT!
48 // These characterization values MUST be determined either experimentally or
49 // theoretically for *your* robot's drive. The Robot Characterization
50 // Toolsuite provides a convenient tool for obtaining these values for your
51 // robot.
52 constexpr auto ks = 0.22_V;
53 constexpr auto kv = 1.98 * 1_V * 1_s / 1_m;
54 constexpr auto ka = 0.2 * 1_V * 1_s * 1_s / 1_m;
55

56 // Example value only - as above, this must be tuned for your drive!
57 constexpr double kPDriveVel = 8.5;

DifferentialDriveKinematics

Additionally, we must create an instance of the DifferentialDriveKinematics class, which
allows us to use the trackwidth (i.e. horizontal distance between the wheels) of the robot to
convert from chassis speeds to wheel speeds. As elsewhere, we keep our units in meters.
Java

29 public static final double kTrackwidthMeters = 0.69;
30 public static final DifferentialDriveKinematics kDriveKinematics =
31 new DifferentialDriveKinematics(kTrackwidthMeters);

C++ (Header)

38 constexpr auto kTrackwidth = 0.69_m;
39 extern const frc::DifferentialDriveKinematics kDriveKinematics;

1058 Chapter 27. Path Planning

FIRST Robotics Competition

Max Trajectory Velocity/Acceleration

We must also decide on a nominal max acceleration and max velocity for the robot during
path-following. The maximum velocity value should be set somewhat below the nominal free-
speed of the robot. Due to the later use of the DifferentialDriveVoltageConstraint, the
maximum acceleration value is not extremely crucial.
Java

57 public static final double kMaxSpeedMetersPerSecond = 3;
58 public static final double kMaxAccelerationMetersPerSecondSquared = 1;

C++ (Header)

61 constexpr auto kMaxSpeed = 3_mps;
62 constexpr auto kMaxAcceleration = 1_mps_sq;

Ramsete Parameters

Finally, we must include a pair of parameters for the RAMSETE controller. The values shown
below should work well for most robots, provided distances have been correctly measured in
meters - for more information on tuning these values (if it is required), see Constructing the
Ramsete Controller Object.
Java

60 // Reasonable baseline values for a RAMSETE follower in units of meters and␣
↪→seconds

61 public static final double kRamseteB = 2;
62 public static final double kRamseteZeta = 0.7;

C++ (Header)

64 // Reasonable baseline values for a RAMSETE follower in units of meters and
65 // seconds
66 constexpr auto kRamseteB = 2.0 * 1_rad * 1_rad / (1_m * 1_m);
67 constexpr auto kRamseteZeta = 0.7 / 1_rad;

Step 3: Creating a Drive Subsystem

Now that our drive is characterized, it is time to start writing our robot code proper. As men-
tioned before, we will use the command-based framework for our robot code. Accordingly,
our first step is to write a suitable drive subsystem class.
The full drive class from the RamseteCommand Example Project (Java, C++) can be seen
below. The rest of the article will describe the steps involved in writing this class.
Java

5 package edu.wpi.first.wpilibj.examples.ramsetecommand.subsystems;
6

7 import edu.wpi.first.math.geometry.Pose2d;
8 import edu.wpi.first.math.kinematics.DifferentialDriveOdometry;
9 import edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds;

(continues on next page)

27.1. Notice on Swerve Support 1059

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand

FIRST Robotics Competition

(continued from previous page)
10 import edu.wpi.first.wpilibj.ADXRS450_Gyro;
11 import edu.wpi.first.wpilibj.Encoder;
12 import edu.wpi.first.wpilibj.drive.DifferentialDrive;
13 import edu.wpi.first.wpilibj.examples.ramsetecommand.Constants.DriveConstants;
14 import edu.wpi.first.wpilibj.interfaces.Gyro;
15 import edu.wpi.first.wpilibj.motorcontrol.MotorControllerGroup;
16 import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;
17 import edu.wpi.first.wpilibj2.command.SubsystemBase;
18

19 public class DriveSubsystem extends SubsystemBase {
20 // The motors on the left side of the drive.
21 private final MotorControllerGroup m_leftMotors =
22 new MotorControllerGroup(
23 new PWMSparkMax(DriveConstants.kLeftMotor1Port),
24 new PWMSparkMax(DriveConstants.kLeftMotor2Port));
25

26 // The motors on the right side of the drive.
27 private final MotorControllerGroup m_rightMotors =
28 new MotorControllerGroup(
29 new PWMSparkMax(DriveConstants.kRightMotor1Port),
30 new PWMSparkMax(DriveConstants.kRightMotor2Port));
31

32 // The robot's drive
33 private final DifferentialDrive m_drive = new DifferentialDrive(m_leftMotors, m_

↪→rightMotors);
34

35 // The left-side drive encoder
36 private final Encoder m_leftEncoder =
37 new Encoder(
38 DriveConstants.kLeftEncoderPorts[0],
39 DriveConstants.kLeftEncoderPorts[1],
40 DriveConstants.kLeftEncoderReversed);
41

42 // The right-side drive encoder
43 private final Encoder m_rightEncoder =
44 new Encoder(
45 DriveConstants.kRightEncoderPorts[0],
46 DriveConstants.kRightEncoderPorts[1],
47 DriveConstants.kRightEncoderReversed);
48

49 // The gyro sensor
50 private final Gyro m_gyro = new ADXRS450_Gyro();
51

52 // Odometry class for tracking robot pose
53 private final DifferentialDriveOdometry m_odometry;
54

55 /** Creates a new DriveSubsystem. */
56 public DriveSubsystem() {
57 // We need to invert one side of the drivetrain so that positive voltages
58 // result in both sides moving forward. Depending on how your robot's
59 // gearbox is constructed, you might have to invert the left side instead.
60 m_rightMotors.setInverted(true);
61

62 // Sets the distance per pulse for the encoders
63 m_leftEncoder.setDistancePerPulse(DriveConstants.kEncoderDistancePerPulse);
64 m_rightEncoder.setDistancePerPulse(DriveConstants.kEncoderDistancePerPulse);

(continues on next page)

1060 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
65

66 resetEncoders();
67 m_odometry =
68 new DifferentialDriveOdometry(
69 m_gyro.getRotation2d(), m_leftEncoder.getDistance(), m_rightEncoder.

↪→getDistance());
70 }
71

72 @Override
73 public void periodic() {
74 // Update the odometry in the periodic block
75 m_odometry.update(
76 m_gyro.getRotation2d(), m_leftEncoder.getDistance(), m_rightEncoder.

↪→getDistance());
77 }
78

79 /**
80 * Returns the currently-estimated pose of the robot.
81 *
82 * @return The pose.
83 */
84 public Pose2d getPose() {
85 return m_odometry.getPoseMeters();
86 }
87

88 /**
89 * Returns the current wheel speeds of the robot.
90 *
91 * @return The current wheel speeds.
92 */
93 public DifferentialDriveWheelSpeeds getWheelSpeeds() {
94 return new DifferentialDriveWheelSpeeds(m_leftEncoder.getRate(), m_rightEncoder.

↪→getRate());
95 }
96

97 /**
98 * Resets the odometry to the specified pose.
99 *

100 * @param pose The pose to which to set the odometry.
101 */
102 public void resetOdometry(Pose2d pose) {
103 resetEncoders();
104 m_odometry.resetPosition(
105 m_gyro.getRotation2d(), m_leftEncoder.getDistance(), m_rightEncoder.

↪→getDistance(), pose);
106 }
107

108 /**
109 * Drives the robot using arcade controls.
110 *
111 * @param fwd the commanded forward movement
112 * @param rot the commanded rotation
113 */
114 public void arcadeDrive(double fwd, double rot) {
115 m_drive.arcadeDrive(fwd, rot);
116 }

(continues on next page)

27.1. Notice on Swerve Support 1061

FIRST Robotics Competition

(continued from previous page)
117

118 /**
119 * Controls the left and right sides of the drive directly with voltages.
120 *
121 * @param leftVolts the commanded left output
122 * @param rightVolts the commanded right output
123 */
124 public void tankDriveVolts(double leftVolts, double rightVolts) {
125 m_leftMotors.setVoltage(leftVolts);
126 m_rightMotors.setVoltage(rightVolts);
127 m_drive.feed();
128 }
129

130 /** Resets the drive encoders to currently read a position of 0. */
131 public void resetEncoders() {
132 m_leftEncoder.reset();
133 m_rightEncoder.reset();
134 }
135

136 /**
137 * Gets the average distance of the two encoders.
138 *
139 * @return the average of the two encoder readings
140 */
141 public double getAverageEncoderDistance() {
142 return (m_leftEncoder.getDistance() + m_rightEncoder.getDistance()) / 2.0;
143 }
144

145 /**
146 * Gets the left drive encoder.
147 *
148 * @return the left drive encoder
149 */
150 public Encoder getLeftEncoder() {
151 return m_leftEncoder;
152 }
153

154 /**
155 * Gets the right drive encoder.
156 *
157 * @return the right drive encoder
158 */
159 public Encoder getRightEncoder() {
160 return m_rightEncoder;
161 }
162

163 /**
164 * Sets the max output of the drive. Useful for scaling the drive to drive more␣

↪→slowly.
165 *
166 * @param maxOutput the maximum output to which the drive will be constrained
167 */
168 public void setMaxOutput(double maxOutput) {
169 m_drive.setMaxOutput(maxOutput);
170 }
171

(continues on next page)

1062 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
172 /** Zeroes the heading of the robot. */
173 public void zeroHeading() {
174 m_gyro.reset();
175 }
176

177 /**
178 * Returns the heading of the robot.
179 *
180 * @return the robot's heading in degrees, from -180 to 180
181 */
182 public double getHeading() {
183 return m_gyro.getRotation2d().getDegrees();
184 }
185

186 /**
187 * Returns the turn rate of the robot.
188 *
189 * @return The turn rate of the robot, in degrees per second
190 */
191 public double getTurnRate() {
192 return -m_gyro.getRate();
193 }
194 }

C++ (Header)

5 #pragma once
6

7 #include <frc/ADXRS450_Gyro.h>
8 #include <frc/Encoder.h>
9 #include <frc/drive/DifferentialDrive.h>

10 #include <frc/geometry/Pose2d.h>
11 #include <frc/kinematics/DifferentialDriveOdometry.h>
12 #include <frc/motorcontrol/MotorControllerGroup.h>
13 #include <frc/motorcontrol/PWMSparkMax.h>
14 #include <frc2/command/SubsystemBase.h>
15 #include <units/voltage.h>
16

17 #include "Constants.h"
18

19 class DriveSubsystem : public frc2::SubsystemBase {
20 public:
21 DriveSubsystem();
22

23 /**
24 * Will be called periodically whenever the CommandScheduler runs.
25 */
26 void Periodic() override;
27

28 // Subsystem methods go here.
29

30 /**
31 * Drives the robot using arcade controls.
32 *
33 * @param fwd the commanded forward movement
34 * @param rot the commanded rotation

(continues on next page)

27.1. Notice on Swerve Support 1063

FIRST Robotics Competition

(continued from previous page)
35 */
36 void ArcadeDrive(double fwd, double rot);
37

38 /**
39 * Controls each side of the drive directly with a voltage.
40 *
41 * @param left the commanded left output
42 * @param right the commanded right output
43 */
44 void TankDriveVolts(units::volt_t left, units::volt_t right);
45

46 /**
47 * Resets the drive encoders to currently read a position of 0.
48 */
49 void ResetEncoders();
50

51 /**
52 * Gets the average distance of the TWO encoders.
53 *
54 * @return the average of the TWO encoder readings
55 */
56 double GetAverageEncoderDistance();
57

58 /**
59 * Gets the left drive encoder.
60 *
61 * @return the left drive encoder
62 */
63 frc::Encoder& GetLeftEncoder();
64

65 /**
66 * Gets the right drive encoder.
67 *
68 * @return the right drive encoder
69 */
70 frc::Encoder& GetRightEncoder();
71

72 /**
73 * Sets the max output of the drive. Useful for scaling the drive to drive
74 * more slowly.
75 *
76 * @param maxOutput the maximum output to which the drive will be constrained
77 */
78 void SetMaxOutput(double maxOutput);
79

80 /**
81 * Returns the heading of the robot.
82 *
83 * @return the robot's heading in degrees, from -180 to 180
84 */
85 units::degree_t GetHeading() const;
86

87 /**
88 * Returns the turn rate of the robot.
89 *
90 * @return The turn rate of the robot, in degrees per second

(continues on next page)

1064 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
91 */
92 double GetTurnRate();
93

94 /**
95 * Returns the currently-estimated pose of the robot.
96 *
97 * @return The pose.
98 */
99 frc::Pose2d GetPose();

100

101 /**
102 * Returns the current wheel speeds of the robot.
103 *
104 * @return The current wheel speeds.
105 */
106 frc::DifferentialDriveWheelSpeeds GetWheelSpeeds();
107

108 /**
109 * Resets the odometry to the specified pose.
110 *
111 * @param pose The pose to which to set the odometry.
112 */
113 void ResetOdometry(frc::Pose2d pose);
114

115 private:
116 // Components (e.g. motor controllers and sensors) should generally be
117 // declared private and exposed only through public methods.
118

119 // The motor controllers
120 frc::PWMSparkMax m_left1;
121 frc::PWMSparkMax m_left2;
122 frc::PWMSparkMax m_right1;
123 frc::PWMSparkMax m_right2;
124

125 // The motors on the left side of the drive
126 frc::MotorControllerGroup m_leftMotors{m_left1, m_left2};
127

128 // The motors on the right side of the drive
129 frc::MotorControllerGroup m_rightMotors{m_right1, m_right2};
130

131 // The robot's drive
132 frc::DifferentialDrive m_drive{m_leftMotors, m_rightMotors};
133

134 // The left-side drive encoder
135 frc::Encoder m_leftEncoder;
136

137 // The right-side drive encoder
138 frc::Encoder m_rightEncoder;
139

140 // The gyro sensor
141 frc::ADXRS450_Gyro m_gyro;
142

143 // Odometry class for tracking robot pose
144 frc::DifferentialDriveOdometry m_odometry;
145 };

C++ (Source)

27.1. Notice on Swerve Support 1065

FIRST Robotics Competition

5 #include "subsystems/DriveSubsystem.h"
6

7 #include <frc/geometry/Rotation2d.h>
8 #include <frc/kinematics/DifferentialDriveWheelSpeeds.h>
9

10 using namespace DriveConstants;
11

12 DriveSubsystem::DriveSubsystem()
13 : m_left1{kLeftMotor1Port},
14 m_left2{kLeftMotor2Port},
15 m_right1{kRightMotor1Port},
16 m_right2{kRightMotor2Port},
17 m_leftEncoder{kLeftEncoderPorts[0], kLeftEncoderPorts[1]},
18 m_rightEncoder{kRightEncoderPorts[0], kRightEncoderPorts[1]},
19 m_odometry{m_gyro.GetRotation2d(), units::meter_t{0}, units::meter_t{0}} {
20 // We need to invert one side of the drivetrain so that positive voltages
21 // result in both sides moving forward. Depending on how your robot's
22 // gearbox is constructed, you might have to invert the left side instead.
23 m_rightMotors.SetInverted(true);
24

25 // Set the distance per pulse for the encoders
26 m_leftEncoder.SetDistancePerPulse(kEncoderDistancePerPulse.value());
27 m_rightEncoder.SetDistancePerPulse(kEncoderDistancePerPulse.value());
28

29 ResetEncoders();
30 }
31

32 void DriveSubsystem::Periodic() {
33 // Implementation of subsystem periodic method goes here.
34 m_odometry.Update(m_gyro.GetRotation2d(),
35 units::meter_t{m_leftEncoder.GetDistance()},
36 units::meter_t{m_rightEncoder.GetDistance()});
37 }
38

39 void DriveSubsystem::ArcadeDrive(double fwd, double rot) {
40 m_drive.ArcadeDrive(fwd, rot);
41 }
42

43 void DriveSubsystem::TankDriveVolts(units::volt_t left, units::volt_t right) {
44 m_leftMotors.SetVoltage(left);
45 m_rightMotors.SetVoltage(right);
46 m_drive.Feed();
47 }
48

49 void DriveSubsystem::ResetEncoders() {
50 m_leftEncoder.Reset();
51 m_rightEncoder.Reset();
52 }
53

54 double DriveSubsystem::GetAverageEncoderDistance() {
55 return (m_leftEncoder.GetDistance() + m_rightEncoder.GetDistance()) / 2.0;
56 }
57

58 frc::Encoder& DriveSubsystem::GetLeftEncoder() {
59 return m_leftEncoder;
60 }
61

(continues on next page)

1066 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
62 frc::Encoder& DriveSubsystem::GetRightEncoder() {
63 return m_rightEncoder;
64 }
65

66 void DriveSubsystem::SetMaxOutput(double maxOutput) {
67 m_drive.SetMaxOutput(maxOutput);
68 }
69

70 units::degree_t DriveSubsystem::GetHeading() const {
71 return m_gyro.GetRotation2d().Degrees();
72 }
73

74 double DriveSubsystem::GetTurnRate() {
75 return -m_gyro.GetRate();
76 }
77

78 frc::Pose2d DriveSubsystem::GetPose() {
79 return m_odometry.GetPose();
80 }
81

82 frc::DifferentialDriveWheelSpeeds DriveSubsystem::GetWheelSpeeds() {
83 return {units::meters_per_second_t{m_leftEncoder.GetRate()},
84 units::meters_per_second_t{m_rightEncoder.GetRate()}};
85 }
86

87 void DriveSubsystem::ResetOdometry(frc::Pose2d pose) {
88 ResetEncoders();
89 m_odometry.ResetPosition(m_gyro.GetRotation2d(),
90 units::meter_t{m_leftEncoder.GetDistance()},
91 units::meter_t{m_rightEncoder.GetDistance()}, pose);
92 }

Configuring the Drive Encoders

The drive encoders measure the rotation of the wheels on each side of the drive. To properly
configure the encoders, we need to specify two things: the ports the encoders are plugged
into, and the distance per encoder pulse. Then, we need to write methods allowing access to
the encoder values from code that uses the subsystem.

Encoder Ports

The encoder ports are specified in the encoder’s constructor, like so:
Java

35 // The left-side drive encoder
36 private final Encoder m_leftEncoder =
37 new Encoder(
38 DriveConstants.kLeftEncoderPorts[0],
39 DriveConstants.kLeftEncoderPorts[1],
40 DriveConstants.kLeftEncoderReversed);
41

42 // The right-side drive encoder
(continues on next page)

27.1. Notice on Swerve Support 1067

FIRST Robotics Competition

(continued from previous page)
43 private final Encoder m_rightEncoder =
44 new Encoder(
45 DriveConstants.kRightEncoderPorts[0],
46 DriveConstants.kRightEncoderPorts[1],
47 DriveConstants.kRightEncoderReversed);

C++ (Source)

17 m_leftEncoder{kLeftEncoderPorts[0], kLeftEncoderPorts[1]},
18 m_rightEncoder{kRightEncoderPorts[0], kRightEncoderPorts[1]},

Encoder Distance per Pulse

The distance per pulse is specified by calling the encoder’s setDistancePerPulse method.
Note that for the WPILib Encoder class, “pulse” refers to a full encoder cycle (i.e. four edges),
and thus will be 1/4 the value that was specified in the SysId config. Remember, as well, that
the distance should be measured in meters!
Java

63 m_leftEncoder.setDistancePerPulse(DriveConstants.kEncoderDistancePerPulse);
64 m_rightEncoder.setDistancePerPulse(DriveConstants.kEncoderDistancePerPulse);

C++ (Source)

26 m_leftEncoder.SetDistancePerPulse(kEncoderDistancePerPulse.value());
27 m_rightEncoder.SetDistancePerPulse(kEncoderDistancePerPulse.value());

Encoder Accessor Method

To access the values measured by the encoders, we include the following method:

Important: The returned velocities must be in meters! Because we configured the distance
per pulse on the encoders above, calling getRate() will automatically apply the conversion
factor from encoder units to meters. If you are not using WPILib’s Encoder class, you must
perform this conversion either through the respective vendor’s API or by manually multiplying
by a conversion factor.

Java

88 /**
89 * Returns the current wheel speeds of the robot.
90 *
91 * @return The current wheel speeds.
92 */
93 public DifferentialDriveWheelSpeeds getWheelSpeeds() {
94 return new DifferentialDriveWheelSpeeds(m_leftEncoder.getRate(), m_rightEncoder.

↪→getRate());
95 }

C++ (Source)

1068 Chapter 27. Path Planning

FIRST Robotics Competition

82 frc::DifferentialDriveWheelSpeeds DriveSubsystem::GetWheelSpeeds() {
83 return {units::meters_per_second_t{m_leftEncoder.GetRate()},
84 units::meters_per_second_t{m_rightEncoder.GetRate()}};
85 }

We wrap the measured encoder values in a DifferentialDriveWheelSpeeds object for easier
integration with the RamseteCommand class later on.

Configuring the Gyroscope

The gyroscope measures the rate of change of the robot’s heading (which can then be in-
tegrated to provide a measurement of the robot’s heading relative to when it first turned
on). In our example, we use the Analog Devices ADXRS450 FRC Gyro Board, which has been
included in the kit of parts for several years:
Java

50 private final Gyro m_gyro = new ADXRS450_Gyro();

C++ (Header)

140 // The gyro sensor
141 frc::ADXRS450_Gyro m_gyro;

Gyroscope Accessor Method

To access the current heading measured by the gyroscope, we include the following method:
Java

177 /**
178 * Returns the heading of the robot.
179 *
180 * @return the robot's heading in degrees, from -180 to 180
181 */
182 public double getHeading() {
183 return m_gyro.getRotation2d().getDegrees();
184 }

C++ (Source)

70 units::degree_t DriveSubsystem::GetHeading() const {
71 return m_gyro.GetRotation2d().Degrees();
72 }

27.1. Notice on Swerve Support 1069

https://www.analog.com/en/landing-pages/001/first.html

FIRST Robotics Competition

Configuring the Odometry

Now that we have our encoders and gyroscope configured, it is time to set up our drive
subsystem to automatically compute its position from the encoder and gyroscope readings.
First, we create a member instance of the DifferentialDriveOdometry class:
Java

53 // Odometry class for tracking robot pose
54 private final DifferentialDriveOdometry m_odometry;

C++ (Header)

143 // Odometry class for tracking robot pose
144 frc::DifferentialDriveOdometry m_odometry;

Updating the Odometry

The odometry class must be regularly updated to incorporate new readings from the encoder
and gyroscope. We accomplish this inside the subsystem’s periodic method, which is auto-
matically called once per main loop iteration:
Java

70 @Override
71 public void periodic() {
72 // Update the odometry in the periodic block
73 m_odometry.update(
74 m_gyro.getRotation2d(), m_leftEncoder.getDistance(), m_rightEncoder.

↪→getDistance());
75 }

C++ (Source)

32 void DriveSubsystem::Periodic() {
33 // Implementation of subsystem periodic method goes here.
34 m_odometry.Update(m_gyro.GetRotation2d(),
35 units::meter_t{m_leftEncoder.GetDistance()},
36 units::meter_t{m_rightEncoder.GetDistance()});
37 }

Odometry Accessor Method

To access the robot’s current computed pose, we include the following method:
Java

79 /**
80 * Returns the currently-estimated pose of the robot.
81 *
82 * @return The pose.
83 */
84 public Pose2d getPose() {

(continues on next page)

1070 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
85 return m_odometry.getPoseMeters();
86 }

C++ (Source)

78 frc::Pose2d DriveSubsystem::GetPose() {
79 return m_odometry.GetPose();
80 }

Voltage-Based Drive Method

Finally, we must include one additional method - a method that allows us to set the voltage to
each side of the drive using the setVoltage() method of the MotorController interface. The
default WPILib drive class does not include this functionality, so we must write it ourselves:
Java

118 /**
119 * Controls the left and right sides of the drive directly with voltages.
120 *
121 * @param leftVolts the commanded left output
122 * @param rightVolts the commanded right output
123 */
124 public void tankDriveVolts(double leftVolts, double rightVolts) {
125 m_leftMotors.setVoltage(leftVolts);
126 m_rightMotors.setVoltage(rightVolts);
127 m_drive.feed();
128 }

C++ (Source)

43 void DriveSubsystem::TankDriveVolts(units::volt_t left, units::volt_t right) {
44 m_leftMotors.SetVoltage(left);
45 m_rightMotors.SetVoltage(right);
46 m_drive.Feed();
47 }

It is very important to use the setVoltage() method rather than the ordinary set() method,
as this will automatically compensate for battery “voltage sag” during operation. Since our
feedforward voltages are physically-meaningful (as they are based on measured identification
data), this is essential to ensuring their accuracy.

Step 4: Creating and Following a Trajectory

With our drive subsystem written, it is now time to generate a trajectory and write an au-
tonomous command to follow it.
As per the standard command-based project structure, we will do this in the getAutonomous-
Command method of the RobotContainer class. The full method from the RamseteCommand
Example Project (Java, C++) can be seen below. The rest of the article will break down the
different parts of the method in more detail.
Java

27.1. Notice on Swerve Support 1071

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand

FIRST Robotics Competition

74 /**
75 * Use this to pass the autonomous command to the main {@link Robot} class.
76 *
77 * @return the command to run in autonomous
78 */
79 public Command getAutonomousCommand() {
80 // Create a voltage constraint to ensure we don't accelerate too fast
81 var autoVoltageConstraint =
82 new DifferentialDriveVoltageConstraint(
83 new SimpleMotorFeedforward(
84 DriveConstants.ksVolts,
85 DriveConstants.kvVoltSecondsPerMeter,
86 DriveConstants.kaVoltSecondsSquaredPerMeter),
87 DriveConstants.kDriveKinematics,
88 10);
89

90 // Create config for trajectory
91 TrajectoryConfig config =
92 new TrajectoryConfig(
93 AutoConstants.kMaxSpeedMetersPerSecond,
94 AutoConstants.kMaxAccelerationMetersPerSecondSquared)
95 // Add kinematics to ensure max speed is actually obeyed
96 .setKinematics(DriveConstants.kDriveKinematics)
97 // Apply the voltage constraint
98 .addConstraint(autoVoltageConstraint);
99

100 // An example trajectory to follow. All units in meters.
101 Trajectory exampleTrajectory =
102 TrajectoryGenerator.generateTrajectory(
103 // Start at the origin facing the +X direction
104 new Pose2d(0, 0, new Rotation2d(0)),
105 // Pass through these two interior waypoints, making an 's' curve path
106 List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
107 // End 3 meters straight ahead of where we started, facing forward
108 new Pose2d(3, 0, new Rotation2d(0)),
109 // Pass config
110 config);
111

112 RamseteCommand ramseteCommand =
113 new RamseteCommand(
114 exampleTrajectory,
115 m_robotDrive::getPose,
116 new RamseteController(AutoConstants.kRamseteB, AutoConstants.

↪→kRamseteZeta),
117 new SimpleMotorFeedforward(
118 DriveConstants.ksVolts,
119 DriveConstants.kvVoltSecondsPerMeter,
120 DriveConstants.kaVoltSecondsSquaredPerMeter),
121 DriveConstants.kDriveKinematics,
122 m_robotDrive::getWheelSpeeds,
123 new PIDController(DriveConstants.kPDriveVel, 0, 0),
124 new PIDController(DriveConstants.kPDriveVel, 0, 0),
125 // RamseteCommand passes volts to the callback
126 m_robotDrive::tankDriveVolts,
127 m_robotDrive);
128

129 // Reset odometry to the starting pose of the trajectory.

(continues on next page)

1072 Chapter 27. Path Planning

FIRST Robotics Competition

(continued from previous page)
130 m_robotDrive.resetOdometry(exampleTrajectory.getInitialPose());
131

132 // Run path following command, then stop at the end.
133 return ramseteCommand.andThen(() -> m_robotDrive.tankDriveVolts(0, 0));
134 }
135 }

C++ (Source)

45 frc2::CommandPtr RobotContainer::GetAutonomousCommand() {
46 // Create a voltage constraint to ensure we don't accelerate too fast
47 frc::DifferentialDriveVoltageConstraint autoVoltageConstraint{
48 frc::SimpleMotorFeedforward<units::meters>{
49 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
50 DriveConstants::kDriveKinematics, 10_V};
51

52 // Set up config for trajectory
53 frc::TrajectoryConfig config{AutoConstants::kMaxSpeed,
54 AutoConstants::kMaxAcceleration};
55 // Add kinematics to ensure max speed is actually obeyed
56 config.SetKinematics(DriveConstants::kDriveKinematics);
57 // Apply the voltage constraint
58 config.AddConstraint(autoVoltageConstraint);
59

60 // An example trajectory to follow. All units in meters.
61 auto exampleTrajectory = frc::TrajectoryGenerator::GenerateTrajectory(
62 // Start at the origin facing the +X direction
63 frc::Pose2d{0_m, 0_m, 0_deg},
64 // Pass through these two interior waypoints, making an 's' curve path
65 {frc::Translation2d{1_m, 1_m}, frc::Translation2d{2_m, -1_m}},
66 // End 3 meters straight ahead of where we started, facing forward
67 frc::Pose2d{3_m, 0_m, 0_deg},
68 // Pass the config
69 config);
70

71 frc2::CommandPtr ramseteCommand{frc2::RamseteCommand(
72 exampleTrajectory, [this] { return m_drive.GetPose(); },
73 frc::RamseteController{AutoConstants::kRamseteB,
74 AutoConstants::kRamseteZeta},
75 frc::SimpleMotorFeedforward<units::meters>{
76 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
77 DriveConstants::kDriveKinematics,
78 [this] { return m_drive.GetWheelSpeeds(); },
79 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},
80 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},
81 [this](auto left, auto right) { m_drive.TankDriveVolts(left, right); },
82 {&m_drive})};
83

84 // Reset odometry to the starting pose of the trajectory.
85 m_drive.ResetOdometry(exampleTrajectory.InitialPose());
86

87 return std::move(ramseteCommand)
88 .BeforeStarting(
89 frc2::cmd::RunOnce([this] { m_drive.TankDriveVolts(0_V, 0_V); }, {}));
90 }

27.1. Notice on Swerve Support 1073

FIRST Robotics Competition

Configuring the Trajectory Constraints

First, we must set some configuration parameters for the trajectory which will ensure that
the generated trajectory is followable.

Creating a Voltage Constraint

The first piece of configuration we will need is a voltage constraint. This will ensure that the
generated trajectory never commands the robot to go faster than it is capable of achieving
with the given voltage supply:
Java

80 // Create a voltage constraint to ensure we don't accelerate too fast
81 var autoVoltageConstraint =
82 new DifferentialDriveVoltageConstraint(
83 new SimpleMotorFeedforward(
84 DriveConstants.ksVolts,
85 DriveConstants.kvVoltSecondsPerMeter,
86 DriveConstants.kaVoltSecondsSquaredPerMeter),
87 DriveConstants.kDriveKinematics,
88 10);

C++ (Source)

46 // Create a voltage constraint to ensure we don't accelerate too fast
47 frc::DifferentialDriveVoltageConstraint autoVoltageConstraint{
48 frc::SimpleMotorFeedforward<units::meters>{
49 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
50 DriveConstants::kDriveKinematics, 10_V};

Notice that we set the maximum voltage to 10V, rather than the nominal battery voltage of
12V. This gives us some “headroom” to deal with “voltage sag” during operation.

Creating the Configuration

Now that we have our voltage constraint, we can create our TrajectoryConfig instance,
which wraps together all of our path constraints:
Java

90 // Create config for trajectory
91 TrajectoryConfig config =
92 new TrajectoryConfig(
93 AutoConstants.kMaxSpeedMetersPerSecond,
94 AutoConstants.kMaxAccelerationMetersPerSecondSquared)
95 // Add kinematics to ensure max speed is actually obeyed
96 .setKinematics(DriveConstants.kDriveKinematics)
97 // Apply the voltage constraint
98 .addConstraint(autoVoltageConstraint);

C++ (Source)

1074 Chapter 27. Path Planning

FIRST Robotics Competition

52 // Set up config for trajectory
53 frc::TrajectoryConfig config{AutoConstants::kMaxSpeed,
54 AutoConstants::kMaxAcceleration};
55 // Add kinematics to ensure max speed is actually obeyed
56 config.SetKinematics(DriveConstants::kDriveKinematics);
57 // Apply the voltage constraint
58 config.AddConstraint(autoVoltageConstraint);

Generating the Trajectory

With our trajectory configuration in hand, we are now ready to generate our trajectory. For
this example, we will be generating a “clamped cubic” trajectory - this means we will specify
full robot poses at the endpoints, and positions only for interior waypoints (also known as
“knot points”). As elsewhere, all distances are in meters.
Java

100 // An example trajectory to follow. All units in meters.
101 Trajectory exampleTrajectory =
102 TrajectoryGenerator.generateTrajectory(
103 // Start at the origin facing the +X direction
104 new Pose2d(0, 0, new Rotation2d(0)),
105 // Pass through these two interior waypoints, making an 's' curve path
106 List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
107 // End 3 meters straight ahead of where we started, facing forward
108 new Pose2d(3, 0, new Rotation2d(0)),
109 // Pass config
110 config);

C++ (Source)

60 // An example trajectory to follow. All units in meters.
61 auto exampleTrajectory = frc::TrajectoryGenerator::GenerateTrajectory(
62 // Start at the origin facing the +X direction
63 frc::Pose2d{0_m, 0_m, 0_deg},
64 // Pass through these two interior waypoints, making an 's' curve path
65 {frc::Translation2d{1_m, 1_m}, frc::Translation2d{2_m, -1_m}},
66 // End 3 meters straight ahead of where we started, facing forward
67 frc::Pose2d{3_m, 0_m, 0_deg},
68 // Pass the config
69 config);

Note: Instead of generating the trajectory on the roboRIO as outlined above, one can also
import a PathWeaver JSON.

27.1. Notice on Swerve Support 1075

FIRST Robotics Competition

Creating the RamseteCommand

We will first reset our robot’s pose to the starting pose of the trajectory. This ensures that the
robot’s location on the coordinate system and the trajectory’s starting position are the same.
Java

128 // Reset odometry to the starting pose of the trajectory.
129 m_robotDrive.resetOdometry(exampleTrajectory.getInitialPose());

C++ (Source)

84 // Reset odometry to the starting pose of the trajectory.
85 m_drive.ResetOdometry(exampleTrajectory.InitialPose());

It is very important that the initial robot pose match the first pose in the trajectory. For
the purposes of our example, the robot will be reliably starting at a position of (0,0) with
a heading of 0. In actual use, however, it is probably not desirable to base your coordinate
system on the robot position, and so the starting position for both the robot and the trajectory
should be set to some other value. If you wish to use a trajectory that has been defined
in robot-centric coordinates in such a situation, you can transform it to be relative to the
robot’s current pose using the transformBy method (Java, C++). For more information about
transforming trajectories, see Transforming Trajectories.
Now that we have a trajectory, we can create a command that, when executed, will follow
that trajectory. To do this, we use the RamseteCommand class (Java, C++)
Java

112 RamseteCommand ramseteCommand =
113 new RamseteCommand(
114 exampleTrajectory,
115 m_robotDrive::getPose,
116 new RamseteController(AutoConstants.kRamseteB, AutoConstants.

↪→kRamseteZeta),
117 new SimpleMotorFeedforward(
118 DriveConstants.ksVolts,
119 DriveConstants.kvVoltSecondsPerMeter,
120 DriveConstants.kaVoltSecondsSquaredPerMeter),
121 DriveConstants.kDriveKinematics,
122 m_robotDrive::getWheelSpeeds,
123 new PIDController(DriveConstants.kPDriveVel, 0, 0),
124 new PIDController(DriveConstants.kPDriveVel, 0, 0),
125 // RamseteCommand passes volts to the callback
126 m_robotDrive::tankDriveVolts,
127 m_robotDrive);

C++ (Source)

71 frc2::CommandPtr ramseteCommand{frc2::RamseteCommand(
72 exampleTrajectory, [this] { return m_drive.GetPose(); },
73 frc::RamseteController{AutoConstants::kRamseteB,
74 AutoConstants::kRamseteZeta},
75 frc::SimpleMotorFeedforward<units::meters>{
76 DriveConstants::ks, DriveConstants::kv, DriveConstants::ka},
77 DriveConstants::kDriveKinematics,
78 [this] { return m_drive.GetWheelSpeeds(); },
79 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},

(continues on next page)

1076 Chapter 27. Path Planning

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/trajectory/Trajectory.html#transformBy(edu.wpi.first.math.geometry.Transform2d)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_trajectory.html#a8edfbd82347bbf32ddfb092679336cd8
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj2/command/RamseteCommand.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_ramsete_command.html

FIRST Robotics Competition

(continued from previous page)
80 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},
81 [this](auto left, auto right) { m_drive.TankDriveVolts(left, right); },
82 {&m_drive})};

This declaration is fairly substantial, so we’ll go through it argument-by-argument:
1. The trajectory: This is the trajectory to be followed; accordingly, we pass the command

the trajectory we just constructed in our earlier steps.
2. The pose supplier: This is a method reference (or lambda) to the drive subsystemmethod

that returns the pose. The RAMSETE controller needs the current pose measurement to
determine the required wheel outputs.

3. The RAMSETE controller: This is the RamseteController object (Java, C++) that will
perform the path-following computation that translates the current measured pose and
trajectory state into a chassis speed setpoint.

4. The drive feedforward: This is a SimpleMotorFeedforward object (Java, C++) that will
automatically perform the correct feedforward calculation with the feedforward gains
(kS, kV, and kA) that we obtained from the drive identification tool.

5. The drive kinematics: This is the DifferentialDriveKinematics object (Java, C++) that
we constructed earlier in our constants file, and will be used to convert chassis speeds
to wheel speeds.

6. The wheel speed supplier: This is a method reference (or lambda) to the drive subsystem
method that returns the wheel speeds

7. The left-side PIDController: This is the PIDController object (Java, C++) that will track
the left-side wheel speed setpoint, using the P gain that we obtained from the drive
identification tool.

8. The right-side PIDController: This is the PIDController object (Java, C++) that will
track the right-side wheel speed setpoint, using the P gain that we obtained from the
drive identification tool.

9. The output consumer: This is a method reference (or lambda) to the drive subsystem
method that passes the voltage outputs to the drive motors.

10. The robot drive: This is the drive subsystem itself, included to ensure the command does
not operate on the drive at the same time as any other command that uses the drive.

Finally, note that we append a final “stop” command in sequence after the path-following
command, to ensure that the robot stops moving at the end of the trajectory.

Video

If all has gone well, your robot’s autonomous routine should look something like this:

27.1. Notice on Swerve Support 1077

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/RamseteController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_ramsete_controller.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/SimpleMotorFeedforward.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_simple_motor_feedforward.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/kinematics/DifferentialDriveKinematics.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_differential_drive_kinematics.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_p_i_d_controller.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_p_i_d_controller.html

FIRST Robotics Competition

27.1.3 PathWeaver

Note: Users may find a community driven project PathPlanner as potentially more useful.
PathPlanner improves upon traditional pathplanning applications with an intuitive user inter-
face and swerve path following support. Note that WPILib offers no support for community
projects.

Introduction to PathWeaver

Note: Users may find a community driven project PathPlanner as potentially more useful.
PathPlanner improves upon traditional pathplanning applications with an intuitive user inter-
face and swerve path following support. Note that WPILib offers no support for community
projects.

Autonomous is an important section of the match; it is exciting when robots do impressive
things in autonomous. In order to score, the robot usually need to go somewhere. The faster
the robot arrives at that location, the sooner it can score points! The traditional method for
autonomous is driving in a straight line, turning to a certain angle, and driving in a straight
line again. This approach works fine, but the robot spends a non-negligible amount of time
stopping and starting again after each straight line and turn.
A more advanced approach to autonomous is called “path planning”. Instead of driving in
a straight line and turning once the line is complete, the robot continuously moves, driving
with a curve-like motion. This can reduce turning stoppage time.
WPILib contains a trajectory generation suite that can be used by teams to generate and follow
trajectories. This series of articles will go over how to generate and visualize trajectories
using PathWeaver. For a comprehensive tutorial on following trajectories, please visit the
end-to-end trajectory tutorial.

Note: Trajectory following code is required to use PathWeaver. We recommend that you
start with Trajectory following and get that working with simple paths. From there you can
continue on to testing more complicated paths generated by PathWeaver.

Creating a Pathweaver Project

PathWeaver is the tool used to draw the paths for a robot to follow. The paths for a single
program are stored in a PathWeaver project.

1078 Chapter 27. Path Planning

https://github.com/mjansen4857/pathplanner
https://github.com/mjansen4857/pathplanner

FIRST Robotics Competition

Starting PathWeaver

PathWeaver is started by clicking on the ellipsis icon in the top right of the corner of the Visual
Studio Code interface. You must select a source file from the WPILib project to see the icon.
Then click on “Start tool” and then click on “PathWeaver” as shown below.

27.1. Notice on Swerve Support 1079

FIRST Robotics Competition

Creating the Project

To create a PathWeaver project, click on “Create project” and then fill out the project creation
form. Notice that hovering over any of the fields in the form will display more information
about what is required.

Project Directory: This is normally the top level project directory that contains the
build.gradle and src files for your robot program. Choosing this directory is the expected
way to use PathWeaver and will cause it to locate all the output files in the correct directories
for automatic path deployment to your robot.
Output directory: The directory where the paths are stored for deployment to your robot.
If you specified the top level project folder of our robot project in the previous step (as rec-
ommended) filling in the output directory is optional.
Game: The game (which FRC® game is being used) will cause the correct field image overlay
to be used. You can also create your own field images and the procedure will be described
later in this series.
Length Unit: The units to be used in describing your robot and for the field measurements
when visualizing trajectories using PathWeaver.

1080 Chapter 27. Path Planning

FIRST Robotics Competition

Export Unit: The units to be used when exporting the paths and waypoints. If you are
planning to use WPILib Trajectories, then you should choose Always Meters. Choosing Same
as Project will export in the same units as Length Unit above.
Max Velocity: The max speed of the robot for trajectory tracking. The kitbot runs at ~10
ft/sec which is ~3 m/sec.
Max Acceleration: The max acceleration of the robot for trajectory tracking. Using a con-
servative 1 m/sec2 is a good place to start if you don’t know your drivetain’s characteristics.
Wheel Base: The distance between the left and right wheels of your robot. This is used to
ensure that no wheel on a differential drive will go over the specified max velocity around
turns.

PathWeaver User Interface

The PathWeaver user interface consists of the following:
1. The field area in the top left corner, which takes up most of the PathWeaver window.

Trajectories are drawn on this part of the program.
2. The properties of the currently selected waypoint are displayed in the bottom pane.

These properties include the X and Y, along with the tangents at each point.
3. A group of paths (or an “autonomous” mode) is displayed on the upper right side of the

window. This is a convenient way of seeing all of the trajectories in a single auto mode.
4. The individual paths that a robot might follow are displayed in the lower right side of the

window.
5. The “Build Paths” button will export the trajectories in a JSON format. These JSON files

can be used from the robot code to follow the trajectory.
6. The “Edit Project” button allows you to edit the project properties.

27.1. Notice on Swerve Support 1081

FIRST Robotics Competition

Visualizing PathWeaver Trajectories

PathWeaver’s primary feature is to visualize trajectories. The following images depict a
smooth trajectory that represents a trajectory that a robot might take during the autonomous
period. Paths can have any number of waypoints that can allow more complex driving to be
described. In this case there are 3 waypoints (including the start and stop) depicted with the
triangle icons. Each waypoint consists of a X, Y position on the field as well as a robot heading
described as the X and Y tangent lines.

Creating the Initial Trajectory

To start creating a trajectory, click the + (plus) button in the path window. A default trajectory
will be created that probably does not have the proper start and end points that you desire.
The path also shows the tangent vectors (teal lines) for the start and end points. Changing
the angle of the tangent vectors changes the shape of the trajectory.

1082 Chapter 27. Path Planning

FIRST Robotics Competition

Drag the start and end points of the trajectory to the desired locations. Notice that in this
case, the default trajectory does not start in a legal spot for the 2019 game. We can drag the
initial waypoint to make the robot start on the HAB.

Changing a Waypoint Heading

The robot heading can be changed by dragging the tangent vector (teal) line. Here, the final
waypoint was dragged to the desired final pose and was rotated to face the rocket.

27.1. Notice on Swerve Support 1083

FIRST Robotics Competition

Adding Additional Waypoints to Control the Robot Path

Adding additional waypoints and changing their tangent vectors can affect the path that is
followed. Additional waypoints can be added by dragging in the middle of the path. In this
case, we added another waypoint in the middle of the path.

Locking the Tangent Lines

Locking tangent lines prevents them from changing when the trajectory is being manipulated.
The tangent lines will also be locked when the point is moved.

More Precise control of Waypoints

While PathWeaver makes it simple to draw trajectories that the robot should follow, it is
sometimes hard to precisely set where the waypoints should be placed. In this case, setting
the waypoint locations can be done by entering the X and Y value which might come from
an accurate CAD model of the field. The points can be entered in the X and Y fields when a
waypoint is selected.

1084 Chapter 27. Path Planning

FIRST Robotics Competition

Creating Autonomous Routines

Autonomous Routines (also known as Path Groups) are a way of visualizing where one path
ends and the next one starts. An example is when the robot program drives one path, does
something after the path has completed, drives to another location to obtain a game piece,
then back again to score it. It’s important that the start and end points of each path in the
routine have common end and start points. By adding all the paths to a single autonomous
routine and selecting the routine, all paths in that routine will be shown. Then each path can
be edited while viewing all the paths.

Creating an Autonomous Routine

Press the + button underneath Autonomous Routines. Then drag the Paths from the Paths
section into your Autonomous Routine.
Each path added to an autonomous routine will be drawn in a different color making it easy
to figure out what the name is for each path.
If there are multiple paths in a routine, selection works as follows:

1. Selecting the routine displays all paths in the routine making it easy to see the relation-
ship between them. Any waypoint on any of the paths can be edited while the routine is
selected and it will only change the path containing the waypoint.

2. Selecting on a single path in the routine will only display that path, making it easy to
precisely see what all the waypoints are doing and preventing clutter in the interface if
multiple paths cross over or are close to each other.

Importing a PathWeaver JSON

The TrajectoryUtil class can be used to import a PathWeaver JSON into robot code to follow
it. This article will go over importing the trajectory. Please visit the end-to-end trajectory
tutorial for more information on following the trajectory.
The fromPathweaverJson (Java) / FromPathweaverJson (C++) static methods in Trajecto-
ryUtil can be used to create a trajectory from a JSON file stored on the roboRIO file system.

Important: To be compatible with the Field2d view in the simulator GUI, the coordinates
for the exported JSON have changed. Previously (before 2021), the range of the y-coordinate
was from -27 feet to 0 feet whereas now, the range of the y-coordinate is from 0 feet to 27
feet (with 0 being at the bottom of the screen and 27 feet being at the top). This should not
affect teams who are correctly resetting their odometry to the starting pose of the trajectory
before path following.

Note: PathWeaver places JSON files in src/main/deploy/paths which will automatically
be placed on the roboRIO file system in /home/lvuser/deploy/paths and can be accessed
using getDeployDirectory as shown below.

Java

27.1. Notice on Swerve Support 1085

FIRST Robotics Competition

String trajectoryJSON = "paths/YourPath.wpilib.json";
Trajectory trajectory = new Trajectory();

@Override
public void robotInit() {

try {
Path trajectoryPath = Filesystem.getDeployDirectory().toPath().

↪→resolve(trajectoryJSON);
trajectory = TrajectoryUtil.fromPathweaverJson(trajectoryPath);

} catch (IOException ex) {
DriverStation.reportError("Unable to open trajectory: " + trajectoryJSON, ex.

↪→getStackTrace());
}

}

C++

#include <frc/Filesystem.h>
#include <frc/trajectory/TrajectoryUtil.h>
#include <wpi/fs.h>

frc::Trajectory trajectory;

void Robot::RobotInit() {
fs::path deployDirectory = frc::filesystem::GetDeployDirectory();
deployDirectory = deployDirectory / "paths" / "YourPath.wpilib.json";
trajectory = frc::TrajectoryUtil::FromPathweaverJson(deployDirectory.string());

}

In the examples above, YourPath should be replaced with the name of your path.

Warning: Loading a PathWeaver JSON from file in Java can take more than one loop
iteration so it is highly recommended that the robot load these paths on startup.

Adding field images to PathWeaver

Here are instructions for adding your own field image using the 2019 game as an example.
Games are loaded from the ~/PathWeaver/Games on Linux and macOS or %USERPROFILE%/
PathWeaver/Games directory on Windows. The files can be in either a game-specific subdi-
rectory, or in a zip file in the Games directory. The ZIP file must follow the same layout as a
game directory; the JSON file must be in the root of the ZIP file (cannot be in a subdirectory).
Download the example FIRST Destination Deep Space field definition here. Other field defi-
nitions are available in the allwpilib GitHub repository.

1086 Chapter 27. Path Planning

https://github.com/wpilibsuite/allwpilib/tree/main/fieldImages/src/main/native/resources/edu/wpi/first/fields

FIRST Robotics Competition

File Layout

~/PathWeaver
/Games
/Custom Game

custom-game.json
field-image.png

OtherGame.zip

JSON Format

{
"game": "game name",
"field-image": "relative/path/to/img.png",
"field-corners": {

"top-left": [x, y],
"bottom-right": [x, y]

},
"field-size": [width, length],
"field-unit": "unit name"

}

The path to the field image is relative to the JSON file. For simplicity, the image file should
be in the same directory as the JSON file.
The field corners are the X and Y coordinates of the top-left and bottom-right pixels defining
the rectangular boundary of the playable area in the field image. Non-rectangular playing
areas are not supported.
The field size is the width and length of the playable area of the field in the provided units.
The field units are case-insensitive and can be in meters, cm, mm, inches, feet, yards, or
miles. Singular, plural, and abbreviations are supported (e.g. “meter”,”meters”, and”m”are
all valid for specifying meters)

Note: When making a new field image, a border (minimum of 20 pixels is recommended)
should be left around the outside so that waypoints on the field edge are accessible.

27.1. Notice on Swerve Support 1087

FIRST Robotics Competition

1088 Chapter 27. Path Planning

28
roboRIO

28.1 roboRIO Introduction

The roboRIO is designed specifically with FIRST in mind. The roboRIO has a basic architec-
ture of a Real-Time processors + FPGA (field programmable gate array) but is more powerful,

1089

FIRST Robotics Competition

lighter, and smaller than some similar systems used in industry.
The roboRIO is a reconfigurable robotics controller that includes built-in ports for inter-
integrated circuits (I2C), serial peripheral interfaces (SPI), RS232, USB, Ethernet, pulse
width modulation (PWM), and relays to quickly connect the common sensors and actuators
used in robotics. The controller features LEDs, buttons, an onboard accelerometer, and a
custom electronics port. It has an onboard dual-core ARM real-time Cortex‑A9 processor and
customizable Xilinx FPGA.
Detailed information on the roboRIO can be found in the roboRIO User Manual and in the
roboRIO technical specifications.
Before deploying programs to your roboRIO, you must first image the roboRIO: roboRIO 1
roboRIO 2.

28.2 roboRIO Web Dashboard

The roboRIO web dashboard is a webpage built into the roboRIO that can be used for checking
status and updating settings of the roboRIO.
Users may encounter issues using IE (compatibility). Alternate browsers such as Google
Chrome or Mozilla Firefox are recommended for the best experience.

28.2.1 Opening the WebDash

To open the web dashboard, open a web browser and enter the address of the roboRIO into the
address bar (172.22.11.2 for USB, or “roboRIO-####-FRC.local where #### is your team
number, with no leading zeroes, for either interface). See this document for more details
about mDNS and roboRIO networking: IP Configurations

28.2.2 System Configuration Tab

The home screen of the web dashboard is the System Configuration tab which has 5 main
sections:

1. Navigation Bar - This section allows you to navigate to different sections of the web
dashboard. The different pages accessible through this navigation bar are discussed
below.

2. System Settings - This section contains information about the System Settings. The
Hostname field should not be modified manually, instead use the roboRIO Imaging tool
to set the Hostname based on your team number. This section contains information such
as the device IP, firmware version and image version.

3. Startup Settings - This section contains Startup settings for the roboRIO. These are de-
scribed in the sub-step below

4. System Resources (not pictured) - This section provides a snapshot of system resources
such as memory and CPU load.

1090 Chapter 28. roboRIO

https://www.ni.com/docs/en-US/bundle/roborio-20-umanual/page/umanual.html
https://www.ni.com/docs/en-US/bundle/roborio-frc-specs/page/specs.html

FIRST Robotics Competition

28.2. roboRIO Web Dashboard 1091

FIRST Robotics Competition

1092 Chapter 28. roboRIO

FIRST Robotics Competition

Startup Settings

• Force Safe Mode - Forces the controller into Safe Mode. This can be used with trou-
bleshooting imaging issues, but it is recommended to use the Reset button on the robo-
RIO to put the device into Safe Mode instead (with power already applied, hold the rest
button for 5 seconds). Default is unchecked.

• Enable Console Out - This enables the on-board RS232 port to be used as a Console
output. It is recommended to leave this enabled unless you are using this port to talk
to a serial device (note that this port uses RS232 levels and should not be connected to
many microcontrollers which use TTL levels). Default is checked.

• Disable RT Startup App - Checking this box disables code from running at startup. This
may be used for troubleshooting if you find the roboRIO is unresponsive to new program
download. Default is unchecked

• Disable FPGA Startup App - This box should not be checked.
• Enable Secure Shell Server (sshd) - It is recommended to leave this box checked.

This setting enables SSH which is a way to remotely access a console on the roboRIO.
Unchecking this box will prevent C++ and Java teams from loading code onto the robo-
RIO.

• LabVIEW Project Access -** It is recommended to leave this box checked.** This setting
allows LabVIEW projects to access the roboRIO.

28.2.3 Network Configuration

This page shows the configuration of the roboRIO’s network adapters. It is not recom-
mended to change any settings on this page. For more information on roboRIO network-
ing see this article: IP Configurations

28.2. roboRIO Web Dashboard 1093

FIRST Robotics Competition

1094 Chapter 28. roboRIO

FIRST Robotics Competition

28.3 roboRIO FTP

Note: The roboRIO has both SFTP and anonymous FTP enabled. This article describes how
to use each to access the roboRIO file system.

28.3.1 SFTP

SFTP is the recommended way to access the roboRIO file system. Because you will be using
the same account that your program will run under, files copied over should always have
permissions compatible with your code.

Software

There are a number of freely available programs for SFTP. This article will discuss using
FileZilla. You can either download and install FileZilla before proceeding or extrapolate the
directions below to your SFTP client of choice.

Connecting to the roboRIO

To connect to your roboRIO:
1. Enter the mDNS name (roboRIO-TEAM-frc.local) in the “Host” box
2. Enter “lvuser” in the Username box (this is the account your program runs under)
3. Leave the Password box blank
4. Enter “22” in the port box (the SFTP default port)
5. Click Quickconnect

28.3. roboRIO FTP 1095

https://filezilla-project.org/download.php?type=client

FIRST Robotics Competition

Browsing the roboRIO filesystem

After connecting to the roboRIO, Filezilla will open to the \home\lvuser directory. The right
pane is the remote system (the roboRIO), the left pane is the local system (your computer).
The top section of each pane shows you the hierarchy to the current directory you are brows-
ing, the bottom pane shows contents of the directory. To transfer files, simply click and drag
from one side to the other. To create directories on the roboRIO, right click and select “Create
Directory”.

28.3.2 FTP

The roboRIO also has anonymous FTP enabled. It is recommended to use SFTP as described
above, but depending on what you need FTP may work in a pinch with no additional software
required. To FTP to the roboRIO, open a Windows Explorer window. In the address bar, type
ftp://roboRIO-TEAM-frc.local and press enter. You can now browse the roboRIO file system
just like you would browse files on your computer.

28.4 roboRIO User Accounts and SSH

Note: This document contains advanced topics not required for typical FRC® programming

The roboRIO image contains a number of accounts, this article will highlight the two used for
FRC and provide some detail about their purpose. It will also describe how to connect to the
roboRIO over SSH.

1096 Chapter 28. roboRIO

ftp://roboRIO-TEAM-frc.local

FIRST Robotics Competition

28.4.1 roboRIO User Accounts

The roboRIO image contains a number of user accounts, but there are two of primary interest
for FRC.

Admin

The “admin” account has root access to the system and can be used to manipulate OS files or
settings. Teams should take caution when using this account as it allows for the modification
of settings and files that may corrupt the operating system of the roboRIO. The credentials
for this account are:
Username: admin

Password:

Note: The password is intentionally blank.

Lvuser

The “lvuser” account is the account used to run user code for all three languages. The cre-
dentials for this account should not be changed. Teams may wish to use this account (via ssh
or sftp) when working with the roboRIO to ensure that any files or settings changes are being
made on the same account as their code will run under.

Danger: Changing the default ssh passwords for either “lvuser” or “admin” will prevent
C++ and Java teams from uploading code.

28.4.2 SSH

SSH (Secure SHell) is a protocol used for secure data communication. When broadly referred
to regarding a Linux system (such as the one running on the roboRIO) it generally refers to
accessing the command line console using the SSH protocol. This can be used to execute
commands on the remote system. A free client which can be used for SSH is PuTTY: https:
//www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

28.4. roboRIO User Accounts and SSH 1097

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

FIRST Robotics Competition

Open Putty

Open Putty (clicking OK at any security prompt). Then set the following settings:
1. Host Name: roboRIO-TEAM-frc.local (where TEAM is your team number, example shows

team 40)
2. Connection Type: SSH

Other settings can be left at defaults. Click Open to open the connection. If you see a prompt
about SSH keys, click OK.
If you are connected over USB you can use 172.22.11.2 as the hostname. If your roboRIO is
set to a static IP you can use that IP as the hostname if connected over Ethernet/wireless.

1098 Chapter 28. roboRIO

FIRST Robotics Competition

Log In

When you see the prompt, enter the desired username (see above for description) then press
enter. At the password prompt press enter (password for both accounts is blank).

28.5 roboRIO Brownout and Understanding Current Draw

In order to help maintain battery voltage to preserve itself and other control system com-
ponents such as the radio during high current draw events, the roboRIO contains a staged
brownout protection scheme. This article describes this scheme, provides information about
proactively planning for system current draw, and describes how to use the new functionality
of the PDP as well as the DS Log File Viewer to understand brownout events if they do happen
on your robot.

28.5.1 roboRIO Brownout Protection

The roboRIO uses a staged brownout protection scheme to attempt to preserve the input
voltage to itself and other control system components in order to prevent device resets in the
event of large current draws pulling the battery voltage dangerously low.

28.5. roboRIO Brownout and Understanding Current Draw 1099

FIRST Robotics Competition

Stage 1 - 6v output drop

Voltage Trigger - 6.8V
When the voltage drops below 6.8V, the 6V output on the PWM pins will start to drop.

Stage 2 - Output Disable

Voltage Trigger - 6.3V
When the voltage drops below 6.3V, the controller will enter the brownout protection state.
The following indicators will show that this condition has occurred:

• Power LED on the roboRIO will turn Amber
• Background of the voltage display on the Driver Station will turn red
• Mode display on the Driver Station will change to Voltage Brownout
• The CAN/Power tab of the DS will increment the 12V fault counter by 1.
• The DS will record a brownout event in the DS log.

The controller will take the following steps to attempt to preserve the battery voltage:
• PWM outputs will be disabled. For PWM outputs which have set their neutral value

(all motor controllers in WPILib) a single neutral pulse will be sent before the output is
disabled.

• 6V, 5V, 3.3V User Rails disabled (This includes the 6V outputs on the PWM pins, the 5V
pins in the DIO connector bank, the 5V pins in the Analog bank, the 3.3V pins in the SPI
and I2C bank and the 5V and 3.3V pins in the MXP bank)

• GPIO configured as outputs go to High-Z
• Relay Outputs are disabled (driven low)
• CAN-based motor controllers are sent an explicit disable command
• Pneumatic Devices such as the CTRE Pneumatics Control Module and REV Pneumatic

Hub are disabled
The controller will remain in this state until the voltage rises to greater than 7.5V
or drops below the trigger for the next stage of the brownout

Stage 3 - Device Blackout

Voltage Trigger - 4.5V
Below 4.5V the device may blackout. The exact voltage may be lower than this and depends
on the load on the device.
The controller will remain in this state until the voltage rises above 4.65V when the
device will begin the normal boot sequence.

1100 Chapter 28. roboRIO

FIRST Robotics Competition

28.5.2 Avoiding Brownout - Proactive Current Draw Planning

The key to avoiding a brownout condition is to proactively plan for the current draw of your
robot. The best way to do this is to create some form of power budget. This can be a complex
document that attempts to quantify both estimated current draw and time in an effort to most
completely understand power usage and therefore battery state at the end of a match, or it
can be a simple inventory of current usage. To do this:

1. Establish the max “sustained” current draw (with sustained being loosely defined here
as not momentary). This is probably the most difficult part of creating the power budget.
The exact current draw a battery can sustain while maintaining a voltage of 7+ volts is
dependent on a variety of factors such as battery health (see this article for measuring
battery health) and state of charge. As shown in the NP18-12 data sheet, the terminal
voltage chart gets very steep as state of charge decreases, especially as current draw
increases. This datasheet shows that at 3CA continuous load (54A) a brand new battery
can be continuously run for over 6 minutes while maintaining a terminal voltage of over
7V. As shown in the image above (used with permission from Team 234s Drive System
Testing document), even with a fresh battery, drawing 240A for more than a second
or two is likely to cause an issue. This gives us some bounds on setting our sustained
current draw. For the purposes of this exercise, we’ll set our limit at 180A.

2. List out the different functions of your robot such as drivetrain, manipulator, main game
mechanism, etc.

3. Start assigning your available current to these functions. You will likely find that you run
out pretty quickly. Many teams gear their drivetrain to have enough torque to slip their
wheels at 40-50A of current draw per motor. If we have 4 motors on the drivetrain, that
eats up most, or even exceeds, our power budget! This means that we may need to put
together a few scenarios and understand what functions can (and need to be) be used
at the same time. In many cases, this will mean that you really need to limit the current

28.5. roboRIO Brownout and Understanding Current Draw 1101

https://www.farnell.com/datasheets/575631.pdf
https://www.chiefdelphi.com/t/paper-new-control-functions-drive-system-testing/139165
https://www.chiefdelphi.com/t/paper-new-control-functions-drive-system-testing/139165

FIRST Robotics Competition

draw of the other functions if/while your robot is maxing out the drivetrain (such as trying
to push something). Benchmarking the “driving” current requirements of a drivetrain for
some of these alternative scenarios is a little more complex, as it depends on many factors
such as number of motors, robot weight, gearing, and efficiency. Current numbers for
other functions can be done by calculating the power required to complete the function
and estimating efficiency (if the mechanism has not been designed) or by determining
the torque load on the motor and using the torque-current curve to determine the current
draw of the motors.

4. If you have determined mutually exclusive functions in your analysis, consider enforcing
the exclusion in software. You may also use the current monitoring of the PDP (covered
in more detail below) in your robot program to provide output limits or exclusions dy-
namically (such as don’t run a mechanism motor when the drivetrain current is over X
or only let the motor run up to half output when the drivetrain current is over Y).

28.5.3 Settable Brownout

The NI roboRIO 1.0 does not support custom brownout voltages. It is fixed at 6.3V as men-
tioned in Stage 2 above.
The NI roboRIO 2.0 adds the option for a software settable brownout level. The default
brownout level (Stage 2) of the roboRIO 2.0 is 6.75V.
Java

RobotController.setBrownoutVoltage(7.0);

C++

frc::RobotController::SetBrownoutVoltage(7_V);

28.5.4 Measuring Current Draw using the PDP/PDH

The FRC® Driver Station works in conjunction with the roboRIO and PDP/PDH to extract
logged data from the PDP/PDH and log it on your DS PC. A viewer for this data is still under
development.
In the meantime, teams can use their robot code and manual logging, a LabVIEW front panel
or the SmartDashboard to visualize current draw on their robot as mechanisms are developed.
In LabVIEW, you can read the current on a PDP/PDH channel using the Get PD Currents
VI found on the Power pallet. For C++ and Java teams, use the PowerDistribution class
as described in the Power Distribution article. Plotting this information over time (easiest
with a LV Front Panel or with the SmartDashboard by using a Graph indicator can provide
information to compare against and update your power budget or can locate mechanisms
which do not seem to be performing as expected (due to incorrect load calculation, incorrect
efficiency assumptions, or mechanism issues such as binding).

1102 Chapter 28. roboRIO

FIRST Robotics Competition

28.5.5 Identifying Brownouts

The easiest way to identify a brownout is by clicking on the CAN\Power tab of the DS and
checking the 12V fault count. Alternately, you can review the Driver Station Log after the
fact using the Driver Station Log Viewer. The log will identify brownouts with a bright orange
line, such as in the image above (note that these brownouts were induced with a benchtop
supply and may not reflect the duration and behavior of brownouts on a typical FRC robot).

28.6 Recovering a roboRIO using Safe Mode

Occasionally a roboRIO may become corrupted to the point that it cannot be recovered using
the normal boot and imaging process. Booting the roboRIO into Safe Mode may allow the
device to be successfully re-imaged.

Important: These steps are not applicable to the roboRIO 2. Reimaging the SD card follow-
ing roboRIO 2.0 microSD card imaging process will fully reformat the device.

28.6. Recovering a roboRIO using Safe Mode 1103

FIRST Robotics Competition

28.6.1 Booting into Safe Mode

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

To boot the roboRIO into Safe Mode:
1. Apply power to the roboRIO
2. Press and hold the Reset button until the Status LED lights up (~5 seconds) then release

the Reset button
3. The roboRIO will boot in Safe Mode (indicated by the Status LED flashing in groups of

3)

1104 Chapter 28. roboRIO

FIRST Robotics Competition

28.6.2 Recovering the roboRIO

The roboRIO can now be imaged by using the roboRIO Imaging Tool as described in Imaging
your roboRIO.

28.6.3 About Safe Mode

In Safe Mode, the roboRIO boots a separate copy of the operating system into a RAM Disk.
This allows you to recover the roboRIO even if the normal copy of the OS is corrupted. While
in Safe Mode, any changes made to the OS (such as changes made by accessing the device
via SSH or Serial) will not persist to the normal copy of the OS stored on disk.

28.6. Recovering a roboRIO using Safe Mode 1105

FIRST Robotics Competition

1106 Chapter 28. roboRIO

29
Advanced GradleRIO

GradleRIO is the mechanism that powers the deployment of robot code to the roboRIO.
GradleRIO is built on the popular Gradle dependency and build management system. This
section highlights advanced configurations that teams can use to enhance their workflow.

29.1 Using External Libraries with Robot Code

Warning: Using external libraries may have unintended behavior with your robot code!
It is not recommended unless you are aware of what you are doing!

Often a team might want to add external Java or C++ libraries for usage with their robot code.
This article highlights adding Java libraries to your Gradle dependencies, or the options that
C++ teams have.

29.1.1 Java

Note: Any external dependencies that rely on native libraries (JNI) are likely not going to
work.

Java is quite simple to add external dependencies. You simply add the required repositories
and dependencies.
Robot projects by default do not have a repositories {} block in the build.gradle file. You
will have to add this yourself. Above the dependencies {} block, please add the following:

repositories {
mavenCentral()
...

}

mavenCentral() can be replaced with whatever repository the library you want to import is
using. Now you have to add the dependency on the library itself. This is done by adding the

1107

FIRST Robotics Competition

necessary line to your dependencies {} block. The below example showcases adding Apache
Commons to your Gradle project.

dependencies {
implementation 'org.apache.commons:commons-lang3:3.6'
...

}

Now you run a build and ensure the dependencies are downloaded. Intellisense may not work
properly until a build is ran!

29.1.2 C++

Adding C++ dependencies to your robot project is non-trivial due to needing to compile for
the roboRIO. You have a couple of options.

1. Copy the source code of the wanted library into your robot project.
2. Use the vendordep template as an example and create a vendordep.

Copying Source Code

Simply copy the necessary source and/or headers into your robot project. You can then con-
figure any necessary platform args like below:

nativeUtils.platformConfigs.named("linuxx86-64").configure {
it.linker.args.add('-lstdc++fs') // links in C++ filesystem library

}

Creating a Vendordep

Please follow the instructions in the vendordep repository.

29.2 Setting up CI for Robot Code using GitHub Actions

An important aspect of working in a team environment is being able to test code that is pushed
to a central repository such as GitHub. For example, a project manager or lead developer
might want to run a set of unit tests before merging a pull request or might want to ensure
that all code on the main branch of a repository is in working order.
GitHub Actions is a service that allows for teams and individuals to build and run unit tests on
code on various branches and on pull requests. These types of services are more commonly
known as “Continuous Integration” services. This tutorial will show you how to setup GitHub
Actions on robot code projects.

Note: This tutorial assumes that your team’s robot code is being hosted on GitHub. For an
introduction to Git and GitHub, please see this introduction guide.

1108 Chapter 29. Advanced GradleRIO

https://github.com/wpilibsuite/vendor-template
https://github.com/wpilibsuite/vendor-template
https://github.com/features/actions

FIRST Robotics Competition

29.2.1 Creating the Action

The instructions for carrying out the CI process are stored in a YAML file. To create this,
click on the “Actions” tab at the top of your repository. Then click on the “set up a workflow
yourself” hyperlink.

You will now be greeted with a text editor. Replace all the default text with the following:

This is a basic workflow to build robot code.

name: CI

Controls when the action will run. Triggers the workflow on push or pull request
events but only for the main branch.
on:
push:

branches: [main]
pull_request:

branches: [main]

A workflow run is made up of one or more jobs that can run sequentially or in␣
↪→parallel
jobs:
This workflow contains a single job called "build"
build:

The type of runner that the job will run on
runs-on: ubuntu-latest

This grabs the WPILib docker container
container: wpilib/roborio-cross-ubuntu:2023-22.04

Steps represent a sequence of tasks that will be executed as part of the job
steps:
Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v3

Declares the repository safe and not under dubious ownership.
- name: Add repository to git safe directories
run: git config --global --add safe.directory $GITHUB_WORKSPACE

Grant execute permission for gradlew
- name: Grant execute permission for gradlew
run: chmod +x gradlew

Runs a single command using the runners shell
(continues on next page)

29.2. Setting up CI for Robot Code using GitHub Actions 1109

FIRST Robotics Competition

(continued from previous page)
- name: Compile and run tests on robot code
run: ./gradlew build

Then, save changes by clicking the “Start commit” button on the top-right corner of the
screen. You can amend the default commit message if you wish to do so. Then, click the
green “Commit new file” button.

GitHub will now automatically run a build whenever a commit is pushed to main or a pull
request is opened. To monitor the status of any build, you can click on the “Actions” tab on
the top of the screen.

1110 Chapter 29. Advanced GradleRIO

FIRST Robotics Competition

29.2.2 A Breakdown of the Actions YAML File

Here is a breakdown of the YAML file above. Although a strict understanding of each line is
not required, some level of understanding will help you add more features and debug potential
issues that may arise.

Controls when the action will run. Triggers the workflow on push or pull request
events but only for the main branch.
on:
push:

branches: [main]
pull_request:

branches: [main]

This block of code dictates when the Action will run. Currently, the action will run when
commits are pushed to main or when pull requests are opened against main.

A workflow run is made up of one or more jobs that can run sequentially or in␣
↪→parallel
jobs:
This workflow contains a single job called "build"
build:

The type of runner that the job will run on
runs-on: ubuntu-latest

This grabs the WPILib docker container
container: wpilib/roborio-cross-ubuntu:2023-22.04

Each Action workflow is made of a one or more jobs that run either sequentially (one after
another) or in parallel (at the same time). In our workflow, there is only one “build” job.
We specify that we want the job to run on an Ubuntu virtual machine and in a virtualized
Docker container that contains the JDK, C++ compiler and roboRIO toolchains.

Steps represent a sequence of tasks that will be executed as part of the job
steps:
Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v3

Declares the repository safe and not under dubious ownership.
- name: Add repository to git safe directories
run: git config --global --add safe.directory $GITHUB_WORKSPACE

Grant execute permission for gradlew
- name: Grant execute permission for gradlew
run: chmod +x gradlew

Runs a single command using the runners shell
- name: Compile and run tests on robot code
run: ./gradlew build

Each job has certain steps that will be executed. This job has four steps. The first step involves
checking out the repository to access the robot code. The second step is a workaround for a
GitHub Actions issue. The third step involves giving the virtual machine permission to execute
gradle tasks using ./gradlew. The final step runs ./gradlew build to compile robot code
and run any unit tests.

29.2. Setting up CI for Robot Code using GitHub Actions 1111

https://www.docker.com/resources/what-container
https://github.com/actions/runner/issues/2033

FIRST Robotics Competition

29.2.3 Adding a Build Status Badge to a README.md File

It is helpful to add a CI status badge to the top of your repository’s README file to quickly
check the status of the latest build on main. To do this, click on the “Actions” tab at the top
of the screen and select the “CI” tab on the left side of the screen. Then, click on the “Create
status badge” button on the top right and copy the status badge Markdown code.

Finally, paste the Markdown code you copied at the top of your README file, commit, and
push your changes. Now, you should see the GitHub Actions status badge on your main
repository page.

1112 Chapter 29. Advanced GradleRIO

FIRST Robotics Competition

29.3 Using a Code Formatter

Code formatters exist to ensure that the style of code written is consistent throughout the
entire codebase. This is used in many major projects; from Android to OpenCV. Teams may
wish to add a formatter throughout their robot code to ensure that the codebase maintains
readability and consistency throughout.
For this article, we will highlight using Spotless for Java teams and wpiformat for C++ teams.

29.3.1 Spotless

Configuration

Necessary build.gradle changes are required to get Spotless functional. In the plugins {}
block of your build.gradle, add the Spotless plugin so it appears similar to the below.

plugins {
id "java"
id "edu.wpi.first.GradleRIO" version "2022.1.1"
id 'com.diffplug.spotless' version '6.12.0'

}

Then ensure you add a required spotless {} block to correctly configure spotless. This can
just get placed at the end of your build.gradle.

spotless {
java {

target fileTree('.') {
include '**/*.java'
exclude '**/build/**', '**/build-*/**'

}
toggleOffOn()
googleJavaFormat()
removeUnusedImports()
trimTrailingWhitespace()
endWithNewline()

}
groovyGradle {

target fileTree('.') {
include '**/*.gradle'
exclude '**/build/**', '**/build-*/**'

}
greclipse()
indentWithSpaces(4)
trimTrailingWhitespace()
endWithNewline()

}
format 'xml', {

target fileTree('.') {
include '**/*.xml'
exclude '**/build/**', '**/build-*/**'

}
eclipseWtp('xml')
trimTrailingWhitespace()

(continues on next page)

29.3. Using a Code Formatter 1113

https://github.com/diffplug/spotless
https://github.com/wpilibsuite/styleguide/blob/main/wpiformat/README.rst

FIRST Robotics Competition

(continued from previous page)
indentWithSpaces(2)
endWithNewline()

}
format 'misc', {

target fileTree('.') {
include '**/*.md', '**/.gitignore'
exclude '**/build/**', '**/build-*/**'

}
trimTrailingWhitespace()
indentWithSpaces(2)
endWithNewline()

}
}

Running Spotless

Spotless can be ran using ./gradlew spotlessApply which will apply all formatting options.
You can also specify a specific task by just adding the name of formatter. An example is
./gradlew spotlessmiscApply.
In addition to formatting code, Spotless can also ensure the code is correctly formatted; this
can be used by running ./gradlew spotlessCheck. Thus, Spotless can be used as a CI check,
as shown in the following GitHub Actions workflow:

on: [push]
A workflow run is made up of one or more jobs that can run sequentially or in␣
↪→parallel
jobs:
spotless:

The type of runner that the job will run on
runs-on: ubuntu-latest
Steps represent a sequence of tasks that will be executed as part of the job
steps:
Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it
- uses: actions/checkout@v2

with:
fetch-depth: 0

- uses: actions/setup-java@v3
with:
distribution: 'zulu'
java-version: 17

- run: ./gradlew spotlessCheck

Explanation of Options

Each format section highlights formatting of custom files in the project. The java and
groovyGradle are natively supported by spotless, so they are defined differently.
Breaking this down, we can split this into multiple parts.

• Formatting Java
• Formatting Gradle files
• Formatting XML files

1114 Chapter 29. Advanced GradleRIO

FIRST Robotics Competition

• Formatting Miscellaneous files
They are all similar, except for some small differences that will be explained. The below
example will highlight the java {} block.

java {
target fileTree('.') {

include '**/*.java'
exclude '**/build/**', '**/build-*/**'

}
toggleOffOn()
googleJavaFormat()
removeUnusedImports()
trimTrailingWhitespace()
endWithNewline()

}

Let’s explain what each of the options mean.

target fileTree('.') {
include '**/*.java'
exclude '**/build/**', '**/build-*/**'

}

The above example tells spotless where our Java classes are and to exclude the build direc-
tory. The rest of the options are fairly self-explanatory.

• toggleOffOn() adds the ability to have spotless ignore specific portions of a project.
The usage looks like the following

// format:off

public void myWeirdFunction() {

}

// format:on

• googleJavaFormat() tells spotless to format according to the Google Style Guide
• removeUnusedImports() will remove any unused imports from any of your Java classes
• trimTrailingWhitespace() will remove any extra whitespace at the end of your lines
• endWithNewline() will add a newline character to the end of your classes

In the groovyGradle block, there is a greclipse option. This is the formatter that spotless
uses to format gradle files.
Additionally, there is a eclipseWtp option in the xml block. This stands for “Gradle Web Tools
Platform” and is the formatter to format xml files. Teams not using any XML files may wish
to not include this configuration.

Note: A full list of configurations is available on the Spotless README

29.3. Using a Code Formatter 1115

https://google.github.io/styleguide/javaguide.html
https://github.com/diffplug/spotless

FIRST Robotics Competition

Issues with Line Endings

Spotless will attempt to apply line endings per-OS, which means Git diffs will be constantly
changing if two users are on different OSes (Unix vs Windows). It’s recommended that teams
who contribute to the same repository from multiple OSes utilize a .gitattributes file. The
following should suffice for handling line endings.

*.gradle text eol=lf
*.java text eol=lf
*.md text eol=lf
*.xml text eol=lf

29.3.2 wpiformat

Requirements

• Python 3.6 or higher
• clang-format (included with LLVM)

Important: Windows is not currently supported at this time! Installing LLVM with Clang
will break normal robot builds if installed on Windows.

You can install wpiformat by typing pip3 install wpiformat into a terminal or command
prompt.

Usage

wpiformat can be ran by typing wpiformat in a console. This will format with
clang-format. Three configuration files are required (.clang-format, .styleguide, .
styleguide-license). These must exist in the project root.

• .clang-format: Download
• .styleguide-license: Download

An example styleguide is shown below:

cppHeaderFileInclude {
\.h$
\.hpp$
\.inc$
\.inl$

}

cppSrcFileInclude {
\.cpp$

}

modifiableFileExclude {
gradle/

}

1116 Chapter 29. Advanced GradleRIO

https://www.python.org/
https://releases.llvm.org/download.html
https://github.com/wpilibsuite/styleguide/blob/main/wpiformat/README.rst

FIRST Robotics Competition

Note: Teams can adapt .styleguide and .styleguide-license however they wish. It’s
important that these are not deleted, as they are required to run wpiformat!

You can turn this into a CI check by running git --no-pager diff --exit-code HEAD, as
shown in the example GitHub Actions workflow below:

name: Lint and Format

on:
pull_request:
push:

jobs:
wpiformat:

name: "wpiformat"
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Fetch all history and metadata

run: |
git config --global --add safe.directory /__w/allwpilib/allwpilib
git fetch --prune --unshallow
git checkout -b pr
git branch -f main origin/main

- name: Set up Python 3.8
uses: actions/setup-python@v4
with:
python-version: 3.8

- name: Install clang-format
run: |
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
sudo sh -c "echo 'deb http://apt.llvm.org/jammy/ llvm-toolchain-jammy-14␣

↪→main' >> /etc/apt/sources.list.d/proposed-repositories.list"
sudo apt-get update -q
sudo apt-get install -y clang-format-14

- name: Install wpiformat
run: pip3 install wpiformat

- name: Run
run: wpiformat -clang 14

- name: Check output
run: git --no-pager diff --exit-code HEAD

29.3. Using a Code Formatter 1117

FIRST Robotics Competition

29.4 Gradlew Tasks

This article aims to highlight the gradle commands supported by the WPILib team for user
use. These commands can be viewed by typing ./gradlew tasks at the root of your robot
project. Not all commands shown in ./gradlew tasks and unsupported commands will not
be documented here.

29.4.1 Build tasks

./gradlew build - Assembles and tests this project. Useful for prebuilding your project
without deploying to the roboRIO. ./gradlew clean - Deletes the build directory.

29.4.2 CompileCommands tasks

./gradlew generateCompileCommands - Generate compile_commands.json. This is a config-
uration file that is supported by many Integrated Development Environments.

29.4.3 EmbeddedTools tasks

./gradlew deploy - Deploy all artifacts on all targets. This will deploy your robot project to
the available targets (IE, roboRIO).
./gradlew discoverRoborio - Determine the address(es) of target roboRIO. This will print
out the IP address of a connected roboRIO.

29.4.4 GradleRIO tasks

./gradlew downloadAll - Download all dependencies that may be used by this project

./gradlew $TOOL$ - Runs the tool $TOOL$ (Replace $TOOL$ with the name of the tool. IE,
Glass, Shuffleboard, etc)
./gradlew $TOOL$Install - Installs the tool $TOOL$ (Replace $TOOL$ with the name of the
tool. IE, Glass, Shuffleboard, etc)
./gradlew InstallAllTools - Installs all available tools. This excludes the development
environment such as Visual Studio Code. It’s the users requirement to ensure the required
dependencies (Java) is installed. Only recommended for advanced users!
./gradlew simulateExternalCpp - Simulate External Task for native executable. Exports a
JSON file for use by editors / tools
./gradlew simulateExternalJava - Simulate External Task for Java/Kotlin/JVM. Exports a
JSON file for use by editors / tools
./gradlew simulateJava - Launches simulation for the Java projects
./gradlew simulateNative - Launches simulation for C++ projects
./gradlew vendordep - Install vendordep JSON file from URL or local installation. See 3rd
Party Libraries

1118 Chapter 29. Advanced GradleRIO

FIRST Robotics Competition

29.5 Including Git Data in Deploy

This article will go over how to include information from Git, such as branch name or commit
hash, into the robot code. This is necessary for using such information in robot code, such as
printing out commit hash and branch name when the robot starts.

Note: Git must be in the path for this to work. This should be enabled by default when
installing Git.

29.5.1 Deploying Branch Name

This example uses git rev-parse to extract data the name of the current branch. The Git
command used for this is:

$ git rev-parse --abbrev-ref HEAD

The --abbrev-ref flag tells Git to use a short version of the name for the current commit that
rev-parse is acting on. When HEAD is the most recent commit on a branch, this will return
the name of that branch.
Next, create a new task in the build.gradle file that will run the above Git command and
write it to a file in the src/main/deploy directory. For example, the following is an example
task named writeBranchName that will write the branch name to a file named branch.txt.

tasks.register("writeBranchName") {
// Define an output stream to write to instead of terminal
def stdout = new ByteArrayOutputStream()

// Execute the git command
exec {

commandLine "git", "rev-parse", "--abbrev-ref", "HEAD"
// Write to the output stream instead of terminal
standardOutput = stdout

}

// Parse the output into a string
def branch = stdout.toString().trim()

// Create a new file
new File(

// Join project directory and deploy directory
projectDir.toString() + "/src/main/deploy",
// File name to write to
"branch.txt"

).text = branch // Set the contents of the file to the variable branch
}

This registers a Gradle task that uses the above Git command, saves the output to a variable,
and then writes it to a file. Since it was written to the src/main/deploy directory, it will be
included in the jar file deployed to the robot and accessible in code.
The next step is to make the deploy task depend on the task you created, so that it will auto-
matically run before the code is deployed. This example uses the task name writeBranchName

29.5. Including Git Data in Deploy 1119

https://git-scm.com/downloads
https://git-scm.com/docs/git-rev-parse
https://docs.gradle.org/current/userguide/tutorial_using_tasks.html

FIRST Robotics Competition

from the previous example, but it should be replaced with the name of the task in your build.
gradle.

deploy.targets.roborio.artifacts.frcStaticFileDeploy.dependsOn(writeBranchName)

29.5.2 Deploying Commit Hash

Similar to the previous example, git rev-parse will be used to parse the current commit
hash. The Git command used for this is:

$ git rev-parse --short HEAD

Similar to the previous Git command, rev-parse is used to find information about the commit
at HEAD. However, instead of using --abbrev-ref to find the branch name associated with
that commit, --short is used to find the 7-character commit hash.

Note: If you wish to use the full commit hash instead of the 7-character version, you can
leave out the --short flag.

Next is to create a task in build.gradle that runs this command and writes the output to a
file. This is largely the same as the first example, except the task is named writeCommitHash,
the new Git command is used, and it is written to commit.txt instead of branch.txt.

tasks.register("writeCommitHash") {
def stdout = new ByteArrayOutputStream()

exec {
commandLine "git", "rev-parse", "--short", "HEAD"
standardOutput = stdout

}

def commitHash = stdout.toString().trim()

new File(
projectDir.toString() + "/src/main/deploy",
"commit.txt"

).text = commitHash
}

deploy.targets.roborio.artifacts.frcStaticFileDeploy.dependsOn(writeCommitHash)

Ignoring Generated Files with Git

Since these files include data that is already tracked by Git and are regenerated every time
code is deployed, it is recommended to not track these changes with Git by using the gitig-
nore file. This file should exist by default in any project generated by the WPILib VS Code
extension. Below is an example that continues to use the branch.txt and commit.txt file
names:

src/main/deploy/branch.txt
src/main/deploy/commit.txt
...

1120 Chapter 29. Advanced GradleRIO

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

FIRST Robotics Competition

29.5.3 Using Deployed Files

In order to access files that were written to the deploy directory in code, you have to use the
getDeployDirectory() method of the Filesystem class in Java, or the GetDeployDirectory()
function of the frc::filesystem namespace in C++. Below is an example of opening both files
from the previous examples:

Note: Opening and reading the files is slow and should not be performed during any periodic
methods. Since the file will only change on deploy, it only needs to be read once.

File deployDir = Filesystem.getDeployDirectory();
File branchFile = new File(deployDir, "branch.txt");
File commitFile = new File(deployDir, "commit.txt");

For more information on how to interact with the file objects, see the documentation of the
File class.

29.5. Including Git Data in Deploy 1121

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/Filesystem.html
https://github.wpilib.org/allwpilib/docs/release/cpp/namespacefrc_1_1filesystem.html
https://docs.oracle.com/javase/7/docs/api/java/io/File.html

FIRST Robotics Competition

1122 Chapter 29. Advanced GradleRIO

30
Advanced Controls

This section covers advanced control features in WPILib, such as various feed-
back/feedforward control algorithms and trajectory following.

30.1 A Video Walkthrough of Model Based Validation of
Autonomous in FRC

At the “RSN Spring Conference, Presented by WPI” in 2020, Tyler Veness from the WPILib
team gave a presentation on Model Based Validation of Autonomous in FRC®.
The link to the presentation is available here.

30.2 Advanced Controls Introduction

30.2.1 Control System Basics

Note: This article includes sections of Controls Engineering in FRC by Tyler Veness with
permission.

The Need for Control Systems

Control systems are all around us and we interact with them daily. A small list of ones you
may have seen includes heaters and air conditioners with thermostats, cruise control and the
anti-lock braking system (ABS) on automobiles, and fan speed modulation on modern laptops.
Control systems monitor or control the behavior of systems like these and may consist of
humans controlling them directly (manual control), or of only machines (automatic control).
All of these examples have a mechanism which does useful work, but cannot be directly com-
manded to the state that is desired.

1123

https://github.com/calcmogul/auton-driving-presentation
https://file.tavsys.net/control/controls-engineering-in-frc.pdf

FIRST Robotics Competition

For example, an air conditioner’s fans and compressor have no mechanical or electrical input
where the user specifies a temperature. Rather, some additional mechanism must compare
the current air temperature to some setpoint, and choose how to cycle the compressor and
fans on and off to achieve that temperature.
Similarly, an automobile’s engine and transmission have no mechanical lever which directly
sets a particular speed. Rather, some additional mechanism must measure the current speed
of the vehicle, and adjust the transmission gear and fuel injected into the cylinders to achieve
the desired vehicle speed.
Controls Engineering is the study of how to design those additional mechanisms to bridge
the gap from what the user wants a mechanism to do, to how the mechanism is actually
manipulated.
How can we prove closed-loop controllers on an autonomous car, for example, will behave
safely and meet the desired performance specifications in the presence of uncertainty? Con-
trol theory is an application of algebra and geometry used to analyze and predict the behavior
of systems, make them respond how we want them to, and make them robust to disturbances
and uncertainty.
Controls engineering is, put simply, the engineering process applied to control theory. As
such, it’s more than just applied math. While control theory has some beautiful math behind
it, controls engineering is an engineering discipline like any other that is filled with trade-
offs. The solutions control theory gives should always be sanity checked and informed by our
performance specifications. We don’t need to be perfect; we just need to be good enough to
meet our specifications.

Nomenclature

Most resources for advanced engineering topics assume a level of knowledge well above that
which is necessary. Part of the problem is the use of jargon. While it efficiently communicates
ideas to those within the field, new people who aren’t familiar with it are lost.
The system or collection of actuators being controlled by a control system is called the plant. A
controller is used to drive the plant from its current state to some desired state (the reference).
Controllers which don’t include information measured from the plant’s output are called open-
loop controllers.
Controllers which incorporate information fed back from the plant’s output are called closed-
loop controllers or feedback controllers.

1124 Chapter 30. Advanced Controls

FIRST Robotics Competition

Note: The input and output of a system are defined from the plant’s point of view. The neg-
ative feedback controller shown is driving the difference between the reference and output,
also known as the error, to zero.

What is Gain?

Gain is a proportional value that shows the relationship between the magnitude of an input
signal to the magnitude of an output signal at steady-state. Many systems contain a method
by which the gain can be altered, providing more or less “power” to the system.
The figure below shows a system with a hypothetical input and output. Since the output is
twice the amplitude of the input, the system has a gain of two.

What is a Model?

A model of your mechanism is a mathematical description of its behavior. Specifically, this
mathematical description must define the mechanism’s inputs and outputs, and how the out-
put values change over time as a function of its input values.
The mathematical description is often just simple algebra equations. It can also include some
linear algebra, matrices, and differential equations. WPILib provides a number of classes to
help simplify the more complex math.
ClassicalMechanics defines many of the equations used to build up models of system behavior.
Many of the values inside those equations can be determined by doing experiments on the
mechanism.

Block Diagrams

When designing or analyzing a control system, it is useful to model it graphically. Block
diagrams are used for this purpose. They can be manipulated and simplified systematically.

30.2. Advanced Controls Introduction 1125

FIRST Robotics Competition

The open-loop gain is the total gain from the sum node at the input (the circle) to the output
branch. this would be the system’s gain if the feedback loop was disconnected. The feedback
gain is the total gain from the output back to the input sum node. A sum node’s output is the
sum of its inputs.
The below figure is a block diagram with more formal notation in a feedback configuration.

∓ means “minus or plus” where a minus represents negative feedback.

A Note on Dimensionality

For the purposes of the introductory section, all systems and controllers (except feedforward
controllers) are assumed to be “single-in, single-out” (SISO) - this means they only map single
values to single values. For example, a DC motor is considered to take an input of a single
scalar value (voltage) and yield an output of only a single scalar value in return (either position
or velocity). This forces us to consider position controllers and velocity controllers as separate
entities - this is sometimes source of confusion in situations when we want to control both
(such as when following a motion profiles). Limiting ourselves to SISO systems also means
that we are unable to analyze more-complex “multiple-in, multiple-out” (MIMO) systems like
drivetrains that cannot be represented with a single state (there are at least two independent
sets of wheels in a drive).
Nonetheless, we restrict ourselves to SISO systems here to be able to present the following
tutorials in terms of the PID Controller formalism, which is commonly featured in introductory
course material and has extensive documentation and many available implementations.

1126 Chapter 30. Advanced Controls

FIRST Robotics Competition

The state-space formalism is an alternate way to conceptualize these systems which allows us
to easily capture interactions between different quantities (as well as simultaneously repre-
sent multiple aspects of the same quantity, such as position and velocity of a motor). It does
this, roughly, by replacing the single-dimensional scalars (e.g. the gain, input, and output)
with multi-dimensional vectors. In the state-space formalism, the equivalent of a “PID” con-
troller is a vector-proportional controller on a single vector-valued mechanism state, with a
single gain vector (instead of three different gain scalars).
If you remember that a state-space controller is really just a PID controller written with dense
notation, many of the principles covered in this set of introductory articles will transfer seam-
lessly to the case of state-space control.

30.2.2 Picking a Control Strategy

Note: This article includes sections of Controls Engineering in FRC by Tyler Veness with
permission.

When designing a control algorithm for a robot mechanism, there are a number of different
approaches to take. These range from very simple approaches, to advanced and complex
ones. Each has tradeoffs. Some will work better than others in different situations, some
require more mathematical analysis than others.
Teams should prioritize picking the easiest strategy which enables success on the field. How-
ever, as you do experiments, keep in mind there is almost always a “next-step” to take to
improve your field performance.
There are two fundamental types of mechanism controller that we will cover here:

Note: These are not strict definitions - some control strategies are not easily classifiable
and incorporate elements of both feedforward and feedback controllers. However, it is still a
useful distinction in most FRC applications.

Feedforward control (or “open-loop control”) refers to the class of algorithms which incor-
porate knowledge of how the mechanism under control is expected to operate. Using this
“model” of operation, the control input is chosen to make the mechanism get close to where
it should be.
Feedback control (or “closed-loop control”) refers to the class of algorithms which use sen-
sors to measure what a mechanism is doing, and issue corrective commands to move a mech-
anism from where it actually is, to where you want it to be.
These are not mutually exclusive, and in fact it is usually best to use both. The tutorial pages
that follow will cover three types of mechanism (turret, flywheel, and vertical arm), and allow
you to experiment with how each type of system responds to each type of control strategy,
both individually and combined.

30.2. Advanced Controls Introduction 1127

https://file.tavsys.net/control/controls-engineering-in-frc.pdf

FIRST Robotics Competition

Feedforward Control: Making a Best Guess

“Feedforward control” means providing the mechanism with the control signal you think it
needs to make the mechanism do what you want, without any knowledge of where the mech-
anism currently is. A feedforward controller feeds information we already know about the
system forward into an estimate of the required control effort. The feedforward controller
does not adjust this in response to the measured behavior of the system to try to correct for
errors from the guess.
Feedforward control is also sometimes referred to as “open-loop control”, because if you draw
out a block diagram of the controlled system it consists of only a line from the controller to
the plant, with no connection from the measured plant output back into the controller (hence
an “open” loop, which really isn’t a loop at all).
This is the type of control you are implicitly using whenever you use a joystick to “directly”
control the speed of a motor through the applied voltage. It is the simplest and most straight-
forward type of control, and is probably the one you encountered first when programming a
FRC motor, though it may not have been referred to by name.

When Do We Need Feedforward Control?

In general, feedforward control is required whenever the system requires some constant con-
trol signal to remain at the desired setpoint (such as position control of a vertical arm where
gravity will cause the arm to fall, or velocity control where internal motor dynamics and fric-
tion will cause the motor to slow down over time). Feedback controllers naturally fall to zero
output when they achieve their setpoint, and so a feedforward controller is needed to provide
the signal to keep the mechanism where we want it.
Some control strategies instead account for this in the feedback controller with integral gain
- however, this is slow and prone to oscillation. It is almost always better to use a feedforward
controller to account for the output needed to maintain the setpoint.

Feedforward and Position Control

The WPILib feedforward classes require velocity and acceleration setpoints to generate an
estimated control voltage. This is because the equations-of-motion of a permanent-magnet
DC motor relate the applied voltage to velocity and acceleration; it is a fact of physics that
we cannot change.
But what if we want to control position? When controlling a DC motor, there’s no immedi-
ate relation between position and control signal. In order to use feedforward effectively for
position control, we need to come up with a sequence of velocities that will take the robot
mechanism to the desired position. This is called a motion profile.
Many teams do not wish to incur the extra technical cost of using a motion profile when doing
position control, and instead omit the feedforward controller entirely and opt to use only
feedback control. As we will discuss later, this may work in some situations, but has some
important caveats.
Most FRC mechanisms are well-described by WPILib’s feedforward classes, though pure feed-
forward control typically only yields acceptable results for velocity control of mechanisms with
little external load. In other cases, errors from the system model will be unavoidable and a
feedback controller will be necessary to correct for them.

1128 Chapter 30. Advanced Controls

FIRST Robotics Competition

Feedback Control: Correcting for Errors and Disturbances

Even with unlimited study, it is impossible to know every force that will be exerted on a robot’s
mechanism in perfect detail. For example, in a flywheel shooter, the timing and exact forces
associated with a ball being put through the mechanism are extremely difficult to measure
accurately. For another example, consider the fact that gearboxes gradually throw off grease
as they operate, increasing their internal friction over time. This is a very complex process
to model well.
In practice, this means that the “guess” made by our feedforward controller will never be
perfect. There will always be some error - that is, some lingering difference between the
state we want our mechanism to be in, and the state the feedforward controller leaves it in.
In many situations, this error is large enough that we need to adjust our output to correct it;
this is the job of the feedback controller. Feedback controllers are also called “closed-loop”
controllers, because the flow of information about the current state back through the system
“closes” the loop in the system’s block diagram.
The simplest feedback controller possible is a “proportional controller”, which responds pro-
portionally to the current error (i.e. difference between the desired state and measured state).
More advanced controllers (such as the PID controller) add response to the rate-of-change of
the error and to the total accumulated error. All of these operate on the principle that the
system response is roughly linear, in order to “nudge” the system towards the setpoint based
on local measurements of the error.

When Do We Need Feedback Control?

In general, there are two scenarios in which we need feedback control:
1. We are controlling the position of the system, so errors accumulate over time
2. There are a lot of difficult-to-dynamic external forces interacting with the mechanism

that the feedforward loop cannot account for (e.g. a flywheel that is launching game
pieces).

In each of these situations, the best solution is to combine a feedforward controller and a
feedback controller by adding their outputs together. However, in the case of a simple position
controller with no external loading, a pure feedback controller can work acceptably.

Feedback-Only Control

Feedforward controllers are extremely helpful and quite simple, but they require explicit
knowledge of the system behavior in order to generate a guess at the required control signal.
In many controls textbooks, you may see a set of techniques which rely on feedback control
only. These are very common in industry, and works well in many cases, especially when the
underlying system behavior is not easy to explicitly model, or when you want to quickly reach
a “good enough” solution without spending the time to thoroughly investigate your system
behavior.
Feedback-only control typically only works well in situations where:

1. The motors are fairly overpowered relative to loading.
2. The mechanism’s position (not velocity) is being controlled.
3. There are no substantial or varying external forces on the mechanism.

30.2. Advanced Controls Introduction 1129

FIRST Robotics Competition

When these criteria are met (such as in the turret tuning tutorial), feedback-only control can
yield acceptable results. In other situations, it is necessary to use a feedforward model to
reduce the amount of work done by the feedback controller. In FRC, our systems are almost
all modeled by well-understood equations with working code support, so it is almost always
a good idea to include a feedforward controller.

Modeling: How do you expect your system to behave?

It’s easiest to control a system if we have some prior knowledge of how the system responds to
inputs. Even the “pure feedback” strategy described above implicitly assumes things about
the system response (e.g. that it is approximately linear), and consequently won’t work in
cases where the system does not respond in the expected way. To control our system opti-
mally, we need some way to reliably predict how it will respond to inputs.
This can be done by combining several concepts you may be familiar with from physics: draw-
ing free body diagrams of the forces that act on the mechanism, taking measurements of mass
and moment of inertia from your CAD models, applying standard equations of how DC motors
or pneumatic cylinders convert energy into mechanical force and motion, etc.
The act of creating a consistent mathematical description of your system is called modeling
your system’s behavior. The resulting set of equations are called a model of how you expect
the system to behave. Not every system requires an explicit model to be controlled (we will
see in the turret tutorial that a pure, manually-tuned feedback controller is satisfactory in
some cases), but an explicit model is always helpful.
Note that models do not have to be perfectly accurate to be useful. As we will see in later
tuning exercises, even using a simple model of a mechanism can make the tuning effort much
simpler.

Obtaining Models for Your Mechanisms

If modeling your mechanism seems daunting, don’t worry! Most mechanisms in FRC are
modeled by well-studied equations and code for interacting with those models is included
in WPILib. Usually, all that is needed is to determine a set of physical parameters (some-
times called “tuning constants” or “gains”) that depend on the specific details of your mech-
anism/robot. These can be estimated theoretically from other known parameters of your
system (such as mass, length, and choice of motor/gearbox), or measured from your mecha-
nism’s actual behavior through a system identification routine.
When in doubt, ask a mentor or support resource!

Theoretical Modeling

ReCalc is an online calculator which estimates physical parameters for a number of common
FRC mechanisms. Importantly, it can generate estimate the kV, kA, and kG gains for the
WPILib feedforward classes.
The WPILib system identification tool supports a “theoretical mode” that can be used to de-
termine PID gains for feedback control from the kV and kA gains from ReCalc, enabling (in
theory) full tuning of a control loop without running any test routines.
Remember, however, that theory is not reality and purely theoretical gains are not guaranteed
to work well. There is never a substitute for testing.

1130 Chapter 30. Advanced Controls

https://www.reca.lc/

FIRST Robotics Competition

System Identification

A good way to improve the accuracy of a simple physics model is to perform experiments on
the real mechanism, record data, and use the data to derive the constants associated with
different parts of the model. This is very useful for physical quantities which are difficult or
impossible to predict, but easy to measure (ex: friction in a gearbox).
WPILib’s system identification tool supports some common FRC mechanisms, including drive-
train. It deploys its own code to the robot to exercise the mechanism, record data, and derive
gains for both feedforward and feedback control schemes.

Manual Tuning: What to Do with No Explicit Model

Sometimes, you have to tune a system without at an explicit model. Maybe the system is
uniquely complicated, or maybe you’re under time constraints and need something that works
quickly, even if it doesn’t work optimally. Model-based control requires a correct mathemat-
ical model of the system, and for better or for worse, we do not always have one.
In such cases, the physical parameters of the control algorithm can be tuned manually. This
is generally done by systematically “sweeping” the controller gains by hand until the mecha-
nism behaves as expected. Manual tuning can work quickly in cases where only one or two
parameters (such as kV and kP) need to be adjusted - however, in more-complicated scenarios
it can become a very involved and difficult process.
One common problem with manual tuning is that it can be hard to distinguish a well-founded
controller architecture that is not yet tuned properly, from an inappropriate controller archi-
tecture that cannot work (for example, it is generally not possible to tune a velocity controller
or vertical arm position controller that functions well without a feedforward). In such a case,
we can waste a lot of time searching for correct gains, when no such correct gains exist.
There is no substitute for understanding the mechanics of the systems being controlled well
enough to determine a correct controller architecture for the mechanism, even if we do not
explicitly use any model-based control methodologies.
The tutorials that follow include simulations that will allow you to perform the manual tuning
process on several typical FRC mechanisms. The fundamental concepts that govern which
control strategies are valid for each mechanism are covered on the individual mechanism
pages; pay close attention to this as you work through the tutorials!

30.2.3 Introduction to DC Motor Feedforward

Note: For a guide on implementing PID control in code with WPILib, see Feedforward
Control in WPILib.

This page explains the conceptual and mathematical workings of WPILib’s SimpleMotorFeed-
forward (and the other related classes).

30.2. Advanced Controls Introduction 1131

FIRST Robotics Competition

The Permanent-Magnet DC Motor Feedforward Equation

Recall from earlier that the point of a feedforward controller is to use the known dynamics of
a mechanism to make a best guess at the control effort required to put the mechanism in the
state you want. In order to do this, we need to have some idea of what kind of mechanism we
are controlling - that will determine the relationship between control effort and output, and
let us guess at what value of the former will give us the desired value of the latter.
In FRC, the most common system that we’re interested in controlling is the permanent-magnet
DC motor.
These motors have a number of convenient properties that make them particularly easy to
control, and ideal for FRC tasks. In particular, they obey a particular relationship between
applied voltage, rotor velocity, and rotor acceleration known as a “voltage balance equation”.

V = Ks · sgn(ḋ) +Kv · ḋ+Ka · d̈

where V is the applied voltage, d is the displacement (position) of the motor, ḋ is its veloc-
ity, and d̈ is its acceleration (the “overdot” notation traditionally denotes the derivative with
respect to time).
We can interpret the coefficients in the above equation as follows:
Ks is the voltage needed to overcome the motor’s static friction, or in other words to just
barely get it moving; it turns out that this static friction (because it’s, well, static) has the
same effect regardless of velocity or acceleration. That is, no matter what speed you’re going
or how fast you’re accelerating, some constant portion of the voltage you’ve applied to your
motor (depending on the specific mechanism assembly) will be going towards overcoming
the static friction in your gears, bearings, etc; this value is your kS. Note the presence of the
signum function because friction force always opposes the direction-of-motion.
Kv describes how much voltage is needed to hold (or “cruise”) at a given constant velocity
while overcoming the counter-electromotive force and any additional friction that increases
with speed (including viscous drag and some churning losses). The relationship between
speed and voltage (at constant acceleration) is almost entirely linear (for FRC-legal compo-
nents) because of how permanent-magnet DC motors work.
Ka describes the voltage needed to induce a given acceleration in the motor shaft. As with kV,
the relationship between voltage and acceleration (at constant velocity) is almost perfectly
linear for FRC components.
For more information, see this paper.

Variants of the Feedforward Equation

Some of WPILib’s other feedforward classes introduce additional terms into the above equa-
tion to account for known differences from the simple case described above - details for each
tool can be found below:

1132 Chapter 30. Advanced Controls

https://www.chiefdelphi.com/uploads/default/original/3X/f/7/f79d24101e6f1487e76099774e4ba60683e86cda.pdf

FIRST Robotics Competition

Elevator Feedforward

An elevator consists of a permanent-magnet DC motor attached to a mass under the force of
gravity. Compared to the feedforward equation for an unloaded motor, it differs only in the
inclusion of a constant Kg term that accounts for the action of gravity:

V = Kg +Ks · sgn(ḋ) +Kv · ḋ+Ka · d̈

where V is the applied voltage, d is the displacement (position) of the drive, ḋ is its velocity,
and d̈ is its acceleration.

Arm Feedforward

An arm consists of a permanent-magnet DC motor attached to a mass on a stick held under
the force of gravity. Like the elevator feedforward, it includes a Kg term to account for the
effect of gravity - unlike the elevator feedforward, however, this term is multiplied by the
cosine of the arm angle (since the gravitational force does not act directly on the motor):

V = Kg · cos(θ) +Ks · sgn(θ̇) +Kv · θ̇ +Ka · θ̈

where V is the applied voltage, θ is the angular displacement (position) of the arm, θ̇ is its
angular velocity, and θ̈ is its angular acceleration.

Using the Feedforward

In order to use the feedforward, we need to plug in values for each unknown in the above
voltage-balance equation other than the voltage. As mentioned earlier, the values of the gains
Kg, Kv, Ka can be obtained through theoretical modeling with ReCalc. Explicit measurement
with SysIdwill yield the aforementioned gains in addition to Ks. That leaves us needing values
for velocity, acceleration, and (in the case of the arm feedforward) position.
Typically, these come from our setpoints - remember that with feedforward we are making a
“guess” as to the output we need based on where we want the system to be.
For velocity control, this does not pose a problem - we can take the velocity value from our
setpoint directly, and if necessary (it can often be omitted in practice) we can infer the accel-
eration from the difference between the current and previous velocity setpoints.
For position control, however, this can be difficult - except for the arm controller, there’s no
direct term in the feedforward equation for position. We often have no choice but to calculate
our velocity from the difference between the current and previous setpoint positions, and to
ignore acceleration entirely. In order to do better, we need to ensure that our setpoints vary
smoothly according to some set of constraints - this is usually accomplished with a motion
profile.

30.2. Advanced Controls Introduction 1133

https://www.reca.lc/

FIRST Robotics Competition

30.2.4 Introduction to PID

Note: For a guide on implementing PID control with WPILib, see PID Control in WPILib.

This page explains the conceptual and mathematical workings of a PID controller. A video
explanation from WPI is also available.

What is a PID Controller?

The PID controller is a common feedback controller consisting of proportional, integral, and
derivative terms, hence the name. This article will build up the definition of a PID controller
term by term while trying to provide some intuition for how each term behaves.
First, we’ll get some nomenclature for PID controllers out of the way. In a PID context, we
use the term reference or setpoint to mean the desired state of the mechanism, and the term
output or process variable to refer to the measured state of the mechanism. Below are some
common variable naming conventions for relevant quantities.

r(t) setpoint, reference u(t) control effort
e(t) error y(t) output, process variable

The error e(t) is the difference between the reference and the output, r(t)− y(t).
For those already familiar with PID control, this interpretation may not be consistent with the
classical explanation of the P, I, and D terms corresponding to response to “past”, “present”,
and “future” errors. While that model has merit, we will instead be approaching PID control
from the viewpoint of modern control theory, as proportional controllers applied to differ-
ent physical quantities we care about. This will provide a more complete explanation of the
derivative term’s behavior for constant and moving setpoints.
Roughly speaking: the proportional term drives the position error to zero, the derivative term
drives the velocity error to zero, and the integral term drives the total accumulated error-over-
time to zero. All three terms are added together to produce the control signal We’ll go into
more detail on each of these below.

Note: Throughout the WPILib documentation, you’ll see two ways of writing the tunable
constants of the PID controller.
For example, for the proportional gain:

• Kp is the standard math-equation-focused way to notate the constant.
• kP is a common way to see it written as a variable in software.

Despite the differences in capitalization, the two formats refer to the same concept.

1134 Chapter 30. Advanced Controls

FIRST Robotics Competition

Proportional Term

The Proportional term attempts to drive the position error to zero by contributing to the
control signal proportionally to the current position error. Intuitively, this tries to move the
output towards the reference.

u(t) = Kpe(t)

where Kp is the proportional gain and e(t) is the error at the current time t.
The below figure shows a block diagram for a system controlled by a P controller.

Proportional gains act like a “software-defined springs” that pull the system toward the de-
sired position. Recall from physics that we model springs as F = −kx where F is the force
applied, k is a proportional constant, and x is the displacement from the equilibrium point.
This can be written another way as F = k(0 − x) where 0 is the equilibrium point. If we let
the equilibrium point be our feedback controller’s setpoint, the equations have a one to one
correspondence.

F = k(r − x)

u(t) = Kpe(t) = Kp(r(t)− y(t))

so the “force” with which the proportional controller pulls the system’s output toward the
setpoint is proportional to the error, just like a spring.

Derivative Term

The Derivative term attempts to drive the derivative of the error to zero by contributing to
the control signal proportionally to the derivative of the error. Intuitively, this tries to make
the output move at the same rate as the reference.

u(t) = Kpe(t) +Kd
de

dt

where Kp is the proportional gain, Kd is the derivative gain, and e(t) is the error at the current
time t.
The below figure shows a block diagram for a system controlled by a PD controller.

30.2. Advanced Controls Introduction 1135

FIRST Robotics Competition

A PD controller has a proportional controller for position (Kp) and a proportional controller
for velocity (Kd). The velocity setpoint is implicitly provided by how the position setpoint
changes over time. To prove this, we will rearrange the equation for a PD controller.

uk = Kpek +Kd
ek − ek−1

dt

where uk is the control effort at timestep k and ek is the error at timestep k. ek is defined as
ek = rk − xk where rk is the setpoint and xk is the current state at timestep k.

uk = Kp(rk − xk) +Kd
(rk − xk)− (rk−1 − xk−1)

dt

uk = Kp(rk − xk) +Kd
rk − xk − rk−1 + xk−1

dt

uk = Kp(rk − xk) +Kd
rk − rk−1 − xk + xk−1

dt

uk = Kp(rk − xk) +Kd
(rk − rk−1)− (xk − xk−1)

dt

uk = Kp(rk − xk) +Kd

(
rk − rk−1

dt
− xk − xk−1

dt

)
Notice how rk−rk−1

dt is the velocity of the setpoint. By the same reason, xk−xk−1

dt is the system’s
velocity at a given timestep. That means the Kd term of the PD controller is driving the
estimated velocity to the setpoint velocity.
If the setpoint is constant, the implicit velocity setpoint is zero, so the Kd term slows the
system down if it’s moving. This acts like a “software-defined damper”. These are commonly
seen on door closers, and their damping force increases linearly with velocity.

Integral Term

Important: Integral gain is generally not recommended for FRC® use. It is almost al-
ways better to use a feedforward controller to eliminate steady-state error. If you do employ
integral gain, it is crucial to provide some protection against integral windup.

The Integral term attempts to drive the total accumulated error to zero by contributing to the
control signal proportionally to the sum of all past errors. Intuitively, this tries to drive the
average of all past output values towards the average of all past reference values.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ

1136 Chapter 30. Advanced Controls

FIRST Robotics Competition

where Kp is the proportional gain, Ki is the integral gain, e(t) is the error at the current time
t, and τ is the integration variable.
The Integral integrates from time 0 to the current time t. we use τ for the integration because
we need a variable to take on multiple values throughout the integral, but we can’t use t
because we already defined that as the current time.
The below figure shows a block diagram for a system controlled by a PI controller.

When the system is close the setpoint in steady-state, the proportional term may be too small
to pull the output all the way to the setpoint, and the derivative term is zero. This can result
in steady-state error as shown in figure 2.4

A common way of eliminating steady-state error is to integrate the error and add it to the

30.2. Advanced Controls Introduction 1137

FIRST Robotics Competition

control effort. This increases the control effort until the system converges. Figure 2.4 shows
an example of steady-state error for a flywheel, and figure 2.5 shows how an integrator added
to the flywheel controller eliminates it. However, too high of an integral gain can lead to
overshoot, as shown in figure 2.6.

Putting It All Together

Note: For information on using the WPILib provided PIDController, see the relevant article.

When these terms are combined by summing them all together, one gets the typical definition
for a PID controller.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de

dt

where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, e(t) is the
error at the current time t, and τ is the integration variable.
The below figure shows a block diagram for a PID controller.

1138 Chapter 30. Advanced Controls

FIRST Robotics Competition

Response Types

A system driven by a PID controller generally has three types of responses: underdamped,
over-damped, and critically damped. These are shown in figure 2.8.
For the step responses in figure 2.7, rise time is the time the system takes to initially reach
the reference after applying the step input. Settling time is the time the system takes to settle
at the reference after the step input is applied.
An underdamped response oscillates around the reference before settling. An overdamped
response

30.2. Advanced Controls Introduction 1139

FIRST Robotics Competition

is slow to rise and does not overshoot the reference. A critically damped response has the
fastest rise time without overshooting the reference.

30.2.5 PID Introduction Video by WPI

Have you ever had trouble designing a robot system to move quickly and then stop at exactly
a desired position? Challenges like this can arise when driving fixed distances or speeds,
operating an arm or elevator, or any other motor controlled system that requires specific
motion. In this video, WPI Professor Dmitry Berenson talks about robot controls and how PID
controls work.

30.2.6 Introduction To Controls Tuning Tutorials

The WPILib docs include three interactive tuning simulations. Their goal is to allow students
to learn how tuning parameters impact system behavior, without having to deal with software
bugs or other real-world behavior.
Even though WPILib tooling can provide you with optimal gains, it is worth going through the
manual tuning process to see how the different control strategies interact with the mecha-
nism.
Ultimately, students should use the examples to build intuition and make their time on the
robot more productive.
This page details a few tips while working with the tutorials.

1140 Chapter 30. Advanced Controls

FIRST Robotics Competition

Parameter Exponential Search

While interacting with the simulations, you will get instructions to “increase” or “decrease”
different parameters.
When “increasing” a value, multiply it by two until the expected effect is observed. After
the first time the value becomes too large (i.e. the behavior is unstable or the mechanism
overshoots), reduce the value to halfway between the first too-large value encountered and
the previous value tested before that. Continue iterating this “split-half” procedure to zero
in on the optimal value (if the response undershoots, pick the halfway point between the new
value and the last value immediately above it - if it overshoots, pick the halfway point between
the new value and the last value immediately below it). This is called an term:exponential
search, and is a very efficient way to find positive values of unknown scale.

System Noise

The “system noise” option introduces random, gaussian error into the plant to provide a more
realistic situation of system behavior.
Leave the setting turned off at first to learn the system’s ideal behavior. Later, turn it on to
see how your tuning works in the presence of real-world effects.

Be Systematic

As seen in the introduction to PID, a PID controller has three tuned constants.Feedforward
components will add even more. This means searching for the “correct” constants manually
can be quite difficult - it is therefore necessary to approach the tuning procedure systemati-
cally.
Follow the order of tuning presented in the tutorials - it will maximize your chances of success.
Resist checking the tuning solutions until you believe your solution is close to correct. Then
check your answer, and try the provided one to compare against your own results.
Furthermore, work from easy to difficult.:ref:Flywheel mechanisms
<docs/software/advanced-controls/introduction/tuning-flywheel:Tuning a Flywheel Ve-
locity Controller> are the easiest to tune. After that, look into the turret tuning. Then, finish
off with the vertical arm example.

30.2.7 Tuning a Flywheel Velocity Controller

In this section, we will tune a simple velocity controller for a flywheel. The tuning principles
explained here will also work for almost any velocity control scenario.

30.2. Advanced Controls Introduction 1141

FIRST Robotics Competition

Flywheel Model Description

Our “Flywheel” consists of:
• A rotating inertial mass which launches the game piece (the flywheel)
• A motor (and possibly a gearbox) driving the mass.

For the purposes of this tutorial, this plant is modeled with the same equation used by
WPILib’s SimpleMotorFeedforward, with additional adjustment for sensor delay and gear-
box inefficiency. The simulation assumes the plant is controlled by feedforward and feedback
controllers, composed in this fashion:

Where:
• The plant’s output y(t) is the flywheel rotational velocity
• The controller’s setpoint r(t) is the desired velocity of the flywheel
• The controller’s control effort, u(t) is the voltage applied to the motor driving the fly-

wheel’s motion

Note: A more detailed description of the mathematics of the system can be found here.

Picking the Control Strategy for a Flywheel Velocity Controller

In general: the more voltage that is applied to the motor, the faster the flywheel will spin.
Once voltage is removed, friction and back-EMF oppose the motion and bring the flywheel to
a stop.
Flywheels are commonly used to propel game pieces through the air, toward a target. In this
simulation, a gamepiece is injected into the flywheel about halfway through the simulation.1

1 For this simulation, we model a ball being injected to the flywheel as a velocity-dependant (frictional) torque
fighting the spinning of the wheel for one quarter of a wheel rotation, right around the 5 second mark. This is a very
simplistic way to model the ball, but is sufficient to illustrate the controller’s behavior under a sudden load. It would
not be sufficient to predict the ball’s trajectory, or the actual “pulldown” in output for the system.

1142 Chapter 30. Advanced Controls

FIRST Robotics Competition

To consistently launch a gamepiece, a good first step is to make sure it is spinning at a par-
ticular speed before putting a gamepiece into it. Thus, we want to accurately control the
velocity of our flywheel.

Note: This is fundamentally different from the vertical arm and turret controllers, which
both control position.

The tutorials below will demonstrate the behavior of the system under bang-bang, pure feed-
forward, pure feedback (PID), and combined feedforward-feedback control strategies. Follow
the instructions to learn how to manually tune these controllers, and expand the “tuning so-
lution” to view an optimal model-based set of tuning parameters.

Bang-Bang Control

Interact with the simulation below to see how the flywheel system responds when controlled
by a bang-bang controller.
The “Bang-Bang” controller is a simple controller which applies a binary (present/not-present)
force to a mechanism to try to get it closer to a setpoint. A more detailed description (and
documentation for the corresponding WPILib implementation) can be found here.
There are no tuneable controller parameters for a bang-bang controller - you can only adjust
the setpoint. This simplicity is a strength, and also a weakness.
Try adjusting the setpoint up and down. You should see that for almost all values, the output
converges to be somewhat near the setpoint.

Common Issues with Bang-Bang Controllers

Note that the system behavior is not perfect, because of delays in the control loop. These
can result from the nature of the sensors, measurement filters, loop iteration timers, or even
delays in the control hardware itself. Collectively, these cause a cycle of “overshoot” and
“undershoot”, as the output repeatedly goes above and below the setpoint. This oscillation is
unavoidable with a bang-bang controller.
Typically, the steady-state oscillation of a bang-bang controller is small enough that it per-
forms quite well in practice. However, rapid on/off cycling of the control effort can cause
mechanical issues - the cycles of rapidly applying and removing forces can loosen bolts and
joints, and put a lot of stress on gearboxes.
The abrupt changes in control effort can cause abrupt changes in current draw if the system’s
inductance is too low. This may stress motor control hardware, and cause eventual damage
or failure.
Finally, this technique only works for mechanisms that accelerate relatively slowly. A more
in-depth discussion of the details can be found here.
Bang-bang control sacrifices a lot for simplicity and high performance (in the sense of fast
convergence to the setpoint). To achieve “smoother” control, we need to consider a different
control strategy.

30.2. Advanced Controls Introduction 1143

FIRST Robotics Competition

Pure Feedforward Control

Interact with the simulation below to see how the flywheel system responds when controlled
only by a feedforward controller.
To tune the feedforward controller, increase the velocity feedforward gain Kv until the fly-
wheel approaches the correct setpoint over time. If the flywheel overshoots, reduce Kv.
The exact gain used by the simulation is Kv = 0.0075.
We can see that a pure feedforward control strategy works reasonably well for flywheel veloc-
ity control. As we mentioned earlier, this is why it’s possible to control most motors “directly”
with joysticks, without any explicit “control loop” at all. However, we can still do better - the
pure feedforward strategy cannot reject disturbances, and so takes a while to recover after
the ball is introduced. Additionally, the motor may not perfectly obey the feedforward equa-
tion (even after accounting for vibration/noise). To account for these, we need a feedback
controller.

Pure Feedback Control

Interact with the simulation below to see how the flywheel system responds when controlled
by only a feedback (PID) controller.
Perform the following:

1. Set Kp, Ki, Kd, and Kv to zero.
2. Increase Kp until the output starts to oscillate around the setpoint, then decrease it until

the oscillations stop.
3. In some cases, increase Ki if output gets “stuck” before converging to the setpoint.

Note: PID-only control is not a very good control scheme for flywheel velocity! Do not
be surprised if/when the simulation below does not behave well, even when the “optimal”
constants are used.

In this particular example, for a setpoint of 300, values of Kp = 0.1, Ki = 0.0, and Kd = 0.0 will
produce somewhat reasonable results. Since this control strategy is not very good, it will not
work well for all setpoints. You can attempt to improve this behavior by incorporating some
Ki, but it is very difficult to achieve good behavior across a wide range of setpoints.

Issues with Feedback Control Alone

Because a non-zero amount of control effort is required to keep the flywheel spinning, even
when the output and setpoint are equal, this feedback-only strategy is flawed. In order to
optimally control a flywheel, a combined feedforward-feedback strategy is needed.

1144 Chapter 30. Advanced Controls

FIRST Robotics Competition

Combined Feedforward and Feedback Control

Interact with the simulation below to see how the flywheel system responds under simulta-
neous feedforward and feedback (PID) control.
Tuning the combined flywheel controller is simple - we first tune the feedforward controller
following the same procedure as in the feedforward-only section, and then we tune the PID
controller following the same procedure as in the feedback-only section. Notice that PID
portion of the controller is much easier to tune “on top of” an accurate feedforward.
In this particular example, for a setpoint of 300, values of Kv = 0.0075 and Kp = 0.1 will produce
very good results across all setpoints. Small changes to Kp will change the controller behavior
to be more or less aggressive - the optimal choice depends on your problem constraints.
Note that the combined feedforward-feedback controller works well across all setpoints, and
recovers very quickly after the external disturbance of the ball contacting the flywheel.

Tuning Conclusions

Applicability of Velocity Control

A gamepiece-launching flywheel is one of the most visible applications of velocity control. It
is also applicable to drivetrain control - following a pre-defined path in autonomous involves
controlling the velocity of the wheels with precision, under a variety of different loads.

Choice of Control Strategies

Because we are controlling velocity, we can achieve fairly good performance with a pure
feedforward controller. This is because a permanent-magnet DC motor’s steady-state velocity
is roughly proportional to the voltage applied, and is the reason that you can drive your robot
around with joysticks without appearing to use any control loop at all - in that case, you are
implicitly using a proportional feedforward model.
Because we must apply a constant control voltage to the motor to maintain a velocity at the
setpoint, we cannot successfully use a pure feedback (PID) controller (whose output typically
disappears when you reach the setpoint) - in order to effectively control velocity, a feedback
controller must be combined with a feedforward controller.
Bang-bang control can be combined with feedforward control much in the way PID control
can - for the sake of brevity we do not include a combined feedforward-bang-bang simulation.
Tuning with only feedback can produce reasonable results in cases where no control effort is
required to keep the output at the setpoint. This may work for mechanisms like turrets, or
swerve drive steering. However, as seen above, it does not work well for a flywheel, where
the back-EMF and friction both act to slow the motor even when it is sustaining motion at the
setpoint. To control this system, we need to combine the PID controller with a feedforward
controller.
Kd is not useful for velocity control with a constant setpoint - it is only necessary when the
setpoint is changing.
Adding an integral gain to the controller is often a sub-optimal way to eliminate steady-state
error - you can see how sloppy and “laggy” it is in the simulation above! As we will see soon,
a better approach is to combine the PID controller with a feedforward controller.

30.2. Advanced Controls Introduction 1145

FIRST Robotics Competition

Velocity and Position Control

Velocity control also differs from position control in the effect of inertia - in a position con-
troller, inertia tends to cause the mechanism to swing past the setpoint even if the control
voltage drops to zero near the setpoint. This makes aggressive control strategies infeasible,
as they end up wasting lots of energy fighting self-induced oscillations. In a velocity con-
troller, however, the effect is different - the rotor shaft stops accelerating as soon as you stop
applying a control voltage (in fact, it will slow down due to friction and back-EMF), so such
overshoots are rare (in fact, overshoot typically occurs in velocity controllers only as a result
of loop delay). This enables the use of an extremely simple, extremely aggressive control
strategy called bang-bang control.

Feedforward Simplifications

For the sake of simplicity, the simulations above omit the Ks term from the WPILib SimpleMo-
torFeedforward equation. On actual mechanisms, however, this can be important - especially
if there’s a lot of friction in the mechanism gearing. A flywheel with a lot of static friction
will not have a linear control voltage-velocity relationship unless the feedforward controller
includes a Ks term to cancel it out.
To measure Ks manually, slowly increase the voltage to the mechanism until it starts to move.
The value of Ks is the largest voltage applied before the mechanism begins to move.
Additionally, there is no need for a Ka term in the feedforward for velocity control unless the
setpoint is changing - for a flywheel, this is not a concern, and so the gain is omitted here.

Footnotes

30.2.8 Tuning a Turret Position Controller

In this section, we will tune a simple position controller for a turret. The tuning principles
explained here will also work for almost any position-control scenarios under no external
loading.

Turret Model Description

A turret rotates some mechanism side-to-side to position it for scoring gamepieces.
Our “turret” consists of:

• A rotating inertial mass (the turret)
• A motor and gearbox driving the mass

For the purposes of this tutorial, this plant is modeled with the same equation used by
WPILib’s SimpleMotorFeedforward, with additional adjustment for sensor delay and gear-
box inefficiency. The simulation assumes the plant is controlled by feedforward and feedback
controllers, composed in this fashion:

1146 Chapter 30. Advanced Controls

FIRST Robotics Competition

Where:
• The plant’s output y(t) is the turret’s position
• The controller’s setpoint r(t) is the desired position of the turret
• The controller’s control effort, u(t) is the voltage applied to the motor driving the turret

Picking the Control Strategy for a Turret Position Controller

In general: the more voltage that is applied to the motor, the faster the motor (and turret)
will spin. Once voltage is removed, friction and back-EMF slowly decrease the spinning until
the turret stops. We want to make the turret rotate to a given position.
The tutorials below will demonstrate the behavior of the system under pure feedforward,
pure feedback (PID), and combined feedforward-feedback control strategies. Follow the in-
structions to learn how to manually tune these controllers, and expand the “tuning solution”
to view an optimal model-based set of tuning parameters. Even though WPILib tooling can
provide you with optimal gains, it is worth going through the manual tuning process to see
how the different control strategies interact with the mechanism.
This simulation does not include any motion profile generation, so acceleration setpoints are
not very well-defined. Accordingly, the kA term of the feedforward equation is not used by the
controller. This means there will be some amount of delay/lag inherent to the feedforward-
only response.

30.2. Advanced Controls Introduction 1147

FIRST Robotics Competition

Pure Feedforward Control

Interact with the simulation below to examine how the turret system responds when con-
trolled only by a feedforward controller.

Note: To change the turret setpoint, click on the desired angle along the perimeter of the
turret. To command smooth motion, click and drag the setpoint indicator.

To tune the feedforward controller, perform the following:
1. Set Kv to zero.
2. Increase the velocity feedforward gain Kv until the turret tracks the setpoint during

smooth, slow motion. If the turret overshoots, reduce the gain.
Note that the turret may “lag” the commanded motion - this is normal, and is fine so long as
it moves the correct amount in total.

Note: Feedforward-only control is not a viable control scheme for turrets! Do not be sur-
prised if/when the simulation below does not behave well, even when the “correct” constants
are used.

The exact gain used by the plant is Kv = 0.2. Note that due to timing inaccuracy in browser
simulations, the Kv that works best in the simulation may be somewhat smaller than this.

Issues with Feed-Forward Control Alone

As mentioned above, our simulated mechanism perfectly obeys the WPILib SimpleMotorFeed-
forward equation (as long as the “system noise” option is disabled). We might then expect,
like in the case of the flywheel velocity controller, that we should be able to achieve perfect
convergence-to-setpoint with a feedforward loop alone.
However, our feedforward equation relates velocity and acceleration to voltage - it allows
us to control the instantaneous motion of our mechanism with high accuracy, but it does not
allow us direct control over the position. This is a problem even in our simulation (in which the
feedforward equation is the actual equation of motion), because unless we employ a motion
profile to generate a sequence of velocity setpoints we can ask the turret to jump immediately
from one position to another. This is impossible, even for our simulated turret.
The resulting behavior from the feedforward controller is to output a single “voltage spike”
when the position setpoint changes (corresponding to a single loop iteration of very high
velocity), and then zero voltage (because it is assumed that the system has already reached
the setpoint). In practice, we can see in the simulation that this results in an initial “impulse”
movement towards the target position, that stops at some indeterminate position in-between.
This kind of response is called a “kick,” and is generally seen as undesirable.
You may notice that smooth motion below the turret’s maximum achievable speed can be
followed accurately in the simulation with feedforward alone. This is misleading, however,
because no real mechanism perfectly obeys its feedforward equation. With the “system noise”
option enabled, we can see that even smooth, slow motion eventually results in compounding
position errors when only feedforward control is used. To accurately converge to the setpoint,
we need to use a feedback (PID) controller.

1148 Chapter 30. Advanced Controls

FIRST Robotics Competition

Pure Feedback Control

Interact with the simulation below to examine how the turret system responds when con-
trolled only by a feedback (PID) controller.
Perform the following:

1. Set Kp, Ki, Kd, and Kv to zero.
2. Increase Kp until the mechanism responds to a sudden change in setpoint by moving

sharply to the new position. If the controller oscillates too much around the setpoint,
reduce K_p until it stops.

3. Increase Kd to reduce the amount of “lag” when the controller tries to track a smoothly
moving setpoint (reminder: click and drag the turret’s directional indicator to move it
smoothly). If the controller starts to oscillate, reduce K_d until it stops.

Gains of Kp = 0.3 and Kd = 0.05 yield rapid and stable convergence to the setpoint. Other,
similar gains will work nearly as well.

Issues with Feedback Control Alone

Note that even with system noise enabled, the feedback controller is able to drive the turret
to the setpoint in a stable manner over time. However, it may not be possible to smoothly
track a moving setpoint without lag using feedback alone, as the feedback controller can only
respond to errors once they have built up. To get the best of both worlds, we need to combine
our feedback controller with a feedforward controller.

Combined Feedforward and Feedback Control

Interact with the simulation below to examine how the turret system responds under simul-
taneous feedforward and feedback control.
Tuning the combined turret controller is simple - we first tune the feedforward controller
following the same procedure as in the feedforward-only section, and then we tune the PID
controller following the same procedure as in the feedback-only section. Notice that PID
portion of the controller is much easier to tune “on top of” an accurate feedforward.
The optimal gains for the combined controller are just the optimal gains for the individual
controllers: gains of Kv = 0.15, Kp = 0.3, and Kd = 0.05 yield rapid and stable convergence to
the setpoint and relatively accurate tracking of smooth motion. Other, similar gains will work
nearly as well.
Once tuned properly, the combined controller should accurately track a smoothly moving
setpoint, and also accurately converge to the setpoint over time after a “jump” command.

30.2. Advanced Controls Introduction 1149

FIRST Robotics Competition

Tuning Conclusions

Choice of Control Strategies

Like in the case of the vertical arm, and unlike the case of the flywheel, we are trying to
control the position rather than the velocity of our mechanism.
In the case of the flywheel velocity controller we could achieve good control performance with
feedforward alone. However, it is very hard to predict how much voltage will cause a certain
total change in position (time can turn even small errors in velocity into very big errors in
position). In this case, we cannot rely on feedforward control alone - as with the vertical arm,
we will need a feedback controller.
Unlike in the case of the vertical arm, though, there is no voltage required to keep the mech-
anism at the setpoint once it’s there. As a consequence, it is often possible to effectively
control a turret without any feedforward controller at all, relying only on the output of the
feedback controller (if the mechanism has a lot of friction, this may not work well and both a
feedforward and feedback controller may be needed). Simple position control in the absence
of external forces is one of the only cases in which pure feedback control works well.
Controlling a mechanism with only feedback can produce reasonable results in cases where
no control effort is required to keep the output at the setpoint. On a turret, this can work
acceptably - however, it may still run into problems when trying to follow a moving setpoint, as
it relies entirely on the controller transients to control the mechanism’s intermediate motion
between position setpoints.
We saw in the feedforward-only example above that an accurate feedforward can track slow,
smooth velocity setpoints quite well. Combining a feedforward controller with the feedback
controller gives the smooth velocity-following of a feedforward controller with the stable long-
term error elimination of a feedback controller.

Reasons for Non-Ideal Performance

This simulation does not include any motion profile generation, so acceleration setpoints are
not very well-defined. Accordingly, the kA term of the feedforward equation is not used by the
controller. This means there will be some amount of delay/lag inherent to the feedforward-
only response.

A Note on Feedforward and Static Friction

For the sake of simplicity, the simulations above omit the Ks term from the WPILib SimpleMo-
torFeedforward equation. On actual mechanisms, however, this can be important - especially
if there’s a lot of friction in the mechanism gearing. A turret with a lot of static friction will
be very hard to control accurately with feedback alone - it will get “stuck” near (but not at)
the setpoint when the loop output falls below Ks.
To measure Ks manually, slowly increase the voltage to the mechanism until it starts to move.
The value of Ks is the largest voltage applied before the mechanism begins to move.
It can be mildly difficult to apply the measured Ks to a position controller without motion
profiling, as the WPILib SimpleMotorFeedforward class uses the velocity setpoint to deter-
mine the direction in which the Ks term should point. To overcome this, either use a motion
profile, or else add Ks manually to the output of the controller depending on which direction
the mechanism needs to move to get to the setpoint.

1150 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.2.9 Tuning a Vertical Arm Position Controller

In this section, we will tune a simple position controller for a vertical arm. The same tuning
principles explained below will work also for almost all position-control scenarios under the
load of gravity.

Arm Model Description

Vertical arms are commonly used to lift gamepieces from the ground up to a scoring position.
Other similar examples include shooter hoods and elevators.
Our “vertical arm” consists of:

• A mass on a stick, under the force of gravity, pivoting around an axle.
• A motor and gearbox driving the axle to which the mass-on-a-stick is attached

For the purposes of this tutorial, this plant is modeled with the same equation used by
WPILib’s ArmFeedforward, with additional adjustment for sensor delay and gearbox ineffi-
ciency. The simulation assumes the plant is controlled by feedforward and feedback con-
trollers, composed in this fashion:

Where:
• The plant’s output y(t) is the arm’s rotational position
• The controller’s setpoint r(t) is the desired angle of the arm
• The controller’s control effort, u(t) is the voltage applied to the motor driving the arm

30.2. Advanced Controls Introduction 1151

FIRST Robotics Competition

Picking the Control Strategy for a Vertical Arm

Applying voltage to the motor causes a force on the mechanism that drives the arm up or
down. If there is no voltage, gravity still acts on the arm to pull it downward. Generally, it is
desirable to fight this effect, and keep the arm at a specific angle.
The tutorials below will demonstrate the behavior of the system under pure feedforward,
pure feedback (PID), and combined feedforward-feedback control strategies. Follow the in-
structions to learn how to manually tune these controllers, and expand the “tuning solution”
to view an optimal model-based set of tuning parameters. Even though WPILib tooling can
provide you with optimal gains, it is worth going through the manual tuning process to see
how the different control strategies interact with the mechanism.

Pure Feedforward Control

Interact with the simulation below to examine how the turret system responds when con-
trolled only by a feedforward controller.

Note: To change the arm setpoint, click on the desired angle along the perimeter of the
turret. To command smooth motion, click and drag the setpoint indicator.

To tune the feedforward controller, perform the following:
1. Set Kg and Kv to zero.
2. Increase Kg until the arm can hold its position with as little movement as possible. If the

arm moves in the opposite direction, decrease Kg until it remains stationary. You will
have to zero in on Kg fairly precisely (at least four decimal places).

3. Increase the velocity feedforward gain Kv until the arm tracks the setpoint during
smooth, slow motion. If the arm overshoots, reduce the gain. Note that the arm may
“lag” the commanded motion - this is normal, and is fine so long as it moves the correct
amount in total.

Note: Feedforward-only control is not a viable control scheme for vertical arms! Do not
be surprised if/when the simulation below does not behave well, even when the “correct”
constants are used.

The exact gains used by the simulation are Kg = 1.75 and Kv = 1.95.

Issues with Feed-Forward Control Alone

As mentioned above, our simulated mechanism almost-perfectly obeys the WPILib ArmFeed-
forward equation (as long as the “system noise” option is disabled). We might then expect,
like in the case of the flywheel velocity controller, that we should be able to achieve perfect
convergence-to-setpoint with a feedforward loop alone.
However, our feedforward equation relates velocity and acceleration to voltage - it allows
us to control the instantaneous motion of our mechanism with high accuracy, but it does not
allow us direct control over the position. This is a problem even in our simulation (in which the
feedforward equation is the actual equation of motion), because unless we employ a motion

1152 Chapter 30. Advanced Controls

FIRST Robotics Competition

profile to generate a sequence of velocity setpoints we can ask the arm to jump immediately
from one position to another. This is impossible, even for our simulated arm.
The resulting behavior from the feedforward controller is to output a single “voltage spike”
when the position setpoint changes (corresponding to a single loop iteration of very high
velocity), and then zero voltage (because it is assumed that the system has already reached
the setpoint). In practice, we can see in the simulation that this results in an initial “impulse”
movement towards the target position, that stops at some indeterminate position in-between.
This kind of response is called a “kick,” and is generally seen as undesirable.
You will notice that, once properly tuned, the mechanism can track slow/smooth movement
with a surprising amount of accuracy - however, there are some obvious problems with this
approach. Our feedforward equation corrects for the force of gravity at the setpoint - this
results in poor behavior if our arm is far from the setpoint. With the “system noise” option
enabled, we can also see that even smooth, slow motion eventually results in compounding
position errors when only feedforward control is used. To accurately converge to and remain
at the setpoint, we need to use a feedback (PID) controller.

Pure Feedback Control

Interact with the simulation below to examine how the vertical arm system responds when
controlled only by a feedback (PID) controller.
Perform the following:

1. Set Kp, Ki, Kd, and Kg to zero.
2. Increase Kp until the mechanism responds to a sudden change in setpoint by moving

sharply to the new position. If the controller oscillates too much around the setpoint,
reduce K_p until it stops.

3. Increase Ki when the output gets “stuck” before converging to the setpoint.
4. Increase Kd to help the system track smoothly-moving setpoints and further reduce os-

cillation.

Note: Feedback-only control is not a viable control scheme for vertical arms! Do not be sur-
prised if/when the simulation below does not behave well, even when the “correct” constants
are used.

There is no good tuning solution for this control strategy. Values of Kp = 5 and Kd = 1 yield
a reasonable approach to a stable equilibrium, but that equilibrium is not actually at the
setpoint!

Issues with Feedback Control Alone

A set of gains that works well for one setpoint will act poorly for a different setpoint.
Adding some integral gain can push us to the setpoint over time, but it’s unstable and laggy.
Because a non-zero amount of control effort is required to keep the arm at a constant height,
even when the output and setpoint are equal, this feedback-only strategy is flawed. In order
to optimally control a vertical arm, a combined feedforward-feedback strategy is needed.

30.2. Advanced Controls Introduction 1153

FIRST Robotics Competition

Combined Feedforward and Feedback Control

Interact with the simulation below to examine how the vertical arm system responds under
simultaneous feedforward and feedback control.
Tuning the combined arm controller is simple - we first tune the feedforward controller fol-
lowing the same procedure as in the feedforward-only section, and then we tune the PID
controller following the same procedure as in the feedback-only section. Notice that PID
portion of the controller is much easier to tune “on top of” an accurate feedforward.
Combining the feedforward coefficients from our first simulation (Kg = 1.75 and Kv = 1.95)
and the feedback coefficients from our second simulation (Kp = 5 and Kd = 1) yields a good
controller behavior.
Once tuned properly, the combined controller accurately tracks a smoothly moving setpoint,
and also accurately converge to the setpoint over time after a “jump” command.

Tuning Conclusions

Choice of Control Strategies

Like in the case of the turret, and unlike the case of the flywheel, we are trying to control the
position rather than the velocity of our mechanism.
In the case of the flywheel velocity controller we could achieve good control performance with
feedforward alone. However, it is very hard to predict how much voltage will cause a certain
total change in position (time can turn even small errors in velocity into very big errors in
position). In this case, we cannot rely on feedforward control alone - as with the vertical arm,
we will need a feedback controller.
Unlike in the case of the turret, though, there is a voltage required to keep the mechanism
steady at the setpoint (because the arm is affected by the force of gravity). As a conse-
quence, a pure feedback controller will not work acceptably for this system, and a combined
feedforward-feedback strategy is needed.
The core reason the feedback-only control strategy fails for the vertical arm is gravity. The
external force of gravity requires a constant control effort to counteract even when at rest at
the setpoint, but a feedback controller does not typically output any control effort when at
rest at the setpoint (unless integral gain is used, which we can see clearly in the simulation
is laggy and introduces oscillations).
We saw in the feedforward-only example above that an accurate feedforward can track slow,
smooth velocity setpoints quite well. Combining a feedforward controller with the feedback
controller gives the smooth velocity-following of a feedforward controller with the stable long-
term error elimination of a feedback controller.

1154 Chapter 30. Advanced Controls

FIRST Robotics Competition

Reasons for Non-Ideal Performance

This simulation does not include any motion profile generation, so acceleration setpoints are
not very well-defined. Accordingly, the kA term of the feedforward equation is not used by the
controller. This means there will be some amount of delay/lag inherent to the feedforward-
only response.
The control law is good, but not perfect. There is usually some overshoot even for smoothly-
moving setpoints - this is combination of the lack of Ka in the feedforward (see the note above
for why it is omitted here), and some discretization error in the simulation. Attempting to
move the setpoint too quickly can also cause the setpoint and mechanism to diverge, which
(as mentioned earlier) will result in poor behavior due to the :math:’K_g’ term correcting
for the wrong force, as it is calculated from the setpoint, not the measurement. Using the
measurement to correct for gravity is called “feedback linearization” (as opposed to “feed-
forward linearization” when the setpoint is used), and can be a better control strategy if your
measurements are sufficiently fast and accurate.

A Note on Feedforward and Static Friction

For the sake of simplicity, the simulations above omit the Ks term from the WPILib SimpleMo-
torFeedforward equation. On actual mechanisms, however, this can be important - especially
if there’s a lot of friction in the mechanism gearing.
In the case of a vertical arm or elevator, Ks can be somewhat tedious to estimate separately
from Kg. If your arm or elevator has enough friction for Ks to be important, it is recommended
that you use the WPILib system identification tool to determine your system gains.

30.2.10 Common Control Loop Tuning Issues

There are a number of common issues which can arise while tuning feedforward and feedback
controllers.

Integral Term Windup

Beware that if Ki is too large, integral windup can occur. Following a large change in setpoint,
the integral term can accumulate an error larger than the maximal control effort. As a result,
the system overshoots and continues to increase until this accumulated error is unwound.
There are a few ways to mitigate this:

1. Decrease the value of Ki, down to zero if possible.
2. Add logic to reset the integrator term to zero if the output is too far from the setpoint.

Some smart motor controllers implement this with a setIZone() method.
3. Cap the integrator at some maximum value. WPILib’s PIDController implements this

with the setIntegratorRange() method.

Important: Most mechanisms in FRC do not require any integral control, and systems that
seem to require integral control to respond well probably have an inaccurate feedforward
model.

30.2. Advanced Controls Introduction 1155

FIRST Robotics Competition

Voltage Sag

When we operate mechanisms on our robot, we draw current from its battery. This causes
the available “bus voltage” that all the robot mechanisms operate off of to drop. This means
that the performance of our mechanisms will vary depending on the loading and action of the
robot - this is not ideal.
To fix this, most voltage controllers offer a “voltage compensation” setting for their internal
control loops that keep the output voltage of the control loops constant despite changes in
the bus voltage. The WPILib MotorController class offers a setVoltage method can do the
same thing if the control loops are being run on the RIO (provided you call it every robot loop
iteration).
Keep in mind that voltage compensation cannot increase the voltage applied to the motor
beyond what is available on the bus - if your actuator is saturating (described below), you’ll
have to account for that separately.

Actuator Saturation

A controller calculates its output based on the error between the setpoint and the current
state. Plant in the real world don’t have unlimited control authority available for the controller
to apply - that is to say, real mechanisms have some maximum achievable torque/acceleration
and velocity.
If our control gains are too aggressive, our control algorithm might try to move the mechanism
faster than it is capable of actually going. In this case, the mechanism will “saturate”, and
behave as if the control gains were smaller than they are. This might adversely affect control
response (i.e., result in errors and instability).
If you are encountering problems with actuator saturation, consider modifying your mecha-
nism gearing or powering it with a bigger motor.

30.3 Filters

Note: The data used to generate the various demonstration plots in this section can be found
here.

This section describes a number of filters included with WPILib that are useful for noise
reduction and/or input smoothing.

30.3.1 Introduction to Filters

Filters are some of the most common tools used in modern technology, and find numerous
applications in robotics in both signal processing and controls. Understanding the notion of a
filter is crucial to understanding the utility of the various types of filters provided by WPILib.

1156 Chapter 30. Advanced Controls

FIRST Robotics Competition

What Is a Filter?

Note: For the sake of this article, we will assume all data are single-dimensional time-
series data. Obviously, the concepts involved are more general than this - but a full/rigorous
discussion of signals and filtering is out of the scope of this documentation.

So, what exactly is a filter, then? Simply put, a filter is a mapping from a stream of inputs to a
stream of outputs. That is to say, the value output by a filter (in principle) can depend not only
on the current value of the input, but on the entire set of past and future values (of course,
in practice, the filters provided by WPILib are implementable in real-time on streaming data;
accordingly, they can only depend on the past values of the input, and not on future values).
This is an important concept, because generally we use filters to remove/mitigate unwanted
dynamics from a signal. When we filter a signal, we’re interested in modifying how the signal
changes over time.

Effects of Using a Filter

Noise Reduction

One of the most typical uses of a filter is for noise reduction. A filter that reduces noise is
called a low-pass filter (because it allows low frequencies to “pass through,” while blocking
high-frequencies). Most of the filters currently included in WPILib are effectively low-pass
filters.

Rate Limiting

Filters are also commonly used to reduce the rate at which a signal can change. This is closely
related to noise reduction, and filters that reduce noise also tend to limit the rate of change
of their output.

Edge Detection

The counterpart to the low-pass filter is the high-pass filter, which only permits high fre-
quencies to pass through to the output. High-pass filters can be somewhat tricky to build
intuition for, but a common usage for a high-pass filter is edge-detection - since high-pass
filters will reflect sudden changes in the input while ignoring slower changes, they are useful
for determining the location of sharp discontinuities in the signal.

30.3. Filters 1157

FIRST Robotics Competition

Phase Lag

An unavoidable negative effect of a real-time low-pass filter is the introduction of “phase lag.”
Since, as mentioned earlier, a real-time filter can only depend on past values of the signal (we
cannot time-travel to obtain the future values), the filtered value takes some time to “catch up”
when the input starts changing. The greater the noise-reduction, the greater the introduced
delay. This is, in many ways, the fundamental trade-off of real-time filtering, and should be
the primary driving factor of your filter design.
Interestingly, high-pass filters introduce a phase lead, as opposed to a phase lag, as they
exacerbate local changes to the value of the input.

30.3.2 Linear Filters

The first (and most commonly-employed) sort of filter that WPILib supports is a linear filter -
or, more specifically, a linear time-invariant (LTI) filter.
An LTI filter is, put simply, a weighted moving average - the value of the output stream at
any given time is a localized, weighted average of the inputs near that time. The difference
between different types of LTI filters is thus reducible to the difference in the choice of the
weighting function (also known as a “window function” or an “impulse response”) used. The
mathematical term for this operation is convolution.
There are two broad “sorts” of impulse responses: infinite impulse responses (IIR), and finite
impulse responses (FIR).
Infinite impulse responses have infinite “support” - that is, they are nonzero over an infinitely-
large region. This means, broadly, that they also have infinite “memory” - once a value ap-
pears in the input stream, it will influence all subsequent outputs, forever. This is typically
undesirable from a strict signal-processing perspective, however filters with infinite impulse
responses tend to be very easy to compute as they can be expressed by simple recursion
relations.
Finite impulse responses have finite “support” - that is, they are nonzero on a bounded region.
The “archetypical” FIR filter is a flat moving average - that is, simply setting the output equal
to the average of the past n inputs. FIR filters tend to have more-desirable properties than
IIR filters, but are more costly to compute.
Linear filters are supported in WPILib through the LinearFilter class (Java, C++).

Creating a LinearFilter

Note: The C++ LinearFilter class is templated on the data type used for the input.

Note: Because filters have “memory”, each input stream requires its own filter object. Do
not attempt to use the same filter object for multiple input streams.

While it is possible to directly instantiate LinearFilter class to build a custom filter, it is far
more convenient (and common) to use one of the supplied factory methods, instead:

1158 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/filter/LinearFilter.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_linear_filter.html

FIRST Robotics Competition

singlePoleIIR

The singlePoleIIR() factory method creates a single-pole infinite impulse response filter
which performs exponential smoothing. This is the “go-to,” “first-try” low-pass filter in most
applications; it is computationally trivial and works in most cases.
Java

// Creates a new Single-Pole IIR filter
// Time constant is 0.1 seconds
// Period is 0.02 seconds - this is the standard FRC main loop period
LinearFilter filter = LinearFilter.singlePoleIIR(0.1, 0.02);

C++

// Creates a new Single-Pole IIR filter
// Time constant is 0.1 seconds
// Period is 0.02 seconds - this is the standard FRC main loop period
frc::LinearFilter<double> filter = frc::LinearFilter<double>::SinglePoleIIR(0.1_s, 0.
↪→02_s);

The “time constant” parameter determines the “characteristic timescale” of the filter’s im-
pulse response; the filter will cancel out any signal dynamics that occur on timescales sig-

30.3. Filters 1159

FIRST Robotics Competition

nificantly shorter than this. Relatedly, it is also the approximate timescale of the introduced
phase lag. The reciprocal of this timescale, multiplied by 2 pi, is the “cutoff frequency” of the
filter.
The “period” parameter is the period at which the filter’s calculate() method will be called.
For the vast majority of implementations, this will be the standard main robot loop period of
0.02 seconds.

movingAverage

The movingAverage factory method creates a simple flat moving average filter. This is the
simplest possible low-pass FIR filter, and is useful in many of the same contexts as the single-
pole IIR filter. It is somewhat more costly to compute, but generally behaves in a somewhat
nicer manner.
Java

// Creates a new flat moving average filter
// Average will be taken over the last 5 samples
LinearFilter filter = LinearFilter.movingAverage(5);

C++

1160 Chapter 30. Advanced Controls

FIRST Robotics Competition

// Creates a new flat moving average filter
// Average will be taken over the last 5 samples
frc::LinearFilter<double> filter = frc::LinearFilter<double>::MovingAverage(5);

The “taps” parameter is the number of samples that will be included in the flat moving aver-
age. This behaves similarly to the “time constant” above - the effective time constant is the
number of taps times the period at which calculate() is called.

highPass

The highPass factory method creates a simple first-order infinite impulse response high-pass
filter. This is the “counterpart” to the singlePoleIIR.
Java

// Creates a new high-pass IIR filter
// Time constant is 0.1 seconds
// Period is 0.02 seconds - this is the standard FRC main loop period
LinearFilter filter = LinearFilter.highPass(0.1, 0.02);

C++

30.3. Filters 1161

FIRST Robotics Competition

// Creates a new high-pass IIR filter
// Time constant is 0.1 seconds
// Period is 0.02 seconds - this is the standard FRC main loop period
frc::LinearFilter<double> filter = frc::LinearFilter<double>::HighPass(0.1_s, 0.02_s);

The “time constant” parameter determines the “characteristic timescale” of the filter’s im-
pulse response; the filter will cancel out any signal dynamics that occur on timescales sig-
nificantly longer than this. Relatedly, it is also the approximate timescale of the introduced
phase lead. The reciprocal of this timescale, multiplied by 2 pi, is the “cutoff frequency” of
the filter.
The “period” parameter is the period at which the filter’s calculate() method will be called.
For the vast majority of implementations, this will be the standard main robot loop period of
0.02 seconds.

Using a LinearFilter

Note: In order for the created filter to obey the specified timescale parameter, its calcu-
late() function must be called regularly at the specified period. If, for some reason, a sig-
nificant lapse in calculate() calls must occur, the filter’s reset() method should be called
before further use.

Once your filter has been created, using it is easy - simply call the calculate() method with
the most recent input to obtain the filtered output:
Java

// Calculates the next value of the output
filter.calculate(input);

C++

// Calculates the next value of the output
filter.Calculate(input);

1162 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.3.3 Median Filter

A statistically robust alternative to the moving-average filter is the median filter. Where a
moving average filter takes the arithmetic mean of the input over a moving sample window,
a median filter (per the name) takes a median instead.
The median filter is most-useful for removing occasional outliers from an input stream. This
makes it particularly well-suited to filtering inputs from distance sensors, which are prone to
occasional interference. Unlike a moving average, the median filter will remain completely
unaffected by small numbers of outliers, no matter how extreme.
The median filter is supported in WPILib through the MedianFilter class (Java, C++).

30.3. Filters 1163

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/filter/MedianFilter.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_median_filter.html

FIRST Robotics Competition

Creating a MedianFilter

Note: The C++ MedianFilter class is templated on the data type used for the input.

Note: Because filters have “memory”, each input stream requires its own filter object. Do
not attempt to use the same filter object for multiple input streams.

Creating a MedianFilter is simple:
Java

// Creates a MedianFilter with a window size of 5 samples
MedianFilter filter = new MedianFilter(5);

C++

// Creates a MedianFilter with a window size of 5 samples
frc::MedianFilter<double> filter(5);

Using a MedianFilter

Once your filter has been created, using it is easy - simply call the calculate() method with
the most recent input to obtain the filtered output:
Java

// Calculates the next value of the output
filter.calculate(input);

C++

// Calculates the next value of the output
filter.Calculate(input);

30.3.4 Slew Rate Limiter

A common use for filters in FRC® is to soften the behavior of control inputs (for example, the
joystick inputs from your driver controls). Unfortunately, a simple low-pass filter is poorly-
suited for this job; while a low-pass filter will soften the response of an input stream to sudden
changes, it will also wash out fine control detail and introduce phase lag. A better solution
is to limit the rate-of-change of the control input directly. This is performed with a slew rate
limiter - a filter that caps the maximum rate-of-change of the signal.
A slew rate limiter can be thought of as a sort of primitive motion profile. In fact, the slew rate
limiter is the first-order equivalent of the Trapezoidal Motion Profile supported by WPILib - it
is precisely the limiting case of trapezoidal motion when the acceleration constraint is allowed
to tend to infinity. Accordingly, the slew rate limiter is a good choice for applying a de-facto
motion profile to a stream of velocity setpoints (or voltages, which are usually approximately
proportional to velocity). For input streams that control positions, it is usually better to use
a proper trapezoidal profile.

1164 Chapter 30. Advanced Controls

FIRST Robotics Competition

Slew rate limiting is supported in WPILib through the SlewRateLimiter class (Java, C++).

Creating a SlewRateLimiter

Note: The C++ SlewRateLimiter class is templated on the unit type of the input. For more
information on C++ units, see The C++ Units Library.

Note: Because filters have “memory”, each input stream requires its own filter object. Do
not attempt to use the same filter object for multiple input streams.

Creating a SlewRateLimiter is simple:
Java

// Creates a SlewRateLimiter that limits the rate of change of the signal to 0.5␣
↪→units per second
SlewRateLimiter filter = new SlewRateLimiter(0.5);

C++

// Creates a SlewRateLimiter that limits the rate of change of the signal to 0.5␣
↪→volts per second
frc::SlewRateLimiter<units::volts> filter{0.5_V / 1_s};

Using a SlewRateLimiter

Once your filter has been created, using it is easy - simply call the calculate() method with
the most recent input to obtain the filtered output:
Java

// Calculates the next value of the output
filter.calculate(input);

C++

// Calculates the next value of the output
filter.Calculate(input);

Using a SlewRateLimiter with DifferentialDrive

Note: The C++ example below templates the filter on units::scalar for use with doubles,
since joystick values are typically dimensionless.

A typical use of a SlewRateLimiter is to limit the acceleration of a robot’s drive. This can be
especially handy for robots that are very top-heavy, or that have very powerful drives. To do
this, apply a SlewRateLimiter to a value passed into your robot drive function:
Java

30.3. Filters 1165

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/filter/SlewRateLimiter.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_slew_rate_limiter.html

FIRST Robotics Competition

// Ordinary call with no ramping applied
drivetrain.arcadeDrive(forward, turn);

// Slew-rate limits the forward/backward input, limiting forward/backward acceleration
drivetrain.arcadeDrive(filter.calculate(forward), turn);

C++

// Ordinary call with no ramping applied
drivetrain.ArcadeDrive(forward, turn);

// Slew-rate limits the forward/backward input, limiting forward/backward acceleration
drivetrain.ArcadeDrive(filter.Calculate(forward), turn);

30.3.5 Debouncer

A debouncer is a filter used to eliminate unwanted quick on/off cycles (termed “bounces,”
originally from the physical vibrations of a switch as it is thrown). These cycles are usually
due to a sensor error like noise or reflections and not the actual event the sensor is trying to
record.
Debouncing is implemented in WPILib by the Debouncer class (Java, C++), which filters a
boolean stream so that the output only changes if the input sustains a change for some nominal
time period.

Modes

The WPILib Debouncer can be configured in three different modes:
• Rising (default): Debounces rising edges (transitions from false to true) only.
• Falling: Debounces falling edges (transitions from true to false) only.
• Both: Debounces all transitions.

Usage

Java

// Initializes a DigitalInput on DIO 0
DigitalInput input = new DigitalInput(0);

// Creates a Debouncer in "both" mode.
Debouncer m_debouncer = new Debouncer(0.1, Debouncer.DebounceType.kBoth);

// So if currently false the signal must go true for at least .1 seconds before being␣
↪→read as a True signal.
if (m_debouncer.calculate(input.get())) {

// Do something now that the DI is True.
}

C++

1166 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/filter/Debouncer.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_debouncer.html

FIRST Robotics Competition

// Initializes a DigitalInput on DIO 0
frc::DigitalInput input{0};

// Creates a Debouncer in "both" mode.
frc::Debouncer m_debouncer{100_ms, frc::Debouncer::DebounceType::kBoth};

// So if currently false the signal must go true for at least .1 seconds before being␣
↪→read as a True signal.
if (m_debouncer.calculate(input.Get())) {

// Do something now that the DI is True.
}

30.4 Geometry Classes

This section covers the geometry classes of WPILib.

30.4.1 Coordinate Systems

In FRC®, there are two main coordinate systems that we use for representing objects’ posi-
tions.

Field Coordinate System

The field coordinate system (or global coordinate system) is an absolute coordinate system
where a point on the field is designated as the origin. Positive θ (theta) is in the counter-
clockwise direction, and the positive x-axis points away from your alliance’s driver station
wall, and the positive y-axis is perpendicular and to the left of the positive x-axis.

+θ

x

y

Viewer does not support full SVG 1.1

Note: The axes are shown at the middle of the field for visibility. The origins of the coordinate
system for each alliance are shown below.

Below is an example of a field coordinate system overlaid on the 2020 FRC field. The red axes
shown are for the red alliance, and the blue axes shown are for the blue alliance.

30.4. Geometry Classes 1167

FIRST Robotics Competition

Robot Coordinate System

The robot coordinate system (or local coordinate system) is a relative coordinate system
where the robot is the origin. The direction the robot is facing is the positive x axis, and
the positive y axis is perpendicular, to the left of the robot. Positive θ is counter-clockwise.

Note: WPILib’s Gyro class is clockwise-positive, so you have to invert the reading in order
to get the rotation with either coordinate system.

+θ

x y

Viewer does not support full SVG 1.1

1168 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.4.2 Translation, Rotation, and Pose

Translation

Translation in 2 dimensions is represented by WPILib’s Translation2d class (Java, C++).
This class has an x and y component, representing the point (x, y) or the vector

[
x
y

]
on a

2-dimensional coordinate system.
You can get the distance to another Translation2d object by using the getDis-
tance(Translation2d other), which returns the distance to another Translation2d by using
the Pythagorean theorem.

Note: Translation2d uses the C++ Units library. If you’re planning on using other WPILib
classes that use Translation2d in Java, such as the trajectory generator, make sure to use
meters.

Rotation

Rotation in 2 dimensions is represented by WPILib’s Rotation2d class (Java, C++). This
class has an angle component, which represents the robot’s rotation relative to an axis on a
2-dimensional coordinate system. Positive rotations are counterclockwise.

Note: Rotation2d uses the C++ Units library. The constructor in Java accepts either the an-
gle in radians, or the sine and cosine of the angle, but the fromDegrees method will construct
a Rotation2d object from degrees.

Note: Rotation2d does not wrap the value of the angle, so if a value of 400 degrees is passed
into the constructor, then 400 degrees will be returned in subsequent value calls.

Pose

Pose is a combination of both translation and rotation and is represented by the Pose2d class
(Java, C++). It can be used to describe the pose of your robot in the field coordinate system,
or the pose of objects, such as vision targets, relative to your robot in the robot coordinate

system. Pose2d can also represent the vector

xy
θ

.

30.4. Geometry Classes 1169

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/geometry/Translation2d.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_translation2d.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/geometry/Rotation2d.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_rotation2d.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/geometry/Pose2d.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_pose2d.html

FIRST Robotics Competition

30.4.3 Transformations

Translation2d

Operations on a Translation2d perform operations to the vector represented by the Trans-
lation2d.

• Addition: Addition between two Translation2d a and b can be performed using plus in
Java, or the + operator in C++. Addition adds the two vectors.

• Subtraction: Subtraction between two Translation2d can be performed using minus in
Java, or the binary - operator in C++. Subtraction subtracts the two vectors.

• Multiplication: Multiplication of a Translation2d and a scalar can be performed using
times in Java, or the * operator in C++. This multiplies the vector by the scalar.

• Division: Division of a Translation2d and a scalar can be performed using div in Java,
or the / operator in C++. This divides the vector by the scalar.

• Rotation: Rotation of a Translation2d by a counter-clockwise rotation θ about the origin
can be performed by using rotateBy. This is equivalent to multiplying the vector by the
matrix

[
cosθ −sinθ
sinθ cosθ

]
• Additionally, you can rotate a Translation2d by 180 degrees by using unaryMinus in

Java, or the unary - operator in C++.

Rotation2d

Transformations for Rotation2d are just arithmetic operations on the angle measure repre-
sented by the Rotation2d.

• plus (Java) or + (C++): Adds the rotation component of other to this Rotation2d’s
rotation component

• minus (Java) or binary - (C++): Subtracts the rotation component of other to this Ro-
tation2d’s rotation component

• unaryMinus (Java) or unary - (C++): Multiplies the rotation component by a scalar of
-1.

• times (Java) or * (C++) : Multiplies the rotation component by a scalar.

Transform2d and Twist2d

WPILib provides 2 classes, Transform2d (Java, C++), which represents a transformation to
a pose, and Twist2d (Java, C++) which represents a movement along an arc. Transform2d
and Twist2d all have x, y and θ components.
Transform2d represents a relative transformation. It has an translation and a rotation com-
ponent. Transforming a Pose2d by a Transform2d rotates the translation component of the
transform by the rotation of the pose, and then adds the rotated translation component and
the rotation component to the pose. In other words, Pose2d.plus(Transform2d) returnsxp

yp
θp

+

cosθp −sinθp 0
sinθp cosθp 0
0 0 1

xt

yt
θt

1170 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/geometry/Transform2d.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_transform2d.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/geometry/Twist2d.html
https://github.wpilib.org/allwpilib/docs/release/cpp/structfrc_1_1_twist2d.html

FIRST Robotics Competition

Twist2d represents a change in distance along an arc. Usually, this class is used to represent
the movement of a drivetrain, where the x component is the forward distance driven, the y
component is the distance driven to the side (left positive), and the θ component is the change
in heading. The underlying math behind finding the pose exponential (new pose after moving
the pose forward along the curvature of the twist) can be found here in chapter 10.

Note: For nonholonomic drivetrains, the y component of a Twist2d should always be 0.

Both classes can be used to estimate robot location. Twist2d is used in WPILib’s odometry
classes to update the robot’s pose based on movement, while Transform2d can be used to
estimate the robot’s global position from vision data.

30.5 Controllers

This section describes various WPILib feedback and feedforward controller classes that are
useful for controlling the motion of robot mechanisms, as well as motion-profiling classes that
can automatically generate setpoints for use with these controllers.

30.5.1 PID Control in WPILib

Note: This article focuses on in-code implementation of PID control in WPILib. For a con-
ceptual explanation of the working of a PIDController, see Introduction to PID

Note: For a guide on implementing PID control through the command-based framework,
see PID Control through PIDSubsystems and PIDCommands.

WPILib supports PID control of mechanisms through the PIDController class (Java, C++).
This class handles the feedback loop calculation for the user, as well as offering methods
for returning the error, setting tolerances, and checking if the control loop has reached its
setpoint within the specified tolerances.

Using the PIDController Class

Note: The PIDController class in the frc namespace is deprecated - C++ teams should
use the one in the frc2 namespace, instead. Likewise, Java teams should use the class in the
edu.wpi.first.math.controller package.

30.5. Controllers 1171

https://file.tavsys.net/control/controls-engineering-in-frc.pdf
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_p_i_d_controller.html

FIRST Robotics Competition

Constructing a PIDController

Note: While PIDController may be used asynchronously, it does not provide any thread
safety features - ensuring threadsafe operation is left entirely to the user, and thus asyn-
chronous usage is recommended only for advanced teams.

In order to use WPILib’s PID control functionality, users must first construct a PIDController
object with the desired gains:
Java

// Creates a PIDController with gains kP, kI, and kD
PIDController pid = new PIDController(kP, kI, kD);

C++

// Creates a PIDController with gains kP, kI, and kD
frc2::PIDController pid{kP, kI, kD};

An optional fourth parameter can be provided to the constructor, specifying the period at
which the controller will be run. The PIDController object is intended primarily for syn-
chronous use from the main robot loop, and so this value is defaulted to 20ms.

Using the Feedback Loop Output

Note: The PIDController assumes that the calculate() method is being called regularly at
an interval consistent with the configured period. Failure to do this will result in unintended
loop behavior.

Warning: Unlike the old PIDController, the new PIDController does not automatically
control an output from its own thread - users are required to call calculate() and use the
resulting output in their own code.

Using the constructed PIDController is simple: simply call the calculate() method from
the robot’s main loop (e.g. the robot’s autonomousPeriodic() method):
Java

// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.set(pid.calculate(encoder.getDistance(), setpoint));

C++

// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.Set(pid.Calculate(encoder.GetDistance(), setpoint));

1172 Chapter 30. Advanced Controls

FIRST Robotics Competition

Checking Errors

Note: getPositionError() and getVelocityError() are named assuming that the loop is
controlling a position - for a loop that is controlling a velocity, these return the velocity error
and the acceleration error, respectively.

The current error of the measured process variable is returned by the getPositionError()
function, while its derivative is returned by the getVelocityError() function:

Specifying and Checking Tolerances

Note: If only a position tolerance is specified, the velocity tolerance defaults to infinity.

Note: As above, “position” refers to the process variable measurement, and “velocity” to its
derivative - thus, for a velocity loop, these are actually velocity and acceleration, respectively.

Occasionally, it is useful to know if a controller has tracked the setpoint to within a given
tolerance - for example, to determine if a command should be ended, or (while following a
motion profile) if motion is being impeded and needs to be re-planned.
To do this, we first must specify the tolerances with the setTolerance() method; then, we
can check it with the atSetpoint() method.
Java

// Sets the error tolerance to 5, and the error derivative tolerance to 10 per second
pid.setTolerance(5, 10);

// Returns true if the error is less than 5 units, and the
// error derivative is less than 10 units
pid.atSetpoint();

C++

// Sets the error tolerance to 5, and the error derivative tolerance to 10 per second
pid.SetTolerance(5, 10);

// Returns true if the error is less than 5 units, and the
// error derivative is less than 10 units
pid.AtSetpoint();

30.5. Controllers 1173

FIRST Robotics Competition

Resetting the Controller

It is sometimes desirable to clear the internal state (most importantly, the integral accumula-
tor) of a PIDController, as it may be no longer valid (e.g. when the PIDController has been
disabled and then re-enabled). This can be accomplished by calling the reset() method.

Setting a Max Integrator Value

Note: Integrators introduce instability and hysteresis into feedback loop systems. It is
strongly recommended that teams avoid using integral gain unless absolutely no other solu-
tion will do - very often, problems that can be solved with an integrator can be better solved
through use of a more-accurate feedforward.

A typical problem encountered when using integral feedback is excessive “wind-up” causing
the system to wildly overshoot the setpoint. This can be alleviated in a number of ways - the
WPILib PIDController class enforces an integrator range limiter to help teams overcome
this issue.
By default, the total output contribution from the integral gain is limited to be between -1.0
and 1.0.
The range limits may be increased or decreased using the setIntegratorRange() method.
Java

// The integral gain term will never add or subtract more than 0.5 from
// the total loop output
pid.setIntegratorRange(-0.5, 0.5);

C++

// The integral gain term will never add or subtract more than 0.5 from
// the total loop output
pid.SetIntegratorRange(-0.5, 0.5);

Setting Continuous Input

Warning: If your mechanism is not capable of fully continuous rotational motion (e.g. a
turret without a slip ring, whose wires twist as it rotates), do not enable continuous input
unless you have implemented an additional safety feature to prevent the mechanism from
moving past its limit!

Warning: The continuous input function does not automatically wrap your input values -
be sure that your input values, when using this feature, are never outside of the specified
range!

Some process variables (such as the angle of a turret) are measured on a circular scale, rather
than a linear one - that is, each “end” of the process variable range corresponds to the same

1174 Chapter 30. Advanced Controls

FIRST Robotics Competition

point in reality (e.g. 360 degrees and 0 degrees). In such a configuration, there are two
possible values for any given error, corresponding to which way around the circle the error
is measured. It is usually best to use the smaller of these errors.
To configure a PIDController to automatically do this, use the enableContinuousInput()
method:
Java

// Enables continuous input on a range from -180 to 180
pid.enableContinuousInput(-180, 180);

C++

// Enables continuous input on a range from -180 to 180
pid.EnableContinuousInput(-180, 180);

Clamping Controller Output

Unlike the old PIDController, the new controller does not offer any output clamping features,
as the user is expected to use the loop output themselves. Output clamping can be easily
achieved by composing the controller with WPI’s clamp() function (or std::clamp in c++):
Java

// Clamps the controller output to between -0.5 and 0.5
MathUtil.clamp(pid.calculate(encoder.getDistance(), setpoint), -0.5, 0.5);

C++

// Clamps the controller output to between -0.5 and 0.5
std::clamp(pid.Calculate(encoder.GetDistance(), setpoint), -0.5, 0.5);

30.5.2 Feedforward Control in WPILib

Note: This article focuses on in-code implementation of feedforward control in WPILib. For
a conceptual explanation of the feedforward equations used by WPILib, see Introduction to
DC Motor Feedforward

You may have used feedback control (such as PID) for reference tracking (making a system’s
output follow a desired reference signal). While this is effective, it’s a reactionary measure;
the system won’t start applying control effort until the system is already behind. If we could
tell the controller about the desired movement and required input beforehand, the system
could react quicker and the feedback controller could do less work. A controller that feeds
information forward into the plant like this is called a feedforward controller.
A feedforward controller injects information about the system’s dynamics (like a mathematical
model does) or the intended movement. Feedforward handles parts of the control actions we
already know must be applied to make a system track a reference, then feedback compensates
for what we do not or cannot know about the system’s behavior at runtime.

30.5. Controllers 1175

FIRST Robotics Competition

The WPILib Feedforward Classes

WPILib provides a number of classes to help users implement accurate feedforward con-
trol for their mechanisms. In many ways, an accurate feedforward is more important than
feedback to effective control of a mechanism. Since most FRC® mechanisms closely obey
well-understood system equations, starting with an accurate feedforward is both easy and
hugely beneficial to accurate and robust mechanism control.
The WPILib feedforward classes closely match the available mechanism characterization tools
available in the SysId toolsuite. The system identification toolsuite can be used to quickly
and effectively determine the correct gains for each type of feedforward. If you are unable to
empirically characterize your mechanism (due to space and/or time constraints), reasonable
estimates of kG, kV, and kA can be obtained by fairly simple computation, and are also available
from ReCalc. kS is nearly impossible to model, and must be measured empirically.
WPILib currently provides the following three helper classes for feedforward control:

• SimpleMotorFeedforward (Java, C++)
• ArmFeedforward (Java, C++)
• ElevatorFeedforward (Java, C++)

SimpleMotorFeedforward

Note: In C++, the SimpleMotorFeedforward class is templated on the unit type used for
distance measurements, which may be angular or linear. The passed-in gains must have units
consistent with the distance units, or a compile-time error will be thrown. kS should have units
of volts, kV should have units of volts * seconds / distance, and kA should have units of
volts * seconds^2 / distance. For more information on C++ units, see The C++ Units
Library.

Note: The Java feedforward components will calculate outputs in units determined by the
units of the user-provided feedforward gains. Users must take care to keep units consistent,
as WPILibJ does not have a type-safe unit system.

The SimpleMotorFeedforward class calculates feedforwards for mechanisms that consist of
permanent-magnet DC motors with no external loading other than friction and inertia, such
as flywheels and robot drives.
To create a SimpleMotorFeedforward, simply construct it with the required gains:

Note: The kA gain can be omitted, and if it is, will default to a value of zero. For many
mechanisms, especially those with little inertia, it is not necessary.

Java

// Create a new SimpleMotorFeedforward with gains kS, kV, and kA
SimpleMotorFeedforward feedforward = new SimpleMotorFeedforward(kS, kV, kA);

C++

1176 Chapter 30. Advanced Controls

https://www.reca.lc/
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/SimpleMotorFeedforward.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_simple_motor_feedforward.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/ArmFeedforward.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_arm_feedforward.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/ElevatorFeedforward.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_elevator_feedforward.html

FIRST Robotics Competition

// Create a new SimpleMotorFeedforward with gains kS, kV, and kA
// Distance is measured in meters
frc::SimpleMotorFeedforward<units::meters> feedforward(kS, kV, kA);

To calculate the feedforward, simply call the calculate() method with the desired motor
velocity and acceleration:

Note: The acceleration argument may be omitted from the calculate() call, and if it is,
will default to a value of zero. This should be done whenever there is not a clearly-defined
acceleration setpoint.

Java

// Calculates the feedforward for a velocity of 10 units/second and an acceleration␣
↪→of 20 units/second^2
// Units are determined by the units of the gains passed in at construction.
feedforward.calculate(10, 20);

C++

// Calculates the feedforward for a velocity of 10 meters/second and an acceleration␣
↪→of 20 meters/second^2
// Output is in volts
feedforward.Calculate(10_mps, 20_mps_sq);

ArmFeedforward

Note: In C++, the ArmFeedforward class assumes distances are angular, not linear. The
passed-in gains must have units consistent with the angular unit, or a compile-time error will
be thrown. kS and kG should have units of volts, kV should have units of volts * seconds /
radians, and kA should have units of volts * seconds^2 / radians. For more information
on C++ units, see The C++ Units Library.

Note: The Java feedforward components will calculate outputs in units determined by the
units of the user-provided feedforward gains. Users must take care to keep units consistent,
as WPILibJ does not have a type-safe unit system.

The ArmFeedforward class calculates feedforwards for arms that are controlled directly by a
permanent-magnet DC motor, with external loading of friction, inertia, and mass of the arm.
This is an accurate model of most arms in FRC.
To create an ArmFeedforward, simply construct it with the required gains:

Note: The kA gain can be omitted, and if it is, will default to a value of zero. For many
mechanisms, especially those with little inertia, it is not necessary.

Java

30.5. Controllers 1177

FIRST Robotics Competition

// Create a new ArmFeedforward with gains kS, kG, kV, and kA
ArmFeedforward feedforward = new ArmFeedforward(kS, kG, kV, kA);

C++

// Create a new ArmFeedforward with gains kS, kG, kV, and kA
frc::ArmFeedforward feedforward(kS, kG, kV, kA);

To calculate the feedforward, simply call the calculate() method with the desired arm po-
sition, velocity, and acceleration:

Note: The acceleration argument may be omitted from the calculate() call, and if it is,
will default to a value of zero. This should be done whenever there is not a clearly-defined
acceleration setpoint.

Java

// Calculates the feedforward for a position of 1 units, a velocity of 2 units/second,
↪→ and
// an acceleration of 3 units/second^2
// Units are determined by the units of the gains passed in at construction.
feedforward.calculate(1, 2, 3);

C++

// Calculates the feedforward for a position of 1 radians, a velocity of 2 radians/
↪→second, and
// an acceleration of 3 radians/second^2
// Output is in volts
feedforward.Calculate(1_rad, 2_rad_per_s, 3_rad/(1_s * 1_s));

ElevatorFeedforward

Note: In C++, the passed-in gains must have units consistent with the distance units, or
a compile-time error will be thrown. kS and kG should have units of volts, kV should have
units of volts * seconds / distance, and kA should have units of volts * seconds^2 /
distance. For more information on C++ units, see The C++ Units Library.

Note: The Java feedforward components will calculate outputs in units determined by the
units of the user-provided feedforward gains. Users must take care to keep units consistent,
as WPILibJ does not have a type-safe unit system.

The ElevatorFeedforward class calculates feedforwards for elevators that consist of
permanent-magnet DC motors loaded by friction, inertia, and the mass of the elevator. This
is an accurate model of most elevators in FRC.
To create a ElevatorFeedforward, simply construct it with the required gains:

1178 Chapter 30. Advanced Controls

FIRST Robotics Competition

Note: The kA gain can be omitted, and if it is, will default to a value of zero. For many
mechanisms, especially those with little inertia, it is not necessary.

Java

// Create a new ElevatorFeedforward with gains kS, kG, kV, and kA
ElevatorFeedforward feedforward = new ElevatorFeedforward(kS, kG, kV, kA);

C++

// Create a new ElevatorFeedforward with gains kS, kV, and kA
// Distance is measured in meters
frc::ElevatorFeedforward feedforward(kS, kG, kV, kA);

To calculate the feedforward, simply call the calculate() method with the desired motor
velocity and acceleration:

Note: The acceleration argument may be omitted from the calculate() call, and if it is,
will default to a value of zero. This should be done whenever there is not a clearly-defined
acceleration setpoint.

Java

// Calculates the feedforward for a velocity of 20 units/second
// and an acceleration of 30 units/second^2
// Units are determined by the units of the gains passed in at construction.
feedforward.calculate(20, 30);

C++

// Calculates the feedforward for a velocity of 20 meters/second
// and an acceleration of 30 meters/second^2
// Output is in volts
feedforward.Calculate(20_mps, 30_mps_sq);

Using Feedforward to Control Mechanisms

Note: Since feedforward voltages are physically meaningful, it is best to use the setVolt-
age() (Java, C++) method when applying them to motors to compensate for “voltage sag”
from the battery.

Feedforward control can be used entirely on its own, without a feedback controller. This
is known as “open-loop” control, and for many mechanisms (especially robot drives) can be
perfectly satisfactory. A SimpleMotorFeedforward might be employed to control a robot drive
as follows:
Java

public void tankDriveWithFeedforward(double leftVelocity, double rightVelocity) {
leftMotor.setVoltage(feedforward.calculate(leftVelocity));

(continues on next page)

30.5. Controllers 1179

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/motorcontrol/MotorController.html#setVoltage(double)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_motor_controller.html#a613c23a3336e103876e433bcb8b5ad3e

FIRST Robotics Competition

(continued from previous page)
rightMotor.setVoltage(feedForward.calculate(rightVelocity));

}

C++

void TankDriveWithFeedforward(units::meters_per_second_t leftVelocity,
units::meters_per_second_t rightVelocity) {

leftMotor.SetVoltage(feedforward.Calculate(leftVelocity));
rightMotor.SetVoltage(feedforward.Calculate(rightVelocity));

}

30.5.3 Combining Feedforward and PID Control

Note: This article covers the in-code implementation of combined feedforward/PID control
with WPILib’s provided library classes. Documentation describing the involved concepts in
more detail is forthcoming.

Feedforward and feedback controllers can each be used in isolation, but are most effective
when combined together. Thankfully, combining these two control methods is exceedingly
straightforward - one simply adds their outputs together.

Using Feedforward with a PIDController

Users familiar with the old PIDController class may notice the lack of any feedforward gain
in the new controller. As users are expected to use the controller output themselves, there is
no longer any need for the PIDController to implement feedforward - users may simply add
any feedforward they like to the output of the controller before sending it to their motors:
Java

// Adds a feedforward to the loop output before sending it to the motor
motor.setVoltage(pid.calculate(encoder.getDistance(), setpoint) + feedforward);

C++

// Adds a feedforward to the loop output before sending it to the motor
motor.SetVoltage(pid.Calculate(encoder.GetDistance(), setpoint) + feedforward);

Python

// Adds a feedforward to the loop output before sending it to the motor
motor.setVoltage(pid.calculate(encoder.getDistance(), setpoint) + feedforward)

Moreover, feedforward is a separate feature entirely from feedback, and thus has no reason
to be handled in the same controller object, as this violates separation of concerns. WPILib
comes with several helper classes to compute accurate feedforward voltages for common
FRC® mechanisms - for more information, see Feedforward Control in WPILib.

1180 Chapter 30. Advanced Controls

FIRST Robotics Competition

Using Feedforward Components with PID

Note: Since feedforward voltages are physically meaningful, it is best to use the setVolt-
age() (Java, C++) method when applying them to motors to compensate for “voltage sag”
from the battery.

What might a more complete example of combined feedforward/PID control look like? Con-
sider the drive example from the feedforward page. We can easily modify this to include
feedback control (with a SimpleMotorFeedforward component):
Java

public void tankDriveWithFeedforwardPID(double leftVelocitySetpoint, double␣
↪→rightVelocitySetpoint) {
leftMotor.setVoltage(feedforward.calculate(leftVelocitySetpoint)

+ leftPID.calculate(leftEncoder.getRate(), leftVelocitySetpoint));
rightMotor.setVoltage(feedForward.calculate(rightVelocitySetpoint)

+ rightPID.calculate(rightEncoder.getRate(), rightVelocitySetpoint));
}

C++

void TankDriveWithFeedforwardPID(units::meters_per_second_t leftVelocitySetpoint,
units::meters_per_second_t rightVelocitySetpoint) {

leftMotor.SetVoltage(feedforward.Calculate(leftVelocitySetpoint)
+ leftPID.Calculate(leftEncoder.getRate(), leftVelocitySetpoint.value()));

rightMotor.SetVoltage(feedforward.Calculate(rightVelocitySetpoint)
+ rightPID.Calculate(rightEncoder.getRate(), rightVelocitySetpoint.value()));

}

Python

def tank_drive_with_feedforward_PID(
left_velocity_setpoint: float,
right_velocity_setpoint: float,

) -> None:
leftMotor.setVoltage(

feedforward.calculate(left_velocity_setpoint)
+ leftPID.calculate(leftEncoder.getRate(), left_velocity_setpoint)

)
rightMotor.setVoltage(

feedforward.calculate(right_velocity_setpoint)
+ rightPID.calculate(rightEncoder.getRate(), right_velocity_setpoint)

)

Other mechanism types can be handled similarly.

30.5. Controllers 1181

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/wpilibj/motorcontrol/MotorController.html#setVoltage(double)
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_motor_controller.html#a613c23a3336e103876e433bcb8b5ad3e

FIRST Robotics Competition

30.5.4 Trapezoidal Motion Profiles in WPILib

Note: This article covers the in-code generation of trapezoidal motion profiles. Documenta-
tion describing the involved concepts in more detail is forthcoming.

Note: For a guide on implementing the TrapezoidProfile class in the command-based
framework framework, see Motion Profiling through TrapezoidProfileSubsystems and Trape-
zoidProfileCommands.

Note: The TrapezoidProfile class, used on its own, is most useful when composed with a
custom controller (such as a “smart” motor controller with a built-in PID functionality). To
integrate it with a WPILib PIDController, see Combining Motion Profiling and PID Control
with ProfiledPIDController.

While feedforward and feedback control offer convenient ways to achieve a given setpoint,
we are often still faced with the problem of generating setpoints for our mechanisms. While
the naive approach of immediately commanding a mechanism to its desired state may work, it
is often suboptimal. To improve the handling of our mechanisms, we often wish to command
mechanisms to a sequence of setpoints that smoothly interpolate between its current state,
and its desired goal state.
To help users do this, WPILib provides a TrapezoidProfile class (Java, C++).

Creating a TrapezoidProfile

Note: In C++, the TrapezoidProfile class is templated on the unit type used for distance
measurements, which may be angular or linear. The passed-in values must have units con-
sistent with the distance units, or a compile-time error will be thrown. For more information
on C++ units, see The C++ Units Library.

Constraints

Note: The various feedforward helper classes provide methods for calculating the maximum
simultaneously-achievable velocity and acceleration of a mechanism. These can be very useful
for calculating appropriate motion constraints for your TrapezoidProfile.

In order to create a trapezoidal motion profile, we must first impose some constraints on
the desired motion. Namely, we must specify a maximum velocity and acceleration that the
mechanism will be expected to achieve during the motion. To do this, we create an instance
of the TrapezoidProfile.Constraints class (Java, C++):
Java

1182 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/trajectory/TrapezoidProfile.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_trapezoid_profile.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/trajectory/TrapezoidProfile.Constraints.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_trapezoid_profile_1_1_constraints.html

FIRST Robotics Competition

// Creates a new set of trapezoidal motion profile constraints
// Max velocity of 10 meters per second
// Max acceleration of 20 meters per second squared
new TrapezoidProfile.Constraints(10, 20);

C++

// Creates a new set of trapezoidal motion profile constraints
// Max velocity of 10 meters per second
// Max acceleration of 20 meters per second squared
frc::TrapezoidProfile<units::meters>::Constraints{10_mps, 20_mps_sq};

Start and End States

Next, we must specify the desired starting and ending states for our mechanisms using the
TrapezoidProfile.State class (Java, C++). Each state has a position and a velocity:
Java

// Creates a new state with a position of 5 meters
// and a velocity of 0 meters per second
new TrapezoidProfile.State(5, 0);

C++

// Creates a new state with a position of 5 meters
// and a velocity of 0 meters per second
frc::TrapezoidProfile<units::meters>::State{5_m, 0_mps};

Putting It All Together

Note: C++ is often able to infer the type of the inner classes, and thus a simple initializer
list (without the class name) can be sent as a parameter. The full class names are included in
the example below for clarity.

Now that we know how to create a set of constraints and the desired start/end states, we are
ready to create our motion profile. The TrapezoidProfile constructor takes 3 parameters,
in order: the constraints, the goal state, and the initial state.
Java

// Creates a new TrapezoidProfile
// Profile will have a max vel of 5 meters per second
// Profile will have a max acceleration of 10 meters per second squared
// Profile will end stationary at 5 meters
// Profile will start stationary at zero position
TrapezoidProfile profile = new TrapezoidProfile(new TrapezoidProfile.Constraints(5,␣
↪→10),

new TrapezoidProfile.State(5, 0),
new TrapezoidProfile.State(0, 0));

C++

30.5. Controllers 1183

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/trajectory/TrapezoidProfile.State.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_trapezoid_profile_1_1_state.html

FIRST Robotics Competition

// Creates a new TrapezoidProfile
// Profile will have a max vel of 5 meters per second
// Profile will have a max acceleration of 10 meters per second squared
// Profile will end stationary at 5 meters
// Profile will start stationary at zero position
frc::TrapezoidProfile<units::meters> profile{
frc::TrapezoidProfile<units::meters>::Constraints{5_mps, 10_mps_sq},
frc::TrapezoidProfile<units::meters>::State{5_m, 0_mps},
frc::TrapezoidProfile<units::meters>::State{0_m, 0_mps}};

Using a TrapezoidProfile

Sampling the Profile

Once we’ve created a TrapezoidProfile, using it is very simple: to get the profile state at
the given time after the profile has started, call the calculate() method:
Java

// Returns the motion profile state after 5 seconds of motion
profile.calculate(5);

C++

// Returns the motion profile state after 5 seconds of motion
profile.Calculate(5_s);

Using the State

The calculate method returns a TrapezoidProfile.State class (the same one that was used
to specify the initial/end states when constructing the profile). To use this for actual control,
simply pass the contained position and velocity values to whatever controller you wish (for
example, a PIDController):
Java

var setpoint = profile.calculate(elapsedTime);
controller.calculate(encoder.getDistance(), setpoint.position);

C++

auto setpoint = profile.Calculate(elapsedTime);
controller.Calculate(encoder.GetDistance(), setpoint.position.value());

1184 Chapter 30. Advanced Controls

FIRST Robotics Competition

Complete Usage Example

Note: In this example, the profile is re-computed every timestep. This is a somewhat differ-
ent usage technique than is detailed above, but works according to the same principles - the
profile is sampled at a time corresponding to the loop period to get the setpoint for the next
loop iteration.

A more complete example of TrapezoidProfile usage is provided in the ElevatorTrapezoid-
Profile example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.elevatortrapezoidprofile;
6

7 import edu.wpi.first.math.controller.SimpleMotorFeedforward;
8 import edu.wpi.first.math.trajectory.TrapezoidProfile;
9 import edu.wpi.first.wpilibj.Joystick;

10 import edu.wpi.first.wpilibj.TimedRobot;
11

12 public class Robot extends TimedRobot {
13 private static double kDt = 0.02;
14

15 private final Joystick m_joystick = new Joystick(1);
16 private final ExampleSmartMotorController m_motor = new␣

↪→ExampleSmartMotorController(1);
17 // Note: These gains are fake, and will have to be tuned for your robot.
18 private final SimpleMotorFeedforward m_feedforward = new SimpleMotorFeedforward(1,␣

↪→1.5);
19

20 private final TrapezoidProfile.Constraints m_constraints =
21 new TrapezoidProfile.Constraints(1.75, 0.75);
22 private TrapezoidProfile.State m_goal = new TrapezoidProfile.State();
23 private TrapezoidProfile.State m_setpoint = new TrapezoidProfile.State();
24

25 @Override
26 public void robotInit() {
27 // Note: These gains are fake, and will have to be tuned for your robot.
28 m_motor.setPID(1.3, 0.0, 0.7);
29 }
30

31 @Override
32 public void teleopPeriodic() {
33 if (m_joystick.getRawButtonPressed(2)) {
34 m_goal = new TrapezoidProfile.State(5, 0);
35 } else if (m_joystick.getRawButtonPressed(3)) {
36 m_goal = new TrapezoidProfile.State(0, 0);
37 }
38

39 // Create a motion profile with the given maximum velocity and maximum
40 // acceleration constraints for the next setpoint, the desired goal, and the
41 // current setpoint.
42 var profile = new TrapezoidProfile(m_constraints, m_goal, m_setpoint);
43

44 // Retrieve the profiled setpoint for the next timestep. This setpoint moves
45 // toward the goal while obeying the constraints.
46 m_setpoint = profile.calculate(kDt);

(continues on next page)

30.5. Controllers 1185

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatortrapezoidprofile
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ElevatorTrapezoidProfile/cpp

FIRST Robotics Competition

(continued from previous page)
47

48 // Send setpoint to offboard controller PID
49 m_motor.setSetpoint(
50 ExampleSmartMotorController.PIDMode.kPosition,
51 m_setpoint.position,
52 m_feedforward.calculate(m_setpoint.velocity) / 12.0);
53 }
54 }

C++

5 #include <numbers>
6

7 #include <frc/Joystick.h>
8 #include <frc/TimedRobot.h>
9 #include <frc/controller/SimpleMotorFeedforward.h>

10 #include <frc/trajectory/TrapezoidProfile.h>
11 #include <units/acceleration.h>
12 #include <units/length.h>
13 #include <units/time.h>
14 #include <units/velocity.h>
15 #include <units/voltage.h>
16

17 #include "ExampleSmartMotorController.h"
18

19 class Robot : public frc::TimedRobot {
20 public:
21 static constexpr units::second_t kDt = 20_ms;
22

23 Robot() {
24 // Note: These gains are fake, and will have to be tuned for your robot.
25 m_motor.SetPID(1.3, 0.0, 0.7);
26 }
27

28 void TeleopPeriodic() override {
29 if (m_joystick.GetRawButtonPressed(2)) {
30 m_goal = {5_m, 0_mps};
31 } else if (m_joystick.GetRawButtonPressed(3)) {
32 m_goal = {0_m, 0_mps};
33 }
34

35 // Create a motion profile with the given maximum velocity and maximum
36 // acceleration constraints for the next setpoint, the desired goal, and the
37 // current setpoint.
38 frc::TrapezoidProfile<units::meters> profile{m_constraints, m_goal,
39 m_setpoint};
40

41 // Retrieve the profiled setpoint for the next timestep. This setpoint moves
42 // toward the goal while obeying the constraints.
43 m_setpoint = profile.Calculate(kDt);
44

45 // Send setpoint to offboard controller PID
46 m_motor.SetSetpoint(ExampleSmartMotorController::PIDMode::kPosition,
47 m_setpoint.position.value(),
48 m_feedforward.Calculate(m_setpoint.velocity) / 12_V);
49 }

(continues on next page)

1186 Chapter 30. Advanced Controls

FIRST Robotics Competition

(continued from previous page)
50

51 private:
52 frc::Joystick m_joystick{1};
53 ExampleSmartMotorController m_motor{1};
54 frc::SimpleMotorFeedforward<units::meters> m_feedforward{
55 // Note: These gains are fake, and will have to be tuned for your robot.
56 1_V, 1.5_V * 1_s / 1_m};
57

58 frc::TrapezoidProfile<units::meters>::Constraints m_constraints{1.75_mps,
59 0.75_mps_sq};
60 frc::TrapezoidProfile<units::meters>::State m_goal;
61 frc::TrapezoidProfile<units::meters>::State m_setpoint;
62 };
63

64 #ifndef RUNNING_FRC_TESTS
65 int main() {
66 return frc::StartRobot<Robot>();
67 }
68 #endif

30.5.5 Combining Motion Profiling and PID Control with ProfiledPID-
Controller

Note: For a guide on implementing the ProfiledPIDController class in the command-based
framework framework, see Combining Motion Profiling and PID in Command-Based.

In the previous article, we saw how to use the TrapezoidProfile class to create and use a
trapezoidal motion profile. The example code from that article demonstrates manually com-
posing the TrapezoidProfile class with the external PID control feature of a “smart” motor
controller.
This combination of functionality (a motion profile for generating setpoints combined with
a PID controller for following them) is extremely common. To facilitate this, WPILib comes
with a ProfiledPIDController class (Java, C++) that does most of the work of combining
these two functionalities. The API of the ProfiledPIDController is very similar to that of the
PIDController, allowing users to add motion profiling to a PID-controlled mechanism with
very few changes to their code.

Using the ProfiledPIDController class

Note: In C++, the ProfiledPIDController class is templated on the unit type used for
distance measurements, which may be angular or linear. The passed-in values must have
units consistent with the distance units, or a compile-time error will be thrown. For more
information on C++ units, see The C++ Units Library.

Note: Much of the functionality of ProfiledPIDController is effectively identical to that
of PIDController. Accordingly, this article will only cover features that are substantially-

30.5. Controllers 1187

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/ProfiledPIDController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_profiled_p_i_d_controller.html

FIRST Robotics Competition

changed to accommodate the motion profiling functionality. For information on standard
PIDController features, see PID Control in WPILib.

Constructing a ProfiledPIDController

Note: C++ is often able to infer the type of the inner classes, and thus a simple initializer
list (without the class name) can be sent as a parameter. The full class name is included in
the example below for clarity.

Creating a ProfiledPIDController is nearly identical to creating a PIDController. The only
difference is the need to supply a set of trapezoidal profile constraints, which will be auto-
matically forwarded to the internally-generated TrapezoidProfile instances:
Java

// Creates a ProfiledPIDController
// Max velocity is 5 meters per second
// Max acceleration is 10 meters per second
ProfiledPIDController controller = new ProfiledPIDController(
kP, kI, kD,
new TrapezoidProfile.Constraints(5, 10));

C++

// Creates a ProfiledPIDController
// Max velocity is 5 meters per second
// Max acceleration is 10 meters per second
frc::ProfiledPIDController<units::meters> controller(
kP, kI, kD,
frc::TrapezoidProfile<units::meters>::Constraints{5_mps, 10_mps_sq});

Goal vs Setpoint

A major difference between a standard PIDController and a ProfiledPIDController is that
the actual setpoint of the control loop is not directly specified by the user. Rather, the user
specifies a goal position or state, and the setpoint for the controller is computed automatically
from the generated motion profile between the current state and the goal. So, while the user-
side call looks mostly identical:
Java

// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.set(controller.calculate(encoder.getDistance(), goal));

C++

// Calculates the output of the PID algorithm based on the sensor reading
// and sends it to a motor
motor.Set(controller.Calculate(encoder.GetDistance(), goal));

1188 Chapter 30. Advanced Controls

FIRST Robotics Competition

The specified goal value (which can be either a position value or a TrapezoidProfile.State,
if nonzero velocity is desired) is not necessarily the current setpoint of the loop - rather, it is
the eventual setpoint once the generated profile terminates.

Getting/Using the Setpoint

Since the ProfiledPIDController goal differs from the setpoint, is if often desirable to poll
the current setpoint of the controller (for instance, to get values to use with feedforward).
This can be done with the getSetpoint() method.
The returned setpoint might then be used as in the following example:
Java

double lastSpeed = 0;
double lastTime = Timer.getFPGATimestamp();

// Controls a simple motor's position using a SimpleMotorFeedforward
// and a ProfiledPIDController
public void goToPosition(double goalPosition) {
double pidVal = controller.calculate(encoder.getDistance(), goalPosition);
double acceleration = (controller.getSetpoint().velocity - lastSpeed) / (Timer.

↪→getFPGATimestamp() - lastTime);
motor.setVoltage(

pidVal
+ feedforward.calculate(controller.getSetpoint().velocity, acceleration));

lastSpeed = controller.getSetpoint().velocity;
lastTime = Timer.getFPGATimestamp();

}

C++

units::meters_per_second_t lastSpeed = 0_mps;
units::second_t lastTime = frc2::Timer::GetFPGATimestamp();

// Controls a simple motor's position using a SimpleMotorFeedforward
// and a ProfiledPIDController
void GoToPosition(units::meter_t goalPosition) {
auto pidVal = controller.Calculate(units::meter_t{encoder.GetDistance()},␣

↪→goalPosition);
auto acceleration = (controller.GetSetpoint().velocity - lastSpeed) /

(frc2::Timer::GetFPGATimestamp() - lastTime);
motor.SetVoltage(

pidVal +
feedforward.Calculate(controller.GetSetpoint().velocity, acceleration));

lastSpeed = controller.GetSetpoint().velocity;
lastTime = frc2::Timer::GetFPGATimestamp();

}

30.5. Controllers 1189

FIRST Robotics Competition

Complete Usage Example

A more complete example of ProfiledPIDController usage is provided in the ElevatorPro-
filePID example project (Java, C++):
Java

5 package edu.wpi.first.wpilibj.examples.elevatorprofiledpid;
6

7 import edu.wpi.first.math.controller.ProfiledPIDController;
8 import edu.wpi.first.math.trajectory.TrapezoidProfile;
9 import edu.wpi.first.wpilibj.Encoder;

10 import edu.wpi.first.wpilibj.Joystick;
11 import edu.wpi.first.wpilibj.TimedRobot;
12 import edu.wpi.first.wpilibj.motorcontrol.MotorController;
13 import edu.wpi.first.wpilibj.motorcontrol.PWMSparkMax;
14

15 public class Robot extends TimedRobot {
16 private static double kDt = 0.02;
17

18 private final Joystick m_joystick = new Joystick(1);
19 private final Encoder m_encoder = new Encoder(1, 2);
20 private final MotorController m_motor = new PWMSparkMax(1);
21

22 // Create a PID controller whose setpoint's change is subject to maximum
23 // velocity and acceleration constraints.
24 private final TrapezoidProfile.Constraints m_constraints =
25 new TrapezoidProfile.Constraints(1.75, 0.75);
26 private final ProfiledPIDController m_controller =
27 new ProfiledPIDController(1.3, 0.0, 0.7, m_constraints, kDt);
28

29 @Override
30 public void robotInit() {
31 m_encoder.setDistancePerPulse(1.0 / 360.0 * 2.0 * Math.PI * 1.5);
32 }
33

34 @Override
35 public void teleopPeriodic() {
36 if (m_joystick.getRawButtonPressed(2)) {
37 m_controller.setGoal(5);
38 } else if (m_joystick.getRawButtonPressed(3)) {
39 m_controller.setGoal(0);
40 }
41

42 // Run controller and update motor output
43 m_motor.set(m_controller.calculate(m_encoder.getDistance()));
44 }
45 }

C++

5 #include <numbers>
6

7 #include <frc/Encoder.h>
8 #include <frc/Joystick.h>
9 #include <frc/TimedRobot.h>

10 #include <frc/controller/ProfiledPIDController.h>
11 #include <frc/motorcontrol/PWMSparkMax.h>

(continues on next page)

1190 Chapter 30. Advanced Controls

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatorprofiledpid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ElevatorProfiledPID/cpp

FIRST Robotics Competition

(continued from previous page)
12 #include <frc/trajectory/TrapezoidProfile.h>
13 #include <units/acceleration.h>
14 #include <units/length.h>
15 #include <units/time.h>
16 #include <units/velocity.h>
17

18 class Robot : public frc::TimedRobot {
19 public:
20 static constexpr units::second_t kDt = 20_ms;
21

22 Robot() {
23 m_encoder.SetDistancePerPulse(1.0 / 360.0 * 2.0 * std::numbers::pi * 1.5);
24 }
25

26 void TeleopPeriodic() override {
27 if (m_joystick.GetRawButtonPressed(2)) {
28 m_controller.SetGoal(5_m);
29 } else if (m_joystick.GetRawButtonPressed(3)) {
30 m_controller.SetGoal(0_m);
31 }
32

33 // Run controller and update motor output
34 m_motor.Set(
35 m_controller.Calculate(units::meter_t{m_encoder.GetDistance()}));
36 }
37

38 private:
39 frc::Joystick m_joystick{1};
40 frc::Encoder m_encoder{1, 2};
41 frc::PWMSparkMax m_motor{1};
42

43 // Create a PID controller whose setpoint's change is subject to maximum
44 // velocity and acceleration constraints.
45 frc::TrapezoidProfile<units::meters>::Constraints m_constraints{1.75_mps,
46 0.75_mps_sq};
47 frc::ProfiledPIDController<units::meters> m_controller{1.3, 0.0, 0.7,
48 m_constraints, kDt};
49 };
50

51 #ifndef RUNNING_FRC_TESTS
52 int main() {
53 return frc::StartRobot<Robot>();
54 }
55 #endif

30.5.6 Bang-Bang Control with BangBangController

The bang-bang control algorithm is a control strategy that employs only two states: on (when
the measurement is below the setpoint) and off (otherwise). This is roughly equivalent to a
proportional loop with infinite gain.
This may initially seem like a poor control strategy, as PID loops are known to become unstable
as the gains become large - and indeed, it is a very bad idea to use a bang-bang controller on
anything other than velocity control of a high-inertia mechanism.
However, when controlling the velocity of high-inertia mechanisms under varying loads (like a

30.5. Controllers 1191

FIRST Robotics Competition

shooter flywheel), a bang-bang controller can yield faster recovery time and thus better/more
consistent performance than a proportional controller. Unlike an ordinary P loop, a bang-
bang controller is asymmetric - that is, the controller turns on when the process variable is
below the setpoint, and does nothing otherwise. This allows the control effort in the forward
direction to be made as large as possible without risking destructive oscillations as the control
loop tries to correct a resulting overshoot.
Asymmetric bang-bang control is provided in WPILib by the BangBangController class (Java,
C++).

Constructing a BangBangController

Since a bang-bang controller does not have any gains, it does not need any constructor argu-
ments (one can optionally specify the controller tolerance used by atSetpoint, but it is not
required).
Java

// Creates a BangBangController
BangBangController controller = new BangBangController();

C++

// Creates a BangBangController
frc::BangBangController controller;

Python

Creates a BangBangController
controller = wpimath.BangBangController()

Using a BangBangController

Warning: Bang-bang control is an extremely aggressive algorithm that relies on response
asymmetry to remain stable. Be absolutely certain that your motor controllers have been
set to “coast mode” before attempting to control them with a bang-bang controller, or else
the braking action will fight the controller and cause potentially destructive oscillation.

Using a bang-bang controller is easy:
Java

// Controls a motor with the output of the BangBang controller
motor.set(controller.calculate(encoder.getRate(), setpoint));

C++

// Controls a motor with the output of the BangBang controller
motor.Set(controller.Calculate(encoder.GetRate(), setpoint));

Python

1192 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/BangBangController.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc_1_1_bang_bang_controller.html

FIRST Robotics Competition

Controls a motor with the output of the BangBang controller
motor.set(controller.calculate(encoder.getRate(), setpoint))

Combining Bang Bang Control with Feedforward

Like a PID controller, best results are obtained in conjunction with a feedforward controller
that provides the necessary voltage to sustain the system output at the desired speed, so that
the bang-bang controller is only responsible for rejecting disturbances. Since the bang-bang
controller can only correct in the forward direction, however, it may be preferable to use a
slightly conservative feedforward estimate to ensure that the shooter does not over-speed.
Java

// Controls a motor with the output of the BangBang controller and a feedforward
// Shrinks the feedforward slightly to avoid overspeeding the shooter
motor.setVoltage(controller.calculate(encoder.getRate(), setpoint) * 12.0 + 0.9 *␣
↪→feedforward.calculate(setpoint));

C++

// Controls a motor with the output of the BangBang controller and a feedforward
// Shrinks the feedforward slightly to avoid overspeeding the shooter
motor.SetVoltage(controller.Calculate(encoder.GetRate(), setpoint) * 12.0 + 0.9 *␣
↪→feedforward.Calculate(setpoint));

Python

Controls a motor with the output of the BangBang controller and a feedforward
motor.setVoltage(controller.calculate(encoder.getRate(), setpoint) * 12.0 + 0.9 *␣
↪→feedforward.calculate(setpoint))

30.6 Trajectory Generation and Following with WPILib

This section describes WPILib support for generating parameterized spline trajectories and
following those trajectories with typical FRC® robot drives.

30.6.1 Trajectory Generation

WPILib contains classes that help generating trajectories. A trajectory is a smooth curve, with
velocities and accelerations at each point along the curve, connecting two endpoints on the
field. Generation and following of trajectories is incredibly useful for performing autonomous
tasks. Instead of a simple autonomous routine – which involves moving forward, stopping,
turning 90 degrees to the right, then moving forward – using trajectories allows for motion
along a smooth curve. This has the advantage of speeding up autonomous routines, creating
more time for other tasks; and when implemented well, makes autonomous navigation more
accurate and precise.
This article goes over how to generate a trajectory. The next few articles in this series will go
over how to actually follow the generated trajectory. There are a few things that your robot
must have before you dive into the world of trajectories:

30.6. Trajectory Generation and Following with WPILib 1193

FIRST Robotics Competition

• A way to measure the position and velocity of each side of the robot. An encoder is the
best way to do this; however, other options may include optical flow sensors, etc.

• A way to measure the angle or angular rate of the robot chassis. A gyroscope is the best
way to do this. Although the angular rate can be calculated using encoder velocities,
this method is NOT recommended because of wheel scrubbing.

If you are looking for a simpler way to perform autonomous navigation, see the section on
driving to a distance.

Splines

A spline refers to a set of curves that interpolate between points. Think of it as connecting
dots, except with curves. WPILib supports two types of splines: hermite clamped cubic and
hermite quintic.

• Hermite clamped cubic: This is the recommended option for most users. Generation of
trajectories using these splines involves specifying the (x, y) coordinates of all points, and
the headings at the start and end waypoints. The headings at the interior waypoints are
automatically determined to ensure continuous curvature (rate of change of the heading)
throughout.

• Hermite quintic: This is a more advanced option which requires the user to specify (x, y)
coordinates and headings for all waypoints. This should be used if you are unhappy with
the trajectories that are being generated by the clamped cubic splines or if you want
finer control of headings at the interior points.

Splines are used as a tool to generate trajectories; however, the spline itself does not have
any information about velocities and accelerations. Therefore, it is not recommended that
you use the spline classes directly. In order to generate a smooth path with velocities and
accelerations, a trajectory must be generated.

Creating the trajectory config

A configuration must be created in order to generate a trajectory. The config contains in-
formation about special constraints, the max velocity, the max acceleration in addition to
the start velocity and end velocity. The config also contains information about whether the
trajectory should be reversed (robot travels backward along the waypoints). The Trajecto-
ryConfig class should be used to construct a config. The constructor for this class takes two
arguments, the max velocity and max acceleration. The other fields (startVelocity, endVe-
locity, reversed, constraints) are defaulted to reasonable values (0, 0, false, {}) when
the object is created. If you wish to modify the values of any of these fields, you can call the
following methods:

• setStartVelocity(double startVelocityMetersPerSecond) (Java) / SetStartVeloc-
ity(units::meters_per_second_t startVelocity) (C++)

• setEndVelocity(double endVelocityMetersPerSecond) (Java) / SetEndVeloc-
ity(units::meters_per_second_t endVelocity) (C++)

• setReversed(boolean reversed) (Java) / SetReversed(bool reversed) (C++)
• addConstraint(TrajectoryConstraint constraint) (Java) / AddCon-
straint(TrajectoryConstraint constraint) (C++)

1194 Chapter 30. Advanced Controls

FIRST Robotics Competition

Note: The reversed property simply represents whether the robot is traveling backward. If
you specify four waypoints, a, b, c, and d, the robot will still travel in the same order through
the waypoints when the reversed flag is set to true. This also means that you must account
for the direction of the robot when providing the waypoints. For example, if your robot is
facing your alliance station wall and travels backwards to some field element, the starting
waypoint should have a rotation of 180 degrees.

Generating the trajectory

The method used to generate a trajectory is generateTrajectory(...). There are four over-
loads for this method. Two that use clamped cubic splines and the two others that use quintic
splines. For each type of spline, there are two ways to construct a trajectory. The easiest
methods are the overloads that accept Pose2d objects.
For clamped cubic splines, this method accepts two Pose2d objects, one for the starting way-
point and one for the ending waypoint. The method takes in a vector of Translation2d objects
which represent the interior waypoints. The headings at these interior waypoints are deter-
mined automatically to ensure continuous curvature. For quintic splines, the method simply
takes in a list of Pose2d objects, with each Pose2d representing a point and heading on the
field.
The more complex overload accepts “control vectors” for splines. This method is used when
generating trajectories with Pathweaver, where you are able to control the magnitude of the
tangent vector at each point. The ControlVector class consists of two double arrays. Each
array represents one dimension (x or y), and its elements represent the derivatives at that
point. For example, the value at element 0 of the x array represents the x coordinate (0th
derivative), the value at element 1 represents the 1st derivative in the x dimension and so on.
When using clamped cubic splines, the length of the array must be 2 (0th and 1st derivatives),
whereas when using quintic splines, the length of the array should be 3 (0th, 1st, and 2nd
derivative). Unless you know exactly what you are doing, the first and simpler method is
HIGHLY recommended for manually generating trajectories. (i.e. when not using Pathweaver
JSON files).
Here is an example of generating a trajectory using clamped cubic splines for the 2018 game,
FIRST Power Up:
Java

class ExampleTrajectory {
public void generateTrajectory() {

// 2018 cross scale auto waypoints.
var sideStart = new Pose2d(Units.feetToMeters(1.54), Units.feetToMeters(23.23),

Rotation2d.fromDegrees(-180));
var crossScale = new Pose2d(Units.feetToMeters(23.7), Units.feetToMeters(6.8),

Rotation2d.fromDegrees(-160));

var interiorWaypoints = new ArrayList<Translation2d>();
interiorWaypoints.add(new Translation2d(Units.feetToMeters(14.54), Units.

↪→feetToMeters(23.23)));
interiorWaypoints.add(new Translation2d(Units.feetToMeters(21.04), Units.

↪→feetToMeters(18.23)));

(continues on next page)

30.6. Trajectory Generation and Following with WPILib 1195

FIRST Robotics Competition

(continued from previous page)
TrajectoryConfig config = new TrajectoryConfig(Units.feetToMeters(12), Units.

↪→feetToMeters(12));
config.setReversed(true);

var trajectory = TrajectoryGenerator.generateTrajectory(
sideStart,
interiorWaypoints,
crossScale,
config);

}
}

C++

void GenerateTrajectory() {
// 2018 cross scale auto waypoints
const frc::Pose2d sideStart{1.54_ft, 23.23_ft, frc::Rotation2d(180_deg)};
const frc::Pose2d crossScale{23.7_ft, 6.8_ft, frc::Rotation2d(-160_deg)};

std::vector<frc::Translation2d> interiorWaypoints{
frc::Translation2d{14.54_ft, 23.23_ft},
frc::Translation2d{21.04_ft, 18.23_ft}};

frc::TrajectoryConfig config{12_fps, 12_fps_sq};
config.SetReversed(true);

auto trajectory = frc::TrajectoryGenerator::GenerateTrajectory(
sideStart, interiorWaypoints, crossScale, config);

}

Note: The Java code utilizes the Units utility, for easy unit conversions.

Note: Generating a typical trajectory takes about 10 ms to 25 ms. This isn’t long, but it’s
still highly recommended to generate all trajectories on startup (robotInit).

Concatenating Trajectories

Trajectories in Java can be combined into a single trajectory using the concate-
nate(trajectory) function. C++ users can simply add (+) the two trajectories together.

Warning: It is up to the user to ensure that the end of the initial and start of the ap-
pended trajectory match. It is also the user’s responsibility to ensure that the start and
end velocities of their trajectories match.

Java

var trajectoryOne =
TrajectoryGenerator.generateTrajectory(

new Pose2d(0, 0, Rotation2d.fromDegrees(0)),
(continues on next page)

1196 Chapter 30. Advanced Controls

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/util/Units.html

FIRST Robotics Competition

(continued from previous page)
List.of(new Translation2d(1, 1), new Translation2d(2, -1)),
new Pose2d(3, 0, Rotation2d.fromDegrees(0)),
new TrajectoryConfig(Units.feetToMeters(3.0), Units.feetToMeters(3.0)));

var trajectoryTwo =
TrajectoryGenerator.generateTrajectory(

new Pose2d(3, 0, Rotation2d.fromDegrees(0)),
List.of(new Translation2d(4, 4), new Translation2d(6, 3)),
new Pose2d(6, 0, Rotation2d.fromDegrees(0)),
new TrajectoryConfig(Units.feetToMeters(3.0), Units.feetToMeters(3.0)));

var concatTraj = trajectoryOne.concatenate(trajectoryTwo);

C++

auto trajectoryOne = frc::TrajectoryGenerator::GenerateTrajectory(
frc::Pose2d(0_m, 0_m, 0_rad),
{frc::Translation2d(1_m, 1_m), frc::Translation2d(2_m, -1_m)},
frc::Pose2d(3_m, 0_m, 0_rad), frc::TrajectoryConfig(3_fps, 3_fps_sq));

auto trajectoryTwo = frc::TrajectoryGenerator::GenerateTrajectory(
frc::Pose2d(3_m, 0_m, 0_rad),
{frc::Translation2d(4_m, 4_m), frc::Translation2d(5_m, 3_m)},
frc::Pose2d(6_m, 0_m, 0_rad), frc::TrajectoryConfig(3_fps, 3_fps_sq));

auto concatTraj = m_trajectoryOne + m_trajectoryTwo;

30.6.2 Trajectory Constraints

In the previous article, you might have noticed that no custom constraints were added when
generating the trajectories. Custom constraints allow users to impose more restrictions on
the velocity and acceleration at points along the trajectory based on location and curvature.
For example, a custom constraint can keep the velocity of the trajectory under a certain
threshold in a certain region or slow down the robot near turns for stability purposes.

WPILib-Provided Constraints

WPILib includes a set of predefined constraints that users can utilize when generating tra-
jectories. The list of WPILib-provided constraints is as follows:

• CentripetalAccelerationConstraint: Limits the centripetal acceleration of the robot
as it traverses along the trajectory. This can help slow down the robot around tight turns.

• DifferentialDriveKinematicsConstraint: Limits the velocity of the robot around
turns such that no wheel of a differential-drive robot goes over a specified maximum
velocity.

• DifferentialDriveVoltageConstraint: Limits the acceleration of a differential drive
robot such that no commanded voltage goes over a specified maximum.

• EllipticalRegionConstraint: Imposes a constraint only in an elliptical region on the
field.

30.6. Trajectory Generation and Following with WPILib 1197

FIRST Robotics Competition

• MaxVelocityConstraint: Imposes a max velocity constraint. This can be composed
with the EllipticalRegionConstraint or RectangularRegionConstraint to limit the
velocity of the robot only in a specific region.

• MecanumDriveKinematicsConstraint: Limits the velocity of the robot around turns such
that no wheel of a mecanum-drive robot goes over a specified maximum velocity.

• RectangularRegionConstraint: Imposes a constraint only in a rectangular region on
the field.

• SwerveDriveKinematicsConstraint: Limits the velocity of the robot around turns such
that no wheel of a swerve-drive robot goes over a specified maximum velocity.

Note: The DifferentialDriveVoltageConstraint only ensures that theoretical voltage
commands do not go over the specified maximum using a feedforward model. If the robot
were to deviate from the reference while tracking, the commanded voltage may be higher
than the specified maximum.

Creating a Custom Constraint

Users can create their own constraint by implementing the TrajectoryConstraint interface.
Java

@Override
public double getMaxVelocityMetersPerSecond(Pose2d poseMeters, double␣
↪→curvatureRadPerMeter,

double velocityMetersPerSecond) {
// code here

}

@Override
public MinMax getMinMaxAccelerationMetersPerSecondSq(Pose2d poseMeters,

double curvatureRadPerMeter,
double velocityMetersPerSecond) {

// code here
}

C++

units::meters_per_second_t MaxVelocity(
const Pose2d& pose, units::curvature_t curvature,
units::meters_per_second_t velocity) override {
// code here

}

MinMax MinMaxAcceleration(const Pose2d& pose, units::curvature_t curvature,
units::meters_per_second_t speed) override {

// code here
}

The MaxVelocity method should return the maximum allowed velocity for the given pose,
curvature, and original velocity of the trajectory without any constraints. The MinMaxAccel-
eration method should return the minimum and maximum allowed acceleration for the given
pose, curvature, and constrained velocity.

1198 Chapter 30. Advanced Controls

FIRST Robotics Competition

See the source code (Java, C++) for the WPILib-provided constraints for more examples on
how to write your own custom trajectory constraints.

30.6.3 Manipulating Trajectories

Once a trajectory has been generated, you can retrieve information from it using certain
methods. These methods will be useful when writing code to follow these trajectories.

Getting the total duration of the trajectory

Because all trajectories have timestamps at each point, the amount of time it should take
for a robot to traverse the entire trajectory is pre-determined. The TotalTime() (C++) /
getTotalTimeSeconds() (Java) method can be used to determine the time it takes to traverse
the trajectory.
Java

// Get the total time of the trajectory in seconds
double duration = trajectory.getTotalTimeSeconds();

C++

// Get the total time of the trajectory
units::second_t duration = trajectory.TotalTime();

Sampling the trajectory

The trajectory can be sampled at various timesteps to get the pose, velocity, and acceleration
at that point. The Sample(units::second_t time) (C++) / sample(double timeSeconds)
(Java) method can be used to sample the trajectory at any timestep. The parameter refers to
the amount of time passed since 0 seconds (the starting point of the trajectory). This method
returns a Trajectory::Sample with information about that sample point.
Java

// Sample the trajectory at 1.2 seconds. This represents where the robot
// should be after 1.2 seconds of traversal.
Trajectory.Sample point = trajectory.sample(1.2);

C++

// Sample the trajectory at 1.2 seconds. This represents where the robot
// should be after 1.2 seconds of traversal.
Trajectory::State point = trajectory.Sample(1.2_s);

The Trajectory::Sample struct has several pieces of information about the sample point:
• t: The time elapsed from the beginning of the trajectory up to the sample point.
• velocity: The velocity at the sample point.
• acceleration: The acceleration at the sample point.
• pose: The pose (x, y, heading) at the sample point.

30.6. Trajectory Generation and Following with WPILib 1199

https://github.com/wpilibsuite/allwpilib/tree/main/wpimath/src/main/java/edu/wpi/first/math/trajectory/constraint
https://github.com/wpilibsuite/allwpilib/tree/main/wpimath/src/main/native/cpp/trajectory/constraint

FIRST Robotics Competition

• curvature: The curvature (rate of change of heading with respect to distance along the
trajectory) at the sample point.

Note: The angular velocity at the sample point can be calculated by multiplying the velocity
by the curvature.

Getting all states of the trajectory (advanced)

A more advanced user can get a list of all states of the trajectory by calling the States()
(C++) / getStates() (Java) method. Each state represents a point on the trajectory. When the
trajectory is created using the TrajectoryGenerator::GenerateTrajectory(...) method,
a list of trajectory points / states are created. When the user samples the trajectory at a
particular timestep, a new sample point is interpolated between two existing points / states
in the list.

30.6.4 Transforming Trajectories

Trajectories can be transformed from one coordinate system to another and moved within
a coordinate system using the relativeTo and the transformBy methods. These methods
are useful for moving trajectories within space, or redefining an already existing trajectory
in another frame of reference.

Note: Neither of these methods changes the shape of the original trajectory.

The relativeTo Method

The relativeTo method is used to redefine an already existing trajectory in another frame of
reference. This method takes one argument: a pose, (via a Pose2d object) that is defined with
respect to the current coordinate system, that represents the origin of the new coordinate
system.
For example, a trajectory defined in coordinate system A can be redefined in coordinate sys-
tem B, whose origin is at (3, 3, 30 degrees) in coordinate system A, using the relativeTo
method.
Java

Pose2d bOrigin = new Pose2d(3, 3, Rotation2d.fromDegrees(30));
Trajectory bTrajectory = aTrajectory.relativeTo(bOrigin);

C++

frc::Pose2d bOrigin{3_m, 3_m, frc::Rotation2d(30_deg)};
frc::Trajectory bTrajectory = aTrajectory.RelativeTo(bOrigin);

1200 Chapter 30. Advanced Controls

FIRST Robotics Competition

In the diagram above, the original trajectory (aTrajectory in the code above) has been de-
fined in coordinate system A, represented by the black axes. The red axes, located at (3,
3) and 30° with respect to the original coordinate system, represent coordinate system B.
Calling relativeTo on aTrajectory will redefine all poses in the trajectory to be relative to
coordinate system B (red axes).

30.6. Trajectory Generation and Following with WPILib 1201

FIRST Robotics Competition

The transformBy Method

The transformBy method can be used to move (i.e. translate and rotate) a trajectory within a
coordinate system. This method takes one argument: a transform (via a Transform2d object)
that maps the current initial position of the trajectory to a desired initial position of the same
trajectory.
For example, one may want to transform a trajectory that begins at (2, 2, 30 degrees) to make
it begin at (4, 4, 50 degrees) using the transformBy method.
Java

Transform2d transform = new Pose2d(4, 4, Rotation2d.fromDegrees(50)).minus(trajectory.
↪→getInitialPose());
Trajectory newTrajectory = trajectory.transformBy(transform);

C++

frc::Transform2d transform = Pose2d(4_m, 4_m, Rotation2d(50_deg)) - trajectory.
↪→InitialPose();
frc::Trajectory newTrajectory = trajectory.TransformBy(transform);

1202 Chapter 30. Advanced Controls

FIRST Robotics Competition

In the diagram above, the original trajectory, which starts at (2, 2) and at 30° is visible in blue.
After applying the transform above, the resultant trajectory’s starting location is changed to
(4, 4) at 50°. The resultant trajectory is visible in orange.

30.6. Trajectory Generation and Following with WPILib 1203

FIRST Robotics Competition

30.6.5 Ramsete Controller

The Ramsete Controller is a trajectory tracker that is built in to WPILib. This tracker can be
used to accurately track trajectories with correction for minor disturbances.

Constructing the Ramsete Controller Object

The Ramsete controller should be initialized with two gains, namely b and zeta. Larger values
of b make convergence more aggressive like a proportional term whereas larger values of
zeta provide more damping in the response. These controller gains only dictate how the
controller will output adjusted velocities. It does NOT affect the actual velocity tracking of
the robot. This means that these controller gains are generally robot-agnostic.

Note: Gains of 2.0 and 0.7 for b and zeta have been tested repeatedly to produce desirable
results when all units were in meters. As such, a zero-argument constructor for RamseteCon-
troller exists with gains defaulted to these values.

Java

// Using the default constructor of RamseteController. Here
// the gains are initialized to 2.0 and 0.7.
RamseteController controller1 = new RamseteController();

// Using the secondary constructor of RamseteController where
// the user can choose any other gains.
RamseteController controller2 = new RamseteController(2.1, 0.8);

C++

// Using the default constructor of RamseteController. Here
// the gains are initialized to 2.0 and 0.7.
frc::RamseteController controller1;

// Using the secondary constructor of RamseteController where
// the user can choose any other gains.
frc::RamseteController controller2{2.1, 0.8};

Getting Adjusted Velocities

The Ramsete controller returns “adjusted velocities” so that the when the robot tracks these
velocities, it accurately reaches the goal point. The controller should be updated periodically
with the new goal. The goal comprises of a desired pose, desired linear velocity, and desired
angular velocity. Furthermore, the current position of the robot should also be updated peri-
odically. The controller uses these four arguments to return the adjusted linear and angular
velocity. Users should command their robot to these linear and angular velocities to achieve
optimal trajectory tracking.

Note: The “goal pose” represents the position that the robot should be at a particular
timestep when tracking the trajectory. It does NOT represent the final endpoint of the tra-
jectory.

1204 Chapter 30. Advanced Controls

FIRST Robotics Competition

The controller can be updated using the Calculate (C++) / calculate (Java) method. There
are two overloads for this method. Both of these overloads accept the current robot position
as the first parameter. For the other parameters, one of these overloads takes in the goal
as three separate parameters (pose, linear velocity, and angular velocity) whereas the other
overload accepts a Trajectory.State object, which contains information about the goal pose.
For its ease, users should use the latter method when tracking trajectories.
Java

Trajectory.State goal = trajectory.sample(3.4); // sample the trajectory at 3.4␣
↪→seconds from the beginning
ChassisSpeeds adjustedSpeeds = controller.calculate(currentRobotPose, goal);

C++

const Trajectory::State goal = trajectory.Sample(3.4_s); // sample the trajectory at␣
↪→3.4 seconds from the beginning
ChassisSpeeds adjustedSpeeds = controller.Calculate(currentRobotPose, goal);

These calculations should be performed at every loop iteration, with an updated robot position
and goal.

Using the Adjusted Velocities

The adjusted velocities are of type ChassisSpeeds, which contains a vx (linear velocity in
the forward direction), a vy (linear velocity in the sideways direction), and an omega (angular
velocity around the center of the robot frame). Because the Ramsete controller is a controller
for non-holonomic robots (robots which cannot move sideways), the adjusted speeds object
has a vy of zero.
The returned adjusted speeds can be converted to usable speeds using the kinematics classes
for your drivetrain type. For example, the adjusted velocities can be converted to left and right
velocities for a differential drive using a DifferentialDriveKinematics object.
Java

ChassisSpeeds adjustedSpeeds = controller.calculate(currentRobotPose, goal);
DifferentialDriveWheelSpeeds wheelSpeeds = kinematics.toWheelSpeeds(adjustedSpeeds);
double left = wheelSpeeds.leftMetersPerSecond;
double right = wheelSpeeds.rightMetersPerSecond;

C++

ChassisSpeeds adjustedSpeeds = controller.Calculate(currentRobotPose, goal);
DifferentialDriveWheelSpeeds wheelSpeeds = kinematics.ToWheelSpeeds(adjustedSpeeds);
auto [left, right] = kinematics.ToWheelSpeeds(adjustedSpeeds);

Because these new left and right velocities are still speeds and not voltages, two PID Con-
trollers, one for each side may be used to track these velocities. Either the WPILib PIDCon-
troller (C++, Java) can be used, or the Velocity PID feature on smart motor controllers such
as the TalonSRX and the SPARK MAX can be used.

30.6. Trajectory Generation and Following with WPILib 1205

https://github.wpilib.org/allwpilib/docs/release/cpp/classfrc2_1_1_p_i_d_controller.html
https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/math/controller/PIDController.html

FIRST Robotics Competition

Ramsete in the Command-Based Framework

For the sake of ease for users, a RamseteCommand class is built in to WPILib. For a full tuto-
rial on implementing a path-following autonomous using RamseteCommand, see Trajectory
Tutorial.

30.6.6 Holonomic Drive Controller

The holonomic drive controller is a trajectory tracker for robots with holonomic drivetrains
(e.g. swerve, mecanum, etc.). This can be used to accurately track trajectories with correc-
tion for minor disturbances.

Constructing a Holonomic Drive Controller

The holonomic drive controller should be instantiated with 2 PID controllers and 1 profiled
PID controller.

Note: For more information on PID control, see PID Control in WPILib.

The 2 PID controllers are controllers that should correct for error in the field-relative x and
y directions respectively. For example, if the first 2 arguments are PIDController(1, 0,
0) and PIDController(1.2, 0, 0) respectively, the holonomic drive controller will add an
additional meter per second in the x direction for every meter of error in the x direction and
will add an additional 1.2 meters per second in the y direction for every meter of error in the
y direction.
The final parameter is a ProfiledPIDController for the rotation of the robot. Because the
rotation dynamics of a holonomic drivetrain are decoupled from movement in the x and y di-
rections, users can set custom heading references while following a trajectory. These heading
references are profiled according to the parameters set in the ProfiledPIDController.
Java

var controller = new HolonomicDriveController(
new PIDController(1, 0, 0), new PIDController(1, 0, 0),
new ProfiledPIDController(1, 0, 0,

new TrapezoidProfile.Constraints(6.28, 3.14)));
// Here, our rotation profile constraints were a max velocity
// of 1 rotation per second and a max acceleration of 180 degrees
// per second squared.

C++

frc::HolonomicDriveController controller{
frc2::PIDController{1, 0, 0}, frc2::PIDController{1, 0, 0},
frc::ProfiledPIDController<units::radian>{

1, 0, 0, frc::TrapezoidProfile<units::radian>::Constraints{
6.28_rad_per_s, 3.14_rad_per_s / 1_s}}};

// Here, our rotation profile constraints were a max velocity
// of 1 rotation per second and a max acceleration of 180 degrees
// per second squared.

1206 Chapter 30. Advanced Controls

FIRST Robotics Competition

Getting Adjusted Velocities

The holonomic drive controller returns “adjusted velocities” such that when the robot tracks
these velocities, it accurately reaches the goal point. The controller should be updated pe-
riodically with the new goal. The goal is comprised of a desired pose, linear velocity, and
heading.

Note: The “goal pose” represents the position that the robot should be at a particular times-
tamp when tracking the trajectory. It does NOT represent the trajectory’s endpoint.

The controller can be updated using the Calculate (C++) / calculate (Java) method. There
are two overloads for this method. Both of these overloads accept the current robot position
as the first parameter and the desired heading as the last parameter. For the middle parame-
ters, one overload accepts the desired pose and the linear velocity reference while the other
accepts a Trajectory.State object, which contains information about the goal pose. The
latter method is preferred for tracking trajectories.
Java

// Sample the trajectory at 3.4 seconds from the beginning.
Trajectory.State goal = trajectory.sample(3.4);

// Get the adjusted speeds. Here, we want the robot to be facing
// 70 degrees (in the field-relative coordinate system).
ChassisSpeeds adjustedSpeeds = controller.calculate(
currentRobotPose, goal, Rotation2d.fromDegrees(70.0));

C++

// Sample the trajectoty at 3.4 seconds from the beginning.
const auto goal = trajectory.Sample(3.4_s);

// Get the adjusted speeds. Here, we want the robot to be facing
// 70 degrees (in the field-relative coordinate system).
const auto adjustedSpeeds = controller.Calculate(
currentRobotPose, goal, 70_deg);

Using the Adjusted Velocities

The adjusted velocities are of type ChassisSpeeds, which contains a vx (linear velocity in
the forward direction), a vy (linear velocity in the sideways direction), and an omega (angular
velocity around the center of the robot frame).
The returned adjusted speeds can be converted into usable speeds using the kinematics
classes for your drivetrain type. In the example code below, we will assume a swerve drive
robot; however, the kinematics code is exactly the same for a mecanum drive robot except
using MecanumDriveKinematics.
Java

SwerveModuleState[] moduleStates = kinematics.toSwerveModuleStates(adjustedSpeeds);

SwerveModuleState frontLeft = moduleStates[0];
SwerveModuleState frontRight = moduleStates[1];

(continues on next page)

30.6. Trajectory Generation and Following with WPILib 1207

FIRST Robotics Competition

(continued from previous page)
SwerveModuleState backLeft = moduleStates[2];
SwerveModuleState backRight = moduleStates[3];

C++

auto [fl, fr, bl, br] = kinematics.ToSwerveModuleStates(adjustedSpeeds);

Because these swerve module states are still speeds and angles, you will need to use PID
controllers to set these speeds and angles.

30.6.7 Troubleshooting

Troubleshooting Complete Failures

There are a number of things that can cause your robot to do completely the wrong thing.
The below checklist covers some common mistakes.

• My robot doesn’t move.
– Are you actually outputting to your motors?
– Is a MalformedSplineException getting printed to the driver station? If yes, go to

the MalformedSplineException section below.
– Is your trajectory very short or in the wrong units?

• My robot swings around to drive the trajectory facing the other direction.
– Are the start and end headings of your trajectory wrong?
– Is your robot’s gyro getting reset to the wrong heading?
– Do you have the reverse flag set incorrectly?
– Are your gyro angles clockwise positive? If so, you should negate them.

• My robot just drives in a straight line even though it should turn.
– Is your gyro set up correctly and returning good data?
– Are you passing your gyro heading to your odometry object with the correct units?
– Is your track width correct? Is it in the correct units?

• I get a MalformedSplineException printout on the driver station and the robot doesn’t
move.
– Do you have the reverse flag set incorrectly?
– Do you have two waypoints very close together with approximately opposite head-

ings?
– Do you have two waypoints with the same (or nearly the same) coordinates?

• My robot drives way too far.
– Are your encoder unit conversions set up correctly?
– Are your encoders connected?

• My robot mostly does the right thing, but it’s a little inaccurate.
– Go to the next section.

1208 Chapter 30. Advanced Controls

FIRST Robotics Competition

Troubleshooting Poor Performance

Note: This section is mostly concerned with troubleshooting poor trajectory tracking perfor-
mance like a meter of error, not catastrophic failures like compilation errors, robots turning
around and going in the wrong direction, or MalformedSplineExceptions.

Note: This section is designed for differential drive robots, but most of the ideas can be
adapted to swerve drive or mecanum.

Poor trajectory tracking performance can be difficult to troubleshoot. Although the trajectory
generator and follower are intended to be easy-to-use and performant out of the box, there are
situations where your robot doesn’t quite end up where it should. The trajectory generator
and followers have many knobs to tune and many moving parts, so it can be difficult to know
where to start, especially because it is difficult to locate the source of trajectory problems
from the robot’s general behavior.
Because it can be so hard to locate the layer of the trajectory generator and followers that is
misbehaving, a systematic, layer-by-layer approach is recommended for general poor tracking
performance (e.g. the robot is off by few feet or more than twenty degrees). The below steps
are listed in the order that you should do them in; it is important to follow this order so that
you can isolate the effects of different steps from each other.

Note: The below examples put diagnostic values onto NetworkTables. The easiest way to
graph these values is to use Shuffleboard’s graphing capabilities.

Verify Odometry

If your odometry is bad, then your Ramsete controller may misbehave, because it modifies
your robot’s target velocities based on where your odometry thinks the robot is.

Note: Sending your robot pose and trajectory to field2d can help verify that your robot is
driving correctly relative to the robot trajectory.

1. Set up your code to record your robot’s position after each odometry update:
Java

NetworkTableEntry m_xEntry = NetworkTableInstance.getDefault().getTable(
↪→"troubleshooting").getEntry("X");
NetworkTableEntry m_yEntry = NetworkTableInstance.getDefault().getTable(
↪→"troubleshooting").getEntry("Y");

@Override
public void periodic() {

// Update the odometry in the periodic block
m_odometry.update(Rotation2d.fromDegrees(getHeading()), m_leftEncoder.

↪→getDistance(),
m_rightEncoder.getDistance());

(continues on next page)

30.6. Trajectory Generation and Following with WPILib 1209

FIRST Robotics Competition

(continued from previous page)

var translation = m_odometry.getPoseMeters().getTranslation();
m_xEntry.setNumber(translation.getX());
m_yEntry.setNumber(translation.getY());

}

C++

NetworkTableEntry m_xEntry = nt::NetworkTableInstance::GetDefault().GetTable(
↪→"troubleshooting")->GetEntry("X");
NetworkTableEntry m_yEntry = nt::NetworkTableInstance::GetDefault().GetTable(
↪→"troubleshooting")->GetEntry("Y");

void DriveSubsystem::Periodic() {
// Implementation of subsystem periodic method goes here.
m_odometry.Update(frc::Rotation2d(units::degree_t(GetHeading())),

units::meter_t(m_leftEncoder.GetDistance()),
units::meter_t(m_rightEncoder.GetDistance()));

auto translation = m_odometry.GetPose().Translation();
m_xEntry.SetDouble(translation.X().value());
m_yEntry.SetDouble(translation.Y().value());

}

2. Lay out a tape measure parallel to your robot and push your robot out about one meter
along the tape measure. Lay out a tape measure along the Y axis and start over, pushing
your robot one meter along the X axis and one meter along the Y axis in a rough arc.

3. Compare X and Y reported by the robot to actual X and Y. If X is off by more than 5 cen-
timeters in the first test then you should check that you measured your wheel diameter
correctly, and that your wheels are not worn down. If the second test is off by more
than 5 centimeters in either X or Y then your track width (distance from the center of
the left wheel to the center of the right wheel) may be incorrect; if you’re sure that you
measured the track width correctly with a tape measure then your robot’s wheels may
be slipping in a way that is not accounted for by track width–if this is the case then you
should run the track width identification using the “Drivetrain (Angular)” test in SysID
and use that track width instead of the one from your tape measure.

1210 Chapter 30. Advanced Controls

FIRST Robotics Competition

Verify Feedforward

If your feedforwards are bad then the P controllers for each side of the robot will not track as
well, and your DifferentialDriveVoltageConstraintwill not limit your robot’s acceleration
accurately. We mostly want to turn off the wheel P controllers so that we can isolate and test
the feedforwards.

1. First, we must set disable the P controller for each wheel. Set the P gain to 0 for every
controller. In the RamseteCommand example, you would set kPDriveVel to 0:

Java

123 new PIDController(DriveConstants.kPDriveVel, 0, 0),
124 new PIDController(DriveConstants.kPDriveVel, 0, 0),

C++

81 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},
82 frc2::PIDController{DriveConstants::kPDriveVel, 0, 0},

2. Next, we want to disable the Ramsete controller to make it easier to isolate our prob-
lematic behavior. To do so, simply call setEnabled(false) on the RamseteController
passed into your RamseteCommand:

Java

30.6. Trajectory Generation and Following with WPILib 1211

FIRST Robotics Competition

RamseteController m_disabledRamsete = new RamseteController();
m_disabledRamsete.setEnabled(false);

// Be sure to pass your new disabledRamsete variable
RamseteCommand ramseteCommand = new RamseteCommand(

exampleTrajectory,
m_robotDrive::getPose,
m_disabledRamsete,
...

);

C++

frc::RamseteController m_disabledRamsete;
m_disabledRamsete.SetEnabled(false);

// Be sure to pass your new disabledRamsete variable
frc2::RamseteCommand ramseteCommand(
exampleTrajectory,
[this]() { return m_drive.GetPose(); },
m_disabledRamsete,
...

);

3. Finally, we need to log desired wheel velocity and actual wheel velocity (you should put
actual and desired velocities on the same graph if you’re using Shuffleboard, or if your
graphing software has that capability):

Java

var table = NetworkTableInstance.getDefault().getTable("troubleshooting");
var leftReference = table.getEntry("left_reference");
var leftMeasurement = table.getEntry("left_measurement");
var rightReference = table.getEntry("right_reference");
var rightMeasurement = table.getEntry("right_measurement");

var leftController = new PIDController(kPDriveVel, 0, 0);
var rightController = new PIDController(kPDriveVel, 0, 0);
RamseteCommand ramseteCommand = new RamseteCommand(

exampleTrajectory,
m_robotDrive::getPose,
disabledRamsete, // Pass in disabledRamsete here
new SimpleMotorFeedforward(ksVolts, kvVoltSecondsPerMeter,␣

↪→kaVoltSecondsSquaredPerMeter),
kDriveKinematics,
m_robotDrive::getWheelSpeeds,
leftController,
rightController,
// RamseteCommand passes volts to the callback
(leftVolts, rightVolts) -> {

m_robotDrive.tankDriveVolts(leftVolts, rightVolts);

leftMeasurement.setNumber(m_robotDrive.getWheelSpeeds().leftMetersPerSecond);
leftReference.setNumber(leftController.getSetpoint());

rightMeasurement.setNumber(m_robotDrive.getWheelSpeeds().
↪→rightMetersPerSecond);

(continues on next page)

1212 Chapter 30. Advanced Controls

FIRST Robotics Competition

(continued from previous page)
rightReference.setNumber(rightController.getSetpoint());

},
m_robotDrive

);

C++

auto table =
nt::NetworkTableInstance::GetDefault().GetTable("troubleshooting");

auto leftRef = table->GetEntry("left_reference");
auto leftMeas = table->GetEntry("left_measurement");
auto rightRef = table->GetEntry("right_reference");
auto rightMeas = table->GetEntry("right_measurement");

frc2::PIDController leftController(DriveConstants::kPDriveVel, 0, 0);
frc2::PIDController rightController(DriveConstants::kPDriveVel, 0, 0);
frc2::RamseteCommand ramseteCommand(

exampleTrajectory, [this]() { return m_drive.GetPose(); },
frc::RamseteController(AutoConstants::kRamseteB,

AutoConstants::kRamseteZeta),
frc::SimpleMotorFeedforward<units::meters>(

DriveConstants::ks, DriveConstants::kv, DriveConstants::ka),
DriveConstants::kDriveKinematics,
[this] { return m_drive.GetWheelSpeeds(); }, leftController,
rightController,
[=](auto left, auto right) {

auto leftReference = leftRef;
auto leftMeasurement = leftMeas;
auto rightReference = rightRef;
auto rightMeasurement = rightMeas;

m_drive.TankDriveVolts(left, right);

leftMeasurement.SetDouble(m_drive.GetWheelSpeeds().left.value());
leftReference.SetDouble(leftController.GetSetpoint());

rightMeasurement.SetDouble(m_drive.GetWheelSpeeds().right.value());
rightReference.SetDouble(rightController.GetSetpoint());

},
{&m_drive});

4. Run the robot on a variety of trajectories (curved and straight line), and check to see if
the actual velocity tracks the desired velocity by looking at graphs from NetworkTables.

5. If the desired and actual are off by a lot then you should check if the wheel diameter
and encoderEPR you used for system identification were correct. If you’ve verified that
your units and conversions are correct, then you should try recharacterizing on the same
floor that you’re testing on to see if you can get better data.

30.6. Trajectory Generation and Following with WPILib 1213

FIRST Robotics Competition

Verify P Gain

If you completed the previous step and the problem went away then your problem can prob-
ably be found in one of the next steps. In this step we’re going to verify that your wheel P
controllers are well-tuned. If you’re using Java then we want to turn off Ramsete so that we
can just view our PF controllers on their own.

1. You must re-use all the code from the previous step that logs actual vs. desired velocity
(and the code that disables Ramsete, if you’re using Java), except that the P gain must
be set back to its previous nonzero value.

2. Run the robot again on a variety of trajectories, and check that your actual vs. desired
graphs look good.

3. If the graphs do not look good (i.e. the actual velocity is very different from the desired)
then you should try tuning your P gain and rerunning your test trajectories.

Check Constraints

Note: Make sure that your P gain is nonzero for this step and that you still have the logging
code added in the previous steps. If you’re using Java then you should remove the code to
disable Ramsete.

If your accuracy issue persisted through all of the previous steps then you might have an issue
with your constraints. Below are a list of symptoms that the different available constraints
will exhibit when poorly tuned.
Test one constraint at a time! Remove the other constraints, tune your one remaining con-
straint, and repeat that process for each constraint you want to use. The below checklist
assumes that you only use one constraint at a time.

• DifferentialDriveVoltageConstraint:
– If your robot accelerates very slowly then it’s possible that the max voltage for this

constraint is too low.
– If your robot doesn’t reach the end of the path then your system identification data

may problematic.
• DifferentialDriveKinematicsConstraint:

– If your robot ends up at the wrong heading then it’s possible that the max drivetrain
side speed is too low, or that it’s too high. The only way to tell is to tune the max
speed and to see what happens.

• CentripetalAccelerationConstraint:
– If your robot ends up at the wrong heading then this could be the culprit. If your

robot doesn’t seem to turn enough then you should increase the max centripetal
acceleration, but if it seems to go around tight turns to quickly then you should
decrease the maximum centripetal acceleration.

1214 Chapter 30. Advanced Controls

FIRST Robotics Competition

Check Trajectory Waypoints

It is possible that your trajectory itself is not very driveable. Try moving waypoints (and
headings at the waypoints, if applicable) to reduce sharp turns.

30.7 State-Space and Model Based Control with WPILib

This section provides an introduction to and describes WPILib support for state-space control.

30.7.1 Introduction to State-Space Control

Note: This article is from Controls Engineering in FRC by Tyler Veness with permission.

From PID to Model-Based Control

When tuning PID controllers, we focus on fiddling with controller parameters relating to the
current, past, and future error (P, I and D terms) rather than the underlying system states.
While this approach works in a lot of situations, it is an incomplete view of the world.
Model-based control focuses on developing an accurate model of the system (mechanism) we
are trying to control. These models help inform gains picked for feedback controllers based
on the physical responses of the system, rather than an arbitrary proportional gain derived
through testing. This allows us not only to predict ahead of time how a system will react, but
also test our controllers without a physical robot and save time debugging simple bugs.

Note: State-space control makes extensive use of linear algebra. More on linear algebra
in modern control theory, including an introduction to linear algebra and resources, can be
found in Chapter 4 of Controls Engineering in FRC.

If you’ve used WPILib’s feedforward classes for SimpleMotorFeedforward or its sister classes,
or used SysId to pick PID gains for you, you’re already familiar with model-based control!
The kv and ka gains can be used to describe how a motor (or arm, or drivetrain) will react
to voltage. We can put these constants into standard state-space notation using WPILib’s
LinearSystem, something we will do in a later article.

Vocabulary

For the background vocabulary that will be used throughout this article, see the Glossary.

30.7. State-Space and Model Based Control with WPILib 1215

https://file.tavsys.net/control/controls-engineering-in-frc.pdf
https://file.tavsys.net/control/controls-engineering-in-frc.pdf

FIRST Robotics Competition

Introduction to Linear Algebra

For a short and intuitive introduction to the core concepts of Linear Algebra, we recommend
chapters 1 through 4 of 3Blue1Brown’s Essence of linear algebra series (Vectors, what even
are they?, Linear combinations, span, and basis vectors, Linear transformations and matrices,
and Matrix multiplication as composition).

What is State-Space?

Recall that 2D space has two axes: x and y. We represent locations within this space as a pair
of numbers packaged in a vector, and each coordinate is a measure of how far to move along
the corresponding axis. State-space is a Cartesian coordinate system with an axis for each
state variable, and we represent locations within it the same way we do for 2D space: with a
list of numbers in a vector. Each element in the vector corresponds to a state of the system.
This example shows two example state vectors in the state-space of an elevator model with
the states [position,velocity]:

In this image, the vectors representing states in state-space are arrows. From now on these
vectors will be represented simply by a point at the vector’s tip, but remember that the rest
of the vector is still there.
In addition to the state, inputs and outputs are represented as vectors. Since the mapping
from the current states and inputs to the change in state is a system of equations, it’s natural
to write it in matrix form. This matrix equation can be written in state-space notation.

1216 Chapter 30. Advanced Controls

https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

FIRST Robotics Competition

What is State-Space Notation?

State-space notation is a set of matrix equations which describe how a system will evolve over
time. These equations relate the change in state ẋ, and the output y, to linear combinations
of the current state vector x and input vector u.
State-space control can deal with continuous-time and discrete-time systems. In the
continuous-time case, the rate of change of the system’s state _x is expressed as a linear
combination of the current state x and input u.
In contrast, discrete-time systems expresses the state of the system at our next timestep xk+1

based on the current state xk and input uk, where k is the current timestep and k + 1 is the
next timestep.
In both the continuous- and discrete-time forms, the output vector y is expressed as a linear
combination of the current state and input. In many cases, the output is a subset of the
system’s state, and has no contribution from the current input.
When modeling systems, we first derive the continuous-time representation because the equa-
tions of motion are naturally written as the rate of change of a system’s state as a linear com-
bination of its current state and inputs. We convert this representation to discrete-time on
the robot because we update the system in discrete timesteps there instead of continuously.
The following two sets of equations are the standard form of continuous-time and discrete-
time state-space notation:

Continuous: ẋ = Ax+Bu
y = Cx+Du

Discrete: xk+1 = Axk +Buk

yk = Cxk +Duk

A system matrix x state vector
B input matrix u input vector
C output matrix y output vector
D feedthrough matrix

A continuous-time state-space system can be converted into a discrete-time system through
a process called discretization.

Note: In the discrete-time form, the system’s state is held constant between updates. This
means that we can only react to disturbances as quickly as our state estimate is updated.
Updating our estimate more quickly can help improve performance, up to a point. WPILib’s
Notifier class can be used if updates faster than the main robot loop are desired.

Note: While a system’s continuous-time and discrete-time matrices A, B, C, and D have the
same names, they are not equivalent. The continuous-time matrices describes the rate of
change of the state, x, while the discrete-time matrices describe the system’s state at the
next timestep as a function of the current state and input.

Important: WPILib’s LinearSystem takes continuous-time system matrices, and converts
them internally to the discrete-time form where necessary.

30.7. State-Space and Model Based Control with WPILib 1217

FIRST Robotics Competition

State-space Notation Example: Flywheel from Kv and Ka

Recall that we can model the motion of a flywheel connected to a brushed DC motor with the
equation V = Kv ·v+Ka ·a, where V is voltage output, v is the flywheel’s angular velocity and a
is its angular acceleration. This equation can be rewritten as a = V−Kv·v

Ka
, or a = −Kv

Ka
·v+ 1

Ka
·V .

Notice anything familiar? This equation relates the angular acceleration of the flywheel to its
angular velocity and the voltage applied.
We can convert this equation to state-space notation. We can create a system with one state
(velocity), one input (voltage), and one output (velocity). Recalling that the first derivative
of velocity is acceleration, we can write our equation as follows, replacing velocity with x,
acceleration with _x, and voltage V with u:

_x =
[
−Kv

Ka

]
x+

[
1

Ka

]
u

The output and state are the same, so the output equation is the following:

y =
[
1
]
x+

[
0
]
u

That’s it! That’s the state-space model of a system for which we have the Kv and Ka constants.
This same math is used in system identification to model flywheels and drivetrain velocity
systems.

Visualizing State-Space Responses: Phase Portrait

A phase portrait can help give a visual intuition for the response of a system in state-space.
The vectors on the graph have their roots at some point x in state-space, and point in the
direction of _x, the direction that the system will evolve over time. This example shows a
model of a pendulum with the states of angle and angular velocity.
To trace a potential trajectory that a system could take through state-space, choose a point to
start at and follow the arrows around. In this example, we might start at [−2, 0]. From there,
the velocity increases as we swing through vertical and starts to decrease until we reach the
opposite extreme of the swing. This cycle of spinning about the origin repeats indefinitely.

1218 Chapter 30. Advanced Controls

FIRST Robotics Competition

Note that near the edges of the phase portrait, the X axis wraps around as a rotation of π
radians counter clockwise and a rotation of π radians clockwise will end at the same point.
For more on differential equations and phase portraits, see 3Blue1Brown’s Differential Equa-
tions video – they do a great job of animating the pendulum phase space at around 15:30.

Visualizing Feedforward

This phase portrait shows the “open loop” responses of the system – that is, how it will react if
we were to let the state evolve naturally. If we want to, say, balance the pendulum horizontal
(at (π2 , 0) in state space), we would need to somehow apply a control input to counteract the
open loop tendency of the pendulum to swing downward. This is what feedforward is trying
to do – make it so that our phase portrait will have an equilibrium at the reference position
(or setpoint) in state-space.
Looking at our phase portrait from before, we can see that at (π2 , 0) in state space, gravity
is pulling the pendulum down with some torque T, and producing some downward angular
acceleration with magnitude τ

I , where I is angular moment of inertia of the pendulum. If we
want to create an equilibrium at our reference of (π2 , 0), we would need to apply an input can
counteract the system’s natural tendency to swing downward. The goal here is to solve the
equation 0 = Ax+Bu for u. Below is shown a phase portrait where we apply a constant input
that opposes the force of gravity at (π2 , 0):

30.7. State-Space and Model Based Control with WPILib 1219

https://www.youtube.com/watch?v=p_di4Zn4wz4
https://www.youtube.com/watch?v=p_di4Zn4wz4

FIRST Robotics Competition

Feedback Control

In the case of a DC motor, with just a mathematical model and knowledge of all current states
of the system (i.e., angular velocity), we can predict all future states given the future voltage
inputs. But if the system is disturbed in any way that isn’t modeled by our equations, like
a load or unexpected friction, the angular velocity of the motor will deviate from the model
over time. To combat this, we can give the motor corrective commands using a feedback
controller.
A PID controller is a form of feedback control. State-space control often uses the following
control law, where K is some controller gain matrix, r is the reference state, and x is the
current state in state-space. The difference between these two vectors, r− x, is the error.

u = K(r− x)

This control law is a proportional controller for each state of our system. Proportional con-
trollers create software-defined springs that pull our system’s state toward our reference
state in state-space. In the case that the system being controlled has position and velocity
states, the control law above will behave as a PD controller, which also tries to drive position
and velocity error to zero.
Let’s show an example of this control law in action. We’ll use the pendulum system from
above, where the swinging pendulum circled the origin in state-space. The case where K

1220 Chapter 30. Advanced Controls

FIRST Robotics Competition

is the zero matrix (a matrix with all zeros) would be like picking P and D gains of zero – no
control input would be applied, and the phase portrait would look identical to the one above.
To add some feedback, we arbitrarily pick a K of [2, 2], where our input to the pendulum is
angular acceleration. This K would mean that for every radian of position error, the angular
acceleration would be 2 radians per second squared; similarly, we accelerate by 2 radians per
second squared for every radian per second of error. Try following an arrow from somewhere
in state-space inwards – no matter the initial conditions, the state will settle at the reference
rather than circle endlessly with pure feedforward.

But how can we choose an optimal gain matrix K for our system? While we can manually
choose gains and simulate the system response or tune it on-robot like a PID controller, mod-
ern control theory has a better answer: the Linear-Quadratic Regulator (LQR).

The Linear-Quadratic Regulator

Because model-based control means that we can predict the future states of a system given an
initial condition and future control inputs, we can pick a mathematically optimal gain matrix
K. To do this, we first have to define what a “good” or “bad” K would look like. We do
this by summing the square of error and control input over time, which gives us a number
representing how “bad” our control law will be. If we minimize this sum, we will have arrived
at the optimal control law.

30.7. State-Space and Model Based Control with WPILib 1221

FIRST Robotics Competition

LQR: Definition

Linear-Quadratic Regulators work by finding a control law that minimizes the following cost
function, which weights the sum of error and control effort over time, subject to the linear
system dynamics xk+1 = Axk +Buk.

J =

∞∑
k=0

(
xTkQxk + uT

kRuk

)
The control law that minimizes J can be written as u = K(rk − xk), where rk − xk is the error.

Note: LQR design’s Q and R matrices don’t need discretization, but the K calculated for
continuous-time and discrete time systems will be different.

LQR: tuning

Like PID controllers can be tuned by adjusting their gains, we also want to change how our
control law balances our error and input. For example, a spaceship might want to minimize
the fuel it expends to reach a given reference, while a high-speed robotic arm might need to
react quickly to disturbances.
We can weight error and control effort in our LQR with Q and R matrices. In our cost function
(which describes how “bad” our control law will perform), Q and R weight our error and
control input relative to each other. In the spaceship example from above, we might use a Q
with relatively small numbers to show that we don’t want to highly penalize error, while our
R might be large to show that expending fuel is undesirable.
With WPILib, the LQR class takes a vector of desired maximum state excursions and control
efforts and converts them internally to full Q and R matrices with Bryson’s rule. We often use
lowercase q and r to refer to these vectors, and Q and R to refer to the matrices.
Increasing the q elements would make the LQR less heavily weight large errors, and the
resulting control law will behave more conservatively. This has a similar effect to penalizing
control effort more heavily by decreasing r's elements.
Similarly, decreasing the q elements would make the LQR penalize large errors more heavily,
and the resulting control law will behave more aggressively. This has a similar effect to
penalizing control effort less heavily by increasing r elements.
For example, we might use the following Q and R for an elevator system with position and
velocity states.
Java

// Example system -- must be changed to match your robot.
LinearSystem<N2, N1, N1> elevatorSystem = LinearSystemId.identifyPositionSystem(5, 0.
↪→5);
LinearQuadraticRegulator<N2, N1, N1> controller = new␣
↪→LinearQuadraticRegulator(elevatorSystem,

// q's elements
VecBuilder.fill(0.02, 0.4),
// r's elements
VecBuilder.fill(12.0),
// our dt
0.020);

1222 Chapter 30. Advanced Controls

FIRST Robotics Competition

C++

// Example system -- must be changed to match your robot.
LinearSystem<2, 1, 1> elevatorSystem = frc::LinearSystemId::IdentifyVelocitySystem(5,
↪→ 0.5);
LinearQuadraticRegulator<2, 1> controller{

elevatorSystem,
// q's elements
{0.02, 0.4},
// r's elements
{12.0},
// our dt
0.020_s};

LQR: example application

Let’s apply a Linear-Quadratic Regulator to a real-world example. Say we have a flywheel
velocity system determined through system identification to have Kv = 1 volts

radian per second and
Ka = 1.5 volts

radian per second squared . Using the flywheel example above, we have the following linear
system:

_x =
[
−Kv

Ka

]
v +

[
1

Ka

]
V

We arbitrarily choose a desired state excursion (maximum error) of q = [0.1 rad/sec], and an
r of [12 volts]. After discretization with a timestep of 20ms, we find a gain of K = 81. This K
gain acts as the proportional component of a PID loop on flywheel’s velocity.
Let’s adjust q and r. We know that increasing the q elements or decreasing the r elements
we use to create Q and R would make our controller more heavily penalize control effort,
analogous to trying to driving a car more conservatively to improve fuel economy. In fact, if
we increase our error tolerance q from 0.1 to 1.0, our gain matrix K drops from ~81 to ~11.
Similarly, decreasing our maximum voltage r from 12.0 to 1.2 decreases K.
The following graph shows the flywheel’s angular velocity and applied voltage over time with
two different gains. We can see how a higher gain will make the system reach the reference
more quickly (at t = 0.8 seconds), while keeping our motor saturated at 12V for longer. This
is exactly the same as increasing the P gain of a PID controller by a factor of ~8x.

30.7. State-Space and Model Based Control with WPILib 1223

FIRST Robotics Competition

LQR and Measurement Latency Compensation

Oftentimes, our sensors have a delay associated with their measurements. For example the
SPARK MAX motor controller over CAN can have up to 30ms of delay associated with velocity
measurements.
This lag means that our feedback controller will be generating voltage commands based on
state estimates from the past. This often has the effect of introducing instability and oscilla-
tions into our system, as shown in the graph below.
However, we can model our controller to control where the system’s state is delayed into
the future. This will reduce the LQR’s gain matrix K, trading off controller performance for
stability. The below formula, which adjusts the gain matrix to account for delay, is also used
in system identification.

Kcompensated = K · (A−BK)
delay/dt

Multiplying K by A − BK essentially advances the gains by one timestep. In this case, we
multiply by (A−BK)

delay/dt to advance the gains by measurement’s delay.

1224 Chapter 30. Advanced Controls

FIRST Robotics Competition

Note: This can have the effect of reducing K to zero, effectively disabling feedback control.

Note: The SPARK MAX motor controller uses a 40-tap FIR filter with a delay of 19.5ms, and
status frames are by default sent every 20ms.

The code below shows how to adjust the LQR controller’s K gain for sensor input delays:
Java

// Adjust our LQR's controller for 25 ms of sensor input delay. We
// provide the linear system, discretization timestep, and the sensor
// input delay as arguments.
controller.latencyCompensate(elevatorSystem, 0.02, 0.025);

C++

// Adjust our LQR's controller for 25 ms of sensor input delay. We
// provide the linear system, discretization timestep, and the sensor
// input delay as arguments.
controller.LatencyCompensate(elevatorSystem, 20_ms, 25_ms);

30.7. State-Space and Model Based Control with WPILib 1225

FIRST Robotics Competition

Linearization

Linearization is a tool used to approximate nonlinear functions and state-space systems using
linear ones. In two-dimensional space, linear functions are straight lines while nonlinear
functions curve. A common example of a nonlinear function and its corresponding linear
approximation is y = sinx. This function can be approximated by y = x near zero. This
approximation is accurate while near x = 0, but looses accuracy as we stray further from the
linearization point. For example, the approximation sinx ≈ x is accurate to within 0.02 within
0.5 radians of y = 0, but quickly loses accuracy past that. In the following picture, we see
y = sinx, y = x and the difference between the approximation and the true value of sinx at x.

We can also linearize state-space systems with nonlinear dynamics. We do this by picking a
point x in state-space and using this as the input to our nonlinear functions. Like in the above
example, this works well for states near the point about which the system was linearized, but
can quickly diverge further from that state.

1226 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.7.2 State-Space Controller Walkthrough

Note: Before following this tutorial, readers are recommended to have read an Introduction
to State-Space Control.

The goal of this tutorial is to provide “end-to-end” instructions on implementing a state-space
controller for a flywheel. By following this tutorial, readers will learn how to:

1. Create an accurate state-space model of a flywheel using system identification or CAD
software.

2. Implement a Kalman Filter to filter encoder velocity measurements without lag.
3. Implement a LQR feedback controller which, when combined with model-based feedfor-

ward, will generate voltage inputs to drive the flywheel to a reference.
This tutorial is intended to be approachable for teams without a great deal of programming
expertise. While the WPILib library offers significant flexibility in the manner in which its
state-space control features are implemented, closely following the implementation outlined
in this tutorial should provide teams with a basic structure which can be reused for a variety
of state-space systems.
The full example is available in the state-space flywheel (Java/C++) and state-space flywheel
system identification (Java/C++) example projects.

Why Use State-Space Control?

Because state-space control focuses on creating an accurate model of our system, we can
accurately predict how our model will respond to control inputs. This allows us to simulate
our mechanisms without access to a physical robot, as well as easily choose gains that we
know will work well. Having a model also allows us to create lagless filters, such as Kalman
Filters, to optimally filter sensor readings.

Modeling Our Flywheel

Recall that continuous state-space systems are modeled using the following system of equa-
tions:

ẋ = Ax+Bu
y = Cx+Du

Where x-dot is the rate of change of the system’s state, x is the system’s current state, u is
the input to the system, and y is the system’s output.
Let’s use this system of equations to model our flywheel in two different ways. We’ll first
model it using system identification using the SysId toolsuite, and then model it based on the
motor and flywheel’s moment of inertia.
The first step of building up our state-space system is picking our system’s states. We can
pick anything we want as a state – we could pick completely unrelated states if we wanted
– but it helps to pick states that are important. We can include hidden states in our state
(such as elevator velocity if we were only able to measure its position) and let our Kalman
Filter estimate their values. Remember that the states we choose will be driven towards their

30.7. State-Space and Model Based Control with WPILib 1227

https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceflywheel/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/StateSpaceFlywheel/cpp/Robot.cpp
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceflywheelsysid/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/main/wpilibcExamples/src/main/cpp/examples/StateSpaceFlywheelSysId/cpp/Robot.cpp

FIRST Robotics Competition

respective references by the feedback controller (typically the Linear-Quadratic Regulator
since it’s optimal).
For our flywheel, we care only about one state: its velocity. While we could chose to also
model its acceleration, the inclusion of this state isn’t necessary for our system.
Next, we identify the inputs to our system. Inputs can be thought of as things we can put
“into” our system to change its state. In the case of the flywheel (and many other single-
jointed mechanisms in FRC®), we have just one input: voltage applied to the motor. By
choosing voltage as our input (over something like motor duty cycle), we can compensate for
battery voltage sag as battery load increases.
A continuous-time state-space system writes x-dot, or the instantaneous rate of change of the
system’s system's state, as proportional to the current state and inputs. Because our state is
angular velocity, _x will be the flywheel’s angular acceleration.
Next, we will model our flywheel as a continuous-time state-space system. WPILib’s Lin-
earSystem will convert this to discrete-time internally. Review state-space notation for more
on continuous-time and discrete-time systems.

Modeling with System Identification

To rewrite this in state-space notation using system identification, we recall from the flywheel
state-space notation example, where we rewrote the following equation in terms of a.

V = kV · v+ kA · a
a = _v =

[−kV
kA

]
v +

[
1
kA

]
V

Where v is flywheel velocity, a and _v are flywheel acceleration, and V is voltage. Rewriting
this with the standard convention of x for the state vector and u for the input vector, we find:

_x =
[−kV

kA

]
x+

[
1
kA

]
u

The second part of state-space notation relates the system’s current state and inputs to the
output. In the case of a flywheel, our output vector y (or things that our sensors can measure)
is our flywheel’s velocity, which also happens to be an element of our state vector x. Therefore,
our output matrix is C =

[
1
]
, and our system feedthrough matrix is D =

[
0
]
. Writing this out

in continuous-time state-space notation yields the following.

_x =
[−kV

kA

]
x+

[
1
kA

]
u

y =
[
1
]
x+

[
0
]
u

The LinearSystem class contains methods for easily creating state-space systems identified
using system identification. This example shows a flywheel model with a kV of 0.023 and a
kA of 0.001:
Java

33 // Volts per (radian per second)
34 private static final double kFlywheelKv = 0.023;
35

36 // Volts per (radian per second squared)
37 private static final double kFlywheelKa = 0.001;
38

39 // The plant holds a state-space model of our flywheel. This system has the␣
↪→following properties:

(continues on next page)

1228 Chapter 30. Advanced Controls

FIRST Robotics Competition

(continued from previous page)
40 //
41 // States: [velocity], in radians per second.
42 // Inputs (what we can "put in"): [voltage], in volts.
43 // Outputs (what we can measure): [velocity], in radians per second.
44 //
45 // The Kv and Ka constants are found using the FRC Characterization toolsuite.
46 private final LinearSystem<N1, N1, N1> m_flywheelPlant =
47 LinearSystemId.identifyVelocitySystem(kFlywheelKv, kFlywheelKa);

C++

17 #include <frc/system/plant/LinearSystemId.h>

32 // Volts per (radian per second)
33 static constexpr auto kFlywheelKv = 0.023_V / 1_rad_per_s;
34

35 // Volts per (radian per second squared)
36 static constexpr auto kFlywheelKa = 0.001_V / 1_rad_per_s_sq;
37

38 // The plant holds a state-space model of our flywheel. This system has the
39 // following properties:
40 //
41 // States: [velocity], in radians per second.
42 // Inputs (what we can "put in"): [voltage], in volts.
43 // Outputs (what we can measure): [velocity], in radians per second.
44 //
45 // The Kv and Ka constants are found using the FRC Characterization toolsuite.
46 frc::LinearSystem<1, 1, 1> m_flywheelPlant =
47 frc::LinearSystemId::IdentifyVelocitySystem<units::radian>(kFlywheelKv,
48 kFlywheelKa);

Modeling Using Flywheel Moment of Inertia and Gearing

A flywheel can also be modeled without access to a physical robot, using information about the
motors, gearing and flywheel’s moment of inertia. A full derivation of this model is presented
in Section 8.2.1 of Controls Engineering in FRC.
The LinearSystem class contains methods to easily create a model of a flywheel from the
flywheel’s motors, gearing and moment of inertia. The moment of inertia can be calculated
using CAD software or using physics. The examples used here are detailed in the flywheel
example project (Java/C++).

Note: For WPILib’s state-space classes, gearing is written as output over input – that is, if
the flywheel spins slower than the motors, this number should be greater than one.

Note: The C++ LinearSystem class uses the C++ Units Library to prevent unit mixups and
assert dimensionality.

Java

30.7. State-Space and Model Based Control with WPILib 1229

https://file.tavsys.net/control/controls-engineering-in-frc.pdf
https://github.com/wpilibsuite/allwpilib/tree/v2023.2.1/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceflywheel
https://github.com/wpilibsuite/allwpilib/blob/v2023.2.1/wpilibcExamples/src/main/cpp/examples/StateSpaceFlywheel/cpp/Robot.cpp

FIRST Robotics Competition

34 private static final double kFlywheelMomentOfInertia = 0.00032; // kg * m^2
35

36 // Reduction between motors and encoder, as output over input. If the flywheel␣
↪→spins slower than

37 // the motors, this number should be greater than one.
38 private static final double kFlywheelGearing = 1.0;
39

40 // The plant holds a state-space model of our flywheel. This system has the␣
↪→following properties:

41 //
42 // States: [velocity], in radians per second.
43 // Inputs (what we can "put in"): [voltage], in volts.
44 // Outputs (what we can measure): [velocity], in radians per second.
45 private final LinearSystem<N1, N1, N1> m_flywheelPlant =
46 LinearSystemId.createFlywheelSystem(
47 DCMotor.getNEO(2), kFlywheelMomentOfInertia, kFlywheelGearing);

C++

17 #include <frc/system/plant/LinearSystemId.h>

31 static constexpr units::kilogram_square_meter_t kFlywheelMomentOfInertia =
32 0.00032_kg_sq_m;
33

34 // Reduction between motors and encoder, as output over input. If the flywheel
35 // spins slower than the motors, this number should be greater than one.
36 static constexpr double kFlywheelGearing = 1.0;
37

38 // The plant holds a state-space model of our flywheel. This system has the
39 // following properties:
40 //
41 // States: [velocity], in radians per second.
42 // Inputs (what we can "put in"): [voltage], in volts.
43 // Outputs (what we can measure): [velocity], in radians per second.
44 frc::LinearSystem<1, 1, 1> m_flywheelPlant =
45 frc::LinearSystemId::FlywheelSystem(
46 frc::DCMotor::NEO(2), kFlywheelMomentOfInertia, kFlywheelGearing);

Kalman Filters: Observing Flywheel State

Kalman filters are used to filter our velocity measurements using our state-space model to
generate a state estimate x̂. As our flywheel model is linear, we can use a Kalman filter
to estimate the flywheel’s velocity. WPILib’s Kalman filter takes a LinearSystem (which we
found above), along with standard deviations of model and sensor measurements. We can
adjust how “smooth” our state estimate is by adjusting these weights. Larger state standard
deviations will cause the filter to “distrust” our state estimate and favor new measurements
more highly, while larger measurement standard deviations will do the opposite.
In the case of a flywheel we start with a state standard deviation of 3 rad/s and a measurement
standard deviation of 0.01 rad/s. These values are up to the user to choose – these weights
produced a filter that was tolerant to some noise but whose state estimate quickly reacted to
external disturbances for a flywheel – and should be tuned to create a filter that behaves well
for your specific flywheel. Graphing states, measurements, inputs, references, and outputs
over time is a great visual way to tune Kalman filters.

1230 Chapter 30. Advanced Controls

FIRST Robotics Competition

The above graph shows two differently tuned Kalman filters, as well as a single-pole IIR fil-
ter and a Median Filter. This data was collected with a shooter over ~5 seconds, and four
balls were run through the shooter (as seen in the four dips in velocity). While there are
no hard rules on choosing good state and measurement standard deviations, they should in
general be tuned to trust the model enough to reject noise while reacting quickly to external
disturbances.
Because the feedback controller computes error using the x-hat estimated by the Kalman fil-
ter, the controller will react to disturbances only as quickly the filter’s state estimate changes.
In the above chart, the upper left plot (with a state standard deviation of 3.0 and measurement
standard deviation of 0.2) produced a filter that reacted quickly to disturbances while reject-
ing noise, while the upper right plot shows a filter that was barely affected by the velocity
dips.
Java

59 // The observer fuses our encoder data and voltage inputs to reject noise.
60 private final KalmanFilter<N1, N1, N1> m_observer =
61 new KalmanFilter<>(
62 Nat.N1(),

(continues on next page)

30.7. State-Space and Model Based Control with WPILib 1231

FIRST Robotics Competition

(continued from previous page)
63 Nat.N1(),
64 m_flywheelPlant,
65 VecBuilder.fill(3.0), // How accurate we think our model is
66 VecBuilder.fill(0.01), // How accurate we think our encoder
67 // data is
68 0.020);

C++

13 #include <frc/estimator/KalmanFilter.h>

48 // The observer fuses our encoder data and voltage inputs to reject noise.
49 frc::KalmanFilter<1, 1, 1> m_observer{
50 m_flywheelPlant,
51 {3.0}, // How accurate we think our model is
52 {0.01}, // How accurate we think our encoder data is
53 20_ms};

Because Kalman filters use our state-space model in the Predict step, it is important that
our model is as accurate as possible. One way to verify this is to record a flywheel’s input
voltage and velocity over time, and replay this data by calling only predict on the Kalman
filter. Then, the kV and kA gains (or moment of inertia and other constants) can be adjusted
until the model closely matches the recorded data.

Linear-Quadratic Regulators and Plant Inversion Feedforward

The Linear-Quadratic Regulator finds a feedback controller to drive our flywheel system to
its reference. Because our flywheel has just one state, the control law picked by our LQR will
be in the form u = K(r− x) where K is a 1x1 matrix; in other words, the control law picked
by LQR is simply a proportional controller, or a PID controller with only a P gain. This gain
is chosen by our LQR based on the state excursion and control efforts we pass it. More on
tuning LQR controllers can be found in the LQR application example.
Much like SimpleMotorFeedforward can be used to generate feedforward voltage inputs
given kS, kV, and kA constants, the Plant Inversion Feedforward class generate feedforward
voltage inputs given a state-space system. The voltage commands generated by the Lin-
earSystemLoop class are the sum of the feedforward and feedback inputs.
Java

60 // A LQR uses feedback to create voltage commands.
61 private final LinearQuadraticRegulator<N1, N1, N1> m_controller =
62 new LinearQuadraticRegulator<>(
63 m_flywheelPlant,
64 VecBuilder.fill(8.0), // qelms. Velocity error tolerance, in radians per␣

↪→second. Decrease
65 // this to more heavily penalize state excursion, or make the controller␣

↪→behave more
66 // aggressively.
67 VecBuilder.fill(12.0), // relms. Control effort (voltage) tolerance.␣

↪→Decrease this to more
68 // heavily penalize control effort, or make the controller less aggressive.␣

↪→12 is a good
69 // starting point because that is the (approximate) maximum voltage of a␣

(continues on next page)

1232 Chapter 30. Advanced Controls

FIRST Robotics Competition

(continued from previous page)
↪→battery.

70 0.020); // Nominal time between loops. 0.020 for TimedRobot, but can be
71 // lower if using notifiers.

C++

11 #include <frc/controller/LinearQuadraticRegulator.h>

54 // A LQR uses feedback to create voltage commands.
55 frc::LinearQuadraticRegulator<1, 1> m_controller{
56 m_flywheelPlant,
57 // qelms. Velocity error tolerance, in radians per second. Decrease this
58 // to more heavily penalize state excursion, or make the controller behave
59 // more aggressively.
60 {8.0},
61 // relms. Control effort (voltage) tolerance. Decrease this to more
62 // heavily penalize control effort, or make the controller less
63 // aggressive. 12 is a good starting point because that is the
64 // (approximate) maximum voltage of a battery.
65 {12.0},
66 // Nominal time between loops. 20ms for TimedRobot, but can be lower if
67 // using notifiers.
68 20_ms};
69

70 // The state-space loop combines a controller, observer, feedforward and plant
71 // for easy control.
72 frc::LinearSystemLoop<1, 1, 1> m_loop{m_flywheelPlant, m_controller,
73 m_observer, 12_V, 20_ms};

Bringing it All Together: LinearSystemLoop

LinearSystemLoop combines our system, controller, and observer that we created earlier.
The constructor shown will also instantiate a PlantInversionFeedforward.
Java

73 // The state-space loop combines a controller, observer, feedforward and plant for␣
↪→easy control.

74 private final LinearSystemLoop<N1, N1, N1> m_loop =
75 new LinearSystemLoop<>(m_flywheelPlant, m_controller, m_observer, 12.0, 0.020);

C++

15 #include <frc/system/LinearSystemLoop.h>

71 // The state-space loop combines a controller, observer, feedforward and plant
72 // for easy control.
73 frc::LinearSystemLoop<1, 1, 1> m_loop{m_flywheelPlant, m_controller,
74 m_observer, 12_V, 20_ms};

Once we have our LinearSystemLoop, the only thing left to do is actually run it. To do that,
we’ll periodically update our Kalman filter with our new encoder velocity measurements and
apply new voltage commands to it. To do that, we first set the reference, then correct with
the current flywheel speed, predict the Kalman filter into the next timestep, and apply the
inputs generated using getU.

30.7. State-Space and Model Based Control with WPILib 1233

FIRST Robotics Competition

Java

96 @Override
97 public void teleopPeriodic() {
98 // Sets the target speed of our flywheel. This is similar to setting the setpoint␣

↪→of a
99 // PID controller.

100 if (m_joystick.getTriggerPressed()) {
101 // We just pressed the trigger, so let's set our next reference
102 m_loop.setNextR(VecBuilder.fill(kSpinupRadPerSec));
103 } else if (m_joystick.getTriggerReleased()) {
104 // We just released the trigger, so let's spin down
105 m_loop.setNextR(VecBuilder.fill(0.0));
106 }
107

108 // Correct our Kalman filter's state vector estimate with encoder data.
109 m_loop.correct(VecBuilder.fill(m_encoder.getRate()));
110

111 // Update our LQR to generate new voltage commands and use the voltages to␣
↪→predict the next

112 // state with out Kalman filter.
113 m_loop.predict(0.020);
114

115 // Send the new calculated voltage to the motors.
116 // voltage = duty cycle * battery voltage, so
117 // duty cycle = voltage / battery voltage
118 double nextVoltage = m_loop.getU(0);
119 m_motor.setVoltage(nextVoltage);
120 }
121 }

C++

5 #include <numbers>
6

7 #include <frc/DriverStation.h>
8 #include <frc/Encoder.h>
9 #include <frc/TimedRobot.h>

10 #include <frc/XboxController.h>
11 #include <frc/controller/LinearQuadraticRegulator.h>
12 #include <frc/drive/DifferentialDrive.h>
13 #include <frc/estimator/KalmanFilter.h>
14 #include <frc/motorcontrol/PWMSparkMax.h>
15 #include <frc/system/LinearSystemLoop.h>
16 #include <frc/system/plant/DCMotor.h>
17 #include <frc/system/plant/LinearSystemId.h>

92 void TeleopPeriodic() override {
93 // Sets the target speed of our flywheel. This is similar to setting the
94 // setpoint of a PID controller.
95 if (m_joystick.GetRightBumper()) {
96 // We pressed the bumper, so let's set our next reference
97 m_loop.SetNextR(frc::Vectord<1>{kSpinup.value()});
98 } else {
99 // We released the bumper, so let's spin down

100 m_loop.SetNextR(frc::Vectord<1>{0.0});
101 }
102

(continues on next page)

1234 Chapter 30. Advanced Controls

FIRST Robotics Competition

(continued from previous page)
103 // Correct our Kalman filter's state vector estimate with encoder data.
104 m_loop.Correct(frc::Vectord<1>{m_encoder.GetRate()});
105

106 // Update our LQR to generate new voltage commands and use the voltages to
107 // predict the next state with out Kalman filter.
108 m_loop.Predict(20_ms);
109

110 // Send the new calculated voltage to the motors.
111 // voltage = duty cycle * battery voltage, so
112 // duty cycle = voltage / battery voltage
113 m_motor.SetVoltage(units::volt_t{m_loop.U(0)});
114 }

Angle Wrap with LQR

Mechanisms with a continuous angle can have that angle wrapped by calling the code below
instead of lqr.Calculate(x, r).
Java

var error = lqr.getR().minus(x);
error.set(0, 0, MathUtil.angleModulus(error.get(0, 0)));
var u = lqr.getK().times(error);

C++

Eigen::Vector<double, 2> error = lqr.R() - x;
error(0) = frc::AngleModulus(units::radian_t{error(0)}).value();
Eigen::Vector<double, 2> u = lqr.K() * error;

30.7.3 State Observers and Kalman Filters

State observers combine information about a system’s behavior and external measurements
to estimate the true state of the system. A common observer used for linear systems is the
Kalman Filter. Kalman filters are advantageous over other filters as they fuse measurements
from one or more sensors with a state-space model of the system to optimally estimate a
system’s state.
This image shows flywheel velocity measurements over time, run through a variety of different
filters. Note that a well-tuned Kalman filter shows no measurement lag during flywheel spinup
while still rejecting noisy data and reacting quickly to disturbances as balls pass through it.
More on filters can be found in the filters section.

30.7. State-Space and Model Based Control with WPILib 1235

FIRST Robotics Competition

Gaussian Functions

Kalman filters utilize a Gaussian distribution to model the noise in a process1. In the case of a
Kalman filter, the estimated state of the system is the mean, while the variance is a measure
of how certain (or uncertain) the filter is about the true state.
The idea of variance and covariance is central to the function of a Kalman filter. Covariance is
a measurement of how two random variables are correlated. In a system with a single state,
the covariance matrix is simply cov(x1,x1), or a matrix containing the variance var(x1) of the
state x1. The magnitude of this variance is the square of the standard deviation of the Gaussian

1 In a real robot, noise comes from all sorts of sources. Stray electromagnetic radiation adds extra voltages to
sensor readings, vibrations and temperature variations throw off inertial measurement units, gear lash causes en-
coders to have inaccuracies when directions change… all sorts of things. It’s important to realize that, by themselves,
each of these sources of “noise” aren’t guaranteed to follow any pattern. Some of them might be the “white noise”
random vibrations you’ve probably heard on the radio. Others might be “pops” or single-loop errors. Others might
be nominally zero, but strongly correlated with events on the robot. However, the Central Limit Theorem shows
mathematically that regardless of how the individual sources of noise are distributed, as we add more and more of
them up their combined effect eventually is distributed like a Gaussian. Since we do not know the exact individual
sources of noise, the best choice of a model we can make is indeed that Gaussian function.

1236 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.7. State-Space and Model Based Control with WPILib 1237

FIRST Robotics Competition

function describing the current state estimate. Relatively large values for covariance might
indicate noisy data, while small covariances might indicate that the filter is more confident
about it’s estimate. Remember that “large” and “small” values for variance or covariance are
relative to the base unit being used – for example, if x1 was measured in meters, cov(x1,x1)
would be in meters squared.
Covariance matrices are written in the following form:

=

cov(x1, x1) cov(x1, x2) . . . cov(x1, xn)
cov(x2, x1) cov(x2, x2) . . . cov(x1, xn)

...
...

cov(xn, x1) cov(xn, x2) . . . cov(xn, xn)

Kalman Filters

Important: It is important to develop an intuition for what a Kalman filter is actually doing.
The book Kalman and Bayesian Filters in Python by Roger Labbe provides a great visual and
interactive introduction to Bayesian filters. The Kalman filters in WPILib use linear algebra
to gentrify the math, but the ideas are similar to the single-dimensional case. We suggest
reading through Chapter 4 to gain an intuition for what these filters are doing.

To summarize, Kalman filters (and all Bayesian filters) have two parts: prediction and correc-
tion. Prediction projects our state estimate forward in time according to our system’s dynam-
ics, and correct steers the estimated state towards the measured state. While filters often
perform both in the same timestep, it’s not strictly necessary – For example, WPILib’s pose
estimators call predict frequently, and correct only when new measurement data is available
(for example, from a low-framerate vision system).
The following shows the equations of a discrete-time Kalman filter:

Predict step
x̂−k+1 = Ax̂+k +Buk

P−
k+1 = AP−

k AT + Q T

Update step
Kk+1 = P−

k+1CT (CP−
k+1CT +R)−1

x̂+k+1 = x̂−k+1 +Kk+1(yk+1 −Cx̂−k+1 −Duk+1)

P+
k+1 = (I−Kk+1C)P−

k+1

A system matrix x̂ state estimate vector
B input matrix u input vector
C output matrix y output vector
D feedthrough matrix process noise intensity vector
P error covariance matrix Q process noise covariance matrix
K Kalman gain matrix R measurement noise covariance matrix

The state estimate x, together with P, describe the mean and covariance of the Gaussian
function that describes our filter’s estimate of the system’s true state.

1238 Chapter 30. Advanced Controls

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

FIRST Robotics Competition

Process and Measurement Noise Covariance Matrices

The process and measurement noise covariance matrices Q and R describe the variance of
each of our states and measurements. Remember that for a Gaussian function, variance is
the square of the function’s standard deviation. In a WPILib, Q and R are diagonal matrices
whose diagonals contain their respective variances. For example, a Kalman filter with states[
position
velocity

]
and measurements

[
position

]
with state standard deviations

[
0.1
1.0

]
and measure-

ment standard deviation
[
0.01

]
would have the following Q and R matrices:

Q =

[
0.01 0
0 1.0

]
, R =

[
0.0001

]

Error Covariance Matrix

The error covariance matrix P describes the covariance of the state estimate x̂. Informally,
P describes our certainty about the estimated state. If P is large, our uncertainty about the
true state is large. Conversely, a P with smaller elements would imply less uncertainty about
our true state.
As we project the model forward, P increases as our certainty about the system’s true state
decreases.

Predict step

In prediction, our state estimate is updated according to the linear system dynamics
_x = Ax+Bu. Furthermore, our error covariance P increases by the process noise covari-
ance matrix Q. Larger values of Q will make our error covariance P grow more quickly. This
P is used in the correction step to weight the model and measurements.

Correct step

In the correct step, our state estimate is updated to include new measurement information.
This new information is weighted against the state estimate x̂ by the Kalman gain K. Large
values of K more highly weight incoming measurements, while smaller values of K more
highly weight our state prediction. Because K is related to P, larger values of P will increase
K and more heavily weight measurements. If, for example, a filter is predicted for a long
duration, the large P would heavily weight the new information.
Finally, the error covariance P decreases to increase our confidence in the state estimate.

30.7. State-Space and Model Based Control with WPILib 1239

FIRST Robotics Competition

Tuning Kalman Filters

WPILib’s Kalman Filter classes’ constructors take a linear system, a vector of process noise
standard deviations and measurement noise standard deviations. These are converted to
Q and R matrices by filling the diagonals with the square of the standard deviations, or
variances, of each state or measurement. By decreasing a state’s standard deviation (and
therefore its corresponding entry in Q), the filter will distrust incoming measurements more.
Similarly, increasing a state’s standard deviation will trust incoming measurements more.
The same holds for the measurement standard deviations – decreasing an entry will make
the filter more highly trust the incoming measurement for the corresponding state, while
increasing it will decrease trust in the measurement.
Java

49 // The observer fuses our encoder data and voltage inputs to reject noise.
50 private final KalmanFilter<N1, N1, N1> m_observer =
51 new KalmanFilter<>(
52 Nat.N1(),
53 Nat.N1(),
54 m_flywheelPlant,
55 VecBuilder.fill(3.0), // How accurate we think our model is
56 VecBuilder.fill(0.01), // How accurate we think our encoder
57 // data is
58 0.020);

C++

5 #include <numbers>
6

7 #include <frc/DriverStation.h>
8 #include <frc/Encoder.h>
9 #include <frc/TimedRobot.h>

10 #include <frc/XboxController.h>
11 #include <frc/controller/LinearQuadraticRegulator.h>
12 #include <frc/drive/DifferentialDrive.h>
13 #include <frc/estimator/KalmanFilter.h>
14 #include <frc/motorcontrol/PWMSparkMax.h>
15 #include <frc/system/LinearSystemLoop.h>
16 #include <frc/system/plant/DCMotor.h>
17 #include <frc/system/plant/LinearSystemId.h>
18 #include <units/angular_velocity.h>

48 // The observer fuses our encoder data and voltage inputs to reject noise.
49 frc::KalmanFilter<1, 1, 1> m_observer{
50 m_flywheelPlant,
51 {3.0}, // How accurate we think our model is
52 {0.01}, // How accurate we think our encoder data is
53 20_ms};

1240 Chapter 30. Advanced Controls

FIRST Robotics Competition

Footnotes

30.7.4 Pose Estimators

WPILib includes pose estimators for differential, swerve and mecanum drivetrains. These
estimators are designed to be drop-in replacements for the existing odometry classes that
also support fusing latency-compensated robot pose estimates with encoder and gyro mea-
surements. These estimators can account for encoder drift and noisy vision data. These
estimators can behave identically to their corresponding odometry classes if only update is
called on these estimators.
Pose estimators estimate robot position using a state-space system with the states

[
x y θ

]T ,
which can represent robot position as a Pose2d. WPILib includes DifferentialDrivePoseEs-
timator, SwerveDrivePoseEstimator and MecanumDrivePoseEstimator to estimate robot
position. In these, users call update periodically with encoder and gyro measurements (same
as the odometry classes) to update the robot’s estimated position. When the robot receives
measurements of its field-relative position (encoded as a Pose2d) from sensors such as com-
puter vision or V-SLAM, the pose estimator latency-compensates the measurement to accu-
rately estimate robot position.
Here’s how to initialize a DifferentialDrivePoseEstimator:
Java

87 private final DifferentialDrivePoseEstimator m_poseEstimator =
88 new DifferentialDrivePoseEstimator(
89 m_kinematics,
90 m_gyro.getRotation2d(),
91 m_leftEncoder.getDistance(),
92 m_rightEncoder.getDistance(),
93 new Pose2d(),
94 VecBuilder.fill(0.05, 0.05, Units.degreesToRadians(5)),
95 VecBuilder.fill(0.5, 0.5, Units.degreesToRadians(30)));

C++

158 frc::DifferentialDrivePoseEstimator m_poseEstimator{
159 m_kinematics,
160 m_gyro.GetRotation2d(),
161 units::meter_t{m_leftEncoder.GetDistance()},
162 units::meter_t{m_rightEncoder.GetDistance()},
163 frc::Pose2d{},
164 {0.01, 0.01, 0.01},
165 {0.1, 0.1, 0.1}};

Add odometry measurements every loop by calling Update().
Java

234 m_poseEstimator.update(
235 m_gyro.getRotation2d(), m_leftEncoder.getDistance(), m_rightEncoder.

↪→getDistance());

C++

84 m_poseEstimator.Update(m_gyro.GetRotation2d(),
85 units::meter_t{m_leftEncoder.GetDistance()},
86 units::meter_t{m_rightEncoder.GetDistance()});

30.7. State-Space and Model Based Control with WPILib 1241

FIRST Robotics Competition

Add vision pose measurements occasionally by calling AddVisionMeasurement().
Java

243 // Compute the robot's field-relative position exclusively from vision␣
↪→measurements.

244 Pose3d visionMeasurement3d =
245 objectToRobotPose(m_objectInField, m_robotToCamera, m_cameraToObjectEntry);
246

247 // Convert robot pose from Pose3d to Pose2d needed to apply vision measurements.
248 Pose2d visionMeasurement2d = visionMeasurement3d.toPose2d();
249

250 // Apply vision measurements. For simulation purposes only, we don't input a␣
↪→latency delay -- on

251 // a real robot, this must be calculated based either on known latency or␣
↪→timestamps.

252 m_poseEstimator.addVisionMeasurement(visionMeasurement2d, Timer.
↪→getFPGATimestamp());

C++

93 // Compute the robot's field-relative position exclusively from vision
94 // measurements.
95 frc::Pose3d visionMeasurement3d = ObjectToRobotPose(
96 m_objectInField, m_robotToCamera, m_cameraToObjectEntryRef);
97

98 // Convert robot's pose from Pose3d to Pose2d needed to apply vision
99 // measurements.

100 frc::Pose2d visionMeasurement2d = visionMeasurement3d.ToPose2d();
101

102 // Apply vision measurements. For simulation purposes only, we don't input a
103 // latency delay -- on a real robot, this must be calculated based either on
104 // known latency or timestamps.
105 m_poseEstimator.AddVisionMeasurement(visionMeasurement2d,
106 frc::Timer::GetFPGATimestamp());

Tuning Pose Estimators

All pose estimators offer user-customizable standard deviations for model and measurements
(defaults are used if you don’t provide them). Standard deviation is a measure of how spread
out the noise is for a random signal. Giving a state a smaller standard deviation means it will
be trusted more during data fusion.
For example, increasing the standard deviation for measurements (as one might do for a noisy
signal) would lead to the estimator trusting its state estimate more than the incoming mea-
surements. On the field, this might mean that the filter can reject noisy vision data well, at the
cost of being slow to correct for model deviations. While these values can be estimated be-
forehand, they very much depend on the unique setup of each robot and global measurement
method.
When incorporating AprilTag poses, make the vision heading standard deviation very large,
make the gyro heading standard deviation small, and scale the vision x and y standard devi-
ation by distance from the tag.

1242 Chapter 30. Advanced Controls

FIRST Robotics Competition

30.7.5 Debugging State-Space Models and Controllers

Checking Signs

One of the most common causes of bugs with state-space controllers is signs being flipped.
For example, models included in WPILib expect positive voltage to result in a positive acceler-
ation, and vice versa. If applying a positive voltage does not make the mechanism accelerate
forwards, or if moving “forwards” makes encoder (or other sensor readings) decrease, they
should be inverted so that positive voltage input results in a positive encoder reading. For
example, if I apply an input of [12, 12]T (full forwards for the left and right motors) to my dif-
ferential drivetrain, my wheels should propel my robot “forwards” (along the +X axis locally),
and for my encoders to read a positive velocity.

Important: The WPILib DifferentialDrive, by default, does not invert any motors. You
may need to call the setInverted(true) method on the motor controller object to invert so
that positive input creates forward motion.

The Importance of Graphs

Reliable data of the system’s states, inputs and outputs over time is important when debug-
ging state-space controllers and observers. One common approach is to send this data over
NetworkTables and use tools such as Shuffleboard, which allow us to both graph the data in
real-time as well as save it to a CSV file for plotting later with tools such as Google Sheets,
Excel or Python.

Note: By default, NetworkTables is limited to a 10hz update rate. For testing, this can be
bypassed with the following code snippet to submit data at up to 100hz. This code should be
run periodically to forcibly publish new data.

Danger: This will send extra data (at up to 100hz) over NetworkTables, which can cause
lag with both user code and robot dashboards. This will also increase network utilization.
It is often a good idea to disable this during competitions.

Java

@Override
public void robotPeriodic() {

NetworkTableInstance.getDefault().flush();
}

C++

void RobotPeriodic() {
NetworkTableInstance::GetDefault().Flush();

}

30.7. State-Space and Model Based Control with WPILib 1243

FIRST Robotics Competition

Compensating for Input Lag

Often times, some sensor input data (i.e. velocity readings) may be delayed due to onboard
filtering that smart motor controllers tend to perform. By default, LQR’s K gain assumes no
input delay, so introducing significant delay on the order of tens of milliseconds can cause
instability. To combat this, the LQR’s K gain can be reduced, trading off performance for
stability. A code example for how to compensate for this latency in a mathematically rigorous
manner is available here.

30.8 Controls Glossary

bang-bang control
A very simple, no-tuning-required closed-loop control technique. It simply “turns on”
the control effort when the process variable is too small, and “turns off” the control
effort when the process variable is too big. It works well in some cases, but not all. See
“Bang-bang” control on Wikipedia for more info.

Cartesian coordinate system
A set of points in space where each point is described by a set of numbers, indicating its
coordinates within that space. These coordinates are an expression of the orthogonal
distance of each point from a set of fixed, orthogonal axes (IE, a “rectangular” system). 2-
dimension and 3-dimension spaces are most common in FRC (and likely what was learned
in algebra 1), but any number of dimensions is theoretically possible. See Cartesian
coordinate system on Wikipedia for more info.

churning losses
Complex friction-like forces arising from the fact that when gears and bearings rotate,
they must displace liquid lubricant. This reduces the efficiency of rotating mechanisms.

control signal
The driving signal sent to a plant by a controller, usually quantified as a voltage.

control effort
Control signal

control law
A mathematical formula that generates inputs to drive a system to a desired state, given
the current state. A common example is the control law u = K(r− x)

controller
Used in position or negative feedback with a plant to bring about a desired system state
by driving the difference between a reference signal and the output to zero.

convolution
A mathematical operation that calculates a weighted moving average of one function,
with the weights assigned by a second function. A common way to “filter” sensor input
is to apply a convolution to it, using a carefully-chosen filtering function. See convolution.
on Wikipedia for more info.

counter-electromotive force
A voltage generated in a spinning motor. The voltage is a result of the fact that has a
coil of wire rotating near a magnet. See Counter-electromotive_force on Wikipedia for
more info.

current
The flow of electrons through a conductor. Current is described with a unit of “Amps”

1244 Chapter 30. Advanced Controls

https://en.wikipedia.org/wiki/Bang%E2%80%93bang_control
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Counter-electromotive_force

FIRST Robotics Competition

(or simply “A”), and is measured at a single point in a circuit. One amp is equal to
6241509074000000000 electrons moving past the measurement point in one second.

dynamics
A branch of physics concerned with the motion of bodies under the action of forces. In
modern control, systems evolve according to their dynamics.

derivative
A mathematical operation which evaluates the “rate-of-change” of a function at a given
point. See derivative on Wikipedia for more info.

error
Reference minus an output or state.

exponential search
An iterative process of finding a specific value within a wide search range by applying a
multiplicative factor to the search value. See exponential search on Wikipedia for more
info.

exponential smoothing
A very common way to implement a simple low-pass filter, using an exponential window
function in a convolution with an input signal. The convolution operation simplifies down
to a very simple set of math operations on the current input and previous output. See
exponential smoothing on Wikipedia for more info.

gain
A scalar value that relates the magnitude of an input signal to the magnitude of an output
signal. For example, gain in output = gain * input. A gain greater than one would
amplify an input signal, while a gain less than one would dampen an input signal. A
negative gain would negate the input signal.

Gaussian distribution
A special mathematical function that describes distributions of averages. The graph of
a Gaussian function is a “bell curve” shape. This function is described by its mean (the
location of the “peak” of the bell curve) and variance (a measure of how “spread out”
the bell curve is). See Gaussian distribution on Wikipedia for more info.

gradient
The derivative, but applied to a function with multiple inputs. As a result, the output is
both the magnitude of the rate of change, and the vector direction along which it occurs.

hidden state
A state that cannot be directly measured, but whose dynamics can be related to other
states.

input
An input to the plant (hence the name) that can be used to change the plant’s state.

• Ex. A flywheel will have 1 input: the voltage of the motor driving it.
• Ex. A drivetrain might have 2 inputs: the voltages of the left and right motors.

Inputs are often represented by the variable u, a column vector with one entry per input
to the system.

least-squares regression
A curve-fitting technique which picks a curve to minimizes the square of the error be-
tween the fitted curve, and the actual measured data. See ordinary least-squares re-
gression on Wikipedia for more info.

30.8. Controls Glossary 1245

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Exponential_search
https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression

FIRST Robotics Competition

LQR
Linear-Quadratic Regulator - A feedback control scheme which seeks to operate a sys-
tem in a “most optimal” or “lowest cost” manner, in the sense of minimizing the square
of some “cost function” that represents a combination of system error and control ef-
fort. This requires an accurate mathematical model of the system being controlled, and
function describing the “cost” of any given system state. See LQR on Wikipedia for more
info.

measurement
Measurements are outputs that are measured from a plant, or physical system, using
sensors.

model
A set of mathematical equations that reflects some aspect of a physical system’s behavior.

observer
In control theory, a system that provides an estimate of the internal state of a given
real system from measurements of the input and output of the real system. WPILib
includes a Kalman Filter class for observing linear systems, and ExtendedKalmanFilter
and UnscentedKalmanFilter classes for nonlinear systems.

orthogonal
Having the property of being independent, or lacking mutual influence. For example,
two lines are orthogonal if moving any number of units along one line causes zero dis-
placement along the other line. In a cartesian coordinate system, orthogonal lines are
often said to have 90-degree angles between each other.

output
Measurements from sensors. There can be more measurements then states. These out-
puts are used in the “correct” step of Kalman Filters.

• Ex. A flywheel might have 1 output from a encoder that measures it’s velocity.
• Ex. A drivetrain might use solvePNP and V-SLAM to find it’s x/y/heading position on

the field. It’s fine that there are 6 measurements (solvePNP x/y/heading and V-SLAM
x/y/heading) and 3 states (robot x/y/heading).

Outputs of a system are often represented using the variable y, a column vector with
one entry per output (or thing we can measure). For example, if our system had states
for velocity and acceleration but our sensor could only measure velocity, our, our output
vector would only include the system's velocity.

phase portrait
A graph of a function’s value and its derivative as they change in time, given some initial
starting conditions. They are useful for analyzing system behavior (stable/unstable op-
erating points, limit cycles, etc.) given a certain set of parameters or starting conditions.
See phase portrait on Wikipedia for more info.

PID
Proportional-Integral-Derivative - A feedback controller which calculates a control signal
from a weighted sum of the error, the rate of change of the error, and an accumulated
sum of previous errors. See PID controller. on Wikipedia for more info.

plant
The system or collection of actuators being controlled.

process variable
The term used to describe the output of a plant in the context of PID control.

1246 Chapter 30. Advanced Controls

https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic_regulator
https://en.wikipedia.org/wiki/Phase_portrait
https://en.wikipedia.org/wiki/PID_controller

FIRST Robotics Competition

r-squared
A statistical measurement of how well a model predicts a set of data, representing the
fraction of the observed variation in the independent variable that is accurately pre-
dicted by the model. The value typically runs from 0.0 (a terrible fit, equivalent to just
guessing the average value of your independent variable) to 1.0 (a perfect fit). See Co-
efficient_of_determination on Wikipedia for more info.

reference
The desired state. This value is used as the reference point for a controller’s error cal-
culation.

rise time
The time a system takes to initially reach the reference after applying a step input.

RMSE
Root Mean Squared Error - Statistical measurement of how well a curve is fit to a set
of data. It is calculated as the square root of the average (mean) of the squares of all
the errors between the actual sample and the curve fit. It has units of the original input
data. See Root Mean Squared Error on Wikipedia for more info.

setpoint
The term used to describe the reference of a PID controller.

settling time
The time a system takes to settle at the reference after a step input is applied.

signum function
A non-continuous function that expresses the “sign” of its input. It is equal to -1 for all
negative input numbers, 0 for an input of 0, and 1 for all positive input numbers. See
signum function, on Wikipedia for more info.

state
A characteristic of a system (e.g., velocity) that can be used to determine the system’s
future behavior. In state-space notation, the state of a system is written as a column
vector describing it’s position in state-space.

• Ex. A drivetrain system might have the states

xy
θ

 to describe it’s position on the

field.

• Ex. An elevator system might have the states
[
position
velocity

]
to describe its current

height and velocity.
A system’s state is often represented by the variable x, a column vector with one entry
per state.

statistically robust
The property of a data processing algorithm which makes it resilient to a noisy or outlier-
prone data set. Designing statistically robust algorithms on robots is important because
real-world sensor data can often be unpredictable, but unexpected robot behavior is
never desirable. See Robust Statistics on Wikipedia for more info.

steady-state error
Error after system reaches equilibrium.

step input
A system input that is 0 for t < 0 and a constant greater than 0 for t ≥ 0. A step input that
is 1 for t ≥ 0 is called a unit step input.

30.8. Controls Glossary 1247

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Sign_function
https://en.wikipedia.org/wiki/Robust_statistics

FIRST Robotics Competition

step response
The response of a system to a step input.

system
A term encompassing a plant and it’s interaction with a controller and observer, which
is treated as a single entity. Mathematically speaking, a system maps inputs to outputs
through a linear combination of states.

system identification
The process of capturing a systems dynamics in a mathematical model using measured
data. The SysId toolsuite uses system identification to find kS, kV and kA terms.

system response
The behavior of a system over time for a given input.

voltage
The measurement of how much an electric field is “pushing” electrons through a circuit.
It is sometimes called “Electromotive Force”, or “EMF”. It is measured in units of “Volts”.
It always is defined between two points in a circuit. If one electron travels between two
points that have one volt of EMF between them, it will have been accelerated to the point
of having 1

6241509074000000000 joules of energy.
viscous drag

The force generated from an object moving relatively slowly through non-turbulent fluid.
In this region, the force is roughly proportional to the velocity of the object. It describes
the most common type of “air resistance” an FRC robot would encounter, as well as
losses in a gearbox from displacing grease. See Drag (physics) on Wikipedia for more
info.

x-dot
ẋ, or x-dot: the derivative of the state vector x. If the system had just a velocity state,
then ẋ would represent the system's acceleration.

x-hat
x̂, or x-hat: the estimated state of a system, as estimated by an observer.

1248 Chapter 30. Advanced Controls

https://en.wikipedia.org/wiki/Drag_(physics)#Very_low_Reynolds_numbers:_Stokes'_drag

31
Convenience Features

This section covers some general convenience features that be used with other advanced
programming features.

31.1 Scheduling Functions at Custom Frequencies

TimedRobot’s addPeriodic() method allows one to run custom methods at a rate faster than
the default TimedRobot periodic update rate (20 ms). Previously, teams had to make a No-
tifier to run feedback controllers more often than the TimedRobot loop period of 20 ms
(running TimedRobot more often than this is not advised). Now, users can run feedback con-
trollers more often than the main robot loop, but synchronously with the TimedRobot periodic
functions, eliminating potential thread safety issues.
The addPeriodic() (Java) / AddPeriodic() (C++) method takes in a lambda (the function to
run), along with the requested period and an optional offset from the common starting time.
The optional third argument is useful for scheduling a function in a different timeslot relative
to the other TimedRobot periodic methods.

Note: The units for the period and offset are seconds in Java. In C++, the units library can
be used to specify a period and offset in any time unit.

Java

public class Robot extends TimedRobot {
private Joystick m_joystick = new Joystick(0);
private Encoder m_encoder = new Encoder(1, 2);
private Spark m_motor = new Spark(1);
private PIDController m_controller = new PIDController(1.0, 0.0, 0.5, 0.01);

public Robot() {
addPeriodic(() -> {

m_motor.set(m_controller.calculate(m_encoder.getRate()));
}, 0.01, 0.005);

}

@Override
(continues on next page)

1249

FIRST Robotics Competition

(continued from previous page)
public teleopPeriodic() {

if (m_joystick.getRawButtonPressed(1)) {
if (m_controller.getSetpoint() == 0.0) {

m_controller.setSetpoint(30.0);
} else {

m_controller.setSetpoint(0.0);
}

}
}

}

C++ (Header)

class Robot : public frc::TimedRobot {
private:
frc::Joystick m_joystick{0};
frc::Encoder m_encoder{1, 2};
frc::Spark m_motor{1};
frc2::PIDController m_controller{1.0, 0.0, 0.5, 10_ms};

Robot();

void TeleopPeriodic() override;
};

C++ (Source)

void Robot::Robot() {
AddPeriodic([&] {

m_motor.Set(m_controller.Calculate(m_encoder.GetRate()));
}, 10_ms, 5_ms);

}

void Robot::TeleopPeriodic() {
if (m_joystick.GetRawButtonPressed(1)) {

if (m_controller.GetSetpoint() == 0.0) {
m_controller.SetSetpoint(30.0);

} else {
m_controller.SetSetpoint(0.0);

}
}

}

The teleopPeriodic() method in this example runs every 20 ms, and the controller update is
run every 10 ms with an offset of 5 ms from when teleopPeriodic() runs so that their times-
lots don’t conflict (e.g., teleopPeriodic() runs at 0 ms, 20 ms, 40 ms, etc.; the controller
runs at 5 ms, 15 ms, 25 ms, etc.).

1250 Chapter 31. Convenience Features

FIRST Robotics Competition

31.2 Event-Based Programming With EventLoop

Many operations in robot code are driven by certain conditions; buttons are one common
example. Conditions can be polled with an imperative programming style by using an if
statement in a periodic method. As an alternative, WPILib offers an event-driven program-
ming style of API in the shape of the EventLoop and BooleanEvent classes.

Note: The example code here is taken from the EventLoop example project (Java/C++).

31.2.1 EventLoop

The EventLoop class is a “container” for pairs of conditions and actions, which can be polled
using the poll()/Poll() method. When polled, every condition will be queried and if it re-
turns true the action associated with the condition will be executed.
Java

private final EventLoop m_loop = new EventLoop();
@Override
public void robotPeriodic() {

// poll all the bindings
m_loop.poll();

}

C++

frc::EventLoop m_loop{};
void RobotPeriodic() override { m_loop.Poll(); }

Warning: The EventLoop’s poll()method should be called consistently in a *Periodic()
method. Failure to do this will result in unintended loop behavior.

31.2.2 BooleanEvent

The BooleanEvent class represents a boolean condition: a BooleanSupplier (Java) /
std::function<bool()> (C++).
To bind a callback action to the condition, use ifHigh()/IfHigh():
Java

BooleanEvent atTargetVelocity =
new BooleanEvent(m_loop, m_controller::atSetpoint)

// debounce for more stability
.debounce(0.2);

// if we're at the target velocity, kick the ball into the shooter wheel
atTargetVelocity.ifHigh(() -> m_kicker.set(0.7));

C++

31.2. Event-Based Programming With EventLoop 1251

https://github.com/wpilibsuite/allwpilib/tree/v2023.2.1/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/eventloop/Robot.java
https://github.com/wpilibsuite/allwpilib/blob/v2023.2.1/wpilibcExamples/src/main/cpp/examples/EventLoop/cpp/Robot.cpp
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/BooleanSupplier.html

FIRST Robotics Competition

frc::BooleanEvent atTargetVelocity =
frc::BooleanEvent(

&m_loop,
[&controller = m_controller] { return controller.AtSetpoint(); })
// debounce for more stability
.Debounce(0.2_s);

// if we're at the target velocity, kick the ball into the shooter wheel
atTargetVelocity.IfHigh([&kicker = m_kicker] { kicker.Set(0.7); });

Remember that button binding is declarative: bindings only need to be declared once, ideally
some time during robot initialization. The library handles everything else.

31.2.3 Composing Conditions

BooleanEvent objects can be composed to create composite conditions. In C++ this is done
using operators when applicable, other cases and all compositions in Java are done using
methods.

and() / &&

The and()/&& composes two BooleanEvent conditions into a third condition that returns true
only when both of the conditions return true.
Java

// if the thumb button is held
intakeButton

// and there is not a ball at the kicker
.and(isBallAtKicker.negate())
// activate the intake
.ifHigh(() -> m_intake.set(0.5));

C++

// if the thumb button is held
(intakeButton
// and there is not a ball at the kicker
&& !isBallAtKicker)

// activate the intake
.IfHigh([&intake = m_intake] { intake.Set(0.5); });

or() / ||

The or()/|| composes two BooleanEvent conditions into a third condition that returns true
only when either of the conditions return true.
Java

// if the thumb button is not held
intakeButton

.negate()
(continues on next page)

1252 Chapter 31. Convenience Features

FIRST Robotics Competition

(continued from previous page)
// or there is a ball in the kicker
.or(isBallAtKicker)
// stop the intake
.ifHigh(m_intake::stopMotor);

C++

// if the thumb button is not held
(!intakeButton
// or there is a ball in the kicker
|| isBallAtKicker)

// stop the intake
.IfHigh([&intake = m_intake] { intake.Set(0.0); });

negate() / !

The negate()/! composes one BooleanEvent condition into another condition that returns
the opposite of what the original conditional did.
Java

// and there is not a ball at the kicker
.and(isBallAtKicker.negate())

C++

// and there is not a ball at the kicker
&& !isBallAtKicker)

debounce() / Debounce()

To avoid rapid repeated activation, conditions (especially those originating from digital in-
puts) can be debounced with the WPILib Debouncer class using the debounce method:
Java

BooleanEvent atTargetVelocity =
new BooleanEvent(m_loop, m_controller::atSetpoint)

// debounce for more stability
.debounce(0.2);

C++

frc::BooleanEvent atTargetVelocity =
frc::BooleanEvent(

&m_loop,
[&controller = m_controller] { return controller.AtSetpoint(); })
// debounce for more stability
.Debounce(0.2_s);

31.2. Event-Based Programming With EventLoop 1253

FIRST Robotics Competition

rising(), falling()

Often times it is desired to bind an action not to the current state of a condition, but instead to
when that state changes. For example, binding an action to when a button is newly pressed
as opposed to when it is held. This is what the rising() and falling() decorators do:
rising() will return a condition that is true only when the original condition returned true
in the current polling and false in the previous polling; falling() returns a condition that
returns true only on a transition from true to false.

Warning: Due to the “memory” these conditions have, do not use the same instance in
multiple places.

Java

// when we stop being at the target velocity, it means the ball was shot
atTargetVelocity

.falling()
// so stop the kicker
.ifHigh(m_kicker::stopMotor);

C++

// when we stop being at the target velocity, it means the ball was shot
atTargetVelocity

.Falling()
// so stop the kicker
.IfHigh([&kicker = m_kicker] { kicker.Set(0.0); });

Downcasting BooleanEvent Objects

To convert BooleanEvent objects to other types, most commonly the Trigger subclass used
for binding commands to conditions, the generic castTo()/CastTo() decorator exists:
Java

Trigger trigger = booleanEvent.castTo(Trigger::new);

C++

frc2::Trigger trigger = booleanEvent.CastTo<frc2::Trigger>();

Note: In Java, the parameter expects a method reference to a constructor accepting an
EventLoop instance and a BooleanSupplier. Due to the lack of method references, this pa-
rameter is defaulted in C++ as long as a constructor of the form Type(frc::EventLoop*,
std::function<bool()>) exists.

1254 Chapter 31. Convenience Features

32
WPILib Example Projects

Warning: While every attempt is made to keep WPILib examples functional, they are
not intended to be used “as-is.” At the very least, robot-specific constants will need to be
changed for the code to work on a user robot. Many empirical constants have their values
“faked” for demonstration purposes. Users are strongly encouraged to write their own
code (from scratch or from an existing template) rather than copy example code.

WPILib example projects demonstrate a large number of library features and use patterns.
Projects range from simple demonstrations of a single functionality to complete, competition-
capable robot programs. All of these examples are available in VS Code by entering
Ctrl+Shift+P, then selecting WPILib: Create a new project and choosing example.

32.1 Basic Examples

These examples demonstrate basic/minimal robot functionality. They are useful for beginning
teams who are gaining initial familiarity with robot programming, but are highly limited in
functionality.

• Arcade Drive (Java, C++): Demonstrates a simple differential drive implementation
using “arcade”-style controls through the DifferentialDrive class.

• Arcade Drive Xbox Controller (Java, C++): Demonstrates the same functionality seen
in the previous example, except using an XboxController instead of an ordinary joystick.

1255

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/arcadedrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArcadeDrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/arcadedrivexboxcontroller
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArcadeDriveXboxController

FIRST Robotics Competition

• Getting Started (Java, C++): Demonstrates a simple autonomous routine that drives
forwards for two seconds at half speed.

• Mecanum Drive (Java, C++): Demonstrates a simple mecanum drive implementation
using the MecanumDrive class.

• Motor Controller (Java, C++): Demonstrates how to control the output of a motor with
a joystick with an encoder to read motor position.

• Simple Vision (Java, C++): Demonstrates how to stream video from a USB camera to
the dashboard.

• Relay (Java, C++): Demonstrates the use of the Relay class to control a relay output
with a set of joystick buttons.

• Solenoids (Java, C++): Demonstrates the use of the Solenoid and DoubleSolenoid
classes to control solenoid outputs with a set of joystick buttons.

• TankDrive (Java, C++): Demonstrates a simple differential drive implementation using
“tank”-style controls through the DifferentialDrive class.

• Tank Drive Xbox Controller (Java, C++): Demonstrates the same functionality seen in
the previous example, except using an XboxController instead of an ordinary joystick.

32.2 Control Examples

These examples demonstrate WPILib implementations of common robot controls. Sensors
may be present, but are not the emphasized concept of these examples.

• DifferentialDriveBot (Java, C++): Demonstrates an advanced differential drive imple-
mentation, including encoder-and-gyro odometry through the DifferentialDriveOdom-
etry class, and composition with PID velocity control through the Differen-
tialDriveKinematics and PIDController classes.

• Elevator with profiled PID controller (Java, C++): Demonstrates the use of the Pro-
filedPIDController class to control the position of an elevator mechanism.

• Elevator with trapezoid profiled PID (Java, C++): Demonstrates the use of the Trape-
zoidProfile class in conjunction with a “smart motor controller” to control the position
of an elevator mechanism.

• Gyro Mecanum (Java, C++): Demonstrates field-oriented control of a mecanum robot
through the MecanumDrive class in conjunction with a gyro.

• MecanumBot (Java, C++): Demonstrates an advanced mecanum drive implementa-
tion, including encoder-and-gyro odometry through the MecanumDriveOdometry class,
and composition with PID velocity control through the MecanumDriveKinematics and
PIDController classes.

• PotentiometerPID (Java, C++): Demonstrates the use of the PIDController class and
a potentiometer to control the position of an elevator mechanism.

• RamseteController (Java, C++): Demonstrates the use of the RamseteController
class to follow a trajectory during the autonomous period.

• SwerveBot (Java, C++): Demonstrates an advanced swerve drive implementation, in-
cluding encoder-and-gyro odometry through the SwerveDriveOdometry class, and com-
position with PID position and velocity control through the SwerveDriveKinematics and
PIDController classes.

1256 Chapter 32. WPILib Example Projects

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gettingstarted
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GettingStarted
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mecanumdrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MecanumDrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/motorcontrol
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MotorControl
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/quickvision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/QuickVision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/relay
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Relay
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/solenoid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Solenoid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/tankdrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/TankDrive
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/tankdrivexboxcontroller
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/TankDriveXboxController
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/differentialdrivebot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DifferentialDriveBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatorprofiledpid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ElevatorProfiledPID
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatortrapezoidprofile
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ElevatorTrapezoidProfile
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyromecanum
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GyroMecanum
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mecanumbot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MecanumBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/potentiometerpid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/PotentiometerPID
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecontroller
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteController
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/swervebot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SwerveBot

FIRST Robotics Competition

• UltrasonicPID (Java, C++): Demonstrates the use of the PIDController class in con-
junction with an ultrasonic sensor to drive to a set distance from an object.

32.3 Sensor Examples

These examples demonstrate sensor reading and data processing using WPILib. Mechanisms
control may be present, but is not the emphasized concept of these examples.

• Axis Camera Sample (Java, C++): Demonstrates the use of OpenCV and an Axis Net-
cam to overlay a rectangle on a captured video feed and stream it to the dashboard.

• Power Distribution CAN Monitoring (Java, C++): Demonstrates obtaining sensor
information from a Power Distribution module over CAN using the PowerDistribution
class.

• Duty Cycle Encoder (Java, C++): Demonstrates the use of the DutyCycleEncoder class
to read values from a PWM-type absolute encoder.

• DutyCycleInput (Java, C++): Demonstrates the use of the DutyCycleInput class to
read the frequency and fractional duty cycle of a PWM input.

• Encoder (Java, C++): Demonstrates the use of the Encoder class to read values from a
quadrature encoder.

• Gyro (Java, C++): Demonstrates the use of the AnalogGyro class to measure robot head-
ing and stabilize driving.

• Intermediate Vision (Java, C++): Demonstrates the use of OpenCV and a USB camera
to overlay a rectangle on a captured video feed and stream it to the dashboard.

• AprilTagsVision (Java, C++): Demonstrates on-roboRIO detection of AprilTags using
an attached USB camera.

• Ultrasonic (Java, C++): Demonstrates the use of the Ultrasonic class to read data
from an ultrasonic sensor in conjunction with the MedianFilter class to reduce signal
noise.

32.4 Command-Based Examples

These examples demonstrate the use of the Command-Based framework.
• ArmBot (Java, C++): Demonstrates the use of a ProfiledPIDSubsystem to control a

robot arm.
• ArmBotOffboard (Java, C++): Demonstrates the use of a TrapezoidProfileSubsystem

in conjunction with a “smart motor controller” to control a robot arm.
• DriveDistanceOffboard (Java, C++): Demonstrates the use of a TrapezoidPro-
fileCommand in conjunction with a “smart motor controller” to drive forward by a set
distance with a trapezoidal motion profile.

• FrisbeeBot (Java, C++): A complete set of robot code for a simple frisbee-shooting
robot typical of the 2013 FRC® game Ultimate Ascent. Demonstrates simple PID control
through the PIDSubystem class.

• Gears Bot (Java, C++): A complete set of robot code for the WPI demonstration robot,
GearsBot.

32.3. Sensor Examples 1257

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ultrasonicpid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/UltrasonicPID
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/axiscamera
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/AxisCameraSample
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/canpdp
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/CANPDP
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/dutycycleencoder
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DutyCycleEncoder
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/dutycycleinput
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DutyCycleInput
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/encoder
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Encoder
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyro
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Gyro
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/intermediatevision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/IntermediateVision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/apriltagsvision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/AprilTagsVision
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ultrasonic
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Ultrasonic
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armbot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArmBot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armbotoffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArmBotOffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/drivedistanceoffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DriveDistanceOffboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/frisbeebot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Frisbeebot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gearsbot
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GearsBot

FIRST Robotics Competition

• Gyro Drive Commands (Java, C++): Demonstrates the use of PIDCommand and Pro-
filedPIDCommand in conjunction with a gyro to turn a robot to face a specified heading
and to stabilize heading while driving.

• Inlined Hatchbot (Java, C++): A complete set of robot code for a simple hatch-delivery
bot typical of the 2019 FRC game Destination: Deep Space. Commands are written in
an “inline” style, in which explicit subclassing of Command is avoided.

• Traditional Hatchbot (Java, C++): A complete set of robot code for a simple hatch-
delivery bot typical of the 2019 FRC game Destination: Deep Space. Commands are
written in a “traditional” style, in which subclasses of Command are written for each robot
action.

• MecanumControllerCommand (Java, C++): Demonstrates trajectory generation and
following with a mecanum drive using the TrajectoryGenerator and MecanumCon-
trollerCommand classes.

• RamseteCommand (Java, C++): Demonstrates trajectory generation and following
with a differential drive using the TrajectoryGenerator and RamseteCommand classes.
A matching step-by-step tutorial can be found here.

• Select Command Example (Java, C++): Demonstrates the use of the SelectCommand
class to run one of a selection of commands depending on a runtime-evaluated condition.

• SwerveControllerCommand (Java, C++): Demonstrates trajectory generation and fol-
lowing with a swerve drive using the TrajectoryGenerator and SwerveControllerCom-
mand classes.

32.5 State-Space Examples

These examples demonstrate the use of the State-Space Control.
• StateSpaceFlywheel (Java, C++): Demonstrates state-space control of a flywheel.
• StateSpaceFlywheelSysId (Java, C++): Demonstrates state-space control using

SysId’s System Identification for controlling a flywheel.
• StateSpaceElevator (Java, C++): Demonstrates state-space control of an elevator.
• StateSpaceArm (Java, C++): Demonstrates state-space control of an Arm.
• StateSpaceDriveSimulation (Java, C++): Demonstrates state-space control of a differ-

ential drivetrain in combination with a RAMSETE path following controller and Field2d
class.

32.6 Simulation Physics Examples

These examples demonstrate the use of the physics simulation.
• ElevatorSimulation (Java, C++): Demonstrates the use of physics simulation with a

simple elevator.
• ArmSimulation (Java, C++): Demonstrates the use of physics simulation with a simple

single-jointed arm.

1258 Chapter 32. WPILib Example Projects

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/gyrodrivecommands
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/GyroDriveCommands
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbotinlined
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotInlined
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hatchbottraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HatchbotTraditional
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mecanumcontrollercommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/MecanumControllerCommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RamseteCommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/selectcommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SelectCommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/swervecontrollercommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SwerveControllerCommand
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceflywheel
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceFlywheel
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceflywheelsysid
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceFlywheelSysId
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespaceelevator
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceElevator
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespacearm
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceArm
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespacedifferentialdrivesimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceDifferentialDriveSimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/elevatorsimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ElevatorSimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/armsimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ArmSimulation

FIRST Robotics Competition

• StateSpaceDriveSimulation (Java, C++): Demonstrates state-space control of a differ-
ential drivetrain in combination with a RAMSETE path following controller and Field2d
class.

• SimpleDifferentialDriveSimulation (Java, C++): A barebones example of a basic driv-
etrain that can be used in simulation.

32.7 Miscellaneous Examples

These examples demonstrate miscellaneous WPILib functionality that does not fit into any of
the above categories.

• Addressable LED (Java, C++): Demonstrates the use of the AddressableLED class to
control RGB LEDs for robot decoration and/or driver feedback.

• DMA (Java, C++): Demonstrates the use of DMA (Direct Memory Access) to read from
sensors without using the RoboRIO’s CPU.

• HAL (C++): Demonstrates the use of HAL (Hardware Abstraction Layer) without the
use of the rest of WPILib. This example is for advanced users (C++ only).

• HID Rumble (Java, C++): Demonstrates the use of the “rumble” functionality for tactile
feedback on supported HIDs (such as XboxControllers).

• Shuffleboard (Java, C++): Demonstrates configuring tab/widget layouts on the “Shuf-
fleboard” dashboard from robot code through the Shuffleboard class’s fluent builder
API.

• RomiReference (Java, C++): A command based example of how to run the Romi robot.
• Mechanism2d (Java, C++): A simple example of using Mechanism2d.

32.7. Miscellaneous Examples 1259

https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/statespacedifferentialdrivesimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/StateSpaceDifferentialDriveSimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/simpledifferentialdrivesimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/SimpleDifferentialDriveSimulation
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/addressableled
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/AddressableLED
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/dma/
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/DMA
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HAL
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/hidrumble
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/HidRumble
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/shuffleboard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/ShuffleBoard
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/romireference
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/RomiReference
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/mechanism2d
https://github.com/wpilibsuite/allwpilib/tree/main/wpilibcExamples/src/main/cpp/examples/Mechanism2d

FIRST Robotics Competition

1260 Chapter 32. WPILib Example Projects

33
Third Party Example Projects

This list helps you find example programs for use with third party devices. You can find
support for many of these third parties on the Support Resources page.

• Cross The Road Electronics (CTRE)
• Kauai Labs (navX)
• Limelight (additional examples, called case studies, can be found on the left)
• PhotonVision
• REV Robotics

1261

https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages
https://pdocs.kauailabs.com/navx-mxp/examples/
https://docs.limelightvision.io/en/latest/cs_drive_to_goal_2019.html
https://docs.photonvision.org/en/latest/docs/examples/index.html
https://opensource.revrobotics.com/#frcwpilib-example-code

FIRST Robotics Competition

1262 Chapter 33. Third Party Example Projects

34
Hardware - Basics

34.1 Wiring Best Practices

Tip: The article Intro to FRC Robot Wiring walks through the details of what connects where
to wire up the FRC Control System and this article provides some additional “Best Practices”
that may increase reliability and make maintenance easier. Take a look at Preemptive Trou-
bleshooting for more tips and tricks.

34.1.1 Vibration/Shock

An FRC® Robot is an incredibly rough environment when it comes to vibrations and shock
loads. While many of the FRC specific electronics are extensively tested for mechanical ro-
bustness in these conditions, a few components, such as the radio, are not specifically de-
signed for use on a mobile platform. Taking steps to reduce the shock and vibration these
components are exposed to may help reduce failures. Some suggestions that may reduce
mechanical failures:

• Vibration Isolation - Make sure to isolate any components which create excessive vibra-
tion, such as compressors, using “vibration isolators”. This will help reduce vibration
on the robot which can loosen fasteners and cause premature fatigue failure on some
electronic components.

• Bumpers - Use Bumpers to cover as much of the robot as possible for your design. While
the rules require specific bumper coverage around the corners of your robot, maximiz-
ing the use of bumpers increases the likelihood that all collisions will be damped by your
bumpers. Bumpers significantly reduce the g-forces experienced in a collision compared
to hitting directly on a hard robot surface, reducing the shock experienced by the elec-
tronics and decreasing the chance of a shock related failure.

• Shock Mounting - You may choose to shock mount some or all of your electronic compo-
nents to further reduce the forces they see in robot collisions. This is especially helpful
for the robot radio and other electronics such as co-processors, which may not be de-
signed for use on mobile platforms. Vibration isolators, springs, foams, or mounting to
flexible materials all may reduce the shock forces seen by these components.

1263

FIRST Robotics Competition

34.1.2 Redundancy

Unfortunately there are few places in the FRC Control System where redundancy is feasi-
ble. Taking advantage of opportunities for redundancy can increase reliability. The primary
example of this is wiring the barrel connector to the radio in addition to the provided PoE con-
nection. This ensures that if one of the cables becomes damaged or dislodged, the other will
maintain power to the radio. Keep an eye out for other potential areas to provide redundancy
when wiring and programming your robot.

34.1.3 Port Savers

For any connections on the Robot or Driver station that may be frequently plugged and un-
plugged (such as DS joysticks, DS Ethernet, roboRIO USB tether, and Ethernet tether) using
a “Port Saver” or “pigtail” can substantially reduce the potential for damaging the port. This
type of device can serve double duty, both reducing the number of cycles that the port on the
electronic device sees, as well as relocating the connection to a more convenient location.
Make sure to secure the port saver (see the next item) to avoid port damage.

34.1.4 Wire Management and Strain Relief

One of the most critical components to robot reliability and maintenance is good wire man-
agement and strain relief. Good wire management is comprised of a few components:

• Make sure cables are the correct length. Any excess wire length is just more to manage.
If you must have extra wire due to additional length on COTS cabling, secure the extra
into a small bundle using separate cable ties before securing the rest of the wire.

• Ensure that cables are secured close to connection points, with enough slack to avoid
putting strain on connectors. This is called strain relief, and is critical to minimizing the
likelihood that a cable comes unplugged or a wire breaks off at a connection point (these
are generally stress concentrators).

• Secure cables near any moving components. Make sure that all wire runs are secure
and protected from moving components, even if the moving components were to bend
or over-travel.

• Secure cables at additional points as necessary to keep wiring neat and clean. Take care
to not over secure wires; if wires are secured in too many locations, it may actually make
troubleshooting and maintenance more difficult.

34.1.5 Documentation

A great way to make maintenance easier is to create documentation describing what is con-
nected where on the robot. There are a number of ways of creating this type of documentation
which range from complete wiring diagrams to excel charts to a quick list of what functions
are attached to which channels. Many teams also integrate these lists with labeling (see the
next bullet).
When a wire is accidentally cut, or a mechanism is malfunctioning, or a component burns out,
it will be much easier to repair if you have some documentation to tell you what is connected
where without having to trace the wiring all the way through (even if your wiring is neat!)

1264 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.1.6 Labeling

Labeling is a great way to supplement the wiring documentation described above. There are
many different strategies to labeling wiring and electronics, all with their own pros and cons.
Labels for electronics and flags for wires can be made by hand, or using a label maker (some
can also do heat-shrink labels), or you can use different colors of electrical tape or labeling
flags to indicate different things. Whatever system you choose, make sure you understand
how it complements your documentation and make sure everyone on your team is familiar
with it.

34.1.7 Check all wiring and connections

After all wiring on the robot is complete, make sure to check each connection, pulling on
each, to ensure that everything is secure. Additionally, ensure that no stray wire “whiskers”
are sticking out of any connection point and that no uninsulated connections are exposed.
If any connections come loose while testing, or any “whiskers” are discovered, re-make the
connection and make sure to have a second person check it when complete.
A common source of poor connections is screw-type or nut-and-bolt fasteners. For any connec-
tions of this type on the robot (e.g. battery connections, main breaker, PDP, roboRIO), make
sure the fasteners are tight. For nut-and-bolt style connections, ensure that the wire/terminal
cannot be rotate by hand; if you can rotate your battery wire or main breaker connection by
grasping the terminal and twisting, the connection is not tight enough.
Another common source of failures is the fuses at the end of the PDP. Ensure these fuses are
completely seated; you may need to apply more force than you expect to seat them completely.
If the fuses are seated properly they will likely be difficult or impossible to remove by hand.
Snap-in connections such as the SB-50 connector should be secured using clips or cable ties
to ensure they do not pop loose during impacts.

34.1.8 Re-Check Early and Often

Re-check the entire electrical system as thoroughly as possible after playing the first match
or two (or doing very vigorous testing). The first few impacts the robot sees may loosen
fasteners or expose issues.
Create a checklist for re-checking electrical connections on a regular basis. As a very rough
starting point, rotational fasteners such as battery and PDP connections should be checked
every 1-3 matches. Spring type connections such as the WAGO and Weidmuller connectors
likely only need to be checked once per event. Ensure that the team knows who is responsible
for completing the checklist and how they will document that it has been done.

34.1. Wiring Best Practices 1265

FIRST Robotics Competition

34.1.9 Battery Maintenance

Take good care of your batteries! A bad battery can easily cause a robot to functional poorly,
or not at all, during a match. Label all of your batteries to help keep track of usage during
the event. Many teams also include information such as the age of the battery on this label.

• Never lift or carry batteries by the wires! Carrying batteries by the wires has the poten-
tial to damage the internal connection between the terminals and the plates, dramatically
increasing internal resistance and degrading performance.

• Mark any dropped battery bad until a complete test can be conducted. In addition to the
mentioned terminal connections, dropping a battery also has the potential to damage
individual cells. This damage may not register on a simple voltage test, instead hiding
until the battery is placed under load.

• Rotate batteries evenly. This helps ensure that batteries have the most time to charge
and rest and that they wear evenly (equal number of charge/discharge cycles)

• Load test batteries if possible to monitor health. There are a number of commercially
available products teams use to load test batteries, including at least one designed specif-
ically for FRC. A load test can provide an indicator of battery health by measuring in-
ternal resistance. This measurement is much more meaningful when it comes to match
performance than a simple no-load voltage number provided by a multimeter.

34.1.10 Check DS Logs

After each match, review the DS logs to see what the battery voltage and current usage looks
like. Once you have established what the normal range of these items is for your robot, you
may be able to spot potential issues (bad batteries, failing motors, mechanical binding) before
they become critical failures.

34.2 CAN Wiring Basics

CAN is a two wire network that is designed to facilitate communication between multiple
devices on your robot. It is recommended that CAN on your robot follow a “daisy-chain”
topology. This means that the CAN wiring should usually start at your roboRIO and go into
and out of each device successively until finally ending at the PDP.

1266 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.2.1 Standard Wiring

CAN is generally wired with yellow and green wire with yellow acting as the CAN-High and
green as the CAN-Low signals. Many devices show this yellow and green color scheme to
indicate how the wires should be plugged in.
CAN wiring from the roboRIO to the PCM.

34.2. CAN Wiring Basics 1267

FIRST Robotics Competition

CAN wiring from the PCM to the PDP.

1268 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.2. CAN Wiring Basics 1269

FIRST Robotics Competition

34.2.2 Termination

It is recommended that the wiring starts at the roboRIO and ends at the PDP because the CAN
network is required to be terminated by 120 Ω resistors and these are built into these two
devices. The PDP ships with the CAN bus terminating resistor jumper in the “ON” position.
It is recommended to leave the jumper in this position and place any additional CAN nodes
between the roboRIO and the PDP (leaving the PDP as the end of the bus). If you wish to
place the PDP in the middle of the bus (utilizing both pairs of PDP CAN terminals) move the
jumper to the “OFF” position and place your own 120 Ω terminating resistor at the end of
your CAN bus chain.

34.3 Wiring Pneumatics - CTRE Pneumatic Control Module

This page describes wiring pneumatics with the CTRE Pneumatic Control Module (PCM). For
instructions on wiring pneumatics with the REV Pneumatic Hub (PH) see this page.

Hint: For pneumatics safety & mechanical requirements, consult this year’s Robot Con-
struction rules. For mechanical design guidelines, the FIRST Pneumatics Manual is located
here

34.3.1 Wiring Overview

A single PCM will support most pneumatics applications, providing an output for the com-
pressor, input for the pressure switch, and outputs for up to 8 solenoid channels (12V or 24V
selectable). The module is connected to the roboRIO over the CAN bus and powered via 12V
from the PDP or PDH.
For complicated robot designs requiring more channels or multiple solenoid voltages, addi-
tional PCMs or PHs can be added to the control system.

34.3.2 PCM Power and Control Wiring

Pneumatics Control Module

P
R

E
S

S
U

R
E
 S

W

1
2
V

C
O

M
P
R

E
S
S

O
R

O
U

T

2
4
V

V
S

LO
L

C
O

M
P

S
TA

T
U

S

Vin

C
A

N

7
6

5
4

3
2

1
0

20 10

1270 Chapter 34. Hardware - Basics

https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/technical-resources/frc_pneumatics_manual.pdf

FIRST Robotics Competition

The first PCM on your robot can be wired from the PDP VRM/PCM connectors on the end of
the PDP or from a 15 amp or 20 amp port on the PDH (20 amp recommended if controlling a
compressor). The PCM is connected to the roboRIO via CAN and can be placed anywhere in
the middle of the CAN chain (or on the end with a custom terminator). For more details on
wiring a single PCM, see Pneumatics Power (Optional)
Additional PCMs can be wired to a standard WAGO connector on the side of the PDP and pro-
tected with a 20A or smaller circuit breaker. Additional PCMs should also be placed anywhere
in the middle of the CAN chain.

34.3.3 The Compressor

The compressor can be wired directly to the Compressor Out connectors on the PCM. If ad-
ditional length is required, make sure to use 18 AWG wire or larger for the extension.

34.3.4 The Pressure Switch

The pressure switch should be connected directly to the pressure switch input terminals on
the PCM. There is no polarity on the input terminals or on the pressure switch itself, either
terminal on the PCM can be connected to either terminal on the switch. Ring or spade ter-
minals are recommended for the connection to the switch screws (note that the screws are
slightly larger than #6, but can be threaded through a ring terminal with a hole for a #6
screw such as the terminals shown in the image).

34.3.5 Solenoids

Each solenoid channel should be wired directly to a numbered pair of terminals on the PCM.
A single acting solenoid will use one numbered terminal pair. A double acting solenoid will
use two pairs. If your solenoid does not come with color coded wiring, check the datasheet
to make sure to wire with the proper polarity.

34.3. Wiring Pneumatics - CTRE Pneumatic Control Module 1271

FIRST Robotics Competition

34.3.6 Solenoid Voltage Jumper

Pneumatics Control Module

P
R

E
S

S
U

R
E

 S
W

1
2
V

C
O

M
P
R

E
S
S

O
R

O
U

T

2
4
V

V
S

O
L

C
O

M
P

S
TA

T
U

S

Vin

C
A

N

7
6

5
4

3
2

1
0

The PCM is capable of powering either 12V or 24V solenoids, but all solenoids connected to a
single PCM must be the same voltage. The PCM ships with the jumper in the 12V position as
shown in the image. To use 24V solenoids move the jumper from the left two pins (as shown
in the image) to the right two pins. The overlay on the PCM also indicates which position
corresponds to which voltage. You may need to use a tool such as a small screwdriver, small
pair of pliers, or a pair of tweezers to remove the jumper.

34.4 Wiring Pneumatics - REV Pneumatic Hub

This page describes wiring pneumatics with the REV Pneumatic Hub (PH). For instructions
on wiring pneumatics with the CTRE Pneumatic Control Module (PCM) see this page.

Hint: For pneumatics safety & mechanical requirements, consult this year’s Robot Con-
struction rules. For mechanical design guidelines, the FIRST Pneumatics Manual is located
here

34.4.1 Wiring Overview

A single PH will support most pneumatics applications, providing an output for the compres-
sor, input for a pressure switch, and outputs for up to 16 solenoid channels (12V or 24V
selectable). The module is connected to the roboRIO over the CAN bus and powered via 12V
from the PDP/PDH.
For complicated robot designs requiring more channels or multiple solenoid voltages, addi-
tional PHs or PCMs can be added to the control system.

1272 Chapter 34. Hardware - Basics

https://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/technical-resources/frc_pneumatics_manual.pdf

FIRST Robotics Competition

34.4.2 PCM Power and Control Wiring

The first PH on your robot can be wired from the PDP VRM/PCM connectors on the end of the
PDP or from a 15A or 20A port on the PDH (20 amp recommended if controlling a compressor).
The PH is connected to the roboRIO via CAN and can be placed anywhere in the middle of
the CAN chain (or on the end with a custom terminator). For more details on wiring a single
PCM, see Pneumatics Power (Optional)
Additional PHs can be wired to a standard WAGO connector on the side of the PDP and pro-
tected with a 20A or smaller circuit breaker or to a 15A port on the PDH. Additional PHs
should also be placed anywhere in the middle of the CAN chain.

34.4.3 The Compressor

The compressor can be wired directly to the Compressor connectors on the PH. If additional
length is required, make sure to use 18 AWG wire or larger for the extension.

34.4.4 The Pressure Switch

The PH has two options for detecting pressure, a digital pressure switch, or an analog pres-
sure switch.

34.4. Wiring Pneumatics - REV Pneumatic Hub 1273

FIRST Robotics Competition

Digital

A digital pressure switch should be connected directly to the digital pressure sensor input
terminals on the PCM. There is no polarity on the input terminals or on the pressure switch
itself, either terminal on the PH can be connected to either terminal on the switch. Ring
or spade terminals are recommended for the connection to the switch screws (note that the
screws are slightly larger than #6, but can be threaded through a ring terminal with a hole
for a #6 screw such as the terminals shown in the image).

Analog

An analog pressure switch (REV-11-1107 can be connected directly to the analog pressure
sensor port 0 input terminals. Using an analog pressure sensor allows reading the pressure
in the pneumatic system through code and setting custom trigger thresholds for turning on
and off the compressor.
..warning:: The Analog Pressure Sensor port is a very tight fit and requires special attention.
See REV Wiring an Analog Pressure Sensor for more tips

34.4.5 Solenoids

Each solenoid channel should be wired directly to a numbered pair of terminals on the PH.
A single acting solenoid will use one numbered terminal pair. A double acting solenoid will
use two pairs. If your solenoid does not come with color coded wiring, check the datasheet
to make sure to wire with the proper polarity.

34.4.6 Solenoid Voltage Switch

The PH is capable of powering either 12V or 24V solenoids, but all solenoids connected to
a single PH must be the same voltage. Set the voltage switch to the appropriate voltage for
solenoids prior to use.

34.5 Status Light Quick Reference

Many of the components of the FRC® Control System have indicator lights that can be used
to quickly diagnose problems with your robot. This guide shows each of the hardware compo-
nents and describes the meaning of the indicators. Photos and information from Innovation
FIRST and Cross the Road Electronics.

1274 Chapter 34. Hardware - Basics

https://www.revrobotics.com/rev-11-1107/
https://docs.revrobotics.com/rev-11-1852/pneumatic-hub-getting-started/wiring-the-pneumatic-hub#wiring-an-analog-pressure-sensor

FIRST Robotics Competition

34.5.1 Robot Signal Light (RSL)

Solid ON Robot On and Disabled
Blinking Robot On and Enabled
Off Robot Off, roboRIO not powered or RSL not wired properly

34.5.2 roboRIO

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

34.5. Status Light Quick Reference 1275

FIRST Robotics Competition

Power Green Power is good
Amber Brownout protection tripped, outputs disabled
Red Power fault, check user rails for short circuit

Sta-
tus

On while the controller is booting, then should turn off
2 blinks Software error, reimage roboRIO
3 blinks Safe Mode, restart roboRIO, reimage if not resolved
4 blinks Software crashed twice without rebooting, reboot roboRIO, reim-

age if not resolved
Constant flash or stays solid on Unrecoverable error

Ra-
dio

Not currently implemented

Comm Off No Communication
Red Solid Communication with DS, but no user code running
Red Blinking E-stop triggered
Green Solid Good communications with DS

Mode Off Outputs disabled (robot in Disabled, brown-out, etc.)
Orange Autonomous Enabled
Green Teleop Enabled
Red Test Enabled

RSL See above

34.5.3 OpenMesh Radio

Power Blue On or Powering up
Blue Blinking Powering Up

Eth Link Blue Link up
Blue Blinking Traffic Present

WiFi Off Bridge mode, Unlinked or non-FRC firmware
Red AP, Unlinked
Yellow/Orange AP, Linked
Green Bridge mode, Linked

1276 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.4 Power Distribution Panel

-

C
A
N

COMM

STAT

40AMP
AUTO
RESET

40AMP
AUTO
RESET

PDP Status/Comm LEDs

LED Strobe Slow
Green No Fault - Robot Enabled No Fault - Robot Disabled
Orange NA Sticky Fault
Red NA No CAN Comm

Tip: If a PDP LED is showing more than one color, see the PDP LED special states table
below. For more information on resolving PDP faults see the PDP User Manual.

Note: Note that the No CAN Comm fault will occur if the PDP cannot communicate with the
roboRIO via CAN Bus.

PDP Special States

LED Colors Problem
Red/Orange Damaged Hardware
Green/Orange In Bootloader
No LED No Power/ Incorrect Polarity

34.5. Status Light Quick Reference 1277

FIRST Robotics Competition

34.5.5 Power Distribution Hub

Note: These led patterns only apply to firmware version 21.1.7 and later

1278 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.6 PDH Status LED

LED Color Status
Blue Solid Device on but no communication established
Green Solid Main Communication with roboRIO established
Magenta Blinking Keep Alive Timeout
Solid Cyan Secondary Heartbeat (Connected to REV Hardware Client)
Orange/Blue Blinking Low Battery
Orange/Yellow Blinking CAN Fault
Orange/Cyan Blinking Hardware Fault
Orange/Red Blinking Fail Safe
Orange/Magenta Blinking Device Over Current

Channel LEDs

LED
Color

Status

Off Channel has voltage and is operating as expected
Red Solid Channel has NO voltage and there is an active fault. Check for tripped or

missing circuit breaker / fuse
Red
Blinking

Sticky fault on the channel. Check for tripped circuit breaker / fuse.

34.5.7 Voltage Regulator Module

+ -

12Vin

1
2

V
5

0
0

m
A

1
2

V
 2

A 5
V

 2
A

5
V

 5
0

0
m

A

1
2

V 5
V

Voltage
Regulator
Module

34.5. Status Light Quick Reference 1279

FIRST Robotics Competition

The status LEDs on the VRM indicate the state of the two power supplies. If the supply is
functioning properly the LED should be lit bright green. If the LED is not lit or is dim, the
output may be shorted or drawing too much current.

34.5.8 Pneumatics Control Module (PCM)

Pneumatics Control Module

P
R

ES
SU

R
E S

W

1
2V

C
O

M
P
R

ES
S

O
RO

U
T

2
4V

V
SLO

L

C
O

M
P

S
TAT

U
S

Vin

C
A

N

7
6

5
4

3
2

1
0

PCM Status LED

LED Strobe Slow Long
Green No Fault Robot En-

abled
Sticky Fault NA

Or-
ange

NA Sticky Fault NA

Red NA No CAN Comm or Solenoid Fault (Blinks
Solenoid Index)

Compressor
Fault

Tip: If a PCM LED is showing more than one color, see the PCM LED special states table

1280 Chapter 34. Hardware - Basics

FIRST Robotics Competition

below. For more information on resolving PCM faults see the PCM User Manual.

Note: Note that the No CAN Comm fault will not occur only if the device cannot communicate
with any other device, if the PCM and PDP can communicate with each other, but not the
roboRIO.

PCM LED Special States Table

LED Problems
Red/Orange Damaged Hardware
Green/Orange In Bootloader
No LED No Power/Incorrect Polarity

PCM Comp LED

This is the Compressor LED. This LED is green when the compressor output is active (com-
pressor is currently on) and off when the compressor output is not active.

PCM Solenoid Channel LEDs

These LEDs are lit red if the Solenoid channel is enabled and not lit if it is disabled.

34.5. Status Light Quick Reference 1281

FIRST Robotics Competition

34.5.9 Pneumatic Hub

Note: These led patterns only apply to firmware version 21.1.7 and later

1282 Chapter 34. Hardware - Basics

FIRST Robotics Competition

PH Status LED

LED Color Status
Blue Solid Device on but no communication established
Green Solid Main Communication established
Magenta Blinking Keep Alive Timeout
Solid Cyan Secondary Heartbeat (connected to REV HW Client)
Orange/Blue Blinking Hardware Fault
Orange/Yellow Blinking CAN Fault
Orange/Red Blinking Fail Safe
Orange/Magenta Blinking Device Over Current
Orange/Green Blinking Orange/Green Blinking

Compressor LED

LED Color Status
Green Solid Compressor On
Black Solid Compressor Off

Solenoid LEDs

LED Color Status
Green Solid Solenoid On
Black Solid Solenoid Off

34.5. Status Light Quick Reference 1283

FIRST Robotics Competition

34.5.10 Talon SRX & Victor SPX & Talon FX Motor Controllers

Status LEDs During Normal Operation

LEDs Colors Talon SRX State
Both Blinking

Green
Forward throttle is applied. Blink rate is propor-
tional to Duty Cycle.

Both Blinking
Red

Reverse throttle is applied. Blink rate is propor-
tional to Duty Cycle.

None None No power is being applied to Talon SRX
LEDs Alternate Off/Orange CAN bus detected, robot disabled
LEDs Alternate Off/Slow

Red
CAN bus/PWM is not detected

LEDs Alternate Off/Fast
Red

Fault Detected

LEDs Alternate Red/Orange Damaged Hardware
LEDs Strobe towards
(M-)

Off/Red Forward Limit Switch or Forward Soft Limit

LEDs Strobe towards
(M+)

Off/Red Reverse Limit Switch or Reverse Soft Limit

LED1 Only (closest to
M+/V+)

Green/OrangeIn Boot-loader

LEDs Strobe towards
(M+)

Off/Orange Thermal Fault / Shutoff (Talon FX Only)

1284 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Status LEDs During Calibration

Status LEDs Blink Code Talon SRX State
Flashing Red/Green Calibration Mode
Blinking Green Successful Calibration
Blinking Red Failed Calibration

B/C CAL Blink Codes

B/C CAL Button Color Talon SRX State
Solid Red Brake Mode
Off Coast Mode

34.5. Status Light Quick Reference 1285

FIRST Robotics Competition

1286 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.11 SPARK-MAX Motor Controller

34.5. Status Light Quick Reference 1287

FIRST Robotics Competition

34.5.12 REV Robotics SPARK

34.5.13 Victor-SP Motor Controller

1288 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Brake/Coast/Cal Button/LED - Red if the controller is in brake mode, off if the controller is in
coast mode

Status

Green Solid Full forward output
Blink-
ing

Proportional to forward output voltage

Red Solid Full reverse output
Blink-
ing

Proportional to forward output voltage

Or-
ange

Solid FRC robot disabled, PWM signal lost, or signal in deadband range (+/- 4%
output)

Red/GreenBlink-
ing

Ready for calibration. Several green flashes indicates successful calibra-
tion, and red several times indicates unsuccessful calibration.

34.5.14 Talon Motor Controller

34.5. Status Light Quick Reference 1289

FIRST Robotics Competition

Green Solid Full forward output
Blink-
ing

Proportional to forward output voltage

Red Solid Full reverse output
Blink-
ing

Proportional to reverse output voltage

Or-
ange

Solid No CAN devices are connected
Blink-
ing

Disabled state, PWM signal lost, FRC robot disabled, or signal in deadband
range (+/- 4% output)

Off No input power to Talon
Red/GreenFlash-

ing
Ready for calibration. Several green flashes indicates successful calibra-
tion, and red several times indicates unsuccessful calibration.

34.5.15 Victor888 Motor Controller

LED Indicator

CB

M

M

W BR

12V

GN

Green Solid Full forward output
Blinking Successful calibration

Red Solid Full reverse output
Blinking Unsuccessful calibration

Orange Solid Neutral/brake
Red/Green Blinking Calibration mode

1290 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.16 Jaguar Motor Controller

LED State Module Status
Normal Operating Conditions
Solid Yellow Neutral (speed set to 0)
Fast Flashing Green Forward
Fast Flashing Red Reverse
Solid Green Full-speed forward
Solid Red Full-speed reverse
Fault Conditions
Slow Flashing Yellow Loss of servo or Network link
Fast Flashing Yellow Invalid CAN ID
Slow Flashing Red Voltage, Temperature, or Limit Switch fault condition
Slow Flashing Red and Yel-
low

Current fault condition

Calibration or CAN Conditions
Flashing Red and Green Calibration mode active
Flashing Red and Yellow Calibration mode failure
Flashing Green and Yellow Calibration mode success
Slow Flashing Green CAN ID assignment mode
Fast Flashing Yellow Current CAN ID (count flashes to determine ID)
Flashing Yellow CAN ID invalid (that is, Set to 0) awaiting valid ID assign-

ment

34.5. Status Light Quick Reference 1291

FIRST Robotics Competition

34.5.17 Digilent DMC-60

The DMC60C contains four RGB (Red, Green, and Blue) LEDs and one Brake/Coast CAL LED.
The four RGB LEDs are located in the corners and are used to indicate status during normal
operation, as well as when a fault occurs. The Brake/Coast CAL LED is located in the center of
the triangle, which is located at the center of the housing, and is used to indicate the current
Brake/Coast setting. When the center LED is off, the device is operating in coast mode. When
the center LED is illuminated, the device is operating in brake mode. The Brake/Coast mode
can be toggled by pressing down on the center of the triangle, and then releasing the button.
At power-on, the RGB LEDs illuminate Blue, continually getting brighter. This lasts for ap-
proximately five seconds. During this time, the motor controller will not respond to an input
signal, nor will the output drivers be enabled. After the initial power-on has completed, the
device begins normal operation and what gets displayed on the RGB LEDs is a function of the
input signal being applied, as well as the current fault state. Assuming that no faults have
occurred, the RGB LEDs function as follows:

PWM Signal
Applied

LED State

No Input
Signal or
Invalid Input
Pulse Width

Alternate between top (LED1 and LED2) and bottom (LED3 and LED4) LEDs
being illuminated Red and Off.

Neutral In-
put Pulse
Width

All 4 LEDs illuminated Orange.

Positive In-
put Pulse
Width

LEDs blink Green in a clockwise circular pattern (LED1 → LED2 → LED3 →
LED4 → LED1). The LED update rate is proportional to the duty cycle of
the output and increases with increased duty cycle. At 100% duty cycle, all
4 LEDs are illuminated Green.

Negative
Input Pulse
Width

LEDs blink Red in a counter-clockwise circular pattern (LED1 → LED4 →
LED3 → LED2 → LED1). The LED update rate is proportional to the duty
cycle of the output and increases with increased duty cycle. At 100% duty
cycle, all 4 LEDs are illuminated Red.

1292 Chapter 34. Hardware - Basics

FIRST Robotics Competition

CAN Bus Control State LED State
No Input Signal or CAN bus er-
ror detected

Alternate between top (LED1 and LED2) and bottom
(LED3 and LED4) LEDs being illuminated Red and Off.

No CAN Control Frame received
within the last 100ms or the last
control frame specified modeN-
oDrive (Output Disabled)

Alternate between top (LED1 and LED2) and bottom
(LED3 and LED4) LEDs being illuminated Orange and
Off.

Valid CAN Control Frame re-
ceived within the last 100ms.
The specified control mode re-
sulted in a Neutral Duty Cycle
being applied to Motor Output

All 4 LEDs illuminated solid Orange.

Valid CAN Control Frame re-
ceived within the last 100ms.
The specified control mode re-
sulted in a Positive Duty Cycle
being Motor Output

LEDs blink Green in a clockwise circular pattern (LED1
→ LED2 → LED3 → LED4 → LED1). The LED update
rate is proportional to the duty cycle of the output and
increases with increased duty cycle. At 100% duty cycle,
all 4 LEDs are illuminated Green.

Valid CAN Control Frame re-
ceived within the last 100ms.
The specified control mode re-
sulted in a Negative Duty Cycle
being Motor Output

LEDs blink Red in a counter-clockwise circular pattern
(LED1 → LED4 → LED3 → LED2 → LED1). The LED up-
date rate is proportional to the duty cycle of the output
and increases with increased duty cycle. At 100% duty
cycle, all 4 LEDs are illuminated Red.

Fault Color Indicators

When a fault condition is detected, the output duty cycle is reduced to 0% and a fault is
signaled. The output then remains disabled for 3 seconds. During this time the onboard LEDs
(LED1-4) are used to indicate the fault condition. The fault condition is indicated by toggling
between the top (LED1 and LED2) and bottom (LED3 and LED4) LEDs being illuminated Red
and off. The color of the bottom LEDs depends on which faults are presently active. The table
below describes how the color of the bottom LEDs maps to the presently active faults.

Color Over Temperature Under Voltage
Green On Off
Blue Off On
Cyan / Aqua On On

34.5. Status Light Quick Reference 1293

FIRST Robotics Competition

Break/Coast Mode

When the center LED is off the device is operating in coast mode. When the center LED is
illuminated the device is operating in brake mode. The Brake/Coast mode can be toggled by
pressing down on the center of the triangle and then releasing the button.

34.5.18 Venom Motor Controller

1294 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.19 Mindsensors SD540B (PWM)

Power LED Off Power is not supplied
Red Power is supplied

Motor LED Red Forward direction
Green Reverse direction

PWM Signal LED Red No valid PWM signal is detected
Green Valid PWM signal is detected

34.5.20 Mindsensors SD540C (CAN Bus)

34.5. Status Light Quick Reference 1295

FIRST Robotics Competition

Power LED Off Power is not supplied
Red Power is supplied

Motor LED Red Forward direction
Green Reverse direction

CAN Signal
LED

Blinking
quickly

No CAN devices are connected

Off Connected to the roboRIO and the driver station is
open

34.5.21 REV Robotics Servo Power Module

Status LEDs

Each channel has a corresponding status LED that will indicate the sensed state of the con-
nected PWM signal. The table below describes each state’s corresponding LED pattern.

State Pattern
No Signal Blinking Amber
Left/Reverse Signal Solid Red
Center/Neutral Signal Solid Amber
Right/Forward Signal Solid Green

• 6V Power LED off, dim or flickering with power applied = Over-current shutdown

1296 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.5.22 Spike relay configured as a motor, light, or solenoid switch

Inputs Outputs Indica-
tor

Motor Function
Forward
(White)

Reverse
(Red)

M+ M-

Off Off GND GND Orange Off/Brake Condition (default)
On Off +12v GND Green Motor rotates in one direction
Off On GND +12v Red Motor rotates in opposite di-

rection
On On +12v +12v Off Off/Brake Condition

Note: ‘Brake Condition’ refers to the dynamic stopping of the motor due to the shorting of
the motor inputs. This condition is not optional when going to an off state.

34.5.23 Spike relay configured as for one or two solenoids

34.5. Status Light Quick Reference 1297

FIRST Robotics Competition

Inputs Outputs Indica-
tor

Motor Function
Forward
(White)

Reverse
(Red)

M+ M-

Off Off GND GND Orange Both Solenoids Off (default)
On Off +12v GND Green Solenoid connected to M+ is

ON
Off On GND +12v Red Solenoid connected to M- is

ON
On On +12v +12v Off Both Solenoids ON

34.5.24 CANCoder Encoder

1298 Chapter 34. Hardware - Basics

FIRST Robotics Competition

LED
Color

LED
Bright-
ness

CAN Bus de-
tection

Magnet Field Strength Description

Off Off CANCoder is not pow-
ered

Yel-
low/Green

Bright Device is in boot-loader.
See user manual for
more information.

Slow
Red
Blink

Bright CAN bus has
been lost

Rapid
Red
Blink

Dim CAN bus
never de-
tected since
boot

Magnet is out of range
(<25mT or >135mT)

Rapid
Yellow
Blink

Magnet in range with
slightly reduced accuracy
(25-45mT or 75-135mT)

Rapid
Green
Blink

Magnet in range (between
45mT - 75mT)

Rapid
Red
Blink

Bright CAN bus
present

Magnet is out of range
(<25mT or >135mT)

Rapid
Yellow
Blink

Magnet in range with
slightly reduced accuracy
(25-45mT or 75-135mT)

Rapid
Green
Blink

Magnet in range (between
45mT - 75mT)

34.6 Robot Preemptive Troubleshooting

Note: In FIRST® Robotics Competition, robots take a lot of stress while driving around
the field. It is important to make sure that connections are tight, parts are bolted securely
in place and that everything is mounted so that a robot bouncing around the field does not
break.

34.6. Robot Preemptive Troubleshooting 1299

FIRST Robotics Competition

34.6.1 Check Battery Connections

The tape that should be covering the battery connection in these examples has been removed
to illustrate what is going on. On your robots, the connections should be covered.
Wiggle battery harness connector. Often these are loose because the screws loosen, or some-
times the crimp is not completely closed. You will only catch the really bad ones though be-
cause often the electrical tape stiffens the connection to a point where it feels stiff. Using a
voltmeter or Battery Beak will help with this.
Apply considerable force onto the battery cable at 90 degrees to try to move the direction of
the cable leaving the battery, if successful the connection was not tight enough to begin with
and it should be redone. This article has more detailed battery information.

1300 Chapter 34. Hardware - Basics

FIRST Robotics Competition

34.6.2 Securing the Battery to the Robot

In almost every event we see at least one robot where a not properly secured battery con-
nector (the large Anderson) comes apart and disconnects power from the robot. This has
happened in championship matches on the Einstein and everywhere else. Its an easy to en-
sure that this doesn’t happen to you by securing the two connectors by wrapping a tie wrap
around the connection. 10 or 12 tie wraps for the piece of mind during an event is not a high
price to pay to guarantee that you will not have the problem of this robot from an actual event
after a bumpy ride over a defense. Also, secure your battery to the chassis with hook and loop
tape or another method, especially in games with rough defense, obstacles or climbing.

34.6.3 Securing the Battery Connector & Main Power Leads

A loose robot-side battery connector (the large Anderson SB) can allow the main power leads
to be tugged when the battery is replaced. If the main power leads are loose, that “tug”
can get all the way back to the crimp lugs attached to the 120 Amp Circuit Breaker or Power
Distribution Panel (PDP), bend the lug, and over time cause the lug end to break from fatigue.
Putting a couple tie wraps attaching the main power leads to the chassis and bolting down
the robot-side battery connector can prevent this, as well as make it easier to connect the
battery.

34.6. Robot Preemptive Troubleshooting 1301

FIRST Robotics Competition

34.6.4 Main Breaker (120 Amp Circuit Breaker)

Note: Ensure nuts are tightened firmly and the breaker is attached to a rigid element.

Apply a strong twisting force to try to rotate the crimped lug. If the lug rotates then the nut
is not tight enough. After tightening the nut, retest by once again trying to rotate the lug.
The original nut has a star locking feature, which can wear out over time: these may require
checking every few matches, especially if your robot-side battery connector is not attached
to the chassis.
The nut is normally a relatively uncommon 1/4-28 thread: ensure this is correct if the nut is
replaced.
Because the metal stud is just molded into the case, every once in awhile you may break off

1302 Chapter 34. Hardware - Basics

FIRST Robotics Competition

the stud. Don’t stress, just replace the assembly.
When subjected to multiple competition seasons, the Main Breaker is susceptible to fatigue
damage from vibration and use, and can start opening under impact. Each time the thermal
fuse function is triggered, it can become progressively easier to trip. Many veteran teams
start each season with a fresh main breaker, and carry spares.

34.6.5 Power Distribution Panel (PDP)

Make sure that split washers were placed under the PDP screws, but it is not easy to visually
confirm, and sometimes you can’t. You can check by removing the case. Also if you squeeze
the red and black wires together, sometimes you can catch the really lose connections.

34.6.6 Tug Testing

34.6. Robot Preemptive Troubleshooting 1303

FIRST Robotics Competition

The Weidmuller contacts for power, compressor output, roboRIO power connector, and radio
power are important to verify by tugging on the connections as shown. Make sure that none
of the connections pull out.
Look for possible or impending shorts with Weidmuller connections that are close to each
other, and have too-long wire-lead lengths (wires that are stripped extra long).
Spade connectors can also fail due to improper crimps, so tug-test those as well.

34.6.7 Blade Fuses

Be sure to place the 20A fuse (yellow) on the left and the 10A fuse (red) on the right.

20 10

20A VRM and PCM Fuse

Vbat VRM PCM PWR Vbat CONTROLLER PWR

10A roboRIO Fuse

1304 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Warning: Take care to ensure fuses are fully seated into the fuse holders. The fuses
should descend at least as far as the figure below (different brand fuses have different
lead lengths). It should be nearly impossible to remove the fuse with bare hands (without
the use of pliers). If this is not properly done, the robot/radio may exhibit intermittent
connectivity issues.

If you can remove the blade fuses by hand then they are not in completely. Make sure that
they are completely seated in the PDP so that they don’t pop out during robot operation.

34.6.8 roboRIO swarf

Swarf is fine chips or filings of stone, metal, or other material produced by a machining
operation. Often modifications must be made to a robot while the control system parts are
in place. The circuit board for the roboRIO is conformally coated, but that doesn’t absolutely
guarantee that metal chips won’t short out traces or components inside the case. In this case,
you must exercise care in making sure that none of the chips end up in the roboRIO or any
of the other components. In particular, the exposed 3 pin headers are a place where chips
can enter the case. A quick sweep through each of the four sides with a flashlight is usually
sufficient to find the really bad areas of infiltration.

34.6. Robot Preemptive Troubleshooting 1305

FIRST Robotics Competition

34.6.9 Radio Barrel Jack

Make sure the correct barrel jack is used, not one that is too small and falls out for no reason.
This isn’t common, but ask an FTA and every once in awhile a team will use some random
barrel jack that is not sized correctly, and it falls out in a match on first contact.

34.6.10 Ethernet Cable

If the RIO to radio ethernet cable is missing the clip that locks the connector in, get another
cable. This is a common problem that will happen several times in every competition. Make
sure that your cables are secure. The clip often breaks off, especially when pulling it through
a tight path, it snags on something then breaks.

34.6.11 Loose Cables

Cables must be tightened down, particularly the radio power and ethernet cable. The radio
power cables don’t have a lot of friction force and will fall out (even if it is the correct barrel)
if the weight of the cable-slack is allowed to swing freely.
Ethernet cable is also pretty heavy, if it’s allowed to swing freely, the plastic clip may not be
enough to hold the ethernet pin connectors in circuit.

34.6.12 Reproducing Problems in the Pit

Beyond the normal shaking of cables whilst the robot is powered and tethered, it is suggested
that one side of the robot be picked up and dropped. Driving on the field, especially against
defenders, will often be very violent, and this helps makes sure nothing falls out. It is better
for the robot to fail in the pits rather than in the middle of a match.
When doing this test it’s important to be ethernet tethered and not USB tethered, otherwise
you are not testing all of the critical paths.

34.6.13 Check Firmware and Versions

Robot inspectors do this, but you should do it as well, it helps robot inspectors out and they
appreciate it. And it guarantees that you are running with the most recent, bug fixed code.
You wouldn’t want to lose a match because of an out of date piece of control system software
on your robot.

34.6.14 Driver Station Checks

We often see problems with the Drivers Station. You should:
• ALWAYS bring the laptop power cable to the field, it doesn’t matter how good the battery

is, you are allowed to plug in at the field.
• Check the power and sleep settings, turn off sleep and hibernate, screen savers, etc.
• Turn off power management for USB devices (dev manager)
• Turn off power management for ethernet ports (dev manager)

1306 Chapter 34. Hardware - Basics

FIRST Robotics Competition

• Turn off windows defender
• Turn off firewall
• Close all apps except for DS/Dashboard when out on the field.
• Verify that there is nothing unnecessary running in the application tray in the start menu

(bottom right side)

34.6.15 Handy Tools

There never seems to be enough light inside robots, at least not enough to scrutinize the criti-
cal connection points, so consider using a handheld LED flashlight to inspect the connections
on your robot. They’re available from home depot or any hardware/automotive store.
A WAGO tool is nice tool for redoing Weidmuller connections with stranded wires. Often I’ll
do one to show the team, and then have them do the rest using the WAGO tool to press down
the white-plunger while they insert the stranded wire. The angle of the WAGO tool makes
this particularly helpful.

34.7 Robot Battery Basics

The power supply for an FRC® robot is a single 12V 18Ah SLA (Sealed Lead Acid) non-
spillable battery, capable of briefly supplying over 180A and arcing over 500A when fully
charged. The Robot Battery assembly includes the COTS battery, lead cables with contacts,
and Anderson SB connector. Teams are encouraged to have multiple Robot Batteries.

34.7.1 COTS Battery

The Robot Rules in the Game Manual specify a COTS non-spillable sealed lead acid battery
meeting specific criteria, and gives examples of legal part numbers from a variety of vendors.

34.7. Robot Battery Basics 1307

FIRST Robotics Competition

34.7.2 Battery Safety & Handling

A healthy battery is always “On” and the terminals are always energized. If the polarities
short together - for example, a wrench or aerosol can falls and bridges the gap between two
bare terminals - all the stored energy will be released in a dangerous arc. This risk drives
a wide range of best practices, such as covering terminals in storage, only uncovering and
working on one terminal or polarity at a time, keeping SB contacts fully inserted in connectors,
etc.
Do *NOT* carry a battery assembly by the cables, and always avoid pulling by them.
Pulling on batteries by the cables will begin to damage the lugs, tabs, and the internal con-
nection of the tab. Over time, fatigue damage can add up until the entire tab tears out of
the housing! Even if it isn’t clearly broken, internal fatigue damage can increase the battery
internal resistance, prematurely wearing out the battery. The battery will not be able to pro-
vide the same amount of current with increased internal resistance or if the connectors are
loose.

Dropping the batteries can bend the internal plates and cause performance issues, create
bulges, or even crack the battery case open. While most FRC batteries use Absorbent Glass
Mat [AGM] or Gel technology for safety and performance, when a cell is punctured it may
still leak a small amount of battery acid. This is one of the reasons FIRST recommends teams
have a battery spill kit available.
Finally, certain older battery chargers without “maintenance mode” features can overcharge
the battery, resulting in boiling off some of the battery acid.

1308 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Damaged batteries should be safely disposed of as soon as possible. All retailers that sell
large SLA batteries, like car batteries, should be able to dispose of it for you. They may
charge a small fee, or provide a small “core charge refund”, depending on your state law.

Danger: DO NOT attempt to “repair” damaged or non-functional batteries.

34.7.3 Battery Construction & Tools

Battery Leads

Battery leads must be copper, minimum size (cross section) 6 AWG (16mm2, 7 SWG) and
maximum length 12”, color coded for polarity, with an Anderson SB connector. Standard
6AWG copper leads with Pink/Red SB50 battery leads often come in the Kit of Parts and are
sold by FRC vendors.

Lead Cables

Tinned, annealed, or coated copper is allowed. Do not use CCA (copper clad aluminum),
aluminum, or other non-copper base metal. The conductor metal is normally printed on the
outside of the insulation with the other cable ratings.
Wire size 6AWG is sufficient for almost all robots and fits standard SB50 contacts. A small
number of teams adopt larger wire sizes for marginal performance benefits.
Higher strand count wire (sometimes sold as “Flex” or “welding wire”) has a smaller bend
radius, which makes it easier to route, and a higher fatigue limit. There is no strand count
requirement, but 84/25 (84 strand “flex” hookup wire) and 259/30 (259 strand “welding wire”)
will both be much easier to work with than 19/0.0372 (19 strand hookup wire).

34.7. Robot Battery Basics 1309

FIRST Robotics Competition

The insulation must be color-coded per the Game Manual: as of 2021, the +12Vdc wire must
be red, white, brown, yellow, or black w/stripe and the ground wire (return wire) must be black
or blue. There is no explicit insulation temperature rating requirement, but any blackened or
damaged insulation means the wire needs to be replaced: off hand, 105C is plenty and lower
will work for almost all robots. There is no insulation voltage rating requirement, lower is
better for thinner insulation.

SB Connector

The Anderson SB Connector may be the standard Pink/Red SB50, or another Anderson SB
connector. Teams are STRONGLY recommended to use the Pink/Red SB50 for interoperabil-
ity: the other colors and sizes of housings will not intermate, and you will be unable to borrow
batteries or chargers.
Follow manufacturer’s instructions to crimp contacts and assemble the leads into Anderson
SB connectors. A small flathead screwdriver can help to insert the contacts (push on the
contact, not on the wire insulation), or it can help to disengage the internal latch if the contact
is in the wrong slot or upside down.

Battery Lugs

Compression lugs (“crimp lugs”) for #10 bolt (or M5) battery tabs (~0.2” or ~5mm hole
diameter) are available online and through electrical supply houses, sold by the accepted
wire sizes in AWG (or mm2) and post diameter (“bolt size”, “hole diameter”). Higher end
vendors will also distinguish between Standard (~19) and Flex (>80) strand counts in their
lug catalogs. Some vendors also offer right angle lugs, in addition to more common straight
styles. Follow manufacturer’s instructions to crimp the lugs.
Screw terminal lugs are legal, but not recommended. If using screw terminal lugs, use the
correct tip size screwdriver to tighten the terminal. Check the terminal tightness frequently
because they may loosen over time.

Battery Lead Lug To Post Connection

A #10 or M5 nut & bolt connect the battery lead lug to the battery tab.

Warning: The lug and tab must directly contact, copper to copper: do not put a washer
of any kind separating them.

1310 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Some batteries come with tab bolts in the package: they may be used, or replaced with
stronger alloy steel bolts. It is a good idea to add a functional lock washer, such as a #10 star
washer or a nordlock washer system, in addition to a nylon locking (“nylock”) nut. Only use
one style of lock washer in each connection. Even if the manufacturer provides split ring lock
washers in the package, you are not required to use them.

These connections must be very tight for reliability. Any movement of the lug while in oper-
ation may interrupt robot power, resulting in robot reboots and field disconnections lasting

34.7. Robot Battery Basics 1311

FIRST Robotics Competition

30 seconds or more.
This connection must also be completely covered for electrical safety; electrical tape will
work, but heatshrink that fits over the entire connection is recommended. High shrink ratios
(minimum 3:1, recommend 4:1) will make it easier to apply the heatshrink. Adhesive lined
heat shrink is allowed. Be sure all the copper is covered! Heat shrink must be “touched up”
with electrical tape if some copper shows.

1312 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Battery Chargers

There are many good COTS “smart” battery chargers designed for 12V SLA batteries, rated
for 6A or less per battery, with ‘maintenance mode’ features. Chargers rated over 6A are not
allowed in FRC pits.
Chargers used at competition are required to use Anderson SB connectors. Attaching a COTS
SB connector battery lead to the charger leads using appropriately sized wire nuts or screw
terminals is fast and simple (be sure to cover any exposed copper with heat shrink or elec-
trical tape). SB Connector Contacts are also available for smaller wire sizes, if the team has
crimping capability.

Warning: After attaching the SB, double check the charger polarities with a multimeter
before plugging in the first battery.

Some FRC vendors sell chargers with red SB50 connectors pre-attached.

Battery Evaluation Tools

Battery Charger
If your battery charger has Maintenance Mode indicator, such as a GREEN LED, you can use
that indicator to tell you whether you are READY. Some chargers will cycle between “CHARG-
ING” and “READY” periodically. This is a “maintenance” behavior, sometimes associated with
the battery cooling off and being able to accept more charge.
Driver Station Display and Log
When the robot is plugged in and connected to the driver station laptop, the battery voltage
is displayed on the NI Driver Station software.
After you finish a driving session, you can review the battery voltage in the Log Viewer.
Hand-held Voltmeter or Multimeter
A voltage reading from probes on the SB connector of a disconnected battery will give you
a snapshot of what the Voc (Voltage open circuit, or “float voltage”) is in the “Unloaded”
state. In general the Voc is not a recommended method for understanding battery health: the
open circuit voltage is not as useful as the combination of internal resistance and voltages at
specific loads provided by a Load Tester (or Battery Analyzer).
Load Tester
A battery load tester can be used as a quick way to determine the detailed readiness of a
battery. It may provide information like: open-load voltage, voltage under load, internal re-
sistance, and state of charge. These metrics can be used to quickly confirm that a battery is
ready for a match and even help to identify some long term problems with the battery.

34.7. Robot Battery Basics 1313

FIRST Robotics Competition

Ideal internal resistance should be less than 0.015 Ohms. The manufacturer specification for
most batteries is 0.011 Ohms. If a battery gets higher than 0.020 Ohms it is a good idea to
consider not using that battery for competition matches.
If a battery shows significantly lower voltages at the higher test current loads, it may not be
done charging, or it may need to be retired.

34.7.4 Understanding Battery Voltages

A “12V battery” is anything but 12.0V.
Fully charged, a battery can be anywhere from 12.7 to 13.5 volts open circuit (Voc). Open
circuit voltage is measured with nothing connected.
Once a load (like a robot) is connected, and any amount of current is flowing, the battery
voltage will drop. So if you check a battery with a Voltmeter, and it reads 13.2, and then
connect it to your robot and power on, it will read lower, maybe 12.9 on the Driver Station
display. Those numbers will vary with every battery and specific robot, see Characterization
below. Once your robot starts running, it will pull more current, and the voltage will drop
further.
Batteries reading 12.5V on an idle robot should be swapped and charged before a match. Al-
ways swap the batteries before the robot starts reaching brownout safety thresholds (dwelling
at low voltages on the Driver Station display), as frequently entering low voltage ranges risks
permanent battery damage; this behavior can happen at a variety of Voc states depending on
battery health, battery manufacturer, and robot design. The battery State of Charge should
be kept over 50% for battery longevity.
Battery voltage and current also depends on temperature: cool batteries are happy batteries.

Battery Characterization

A battery analyzer can be used to give a detailed inspection and comparison of battery per-
formance.

It will provide graphs of battery performance over time. This test takes significant time
(roughly two hours) so it is less suited to testing during competition. It is recommended
to run this test on each battery every year to monitor and track its performance. This will
determine how it should be used: matches, practice, testing, or disposed of.
At the standard 7.5 amps test load, competition batteries should have at least a 11.5 amp
hour rating. Anything less than that should only be used for practice or other less demanding
use cases.

1314 Chapter 34. Hardware - Basics

FIRST Robotics Competition

Battery Longevity

A battery is rated for about 1200 normal charge/recharge cycles. The high currents required
for an FRC match reduce that lifespan to about 400 cycles. These cycles are intended to be
relatively low discharge, from around 13.5 down to 12 or 12.5 volts. Deep cycling the battery
(running it all the way down) will damage it.
Batteries last the longest if they are kept fully charged when not in use, either by charging
regularly or by use of a maintenance charger. Batteries drop roughly 0.1V every month of
non-use.
Batteries need to be kept away from both extreme heat and cold. This generally means storing
the batteries in a climate controlled area: a classroom closet is usually fine, a parking lot
shipping container is more risky.

34.7.5 Battery Best Practices

• Only use a charged battery for competition matches. If you are in a situation where you
have run out of charged batteries, please ask a veteran team for help! Nobody wants to
see a robot dead on the field (brownout) due to a bad or uncharged battery.

• Teams are strongly recommended to use properly rated tools and stringent quality con-
trol practices for crimping processes (ask local veteran teams or a commercial electrician
for help), or use vendor-made Battery Leads.

• Wait for batteries to cool after the match before recharging: the case should not be warm
to the touch, fifteen minutes is usually plenty.

• Teams should consider purchasing several new batteries each year to help keep their
batteries fresh. Elimination matches can require many batteries and there may not be
enough time to recharge.

34.7. Robot Battery Basics 1315

FIRST Robotics Competition

• A multi bank battery charger allows you to charge more than one battery at a time. Many

1316 Chapter 34. Hardware - Basics

FIRST Robotics Competition

teams build a robot cart for their batteries and chargers allowing for easy transport and
storage.

• It is a good idea to permanently identify each battery with at least: team number, year,
and a unique identifier.

• Teams may also want to use something removable (stickers, labeling machine etc.) to
identify what that battery should be used for based on its performance data and when
the last analyzer test was run.

• Using battery flags (a piece of plastic placed in the battery connector) is a common way
to indicate that a battery has been charged. Battery flags can also be easily 3D printed.

• Handles for SB50 contacts can be purchased or 3D printed to help avoid pulling on the
leads while connecting or disconnecting batteries. Do not use these handles to carry the
weight of the battery.

• Some teams sew battery carrying straps from old seatbelts or other flat nylon that fit
around the battery to help prevent carrying by leads.

34.7. Robot Battery Basics 1317

FIRST Robotics Competition

• Cable tie edge clips can be used with 90 degree crimp lugs to strain relieve battery leads.

1318 Chapter 34. Hardware - Basics

35
Hardware Tutorials

Note: The pages in this section of the documentation contain media which is only viewable
from the web version of the documentation

35.1 Motors for Robotics Applications

One of the most important design decisions that teams have to deal with is selecting and
designing the motor driven systems on their robot. So often the incorrect motor is chosen
for a particular design yielding reduced performance and, sometimes even worse, motors
failing from excessive current draw. In this series of videos, WPI Professor Ken Stafford walks
through how motors work, how to design systems to operate at maximum performance, and
a sample design for a robot system.

35.2 Sensing and Sensors

Without sensors and sensing robots are really radio controlled vehicles. Sensors allow the
robots to understand the internal operation of the robots mechanical systems as well as the
ability to interact with the environment around the robot. In these videos, WPI Professor
Craig Putnam describes a number of classes of sensors, how they are used, and provides
guidance on what sensors are best for your applications.

1319

FIRST Robotics Competition

35.3 Pneumatics

Pneumatics is an often underused actuation device that can be used on robots. There are
many advantages to pneumatics over using motors. In this video Professor Ken Stafford de-
scribes the characteristics of pneumatics, applications with robots, and calculating the right
sized system for an application.

35.4 Power Transmission

Hand in hand with choosing the correct motors for an application is transmitting that motor
power to the place it’s needed. Using gears or chains and sprockets are two effective ways
of matching the motor power to the application being driven. In this video, WPI Robotics
Engineering PhD student Michael Delph talks about power transmission, including choosing
correct gear or chain and sprocket ratios to get the maximum performance from your robot
design.

1320 Chapter 35. Hardware Tutorials

36
Sensors

36.1 Sensor Overview - Hardware

Note: This section covers sensor hardware, not the use of sensors in code. For a software
sensor guide, see Sensor Overview - Software.

In order to be effective, it is often vital for robots to be able to gather information about their
surroundings. Devices that provide feedback to the robot on the state of its environment are
called “sensors.” There are a large variety of sensors available to FRC® teams, for measuring
everything from on-field positioning to robot orientation to motor/mechanism positioning.
Making use of sensors is an absolutely crucial skill for on-field success; while most FRC games
do have tasks that can be accomplished by a “blind” robot, the best robots rely heavily on
sensors to accomplish game tasks as quickly and reliably as possible.
Additionally, sensors can be extremely important for robot safety - many robot mechanisms
are capable of breaking themselves if used incorrectly. Sensors provide a safeguard against
this, allowing robots to, for example, disable a motor if a mechanism is against a hard-stop.

36.1.1 Types of Sensors

Sensors used in FRC can be generally categorized in two different ways: by function, and by
communication protocol. The former categorization is relevant for robot design; the latter
for wiring and programming.

1321

FIRST Robotics Competition

Sensors by Function

Sensors can provide feedback on a variety of different aspects of the robot’s state. Sensor
functions common to FRC include:

• Proximity switches
– Mechanical proximity switches (“limit switches”)
– Magnetic proximity switches
– Inductive proximity switches
– Photoelectric proximity switches

• Distance sensors
– Ultrasonic sensors
– Triangulating rangefinders
– LIDAR

• Shaft rotation sensors
– Encoders
– Potentiometers

• Accelerometers
• Gyroscopes

Sensors by Communication Protocol

In order for a sensor to be useful, it must be able to “talk” to the roboRIO. There are several
main methods by which sensors can communicate their readings to the roboRIO:

• Analog input
• Digital input
• Serial bus

In general, support for sensors that communicate via analog and digital inputs is straightfor-
ward, while communication over serial bus can be more complicated.

36.2 Analog Inputs - Hardware

Note: This section covers analog input hardware. For a software guide to analog inputs, see
Analog Inputs - Software.

An analog signal is a signal whose value can lie anywhere in a continuous interval. This lies
in stark contrast to a digital signal, which can take only one of several discrete values. The
roboRIO’s analog input ports allow the measurement of analog signals with values from 0V
to 5V.

1322 Chapter 36. Sensors

https://en.wikipedia.org/wiki/Analog_signal

FIRST Robotics Competition

In practice, there is no way to measure a “true” analog signal with a digital device such as a
computer (like the roboRIO). Accordingly, the analog inputs are actually measured as a 12-bit
digital signal - however, this is quite a high resolution1.
Analog inputs are typically (but not always!) used for sensors whose measurements vary
continuously over a range, such as ultrasonic rangefinders and potentiometers, as they can
communicate by outputting a voltage proportional to their measurements.

36.2.1 Connecting to roboRIO analog input ports

Note: An additional four analog inputs are available via the “MXP” expansion port. To use
these, a breakout board of some sort that connects to the MXP is needed.

Warning: Always consult the technical specifications of the sensor you are using before
wiring the sensor, to ensure that the correct wire is being connected to each pin. Failure
to do so can result in damage to the sensor or the RIO.

Warning: Never directly connect the power pin to the ground pin on any port on the
roboRIO! This will trigger protection features on the roboRIO and may result in unexpected
behavior.

1 A 12-bit resolution yields 212, or 4096 different values. For a 5V range, that’s an effective resolution of approx-
imately 1.2 mV, or .0012V. The actual accuracy specification is plus-or-minus 50mV, so the discretization is not the
limiting factor in the measurement accuracy.

36.2. Analog Inputs - Hardware 1323

FIRST Robotics Competition

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

The roboRIO has 4 built-in analog input ports (numbered 0-3), as seen in the image above.
Each port has three pins - signal (“S”), power (“V”), and ground (” ”). The “power” and
“ground” pins are used to power the peripheral sensors that connect to the analog input
ports - there is a constant 5V potential difference between the “power” and the “ground”
pins2. The signal pin is the pin on which the signal is actually measured.

2 All power pins are actually connected to a single rail, as are all ground pins - there is no need to use the
power/ground pins corresponding to a given signal pin.

1324 Chapter 36. Sensors

FIRST Robotics Competition

Connecting a sensor to a single analog input port

Note: Some sensors (such as potentiometers) may have interchangeable power and ground
connections.

Most sensors that connect to analog input ports will have three wires - signal, power, and
ground - corresponding precisely to the three pins of the analog input ports. They should be
connected accordingly.

V
D

D

G
N

D

S
T

O
U

T

ANALOG IN
RESET USER

S
5V

S
6V

SparkFun Single Axis
Accelerometer
ADXL193

Connecting a sensor to multiple analog input ports

Some sensors may need to connect to multiple analog input ports in order to function. In
general, these sensors will only ever require a single power and a single ground pin - only the
signal pin of the additional port(s) will be needed. The image below is shows an analog ac-
celerometer that requires three analog input ports, but similar wiring can be used for analog
sensors requiring two analog input ports.

36.2. Analog Inputs - Hardware 1325

FIRST Robotics Competition

RELAY ANALOG IN
RESET

S
5V

V
IN

3
v
o

G
N

D

Z
o
u

t

Yo
u

t

X
o
u

t

te
st

ADXL335
Analog triple-axis
accelerometer

36.2.2 Footnotes

36.3 Analog Potentiometers - Hardware

Note: This section covers analog potentiometer hardware. For a software guide to analog
potentiometers, see Analog Potentiometers - Software.

Warning: Potentiometers generally have a mechanically-limited travel range. Users
should be careful that their mechanisms do not turn their potentiometers past their maxi-
mum travel, as this will damage or destroy the potentiometer.

Apart from quadrature encoders, another common way of measuring rotation on FRC® robots
is with analog potentiometers. A potentiometer is simply a variable resistor - as the shaft of
the potentiometer turns, the resistance changes (usually linearly). Placing this resistor in
a voltage divider allows the user to easily measure the resistance by measuring the voltage

1326 Chapter 36. Sensors

https://en.wikipedia.org/wiki/Voltage_divider

FIRST Robotics Competition

across the potentiometer, which can then be used to calculate the rotational position of the
shaft.

36.3.1 Wiring an analog potentiometer

As suggested by the names, analog potentiometers connect to the roboRIO’s analog input
ports. To understand how exactly to wire potentiometers, however, it is important to under-
stand their internal circuitry.

RELAY ANALOG IN
RESET USER

S
5V

S
6V

ACCELEROMETER

Y

Z
X

Potentiometer

Note: Power and ground may be reversed.

The picture above on the left shows a typical potentiometer. There are three pins, just as
there are on the RIO’s analog inputs. The middle pin is the signal pin, while the outer pins
can both be either power or ground.
As mentioned before, a potentiometer is a voltage divider, as shown in the circuit diagram on
the right. As the potentiometer shaft turns, the resistances R1 and R2 change; however, their
sum remains constant1. Thus, the voltage across the entire potentiometer remains constant
(for the roboRIO, this would be 5 volts), but the voltage between the signal pin and either the
voltage or ground pin varies linearly as the shaft turns.
Since the circuit is symmetric, it is reversible - this allows the user to choose at which end
of the travel the measured voltage is zero, and at which end it is 5 volts. To reverse the
directionality of the sensor, it can simply be wired backwards! Be sure to check the direc-
tionality of your potentiometer with a multimeter to be sure it is in the desired orientation
before soldering your wires to the contacts.

1 The way this actually works is generally by having the shaft control the position of a contact along a resistive
“wiper” of fixed length along which the current flows - the resistance is proportional to the length of wiper between
the contact and the end of the wiper.

36.3. Analog Potentiometers - Hardware 1327

FIRST Robotics Competition

36.3.2 Footnotes

36.4 Digital Inputs - Hardware

Note: This section covers digital input hardware. For a software guide to digital inputs, see
Digital Inputs - Software.

A digital signal is a signal that can be in one of several discrete states. In the vast majority
of cases, the signal is the voltage in a wire, and there are only two states for a digital signal -
high, or low (also denoted 1 and 0, or true and false, respectively).
The roboRIO’s built-in digital input-output ports (or “DIO”) ports function on 5V, so “high”
corresponds to a signal of 5V, and “low” to a signal of 0V12.

36.4.1 Connecting to the roboRIO DIO ports

Note: Additional DIO ports are available through the “MXP” expansion port. To use these,
a breakout board of some sort that connects to the MXP is needed.

Warning: Always consult the technical specifications of the sensor you are using before
wiring the sensor, to ensure that the correct wire is being connected to each pin. Failure
to do so can result in damage to the device.

Warning: Never directly connect the power pin to the ground pin on any port on the
roboRIO! This will trigger protection features on the roboRIO and may result in unexpected
behavior.

1 More precisely, the signal reads “high” when it rises above 2.0V, and reads “low” when it falls back below 0.8V
- behavior between these two thresholds is not guaranteed to be consistent.

2 The roboRIO also offers 3.3V logic via the “MXP” expansion port; however, the use of this is far less common
than the 5V.

1328 Chapter 36. Sensors

https://en.wikipedia.org/wiki/Digital_signal

FIRST Robotics Competition

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

The roboRIO has 10 built-in DIO ports (numbered 0-9), as seen in the image above. Each
port has three pins - signal (“S”), power (“V”), and ground (” ”). The “power” and “ground”
pins are used to power the peripheral sensors that connect to the DIO ports - there is a
constant 5V potential difference between the “power” and the “ground” pins3 - the “power”
pin corresponds to the “high” state (5V), and the “ground” to “low” (0V). The signal pin is the
pin on which the signal is actually measured (or, when used as an output, the pin that sends
the signal).
All DIO ports have built-in “pull-up” resistors between the power pins and the signal pins -
these ensure that when the signal pin is “floating” (i.e. is not connected to any circuit), they
consistently remain in a “high” state.

3 All power pins are actually connected to a single rail, as are all ground pins - there is no need to use the
power/ground pins corresponding to a given signal pin.

36.4. Digital Inputs - Hardware 1329

FIRST Robotics Competition

Connecting a simple switch to a DIO port

The simplest device that can be connected to a DIO port is a switch (such as a limit switch).
When a switch is connected correctly to a DIO port, the port will read “high” when the circuit
is open, and “low” when the circuit is closed.
A simple switch does not need to be powered, and thus only has two wires. Switches should
be wired between the signal and the ground pins of the DIO port. When the switch circuit is
open, the signal pin will float, and the pull-up resistor will ensure that it reads “high.” When
the switch circuit is closed, it will connect directly to the ground rail, and thus read “low.”

Limit Switch or Micro Switch

NO3
NC2

COM1

1330 Chapter 36. Sensors

FIRST Robotics Competition

Connecting a powered sensor to a DIO port

Many digital sensors (such as most no-contact proximity switches) require power in order to
work. A powered sensor will generally have three wires - signal, power, and ground. These
should be connected to the corresponding pins of the DIO port.

5
V

S

WCP Hall Effect Sensor

SIG 5v GND

36.4. Digital Inputs - Hardware 1331

FIRST Robotics Competition

Connecting a sensor that uses multiple DIO ports

Some sensors (such as quadrature encoders) may need to connect to multiple DIO ports in
order to function. In general, these sensors will only ever require a single power and a single
ground pin - only the signal pin of the additional port(s) will be needed.

E4T OEM Miniature
Optical Encoder

1332 Chapter 36. Sensors

FIRST Robotics Competition

36.4.2 Footnotes

36.5 Proximity Switches - Hardware

Note: This section covers proximity switch hardware. For a guide to using proximity
switches in software, see Digital Inputs - Software.

One of the most common sensing tasks on a robot is detecting when an object (be it a mecha-
nism, game piece, or field element) is within a certain distance of a known point on the robot.
This type of sensing is accomplished by a “proximity switch.”

36.5.1 Proximity switch operation

Proximity switches are switches - they operate a circuit between an “open” state (in which
there is not connectivity across the circuit) and a “closed” one (in which there is). Thus, prox-
imity switches generate a digital signal, and accordingly, they are almost always connected
to the roboRIO’s digital input ports.
Proximity switches can be either “normally-open,” in which activating the switch closes the
circuit, or “normally closed,” in which activating the switch opens the circuit. Some switches
offer both a NO and a NC circuit connected to the same switch. In practice, the effective
difference between a NO and a NC switch is the behavior of the system in the case that the
wiring to the switch fails, as a wiring failure will almost always result in an open circuit. NC
switches are often “safer,” in that a wiring failure causes the system to behave as if the switch
were pressed - as switches are often used to prevent a mechanism from damaging itself, this
mitigates the chance of damage to the mechanism in the case of a wiring fault.
The digital inputs on the roboRIO have pull-up resistors that will make the input be high (1
value) when the switch is open, but when the switch closes the value goes to 0 since the input
is now connected to ground.

36.5.2 Types of Proximity Switches

There are several types of proximity switches that are commonly used in FRC®:
• Mechanical Proximity Switches (“limit switches”)
• Magnetic Proximity Switches
• Inductive Proximity Switches
• Photoelectric Proximity Switches
• Time-of-flight Proximity Switches

36.5. Proximity Switches - Hardware 1333

FIRST Robotics Competition

Mechanical Proximity Switches (“limit switches”)

Limit Switch or Micro Switch

NO3
NC2

COM1

Mechanical proximity switches (more commonly known as “limit switches”) are probably the
most commonly used proximity switch in FRC, due to their simplicity, ease-of-use, and low
cost. A limit switch is quite simply a switch attached to a mechanical arm, usually at the limits
of travel. The switch is activated when an object pushes against the switch arm, actuating
the switch.
Limit switches vary in size, the geometry of the switch-arm, and in the amount of “throw”
required to activate the switch. While limit switches are quite cheap, their mechanical actua-
tion is sometimes less-reliable than no-contact alternatives. However, they are also extremely
versatile, as they can be triggered by any physical object capable of moving the switch arm.
See this article for writing the software for Limit Switches.

1334 Chapter 36. Sensors

FIRST Robotics Competition

Magnetic Proximity Switches

5
V

S

WCP Hall Effect Sensor

SIG 5v GND

Magnetic proximity switches are activated when a magnet comes within a certain range of
the sensor. Accordingly, they are “no-contact” switches - they do not require contact with the
object being sensed.
There are two major types of magnetic proximity switches - reed switches and hall-effect
sensors. In a reed switch, the magnetic field causes a pair of flexible metal contacts (the
“reeds”) to touch each other, closing the circuit. A hall-effect sensor, on the other hand,
detects the induced voltage transversely across a current-carrying conductor. Hall-effect
sensors are generally the cheaper and more reliable of the two. Pictured above is the Hall
effect sensor from West Coast Products.
Magnetic proximity switches may be either “unipolar,” “bipolar,” or “omnipolar.” A unipolar
switch activates and deactivates depending on the presence of a given pole of the magnet
(either north or south, depending on the switch). A bipolar switch activates from the proximity
of one pole, and deactivates from the proximity of the opposite pole. An omnipolar switch will

36.5. Proximity Switches - Hardware 1335

https://wcproducts.com/products/wcp-sensors
https://wcproducts.com/products/wcp-sensors

FIRST Robotics Competition

activate in the presence of either pole, and deactivates when no magnet is present.
While magnetic proximity switches are often more reliable than their mechanical counter-
parts, they require the user to mount a magnet on the object to be sensed - thus, they are
mostly used for sensing mechanism location.

Inductive Proximity Switches

Inductive proximity switches are activated when a conductor of any sort comes within a cer-
tain range of the sensor. Like magnetic proximity switches, they are “no-contact” switches.
Inductive proximity switches are used for many of the same purposes as magnetic proximity
switches. Their more-general nature (activating in the presence of any conductor, rather than
just a magnet) can be either a help or a hindrance, depending on the nature of the application.

1336 Chapter 36. Sensors

FIRST Robotics Competition

Photoelectric Proximity Switches

IR Digital Obstacle Avoidance Sensor

A
O

D
O

G
N

D
V

C
C

Photoelectric proximity switches are another type of no-contact proximity switch in
widespread use in FRC. Photoelectric proximity switches contain a light source (usually an
IR laser) and a photoelectric sensor that activates the switch when the detected light (which
bounces off of the sensor target) exceeds a given threshold. One such sensor is the IR Obsta-
cle Avoidance Module pictured below.
Since photoelectric proximity switches rely on measuring the amount of reflected light, they
are often inconsistent in their triggering range between different materials - accordingly, most
photoelectric sensors have an adjustable activation point (typically controlled by turning a
screw somewhere on the sensor body). On the other hand, photoelectric sensors are also
extremely versatile, as they can detect a greater variety of objects than the other types of
no-contact switches.
Photoelectric sensors are also often used in a “beam break” configuration, in which the emit-
ter is separate from the sensor. These typically activate when an object is interposed between
the emitter and the sensor. Pictured above is a beam break sensor with an IR LED transmitter
and IR receiver.

36.5. Proximity Switches - Hardware 1337

https://www.electrodragon.com/product/infraredir-obstacle-avoidance-sensor-moduleadjust-distance/
https://www.electrodragon.com/product/infraredir-obstacle-avoidance-sensor-moduleadjust-distance/
https://www.adafruit.com/product/2167
https://www.adafruit.com/product/2167

FIRST Robotics Competition

IR Transmitter

IR Reciver

1338 Chapter 36. Sensors

FIRST Robotics Competition

Time-of-flight Proximity Switches

R
S

-2
3

2

I
2C

H
 (Y

E
L)

VL53L0X

VIN

2v8 GPIO SCL

SDASHDNGND

Time of Flight Distance Sensor

Time-of-flight Proximity Switches are newer to the market and are not commonly found in

36.5. Proximity Switches - Hardware 1339

FIRST Robotics Competition

FRC. They use a concentrated light source, such as a small laser, and measure the time be-
tween the emission of light and when the receiver detects it. Using the speed of light, it can
produce a very accurate distance measurement for a very small target area. Range on this
type of sensor can range greatly, between 30mm to around 1000mm for the VL53L0X sensor
pictured above. There are also longer range versions available. More information about time
of flight sensors can be found in this article and more about the circuitry can be found in this
article.

36.6 Encoders - Hardware

Note: This section covers encoder hardware. For a software guide to encoders, see Encoders
- Software.

Encoders are by far the most common method for measuring rotational motion in FRC®, and
for good reason - they are cheap, easy-to-use, and reliable. As they produce digital signals,
they are less-prone to noise and interference than analog devices (such as potentiometers).

36.6.1 Types of Encoders

There are three main ways encoders connect physically that are typically used in FRC:
• Shafted encoders
• On-shaft encoders
• Magnetic encoders

These encoders vary in how they are mounted to the mechanism in question. In addition to
these types of encoders, many FRC mechanisms come with quadrature encoders integrated
into their design.
There are also three main ways the encoder data is communicated that are typically used in
FRC:

• Quadrature encoders
• Duty Cycle encoders
• Analog encoders

Note: Some encoders may support more then one communication method

1340 Chapter 36. Sensors

https://www.adafruit.com/product/3317
https://learn.adafruit.com/adafruit-vl53l0x-micro-lidar-distance-sensor-breakout
https://www.allaboutcircuits.com/technical-articles/how-do-time-of-flight-sensors-work-pmdtechnologies-tof-3D-camera/
https://www.allaboutcircuits.com/technical-articles/how-do-time-of-flight-sensors-work-pmdtechnologies-tof-3D-camera/

FIRST Robotics Competition

Shafted Encoders

Grayhill 63R Optical Encoder

 6
3
R

X
X

X
-X

X
X

G
R

A
Y

H
IL

L
 X

X
X

X
 X

-X

Shafted encoders have a sealed body with a shaft protruding out of it that must be coupled
rotationally to a mechanism. This is often done with a helical beam coupling, or, more cheaply,
with a length of flexible tubing (such as surgical tubing or pneumatic tubing), fastened with
cable ties and/or adhesive at either end. Many commercial off-the-shelf FRC gearboxes have
purpose-built mounting points for shafted encoders.
Examples of shafted encoders:

• Grayhill 63r
• US Digital MA3

36.6. Encoders - Hardware 1341

https://www.grayhill.com/documents/63R-Datasheet
https://www.usdigital.com/products/encoders/absolute/shaft/ma3/

FIRST Robotics Competition

On-shaft Encoders

AMT102

AM10 Series Modular Incremental Encoder

AMT103

On-shaft encoders couple to a shaft by fitting around it, forming a friction coupling between
the shaft and a rotating hub inside the encoder.
Examples of On-shaft encoders:

• AMT103-V available through FIRST Choice
• REV Through Bore Encoder
• US Digital E4T

1342 Chapter 36. Sensors

https://www.cuidevices.com/product/motion/rotary-encoders/incremental/modular/amt10-v-kit/amt103-v
https://www.revrobotics.com/rev-11-1271/
https://www.andymark.com/products/e4t-oem-miniature-optical-encoder-kit

FIRST Robotics Competition

Magnetic Encoders

Magnetic encoders require no mechanical coupling to the shaft at all; rather, they track the
orientation of a magnet fixed to the shaft. While the no-contact nature of magnetic encoders
can be handy, they often require precise construction in order to ensure that the magnet is
positioned correctly with respect to the encoder.
Examples of magnetic encoders:

• CTRE Mag Encoder
• Thrifty Absolute Magnetic Encoder
• Team 221 Lamprey2

Quadrature Encoders

The term “quadrature” refers to the method by which the motion is measured/encoded. A
quadrature encoder produces two square-wave pulses that are 90-degrees out-of-phase from
each other, as seen in the picture below:

36.6. Encoders - Hardware 1343

https://store.ctr-electronics.com/srx-mag-encoder/
https://www.thethriftybot.com/bearings/Thrifty-Absolute-Magnetic-Encoder-p421607500
https://www.andymark.com/products/lamprey-absolute-encoder

FIRST Robotics Competition

Thus, across both channels, there are four total “edges” per period (hence “quad”). The use
of two out-of-phase pulses allows the direction of motion to be unambiguously determined
from which pulse “leads” the other.
As each square wave pulse is a digital signal, quadrature encoders connect to the digital input
ports on the roboRIO.
Examples of quadrature encoders:

• AMT103-V available through FIRST Choice
• CTRE Mag Encoder
• Grayhill 63r
• REV Through Bore Encoder
• US Digital E4T

1344 Chapter 36. Sensors

https://www.cuidevices.com/product/motion/rotary-encoders/incremental/modular/amt10-v-kit/amt103-v
https://store.ctr-electronics.com/srx-mag-encoder/
https://www.grayhill.com/documents/63R-Datasheet
https://www.revrobotics.com/rev-11-1271/
https://www.andymark.com/products/e4t-oem-miniature-optical-encoder-kit

FIRST Robotics Competition

Quadrature Encoder Wiring

E4T OEM Miniature
Optical Encoder

Quadrature Encoders, such as the E4T OEM Miniature Optical Encoder, can be wired to two
digital input ports as shown above.

Index

Some quadrature encoders have a third index pin which pulses when the encoder completes
a revolution.

Quaderature Encoder Resolution

Warning: The acronyms “CPR” and “PPR” are both used by varying sources to denote
both edges per revolution and cycles per revolution, so the acronym alone is not enough
to tell which is of the two is meant when by a given value. When in doubt, consult the
technical manual of your specific encoder.

As encoders measure rotation with digital pulses, the accuracy of the measurement is limited
by the number of pulses per given amount of rotational movement. This is known as the
“resolution” of the encoder, and is traditionally measured in one of two different ways: edges
per revolution, or cycles per revolution.

36.6. Encoders - Hardware 1345

https://www.andymark.com/products/e4t-oem-miniature-optical-encoder-kit

FIRST Robotics Competition

Edges per revolution refers to the total number of transitions from high-to-low or low-to-high
across both channels per revolution of the encoder shaft. A full period contains four edges.
Cycles per revolution refers to the total number of complete periods of both channels per
revolution of the encoder shaft. A full period is one cycle.
Thus, a resolution stated in edges per revolution has a value four times that of the same
resolution stated in cycles per revolution.
In general, the resolution of your encoder in edges-per-revolution should be somewhat finer
than your smallest acceptable error in positioning. Thus, if you want to know the mechanism
plus-or-minus one degree, you should have an encoder with a resolution somewhat higher
than 360 edges per revolution.

Duty Cycle Encoders

Duty cycle encoders connect to a single digital input on the roboRIO. They output a pulse
where the length of a pulse is proportional to the absolute position of the encoder.
Examples of duty cycle encoders:

• AndyMark Mag Encoder
• CTRE Mag Encoder
• REV Through Bore Encoder
• Team 221 Lamprey2
• US Digital MA3

1346 Chapter 36. Sensors

https://www.andymark.com/products/am-mag-encoder
https://store.ctr-electronics.com/srx-mag-encoder/
https://www.revrobotics.com/rev-11-1271/
https://www.andymark.com/products/lamprey-absolute-encoder
https://www.usdigital.com/products/encoders/absolute/shaft/ma3/

FIRST Robotics Competition

Analog Encoders

ANALOG IN
RESET USER

S
5V

S
6V

Absolute Encoder
US Digital MA3

Analog encoders connect to a analog input on the roboRIO. They output a voltage proportional
to the absolute position of the encoder.
Examples of analog encoders:

• Team 221 Lamprey2
• Thrifty Absolute Magnetic Encoder
• US Digital MA3

36.7 Gyroscopes - Hardware

Note: This section covers gyro hardware. For a software guide to gyros, see Gyroscopes -
Software.

Gyroscopes (or “gyros”, for short) are devices that measure rate-of-rotation. These are par-
ticularly useful for stabilizing robot driving, or for measuring heading or tilt by integrating
(adding-up) the rate measurements to get a measurement of total angular displacement.
Several popular FRC® devices known as IMUs (Inertial Measurement Units) combine 3-axis
gyros, accelerometers and other position sensors into one device. Some popular examples
are:

• Analog Devices ADIS16448 and ADIS 16470 IMUs
• CTRE Pigeon IMU
• Kauai Labs NavX

36.7. Gyroscopes - Hardware 1347

https://www.andymark.com/products/lamprey-absolute-encoder
https://www.thethriftybot.com/bearings/Thrifty-Absolute-Magnetic-Encoder-p421607500
https://www.usdigital.com/products/encoders/absolute/shaft/ma3/
https://www.analog.com/en/landing-pages/001/first.html
https://store.ctr-electronics.com/gadgeteer-pigeon-imu/
https://pdocs.kauailabs.com/navx-mxp/

FIRST Robotics Competition

36.7.1 Types of Gyros

There are two types of Gyros commonly-used in FRC: single-axis gyros, three-axis gyros and
IMUs, which often include a 3-axis gyro.

Single-axis Gyros

POWER

STATUS

FRC GYRO

Analog Devices
1-axis SPI Gyro

As per their name, single-axis gyros measure rotation rate around a single axis. This axis is
generally specified on the physical device, and mounting the device in the proper orientation
so that the desired axis is measured is highly important. Some single-axis gyros can output
an analog voltage corresponding to the measured rate of rotation, and so connect to the
roboRIO’s analog input ports. Other single-axis gyros, such as the ADXRS450 pictured above,
use the SPI port on the roboRIO instead.
The Analog Devices ADXRS450 FRC Gyro Board that has been in FIRST Choice in recent
years is a commonly used single axis gyro.

1348 Chapter 36. Sensors

https://wiki.analog.com/first
https://www.analog.com/en/landing-pages/001/first.html

FIRST Robotics Competition

Three-axis Gyros

Three-axis gyros measure rotation rate around all three spacial axes (typically labeled x, y,
and z). The motion around these axis is called pitch, yaw, and roll.
The Analog Devices ADIS16470 IMU Board for FIRST Robotics that has been in FIRST Choice
in recent years is a commonly used three-axis gyro.

Applicable to
3-axis Gyros

Note: The coordinate system shown above is often used for three axis gyros, as it is a
convention in avionics. Note that other coordinate systems are used in mathematics and ref-
erenced throughout WPILib. Please refer to the Drive class axis diagram for axis referenced
in software.

Peripheral three-axis gyros may simply output three analog voltages (and thus connect to the
analog input ports, or (more commonly) they may communicate with one of the roboRIO’s
serial buses.

36.7. Gyroscopes - Hardware 1349

https://www.analog.com/en/landing-pages/001/first.html

FIRST Robotics Competition

36.8 Ultrasonics - Hardware

Note: This section covers ultrasonic sensor hardware. For a software guide to ultrasonics,
see Ultrasonics - Software.

Ultrasonic rangefinders are some of the most common rangefinders used in FRC®. They are
cheap, easy-to-use, and fairly reliable. Ultrasonic rangefinders work by emitting a pulse of
high-frequency sound, and then measuring how long it takes the echo to reach the sensor
after bouncing off the target. From the measured time and the speed of sound in air, it is
possible to calculate the distance to the target.

36.8.1 Types of ultrasonics

While all ultrasonic rangefinders operate on the “ping-response” principle outlined above,
they may vary in the way they communicate with the roboRIO.

1350 Chapter 36. Sensors

FIRST Robotics Competition

Analog ultrasonics

ANALOG IN
RESET USER

S
5V

S
6V

MB1013
Analog Ultrasonic
Distance Sensor

Analog ultrasonics output a simple analog voltage corresponding to the distance to the target,
and thus connect to an analog input port. The user will need to calibrate the voltage-to-
distance conversion in software.

36.8. Ultrasonics - Hardware 1351

FIRST Robotics Competition

Ping-response ultrasonics

VEX Ultrasonic
Range Finder

V
C

C
In

p
u
t

O
u
tp

u
t

While, as mentioned, all ultrasonics are functionally ping-response devices, a “ping response”
ultrasonic is one configured to connect to both a digital input and a digital output. The digital
output is used to send the ping, while the input is used to read the response.

1352 Chapter 36. Sensors

FIRST Robotics Competition

Serial ultrasonics

Some more-complicated ultrasonic sensors may communicate with the RIO over one of the
serial buses, such as RS-232.

36.8. Ultrasonics - Hardware 1353

FIRST Robotics Competition

36.8.2 Caveats

Ultrasonic sensors are generally quite easy to use, however there are a few caveats. As ultra-
sonics work by measuring the time between the pulse and its echo, they generally measure
distance only to the closest target in their range. Thus, it is extremely important to pick the
right sensor for the job. The documentation for ultrasonic sensors will generally include a
picture of the “beam pattern” that shows the shape of the “window” in which the ultrasonic
will detect a target - pay close attention to this when selecting your sensor.
Ultrasonic sensors are also susceptible to interference from other ultrasonic sensors. In order
to minimize this, the roboRIO can run ping-response ultrasonics in a “round-robin” fashion
- however, in competition, there is no sure way to ensure that interference from sensors
mounted on other robots does not occur.
Finally, ultrasonics may not be able to detect objects that absorb sound waves, or that redirect
them in strange ways. Thus, they work best for detecting hard, flat objects.

36.9 Accelerometers - Hardware

Accelerometers are common sensors used to measure acceleration.
In principle, precise measurements of acceleration can be double-integrated and used to track
position (similarly to how the measurement of turn rate from a gyroscope can be integrated
to determine heading) - however, in practice, accelerometers that are available within the
legal FRC® price range are not nearly accurate for this use. However, accelerometers are
still useful for a number of tasks in FRC.
The roboRIO comes with a built-in three-axis accelerometer that all teams can use, however
teams seeking more-precise measurements may purchase and use a peripheral accelerome-
ter, as well.

36.9.1 Types of accelerometers

There are three types of accelerometers commonly-used in FRC: single-axis accelerometers,
multi-axis accelerometers, and IMUs.

1354 Chapter 36. Sensors

FIRST Robotics Competition

Single-axis accelerometers

V
D

D

G
N

D

S
T

O
U

T

ANALOG IN
RESET USER

S
5V

S
6V

SparkFun Single Axis
Accelerometer
ADXL193

As per their name, single-axis accelerometers measure acceleration along a single axis. This
axis is generally specified on the physical device, and mounting the device in the proper ori-
entation so that the desired axis is measured is highly important. Single-axis accelerometers
generally output an analog voltage corresponding to the measured acceleration, and so con-
nect to the roboRIO’s analog input ports.

36.9. Accelerometers - Hardware 1355

FIRST Robotics Competition

Multi-axis accelerometers

RELAY ANALOG IN
RESET

S
5V

V
IN

3
v
o

G
N

D

Z
o
u

t

Yo
u

t

X
o
u

t

te
st

ADXL335
Analog triple-axis
accelerometer

Multi-axis accelerometers measure acceleration along multiple spacial axes. The roboRIO’s
built-in accelerometer is a three-axis accelerometer.
Peripheral multi-axis accelerometers may simply output multiple analog voltages (and thus
connect to the analog input ports, or (more commonly) they may communicate with one of
the roboRIO’s serial buses.

1356 Chapter 36. Sensors

FIRST Robotics Competition

roboRIO built-in accelerometer

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

The roboRIO has a built-in accelerometer, which does not need any external connections. You
can find more details about how to use it in the Built-in Accelerometer section of the software
documentation.

36.9. Accelerometers - Hardware 1357

FIRST Robotics Competition

IMUs (Inertial Measurement Units)

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

Several popular FRC devices (known as “inertial measurement units,” or “IMUs”) combine
both an accelerometer and a gyroscope. Popular FRC example include:

• Analog Devices ADIS16448 and ADIS 16470 IMUs
• CTRE Pigeon IMU
• Kauai Labs NavX

1358 Chapter 36. Sensors

https://www.analog.com/en/landing-pages/001/first.html
https://store.ctr-electronics.com/gadgeteer-pigeon-imu/
https://pdocs.kauailabs.com/navx-mxp/

FIRST Robotics Competition

36.10 LIDAR - Hardware

LIDAR (light detection and ranging) sensors are a variety of rangefinder seeing increasing
use in FRC®.
LIDAR sensors work quite similarly to ultrasonics, but use light instead of sound. A laser is
pulsed, and the sensor measures the time until the pulse bounces back.

36.10.1 Types of LIDAR

There are two types of LIDAR sensors commonly used in current FRC: 1-dimensional LIDAR,
and 2-dimensional LIDAR.

1-Dimensional LIDAR

A 1-dimensional (1D) LIDAR sensor works much like an ultrasonic sensor - it measures the
distance to the nearest object more or less along a line in front of it. 1D LIDAR sensors
can often be more-reliable than ultrasonics, as they have narrower “beam profiles” and are
less susceptible to interference. Pictured above is the Garmin LIDAR-Lite Optical Distance
Sensor.
1D LIDAR sensors generally output an analog voltage proportional to the measured distance,
and thus connect to the roboRIO’s analog input ports or to one of the roboRIO’s serial buses.

36.10. LIDAR - Hardware 1359

https://www.andymark.com/products/lidar-lite-3
https://www.andymark.com/products/lidar-lite-3

FIRST Robotics Competition

2-Dimensional LIDAR

A 2-dimensional (2D) LIDAR sensor measures distance in all directions in a plane. Generally,
this is accomplished (more-or-less) by simply placing a 1D LIDAR sensor on a turntable that
spins at a constant rate.
Since, by nature, 2D LIDAR sensors need to send a large amount of data back to the roboRIO,
they almost always connect to one of the roboRIO’s serial buses.

36.10.2 Caveats

LIDAR sensors do suffer from a few common drawbacks:
Like ultrasonics, LIDAR relies on the reflection of the emitted pulse back to the sensor. Thus,
LIDAR critically depends on the reflectivity of the material in the wavelength of the laser.
The FRC field wall is made of polycarbonate, which tends to be transparent in the infrared
wavelength (which is what is generally legal for FRC use). Thus, LIDAR tends to struggle to
detect the field barrier.

1360 Chapter 36. Sensors

FIRST Robotics Competition

2D LIDAR sensors (at the price range legal for FRC use) tend to be quite noisy, and process-
ing their measured data (known as a “point cloud”) can involve a lot of complex software.
Additionally, there are very few 2D LIDAR sensors made specifically for FRC, so software
support tends to be scarce.
As 2D LIDAR sensors rely on a turntable to work, their update rate is limited by the rate at
which the turntable spins. For sensors in the price range legal for FRC, this often means that
they do not update their values particularly quickly, which can be a limitation when the robot
(or the targets) are moving.
Additionally, as 2D LIDAR sensors are limited in angular resolution, the spatial resolution of
the point cloud is worse when targets are further away.

36.11 Triangulating Rangefinders

Triangulating rangefinders (often called “IR rangefinders,” as they commonly function in the
infrared wavelength band) are another common type of rangefinder used in FRC®. The sen-
sor shown above is a common Sharp-brand sensor
Unlike LIDAR, triangulating rangefinders do not measure the time between the emission of
a pulse and the receiving of a reflection. Rather, most IR rangefinders work by emitting a
constant beam at a slight angle, and measuring the position of the reflected beam. The closer
the point of contact of the reflected beam to the emitter, the closer the object to the sensor.

36.11. Triangulating Rangefinders 1361

https://www.sparkfun.com/products/242

FIRST Robotics Competition

36.11.1 Using IR rangefinders

RELAY ANALOG IN
RESET USER

S
5V

IR Proximity Sensor
Sharp GP2Y0A21YK

IR Rangefinders generally output an analog voltage proportional to the distance to the target,
and thus connect to the analog input ports on the RIO.

36.11.2 Caveats

IR rangefinders suffer similar drawbacks to 1D LIDAR sensors - they are very sensitive to the
reflectivity of the target in the wavelength of the emitted laser.
Additionally, while IR rangefinders tend to offer better resolution than LIDAR sensors when
measuring at short distances, they are also usually more sensitive to differences in orientation
of the target, especially if the target is highly-reflective (such as a mirror).

36.12 Serial Buses

In addition to the digital and analog inputs, the roboRIO also offers several methods of serial
communication with peripheral devices.
Both the digital and analog inputs are highly limited in the amount of data that can be sent
over them. Serial buses allow users to make use of far more-robust and higher-bandwidth
communications protocols with sensors that collect large amounts of data, such as inertial
measurement units (IMUs) or 2D LIDAR sensors.

1362 Chapter 36. Sensors

FIRST Robotics Competition

36.12.1 Types of supported serial buses

The roboRIO supports many basic types of serial communications:
• I2C
• SPI
• RS-232
• USB Host
• CAN Bus

Additionally, the roboRIO supports communications with peripheral devices over the CAN
bus. However, as the FRC® CAN protocol is quite idiosyncratic, relatively few peripheral
sensors support it (though it is heavily used for motor controllers).

36.12. Serial Buses 1363

FIRST Robotics Competition

36.12.2 I2C

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

1364 Chapter 36. Sensors

FIRST Robotics Competition

To communicate to peripheral devices over I2C, each pin should be wired to its corresponding
pin on the device. I2C allows users to wire a “chain” of slave devices to a single port, so long
as those devices have separate IDs set.
The I2C bus can also be used through the MXP expansion port. The I2C bus on the MXP is
independent. For example, a device on the main bus can have the same ID as a device on the
MXP bus.

Warning: Be sure to familiarize yourself on the following known issue before using the
onboard I2C port: Onboard I2C Causing System Lockups

36.12. Serial Buses 1365

FIRST Robotics Competition

36.12.3 SPI

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

1366 Chapter 36. Sensors

FIRST Robotics Competition

To communicate to peripheral devices over SPI, each pin should be wired to its corresponding
pin on the device. The SPI port supports communications to up to four devices (corresponding
to the Chip Select (CS) 0-3 pins on the diagram above).
The SPI bus can also be used through the MXP expansion port. The MXP port provides inde-
pendent clock, and input/output lines and an additional CS.

36.12. Serial Buses 1367

FIRST Robotics Competition

36.12.4 RS-232

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

1368 Chapter 36. Sensors

FIRST Robotics Competition

To communicate to peripheral devices over RS-232, each pin should be wired to its corre-
sponding pin on the device.
The RS-232 bus can also be used through the MXP expansion port.
The roboRIO RS-232 serial port uses RS-232 signaling levels (+/- 15v). The MXP serial port
uses CMOS signaling levels (+/- 3.3v).

Note: By default, the onboard RS-232 port is utilized by the roboRIO’s serial console. In
order to use it for an external device, the serial console must be disabled using the Imaging
Tool or roboRIO Web Dashboard.

36.12.5 USB Client

One of the USB ports on the roboRIO is a USB-B, or USB client port. This can be connected
to devices, such as a Driver Station computer, with a standard USB cable.

36.12. Serial Buses 1369

FIRST Robotics Competition

36.12.6 USB Host

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

Two of the USB ports on the roboRIO is a USB-A, or USB host port. These can be connected
to devices, such as cameras or sensors, with a standard USB cable.

1370 Chapter 36. Sensors

FIRST Robotics Competition

36.12.7 MXP Expansion Port

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

36.12. Serial Buses 1371

FIRST Robotics Competition

Several of the serial buses are also available for use through the roboRIO’s MXP Expansion
Port. This port allows users to make use of many additional digital and analog inputs, as well
as the various serial buses.
Many peripheral devices attach directly to the MXP port for convenience, requiring no wiring
on the part of the user.

1372 Chapter 36. Sensors

FIRST Robotics Competition

36.12.8 CAN Bus

RS-232

I 2C

CAN
L (GRN)

H (YEL)

RELAY ANALOG IN
RESET USERRSL

P
W

M

NI roboRIO

POWER

STATUS

RADIO

COMM

MODE

RSL

INPUT
7-16V
45 W MAX

SCL

3.3V SDA

TXD
RXD

5V
S

S
FWD
REV

S
5V

S
6V

ACCELEROMETER

Y

Z
X

CS0
CS1
5V
CS2
CS3

SCLK
MOSI
MISO
3.3V

SPI

Additionally, the roboRIO supports communications with peripheral devices over the CAN bus.
However, as the FRC CAN protocol is quite idiosyncratic, relatively few peripheral sensors
support it (though it is heavily used for motor controllers). One of the advantages of using the
CAN bus protocol is that devices can be daisy-chained, as shown below. If power is removed
from any device in the chain, data signals will still be able to reach all devices in the chain.

36.12. Serial Buses 1373

FIRST Robotics Competition

Several sensors primarily use the CAN bus. Some examples include:
• CAN Based Time-of-Flight Range/Distance Sensor from playingwithfusion.com
• TalonSRX-based sensors, such as the Gadgeteer Pigeon IMU and the SRX MAG Encoder
• CANifier
• Power monitoring sensors built into the CTRE Power Distribution Panel (PDP) and the
REV Power Distribution Hub (PDH)

More information about using devices connected to the CAN bus can be found in the article
about using can devices.

1374 Chapter 36. Sensors

https://www.playingwithfusion.com/productview.php?pdid=96&catid=1009
https://store.ctr-electronics.com/gadgeteer-pigeon-imu/
https://store.ctr-electronics.com/srx-mag-encoder/
https://store.ctr-electronics.com/canifier/

37
Getting Started with Romi

The Romi is a small and inexpensive robot designed for learning about programming FRC
robots. All the same tools used for programming full-sized FRC robots can be used to program
the Romi. The Romi comes with two drive motors with integrated wheel encoders. It also
includes an IMU sensor that can be used for measuring headings and accelerations. Using it
is as simple as writing a robot program, and running it on your computer. It will command
the Romi to follow the steps in the program.

Tip: A course that teaches programming using the Romi Robot is available via Thinkscape.
Information on this course is available here

1375

https://www.firstinspires.org/robotics/frc/blog/2021-skill-building-update-intro-to-programming-module

FIRST Robotics Competition

37.1 Romi Hardware & Assembly

To get started with the Romi, you will need to have the necessary hardware.
1. Romi Kit from Pololu – Order qualifies for free shipping
2. Raspberry Pi – 3B+ or 4
3. 8GB (or larger) Micro SD card
4. Micro SD card reader - if you don’t already have one
5. 6 AA batteries – Rechargeable is best (don’t forget the charger)

1376 Chapter 37. Getting Started with Romi

https://www.pololu.com/product/4022
https://www.amazon.com/gp/product/B07BFH96M3/
https://www.amazon.com/dp/B073K14CVB/
https://www.amazon.com/gp/product/B0779V61XB/
https://www.amazon.com/gp/product/B07TW9T8JW/

FIRST Robotics Competition

37.1.1 Assembly

The Romi Robot Kit for FIRST comes pre-soldered and only has to be put together before it
can be used. Once you have gathered all the materials you can begin assembly:

1. Align the motor clips with the chassis as indicated and press them firmly into the chassis
until the bottom of the clips are even with the bottom of the chassis (you may hear several
clicks).

2. Push the Mini Plastic Gearmotors into the motor clips until they snap into place. Note
that the motor blocks the clip release, so if you need to remove a motor bracket later,
you will first need to remove the motor. The Mini Plastic Gearmotors that come with the
kit have extended motor shafts to enable quadrature encoders for position feedback.

37.1. Romi Hardware & Assembly 1377

FIRST Robotics Competition

3. Press the wheels onto the output shafts of the motors until the motor shaft is flush with
the outer face of the wheel. One way to do this is to set the wheel on a flat surface and
line the chassis up with it so that the flat part of the motor’s D-shaft lines up correctly
with the wheel. Then, lower the chassis, pressing the motor shaft into the wheel until it
contacts the surface.

1378 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

4. Flip the chassis upside down and place the three rollers for the rear ball caster into the
cutouts in the chassis. Place the 1″ plastic ball on top of the three rollers. Then push the
ball caster retention clip over the ball and into the chassis so the three legs snap into
their respective holes.

37.1. Romi Hardware & Assembly 1379

FIRST Robotics Competition

5. Repeat for the front ball caster so there is a caster on the front and the back of the robot.

1380 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

6. Optional: The front ball caster is supported by a flexible arm that acts as a suspension
system. If you want to make it stiffer, you can wrap a rubber band around the two hooks
located on either side of the ball caster on the top side of the chassis.

37.1. Romi Hardware & Assembly 1381

FIRST Robotics Competition

7. Install the standoffs to support the Raspberry Pi board. Two standoffs (thread side down)
mount in the holes on the side of the Romi board closest to the “Romi 32U4” label as
shown in the picture. The nuts for these standoffs are inside the battery compartment.
The other two standoffs go into the holes on the opposite side of the board. To attach
them, you will need a needle-nose pliers to hold the nut while you screw in the standoffs.
The circled holes in the image below show where the standoffs should go.

1382 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

8. The chassis works with four or six AA batteries (we recommend using rechargeable AA
NiMH cells). The correct orientation for the batteries is indicated by the battery-shaped
holes in the Romi chassis as well as the + and - indicators in the chassis itself.

37.1. Romi Hardware & Assembly 1383

FIRST Robotics Competition

1384 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

9. Attach the Raspberry Pi board upside down, carefully aligning the 2x20 pin connector
on the Pi with the 2x20 pin socket on the Romi. Push with even pressure taking care to
not bend any of the pins. Once inserted, use the supplied screws to fasten the Raspberry
Pi board to the standoffs that were installed in a previous step.

Note: Two of the screws will require placing a nut in a hexagonal hole inside the battery
compartment. The locations are shown by the blue circles in the image above.

The assembly of your Romi chassis is now complete!

37.1. Romi Hardware & Assembly 1385

FIRST Robotics Competition

37.2 Imaging your Romi

The Romi has 2 microprocessor boards:
1. A Raspberry Pi that handles high-level communication with the robot program running

on the desktop and
2. A Romi 32U4 Control Board that handles low-level motor and sensor operation.

Both boards need to have firmware installed so that the robot operates properly.

37.2.1 Raspberry Pi

Download

The Raspberry Pi firmware is based on WPILibPi (formerly FRCVision) and must be down-
loaded and written to the Raspberry Pi micro SD card. Click on Assets at the bottom of the
description to see the available image files:
Romi WPILibPi
Be sure to download the Romi version and not the standard release of WPILibPi. The Romi
version is suffixed with -Romi. See the below image for an example.

Imaging

The procedure for installing the image is described here: WPILibPi Installation.

1386 Chapter 37. Getting Started with Romi

https://github.com/wpilibsuite/WPILibPi/releases

FIRST Robotics Competition

Wireless Network Setup

Perform the following steps to get your Raspberry Pi ready to use with the Romi:
1. Turn the Romi on by sliding the power switch on the Romi 32U4 board to the on position.

The first time it is started with a new image it will take approximately 2-3 minutes to boot
while it resizes the file system and reboots. Subsequent times it will boot in less than a
minute.

2. Using your computer, connect to the Romi WiFi network using the SSID
WPILibPi-<number> (where <number> is based on the Raspberry Pi serial number)
with the WPA2 passphrase WPILib2021!.

Note: If powering on the Raspberry Pi in an environment with multiple WPILibPi-running
Raspberry Pis, the SSID for a particular Raspberry Pi is also announced audibly through the
headphone port. The default SSID is also written to the /boot/default-ssid.txt file, which
can be read by inserting the SD card (via a reader) into a computer and opening the boot
partition.

3. Open a web browser and connect to the Raspberry Pi dashboard at either http://10.
0.0.2/ or http://wpilibpi.local/.

Note: The image boots up read-only by default, so it is necessary to click the Writable
button to make changes. Once done making changes, click the Read-Only button to prevent
memory corruption.

4. Select Writable at the top of the dashboard web page.
5. Change the default password for your Romi by setting a new password in the WPA2

Passphrase field.
6. Press the Save button at the bottom of the page to save changes.
7. Change the network SSID to a unique name if you plan on operating your Romi on a

wireless network with other Romis.
8. Reconnect to the Romi’s WiFi network with the new password you set.

Be sure to set the Dashboard to Read-only when all the changes have been completed.

37.2. Imaging your Romi 1387

FIRST Robotics Competition

37.2.2 32U4 Control Board

The Raspberry Pi can now be used to write the firmware image to the 32U4 Control Board.
1. Turn off the Romi
2. Connect a USB A to micro-B cable from one of the Raspberry Pi’s USB ports to the micro

USB port on the 32U4 Control Board.
3. Turn on the Romi and connect to its Wifi network and connect to the web dashboard as

in the previous steps.
4. On the Romi configuration page, press the Update Firmware button.

1388 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

A console will appear showing a log of the firmware deploy process. Once the firmware has
been deployed to the 32U4 Control Board, the message avrdude done. Thank you. will
appear.

37.2. Imaging your Romi 1389

FIRST Robotics Competition

37.3 Getting to know your Romi

37.3.1 Directional Conventions

The front of the Romi is where the Raspberry Pi USB ports, GPIO pins and suspended caster
wheel are.

1390 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

In all Romi documentation, references to driving forward use the above definition of “front”.

37.3. Getting to know your Romi 1391

FIRST Robotics Competition

37.3.2 Hardware, Sensors, and GPIO

The Romi has the following built-in hardware/peripherals:
• 2x geared motors with encoders
• 1x Inertial Measurement Unit (IMU)
• 3x LEDs (green, yellow, red)
• 3x pushbuttons (marked A, B, and C)
• 5x configurable GPIO channels (EXT)
• Buzzer

Note: The Buzzer is currently not supported by WPILib.

Motors, Wheels, and Encoders

The motors used on the Romi have a 120:1 gear reduction, and a no-load output speed of 150
RPM at 4.5V. The free current is 0.13 amps and the stall current is 1.25 amps. Stall torque is
25 oz-in (0.1765 N-m) but the built-in safety clutch might start slipping at lower torques.
The wheels have a diameter of 70mm (2.75”). They have a trackwidth of 141mm (5.55”).
The encoders are connected directly to the motor output shaft and have 12 Counts Per Rev-
olution (CPR). With the provided gear ratio, this nets 1440 counts per wheel revolution.
The motor PWM channels are listed in the table below.

Channel Romi Hardware Component
PWM 0 Left Motor
PWM 1 Right Motor

Note: The right motor will spin in a backward direction when positive output is applied.
Thus, the corresponding motor controller needs to be inverted in robot code.

The encoder channels are listed in the table below.

Channel Romi Hardware Component
DIO 4 Left Encoder Quadrature Channel A
DIO 5 Left Encoder Quadrature Channel B
DIO 6 Right Encoder Quadrature Channel A
DIO 7 Right Encoder Quadrature Channel B

Note: By default, the encoders count up when the Romi moves forward.

1392 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

Inertial Measurement Unit

The Romi includes an STMicroelectronics LSM6DS33 Inertial Measurement Unit (IMU) which
contains a 3-axis gyro and a 3-axis accelerometer.
The accelerometer has selectable sensitivity of 2G, 4G, 8G, and 16G. The gyro has selectable
sensitivity of 125 Degrees Per Second (DPS), 250 DPS, 500 DPS, 1000 DPS, and 2000 DPS.
The Romi Web UI also provides a means to calibrate the gyro and measure its zero-offsets
before use with robot code.

Onboard LEDs and Push Buttons

The Romi 32U4 control board has 3 push buttons and 3 LEDs onboard that are exposed as
Digital IO (DIO) channels to robot code.

DIO Channel Romi Hardware Component
DIO 0 Button A (input only)
DIO 1 Button B (input), Green LED (output)
DIO 2 Button C (input), Red LED (output)
DIO 3 Yellow LED (output only)

Writes to DIO 0, 4, 5, 6 and 7 will result in no-ops.

37.3. Getting to know your Romi 1393

FIRST Robotics Competition

Configurable GPIO Pins

The control board has 5 configurable GPIO pins (named EXT0 through EXT4) that allow a
user to connect external sensors and actuators to the Romi.

All 5 pins support the following modes: Digital IO, Analog In, and PWM (with the exception
of EXT 0, which only supports Digital IO and PWM). The mode of the ports can be configured
with The Romi Web UI.
The GPIO channels are exposed via a 3-pin, servo style interface, with connections for Ground,
Power and Signal (with the Ground connection being closest to the edge of the board, and
the signal being closest to the inside of the board).
The power connections for the GPIO pins are initially left unconnected but can be hooked into
the Romi’s on-board 5V supply by using a jumper to connect the 5V pin to the power bus (as
seen in the image above). Additionally, if more power than the Romi can provide is needed,
the user can provide their own 5V power supply and connect it directly to power bus and
ground pins.

GPIO Default Configuration

The table below shows the default configuration of the GPIO pins (EXT0 through EXT4). The
Romi Web UI allows the user to customize the functions of the 5 configurable GPIO pins. The
UI will also provide the appropriate WPILib channel/device mappings on screen once the IO
configuration is complete.

Channel Ext Pin
DIO 8 EXT0
Analog In 0 EXT1
Analog In 1 EXT2
PWM 2 EXT3
PWM 3 EXT4

1394 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

37.4 Romi Hardware Support

The Romi robot, having a different hardware architecture than a roboRIO, is compatible with
a subset of commonly used FRC control system components.

37.4.1 Compatible Hardware

In general, the Romi is compatible with the following:
• Simple Digital Input/Output devices (e.g. bumper switches, single LEDs)
• Standard RC-style PWM output devices (e.g. servos, PWM based motor controllers)
• Analog Input sensors (e.g distance sensors that report distance as a voltage)

37.4.2 Incompatible Hardware

Due to hardware limitations, the Romi Robot is not compatible with the following:
• Encoders other than the Romi-integrated encoders
• “Ping” style ultrasonic sensors (which require 2 DIO channels)
• Timing based sensors
• CAN based devices
• Romi built-in buzzer

37.4.3 Compatible Classes

All classes listed here are supported by the Romi Robot. If a class is not listed here, assume
that it is not supported and will not work.

• PWM Motor Controllers (i.e. Spark)
• Encoder

• AnalogInput

• DigitalInput

• DigitalOutput

• Servo

• BuiltInAccelerometer

The following classes are provided by the Romi Vendordep.
• RomiGyro

• RomiMotor

• OnboardIO

37.4. Romi Hardware Support 1395

https://raw.githubusercontent.com/wpilibsuite/romi-vendordep/main/RomiVendordep.json

FIRST Robotics Competition

37.5 The Romi Web UI

The Romi Web UI comes installed as part of the WPILibPi Raspberry Pi image. It is accessible
by clicking on the Romi tab in the navigation bar of the main WPILibPi Web UI.

The rest of this section will walk through the various parts of the Romi Web UI and describe
the relevant functionality.

37.5.1 Background Service Status

This section of the Romi Web UI provides information about the currently running Romi Web
Service (which is what allows WPILib to talk to the Romi). The UI provides controls to bring
the service up/down as well as shows the current uptime of the web service.

Note: Users will not need to use the functionality in this section often, but it can be useful
for troubleshooting.

1396 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

37.5.2 Romi Status

This section provides information about the Romi, including the service version, battery volt-
age, and whether or not the currently installed firmware on the Romi 32U4 board is compat-
ible with the current version of the web service.

Note: If the firmware is not compatible, see the section on Imaging your Romi

37.5.3 Web Service Update

Note: The Raspberry Pi must be in Writable mode for this section to work.

37.5. The Romi Web UI 1397

FIRST Robotics Competition

The Romi WPILibPi image ships with the latest (at publication time) version of the Romi web
service. To support upgrading to newer versions of the Romi web service, this section allows
users to upload a pre-built bundle that can be obtained via the Romi web service GitHub
releases page.
To perform an upgrade, download the appropriate .tgz file from the GitHub Releases page.
Next, select the downloaded .tgz file and click Save. The updated web service bundle will
be uploaded to the Raspberry Pi, and be installed. After a short moment, the Romi Status
section should update itself with the latest version information.

37.5.4 External IO Configuration

This section allows users to configure the 5 external GPIO channels on the Romi.

1398 Chapter 37. Getting Started with Romi

https://github.com/wpilibsuite/wpilib-ws-robot-romi/releases
https://github.com/wpilibsuite/wpilib-ws-robot-romi/releases

FIRST Robotics Competition

Note: The Raspberry Pi must be in Writable mode for this section to work.

To change the configuration of a GPIO channel, select an appropriate option from the drop-
down lists. All channels (with the exception of EXT 0) support Digital IO, Analog In and PWM
as channel types. Once the appropriate selections are made, click on Save External IO Con-
figuration. The web service will then restart and pick up the new IO configuration.
The “Robot Port” row provides the appropriate WPILib mapping for each configured GPIO
channel. For example, EXT 0 is configured as a Digital IO channel, and will be accessible in
WPILib as a DigitalInput (or DigitalOutput) channel 8.

37.5.5 IMU Calibration

Note: The Raspberry Pi must be in Writable mode for this section to work.

This section allows users to calibrate the gyro on the Romi. Gyros usually have some sort of
zero-offset error, and calibration allows the Romi to calculate the offset and use it in calcula-
tions.
To begin calibration, place the Romi on a flat, stable surface. Then, click the Calibrate Gyro
button. A progress bar will appear, showing the current calibration process. Once calibration
is complete, the latest offset values will be displayed on screen and registered with the Romi
web service.
These offset values are saved to disk and persist between reboots.

37.5. The Romi Web UI 1399

FIRST Robotics Competition

37.5.6 Firmware

Note: See the section on Imaging your Romi

37.5.7 Console Output

When enabled, this section allows users to view the raw console output that the Romi web
service provides. This is useful for troubleshooting issues with the Romi, or just to find out
more about what goes on behind the scenes.

1400 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

37.5.8 Bridge Mode

Bridge mode allows your Romi robot to connect to a WiFi network instead of acting as an
Access Point (AP). This is especially useful in remote learning environments, as you can use
the internet while using the Romi without extra hardware.

Note: Bridge mode is not likely to work properly in restricted network environments (Edu-
cational Institutions).

1. Enable Writable in the top menu.

2. Click on Network Settings.

3. The following network settings must be applied:

37.5. The Romi Web UI 1401

FIRST Robotics Competition

• Ethernet: DHCP
• WiFi Mode: Bridge
• SSID: SSID (name) of your network
• WPA2 Passphrase: Password of your wifi network
• WiFi Address: DHCP

Once the settings are applied, please reboot the Romi. You should now be able to navigate to
wpilibpi.local in your web browser while connected to your specified network.

Unable to Access Romi

If the Romi has the correct bridge settings and you are unable to access it, we have a few
workarounds.

• Ethernet into the Romi
• Reimage the Romi

Some restricted networks can interfere with the hostname of the Romi resolving, you can
workaround this by using Angry IP Scanner to find the IP address.

Warning: Angry IP Scanner is flagged by some antivirus as spyware as it pings devices
on your network! It is a safe application!

1402 Chapter 37. Getting Started with Romi

https://angryip.org/

FIRST Robotics Competition

37.6 Programming the Romi

Writing a program for the Romi is very similar to writing a program for a regular FRC robot.
In fact, all the same tools (Visual Studio Code, Driver Station, SmartDashboard, etc) can be
used with the Romi.

37.6.1 Creating a Romi Program

Creating a new program for a Romi is like creating a normal FRC program, similar to the
Zero To Robot programming steps.
WPILib comes with two templates for Romi projects, including one based on TimedRobot,
and a Command-Based project template. Additionally, an example project is provided which
showcases some of the built-in functionality of the Romi. This article will walk through cre-
ating a project from this example.

Note: In order to program the Romi using C++, a compatible C++ desktop compiler must
be installed. See Robot Simulation - Additional C++ Dependency.

Creating a New WPILib Romi Project

Bring up the Visual Studio Code command palette with Ctrl+Shift+P, and type “New project”
into the prompt. Select the “Create a new project” command:

This will bring up the “New Project Creator Window”. From here, click on “Select a project
type (Example or Template), and pick “Example” from the prompt that appears:

Next, a list of examples will appear. Scroll through the list to find the “RomiReference” ex-
ample:

37.6. Programming the Romi 1403

FIRST Robotics Competition

Fill out the rest of the fields in the “New Project Creator” and click “Generate Project” to
create the new robot project.

Running a Romi Program

Once the robot project is generated, it is essentially ready to run. The project has a pre-built
Drivetrain class and associated default command that lets you drive the Romi around using
a joystick.
One aspect where a Romi project differs from a regular FRC robot project is that the code is
not deployed directly to the Romi. Instead, a Romi project runs on your development com-
puter and leverages the WPILib simulation framework to communicate with the Romi robot.
To run a Romi program, first, ensure that your Romi is powered on. Next, connect to the
WPILibPi-<number> WiFi network broadcast by the Romi. If you changed the Romi network
settings (for example, to connect it to your own WiFi network) you may change the IP address
that your program uses to connect to the Romi. To do this, open the build.gradle file and
update the wpi.sim.envVar line to the appropriate IP address.

42 //Sets the websocket client remote host.
43 wpi.sim.envVar("HALSIMWS_HOST", "10.0.0.2")
44 wpi.sim.addWebsocketsServer().defaultEnabled = true
45 wpi.sim.addWebsocketsClient().defaultEnabled = true

Now to start your Romi robot code, open the WPILib Command Palette (type Ctrl+Shift+P)
and select “Simulate Robot Code”, or press F5.

1404 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

If all goes well, you should see a line in the console output that reads “HALSimWS: WebSocket
Connected”:

Your Romi code is now running!

37.7 Programming the Romi (LabVIEW)

Writing a LabVIEW program for the Romi is very similar to writing a program for a regular
roboRIO based robot. In fact, all the same tools can be used with the Romi.

37.7.1 Creating a Romi Project

Creating a new program for a Romi is no different than creating a normal FRC |reg| program,
similar to the Zero To Robot programming steps. Initially, you may wish to create a separate
project for use on just the Romi as the Romi hardware may be connected to different ports
than on your roboRIO robot.
The Romi Robot used PWM ports 0 and 1 for left and right side respectively.

Installing the WebSockets VI

One aspect where a Romi project differs from a regular FRC |reg| robot project is that the
code is not deployed directly to the Romi. Instead, a Romi project runs on your development
computer, and leverages the WPILib simulation framework to communicate with the Romi
robot. WebSockets is the protocol that LabVIEW uses to converse with the Romi.
Open the VI Package Manager application. Type websockets into the search box in the top
right. Select the VI by LabVIEW Tools Network.

37.7. Programming the Romi (LabVIEW) 1405

FIRST Robotics Competition

Changing the Project Target

The primary step needed to run your LabVIEW program on the Romi is to change the target
to the Desktop. To change the project target, locate the Robot Main VI in the Project Explorer
and click and drag it from the Target section to the My Computer section.

1406 Chapter 37. Getting Started with Romi

FIRST Robotics Competition

Setting the Target IP

By default, your LabVIEW program will attempt to connect to a Romi with the IP address
of 10.0.0.2. If you wish to use a different IP, you can specify it as an input to the Driver
Station Start Communication VI inside Robot Main. Locate the pink input terminal for
Simulation URL then right-click and select Create Constant to create a constant pre-filled
with the default value. You can then modify the IP address portion of the text, taking care to
leave the protocol section (at the beginning) and port and suffix (at the end) the same.

Running a Romi Program

To run a Romi program, first, ensure that your Romi is powered on. Once you connect to
the WPILibPi-<number> network broadcast by the Romi, press the white Run arrow to start
running the Romi program on your computer.
Your Romi code is now running! The program will automatically attempt to connect to either
the IP you have specified, or the default if you have not specified an IP.
It is recommended to run the Driver Station software on the same computer as the LabVIEW
code. Once your program successfully connects to the Driver Station, it will automatically
notify the Driver Station that the code is running on the Desktop, allowing the Driver Station
to connect without you changing any information inside the Driver Station. Next, you’ll need
to point the Driver Station to your Romi. This is done by setting the team number to 127.0.0.
1. You can then use the controls in the Driver Station to set the robot mode and enable/disable
as normal.

Using the Gyro or Encoder

The gyro that is available on the Romi is available using the RomiGyro functions. This is
located under

- WPI Robotics Library
- Sensors

- Third Party Libraries
- RomiGyro

37.7. Programming the Romi (LabVIEW) 1407

FIRST Robotics Competition

The encoders can be used using the standard encoder function. The DIO ports are:
• Left (4, 5)
• Right (6, 7)

1408 Chapter 37. Getting Started with Romi

38
Networking Introduction

This section outlines basic robot configuration and usage relating to communication between
the driver station and roboRIO.

38.1 Networking Basics

38.1.1 What is an IP Address?

An IP address is a unique string of numbers, separated by periods that identifies each device
on a network. Each IP address is divided up into 4 sections (octets) ranging from 0-255.

As shown above, this means that each IP address is a 32-bit address meaning there are 232

addresses, or nearly 4,300,000,000 addresses possible. However, most of these are used
publicly for things like web servers.
This brings up our first key point of IP Addressing: Each device on the network must have
a unique IP address. No two devices can have the same IP address, otherwise collisions will
occur.
Since there are only 4 billion addresses, and there are more than 4 billion computers con-
nected to the internet, we need to be as efficient as possible with giving out IP addresses.

1409

FIRST Robotics Competition

This brings us to public vs. private addresses.

38.1.2 Public vs Private IP Addresses

To be efficient with using IP Addresses, the idea of “Reserved IP Ranges” was implemented.
In short, this means that there are ranges of IP Addresses that will never be assigned to web
servers, and will only be used for local networks, such as those in your house.
Key point #2: Unless you are directly connecting to your internet provider’s basic modem
(no router function), your device will have an IP Address in one of these ranges. This means
that at any local network, such as: your school, work office, home, etc., your device will 99%
of the time have an IP address in a range listed below:

Class Bits Start Address End Address Number of Addresses
A 24 10.0.0.0 10.255.255.255 16,777,216
B 20 172.16.0.0 172.31.255.255 1,048,576
C 16 192.168.0.0 192.168.255.255 65,536

These reserved ranges let us assign one “unreserved IP Address” to an entire house, and then
use multiple addresses in a reserved range to connect more than one computer to the inter-
net. A process on the home’s internet router known as NAT (Network Address Translation),
handles the process of keeping track which private IP is requesting data, using the public IP
to request that data from the internet, and then passing the returned data back to the private
IP that requested it. This allows us to use the same reserved IP addresses for many local
networks, without causing any conflicts. An image of this process is presented below.

1410 Chapter 38. Networking Introduction

FIRST Robotics Competition

10.0.0.2

10.0.0.3

10.0.0.10

10.0.0.99

NAT

10.0.0... 88.66....

WWW

10.0.0...

Viewer does not support full SVG 1.1

Note: For the FRC® networks, we will use the 10.0.0.0 range. This range allows us to use
the 10.TE.AM.xx format for IP addresses, whereas using the Class B or C networks would
only allow a subset of teams to follow the format. An example of this formatting would be
10.17.50.1 for FRC Team 1750.

38.1.3 How are these addresses assigned?

We’ve covered the basics of what IP addresses are, and which IP addresses we will use for
the FRC competition, so now we need to discuss how these addresses will get assigned to the
devices on our network. We already stated above that we can’t have two devices on the same
network with the same IP Address, so we need a way to be sure that every device receives
an address without overlapping. This can be done Dynamically (automatic), or Statically
(manual).

38.1. Networking Basics 1411

FIRST Robotics Competition

Dynamically

Dynamically assigning IP addresses means that we are letting a device on the network manage
the IP address assignments. This is done through the Dynamic Host Configuration Protocol
(DHCP). DHCP has many components to it, but for the scope of this document, we will think
of it as a service that automatically manages the network. Whenever you plug in a new device
to the network, the DHCP service sees the new device, then provides it with an available IP
address and the other network settings required for the device to communicate. This can
mean that there are times we do not know the exact IP address of each device.

What is a DHCP server?

A DHCP server is a device that runs the DHCP service to monitor the network for new devices
to configure. In larger businesses, this could be a dedicated computer running the DHCP
service and that computer would be the DHCP server. For home networks, FRC networks,
and other smaller networks, the DHCP service is usually running on the router; in this case,
the router is the DHCP server.
This means that if you ever run into a situation where you need to have a DHCP server assign-
ing IP addresses to your network devices, it’s as simple as finding the closest home router,
and plugging it in.

Statically

Statically assigning IP addresses means that we are manually telling each device on the net-
work which IP address we want it to have. This configuration happens through a setting on
each device. By disabling DHCP on the network and assigning the addresses manually, we
get the benefit of knowing the exact IP address of each device on the network, but because
we set each one manually and there is no service keeping track of the used IP addresses, we
have to keep track of this ourselves. While statically setting IP addresses, we must be careful
not to assign duplicate addresses, and must be sure we are setting the other network settings
(such as subnet mask and default gateway) correctly on each device.

38.1.4 What is link-local?

If a device does not have an IP address, then it cannot communicate on a network. This can
become an issue if we have a device that is set to dynamically acquire its address from a
DHCP server, but there is no DHCP server on the network. An example of this would be when
you have a laptop directly connected to a roboRIO and both are set to dynamically acquire an
IP address. Neither device is a DHCP server, and since they are the only two devices on the
network, they will not be assigned IP addresses automatically.
Link-local addresses give us a standard set of addresses that we can “fall-back” to if a de-
vice set to acquire dynamically is not able to acquire an address. If this happens, the device
will assign itself an IP address in the 169.254.xx.yy address range; this is a link-local ad-
dress. In our roboRIO and computer example above, both devices will realize they haven’t
been assigned an IP address and assign themselves a link-local address. Once they are both
assigned addresses in the 169.254.xx.yy range, they will be in the same network and will
be able to communicate, even though they were set to dynamic and a DHCP server did not
assign addresses.

1412 Chapter 38. Networking Introduction

FIRST Robotics Competition

38.1.5 IP Addressing for FRC

See the IP Networking Article for more information.

Mixing Dynamic and Static Configurations

While on the field, the team should not notice any issues with having devices set statically in
the 10.TE.AM.xx range, and having the field assign DHCP addresses as long as there are no
IP address conflicts as referred to in the section above.
In the pits, a team may encounter issues with mixing Static and DHCP devices for the following
reason. As mentioned above, DHCP devices will fall back to a link-local address (169.254.xx.
yy) if a server isn’t present. For static devices, the IP address will always be the same. If the
DHCP server is not present and the roboRIO, driver station, and laptop fall back to link-local
addresses, the statically set devices in the 10.TE.AM.xx range will be in a different network
and not visible to those with link-local addresses. A visual description of this is provided
below:

On the Field...

vi
a

FM
S

roboRIO
DHCP

10.TE.AM.2

OpenMesh Radio
Static

10.TE.AM.1

In the Pits...

vi
a

Et
he

rn
et

roboRIO
DHCP

10.TE.AM.2

OpenMesh Radio
Static

10.TE.AM.1

In the Pits...

roboRIO

OpenMesh Radio
Static

10.TE.AM.1

via USB

10.TE.AM.2 via Ethernet
172.22.11.2 via USB

Additional Devices...Additional Devices...Additional Devices...

Driver Station
DHCP

10.TE.AM.X

Driver Station
DHCP

10.TE.AM.X

Driver Station
Static

172.22.11.1

Viewer does not support full SVG 1.1

Warning: When connected via USB to the roboRIO, a Port Forwarding configuration is
required to access devices connected to the OpenMesh radio (on the green network shown
above).

Available Network Ports

Please see R704 of the 2023 Game Manual for information regarding available network ports.

38.1. Networking Basics 1413

FIRST Robotics Competition

38.1.6 mDNS

mDNS, or multicast Domain Name System is a protocol that allows us to benefit from the
features of DNS, without having a DNS server on the network. To make this clearer, let’s
take a step back and talk about what DNS is.

What is DNS?

DNS (Domain Name System) can become a complex topic, but for the scope of this paper, we
are going to just look at the high-level overview of DNS. In the most basic explanation, DNS
is what allows us to relate human-friendly names for network devices to IP Addresses, and
keep track of those IP addresses if they change.
Example 1: Let’s look at the site www.google.com. The IP address for this site is 172.217.
164.132, however that is not very user-friendly to remember!
Whenever a user types www.google.com into their computer, the computer contacts the DNS
server (a setting provided by DHCP!) and asks what is the IP address on file for www.google.
com. The DNS server returns the IP address and then the computer is able to use that to
connect to the Google website.
Example 2: On your home network, you have a server named MYCOMPUTER that you want to
connect to from your laptop. Your network uses DHCP so you don’t know the IP Address of
MYCOMPUTER, but DNS allows you to connect just by using the MYCOMPUTER name. Additionally,
whenever the DHCP assignments refresh, MYCOMPUTER may end up with a different address,
but because you’re connecting by using the MYCOMPUTER name instead of a specific IP address,
the DNS record was updated and you’re still able to connect.
This is the second benefit to DNS and the most relevant for FRC. With DNS, if we reference
devices by their friendly name instead of IP Address, we don’t have to change anything in our
program if the IP Address changes. DNS will keep track of the changes and return the new
address if it ever changes.

DNS for FRC

On the field and in the pits, there is no DNS server that allows us to perform the lookups
like we do for the Google website, but we’d still like to have the benefits of not remembering
every IP Address, and not having to guess at every device’s address if DHCP assigns a different
address than we expect. This is where mDNS comes into the picture.
mDNS provides us the same benefits as traditional DNS, but is just implemented in a way
that does not require a server. Whenever a user asks to connect to a device using a friendly
name, mDNS sends out a message asking the device with that name to identify itself. The
device with the name then sends a return message including its IP address so all devices on
the network can update their information. mDNS is what allows us to refer to our roboRIO
as roboRIO-TEAM-FRC.local and have it connect on a DHCP network.

Note: If a device used for FRC does not support mDNS, then it will be assigned an IP Address
in the 10.TE.AM.20 - 10.TE.AM.255 range, but we won’t know the exact address to connect
and we won’t be able to use the friendly name like before. In this case, the device would need
to have a static IP Address.

1414 Chapter 38. Networking Introduction

FIRST Robotics Competition

mDNS - Principles

Multicast Domain Name System (mDNS) is a system which allows for resolution of hostnames
to IP addresses on small networks with no dedicated name server. To resolve a hostname a
device sends out a multicast message to the network querying for the device. The device
then responds with a multicast message containing its IP. Devices on the network can store
this information in a cache so subsequent requests for this address can be resolved from the
cache without repeating the network query.

mDNS - Providers

To use mDNS, an mDNS implementation is required to be installed on your PC. Here are some
common mDNS implementations for each major platform:
Windows:

• NI mDNS Responder: Installed with the NI FRC Game Tools
• Apple Bonjour: Installed with iTunes

OSX:
• Apple Bonjour: Installed by default

Linux:
• nss-mDNS/Avahi/Zeroconf: Installed and enabled by default on some Linux variants

(such as Ubuntu or Mint). May need to be installed or enabled on others (such as Arch)

mDNS - Firewalls

Note: Depending on your PC configuration, no changes may be required, this section is
provided to assist with troubleshooting.

To work properly mDNS must be allowed to pass through your firewall. Because the network
traffic comes from the mDNS implementation and not directly from the Driver Station or IDE,
allowing those applications through may not be sufficient. There are two main ways to resolve
mDNS firewall issues:

• Add an application/service exception for the mDNS implementation (NI mDNS Re-
sponder is C:\Program Files\National Instruments\Shared\mDNS Responder\
nimdnsResponder.exe)

• Add a port exception for traffic to/from UDP 5353. IP Ranges:
– 10.0.0.0 - 10.255.255.255

– 172.16.0.0 - 172.31.255.255

– 192.168.0.0 - 192.168.255.255

– 169.254.0.0 - 169.254.255.255

– 224.0.0.251

38.1. Networking Basics 1415

FIRST Robotics Competition

mDNS - Browser support

Most web-browsers should be able to utilize the mDNS address to access the roboRIO web
server as long as an mDNS provider is installed. These browsers include Microsoft Edge,
Firefox, and Google Chrome.

38.1.7 USB

If using the USB interface, no network setup is required (you do need the Installing the FRC
Game Tools installed to provide the roboRIO USB Driver). The roboRIO driver will automat-
ically configure the IP address of the host (your computer) and roboRIO and the software
listed above should be able to locate and utilize your roboRIO.

38.1.8 Ethernet/Wireless

The Programming your Radiowill enable the DHCP server on the OpenMesh radio in the home
use case (AP mode), if you are putting the OpenMesh in bridge mode and using a router, you
can enable DHCP addressing on the router. The bridge is set to the same team-based IP
address as before (10.TE.AM.1) and will hand out DHCP address from 10.TE.AM.20 to 10.
TE.AM.199. When connected to the field, FMS will also hand out addresses in the same IP
range.

38.1.9 Summary

IP Addresses are what allow us to communicate with devices on a network. For FRC, these
addresses are going to be in the 10.TE.AM.xx range if we are connected to a DHCP server
or if they are assigned statically, or in the link-local 169.254.xx.yy range if the devices are
set to DHCP, but there is no server present. For more information on how IP Addresses work,
see this article by Microsoft.
If all devices on the network support mDNS, then all devices can be set to DHCP and referred
to using their friendly names (ex. roboRIO-TEAM-FRC.local). If some devices do not support
mDNS, they will need to be set to use static addresses.
If all devices are set to use DHCP or Static IP assignments (with correct static settings), the
communication should work in both the pit and on the field without any changes needed. If
there are a mix of some Static and some DHCP devices, then the Static devices will connect
on the field, but will not connect in the pit. This can be resolved by either setting all devices
to static settings, or leaving the current settings and providing a DHCP server in the pit.

38.2 IP Configurations

Note: This document describes the IP configuration used at events, both on the fields and
in the pits, potential issues and workaround configurations.

1416 Chapter 38. Networking Introduction

https://support.microsoft.com/en-us/help/164015/understanding-tcp-ip-addressing-and-subnetting-basics

FIRST Robotics Competition

38.2.1 TE.AM IP Notation

The notation TE.AM is used as part of IPs in numerous places in this document. This notation
refers to splitting your four digit team number into two digit pairs for the IP address octets.
Example: 10.TE.AM.2
Team 12 - 10.0.12.2
Team 122 - 10.1.22.2
Team 1212 - 10.12.12.2
Team 1202 - 10.12.2.2
Team 1220 - 10.12.20.2
Team 3456 - 10.34.56.2

38.2.2 On the Field

This section describes networking when connected to the Field Network for match play

On the Field DHCP Configuration

The Field Network runs a DHCP server with pools for each team that will hand out addresses
in the range of 10.TE.AM.20 to 10.TE.AM.199 with a subnet mask of 255.255.255.0, and a
default gateway of 10.TE.AM.4. When configured for an event, the Team Radio runs a DHCP
server with a pool for devices onboard the robot that will hand out addresses in the range
of 10.TE.AM.200 to 10.TE.AM.219 with a subnet mask of 255.255.255.0, and a gateway of
10.TE.AM.1.

• OpenMesh OM5P-AN or OM5P-AC radio - Static 10.TE.AM.1 programmed by Kiosk
• roboRIO - DHCP 10.TE.AM.2 assigned by the Robot Radio
• Driver Station - DHCP (“Obtain an IP address automatically”) 10.TE.AM.X assigned by

field
• IP camera (if used) - DHCP 10.TE.AM.Y assigned by Robot Radio
• Other devices (if used) - DHCP 10.TE.AM.Z assigned by Robot Radio

On the Field Static Configuration

It is also possible to configure static IPs on your devices to accommodate devices or software
which do not support mDNS. When doing so you want to make sure to avoid addresses that
will be in use when the robot is on the field network. These addresses are 10.TE.AM.1 for
the OpenMesh radio, 10.TE.AM.4 for the field router, and anything greater than 10.TE.AM.
20 which may be assigned to a device configured for DHCP or else reserved. The roboRIO
network configuration can be set from the webdashboard.

• OpenMesh radio - Static 10.TE.AM.1 programmed by Kiosk
• roboRIO - Static 10.TE.AM.2 would be a reasonable choice, subnet mask of 255.255.
255.0 (default)

38.2. IP Configurations 1417

FIRST Robotics Competition

• Driver Station - Static 10.TE.AM.5 would be a reasonable choice, subnet mask must be
255.0.0.0 to enable the DS to reach both the robot and FMS Server, without additionally
configuring the default gateway. If a static address is assigned and the subnet mask is
set to 255.255.255.0, then the default gateway must be configured to 10.TE.AM.4.

• IP Camera (if used) - Static 10.TE.AM.11 would be a reasonable choice, subnet 255.255.
255.0 should be fine

• Other devices - Static 10.TE.AM.6-.10 or .12-.19 (.11 if camera not present) subnet
255.255.255.0

38.2.3 In the Pits

Note: New for 2018: There is now a DHCP server running on the wired side of the Robot
Radio in the event configuration.

In the Pits DHCP Configuration

• OpenMesh radio - Static 10.TE.AM.1 programmed by Kiosk.
• roboRIO - 10.TE.AM.2, assigned by Robot Radio
• Driver Station - DHCP (“Obtain an IP address automatically”), 10.TE.AM.X, assigned by

Robot Radio
• IP camera (if used) - DHCP, 10.TE.AM.Y, assigned by Robot Radio
• Other devices (if used) - DHCP, 10.TE.AM.Z, assigned by Robot Radio

In the Pits Static Configuration

It is also possible to configure static IPs on your devices to accommodate devices or software
which do not support mDNS. When doing so you want to make sure to avoid addresses that
will be in use when the robot is on the field network. These addresses are 10.TE.AM.1 for the
OpenMesh radio and 10.TE.AM.4 for the field router.

38.3 roboRIO Network Troubleshooting

The roboRIO and FRC® tools use dynamic IP addresses (DHCP) for network connectivity.
This article describes steps for troubleshooting networking connectivity between your PC
and your roboRIO

1418 Chapter 38. Networking Introduction

FIRST Robotics Competition

38.3.1 Ping the roboRIO using mDNS

The first step to identifying roboRIO networking issues is to isolate if it is an application
issue or a general network issue. To do this, click Start -> type cmd -> press Enter to
open the command prompt. Type ping roboRIO-####-FRC.local where #### is your team
number (with no leading zeroes) and press enter. If the ping succeeds, the issue is likely with
the specific application, verify your team number configuration in the application, and check
your firewall configuration.

38.3.2 Ping the roboRIO IP Address

If there is no response, try pinging 10.TE.AM.2 (TE.AM IP Notation) using the command
prompt as described above. If this works, you have an issue resolving the mDNS address
on your PC. The two most common causes are not having an mDNS resolver installed on the
system and a DNS server on the network that is trying to resolve the .local address using
regular DNS.

• Verify that you have an mDNS resolver installed on your system. On Windows, this is
typically fulfilled by the NI FRC Game Tools. For more information on mDNS resolvers,
see the Network Basics article.

• Disconnect your computer from any other networks and make sure you have the OM5P-
AN configured as an access point, using the FRC Radio Configuration Utility. Removing
any other routers from the system will help verify that there is not a DNS server causing
the issue.

38.3. roboRIO Network Troubleshooting 1419

FIRST Robotics Competition

38.3.3 Ping Fails

If pinging the IP address directly fails, you may have an issue with the network
configuration of the PC. The PC should be configured to Automatic. To check this,
click Start -> Settings -> Network & Internet. Depending on your network, select
Wifi or Ethernet. Then click on your connected network. Scroll down to IP settings
and click Edit and ensure the Automatic (DHCP) option is selected.

38.3.4 USB Connection Troubleshooting

If you are attempting to troubleshoot the USB connection, try pinging the roboRIO’s IP ad-
dress. As long as there is only one roboRIO connected to the PC, it should be configured as
172.22.11.2. If this ping fails, make sure you have the roboRIO connected and powered, and
that you have installed the NI FRC Game Tools. The game tools installs the roboRIO drivers
needed for the USB connection.
If this ping succeeds, but the .local ping fails, it is likely that either the roboRIO hostname is
configured incorrectly, or you are connected to a DNS server which is attempting to resolve
the .local address.

• Verify that your roboRIO has been imaged for your team number: roboRIO 1 roboRIO 2.
This sets the hostname used by mDNS.

• Disable all other network adapters

1420 Chapter 38. Networking Introduction

FIRST Robotics Competition

38.3.5 Ethernet Connection

If you are troubleshooting an Ethernet connection, it may be helpful to first make sure that
you can connect to the roboRIO using the USB connection. Using the USB connection, open
the roboRIO webdashboard and verify that the roboRIO has an IP address on the ethernet
interface. If you are tethering to the roboRIO directly this should be a self-assigned 169.*.
. address, if you are connected to the OM5P-AN radio, it should be an address of the form
10.TE.AM.XX where TEAM is your four digit FRC team number. If the only IP address here is
the USB address, verify the physical roboRIO ethernet connection.

38.3.6 Disabling Network Adapters

This is not always the same as turning the adapters off with a physical button or putting the
PC into airplane mode. The following steps provide more detail on how to disable adapters.

38.3. roboRIO Network Troubleshooting 1421

FIRST Robotics Competition

Open the Settings application by clicking on the settings icon.

1422 Chapter 38. Networking Introduction

FIRST Robotics Competition

Choose the Network & Internet category.

38.3. roboRIO Network Troubleshooting 1423

FIRST Robotics Competition

Click on Change adapter options.

On the left pane, click Change Adapter Settings.

1424 Chapter 38. Networking Introduction

FIRST Robotics Competition

For each adapter other than the one connected to the radio, right click on the adapter and
select Disable from the menu.

38.3.7 Proxies

• Proxies. Having a proxy enabled may cause issues with the roboRIO networking.

38.4 Windows Firewall Configuration

Many of the programming tools used in FRC® need network access for various reasons.
Depending on the exact configuration, the Windows Firewall may potentially interfere with
this access for one or more of these programs.

38.4.1 Disabling Windows Firewall

Important: Disabling your firewall requires administrator privileges to the PC. Addition-
ally note that disabling the firewall is not recommended for computers that connect to the
internet.

The easiest solution is to disable the Windows Firewall. Teams should beware that this does
make the PC potentially more vulnerable to malware attacks if connecting to the internet.
Click Start -> Settings

38.4. Windows Firewall Configuration 1425

FIRST Robotics Competition

Click Update & Security

1426 Chapter 38. Networking Introduction

FIRST Robotics Competition

In the right pane, select Open Windows Security

38.4. Windows Firewall Configuration 1427

FIRST Robotics Competition

In the left pane, select Firewall and network protection

1428 Chapter 38. Networking Introduction

FIRST Robotics Competition

Click on each of the highlighted options

38.4. Windows Firewall Configuration 1429

FIRST Robotics Competition

Then click on the On toggle to turn it off.

1430 Chapter 38. Networking Introduction

FIRST Robotics Competition

38.4.2 Whitelisting Apps

Alternatively, you can add exceptions to the Firewall for any FRC programs you are having
issues with.
Click Start -> Settings

38.4. Windows Firewall Configuration 1431

FIRST Robotics Competition

Click Update & Security

1432 Chapter 38. Networking Introduction

FIRST Robotics Competition

In the right pane, select Open Windows Security

38.4. Windows Firewall Configuration 1433

FIRST Robotics Competition

In the left pane, select Firewall and network protection

1434 Chapter 38. Networking Introduction

FIRST Robotics Competition

At the bottom of the window, select Allow an app through firewall

38.4. Windows Firewall Configuration 1435

FIRST Robotics Competition

For each FRC program you are having an issue with, make sure that it appears in the list
and that it has a check in each of the 3 columns. If you need to change a setting, you made
need to click the Change settings button in the top right before changing the settings. If the
program is not in the list at all, click the Allow another program… button and browse to the
location of the program to add it.

1436 Chapter 38. Networking Introduction

FIRST Robotics Competition

38.5 Measuring Bandwidth Usage

On the FRC® Field each team is allocated limited network bandwidth (see R704 in the 2023
manual). The FMS Whitepaper provides more information on determining the bandwidth
usage of the Axis camera, but some teams may wish to measure their overall bandwidth
consumption. This document details how to make that measurement.

Note: Teams can simulate the bandwidth throttling at home using the FRC Bridge Configu-
ration Utility with the bandwidth checkbox checked.

38.5. Measuring Bandwidth Usage 1437

https://fms-manual.readthedocs.io/en/latest/fms-whitepaper/fms-whitepaper.html

FIRST Robotics Competition

38.5.1 Measuring Bandwidth Using the Performance Monitor (Win
7/10)

Windows contains a built-in tool called the Performance Monitor that can be used to monitor
the bandwidth usage over a network interface.

Launching the Performance Monitor

Click Start and in the search box, type perfmon.msc and press Enter.

1438 Chapter 38. Networking Introduction

FIRST Robotics Competition

Open Real-Time Monitor

In the left pane, click Performance Monitor to display the real-time monitor.

38.5. Measuring Bandwidth Usage 1439

FIRST Robotics Competition

Add Network Counter

1. Click the green plus near the top of the screen to add a counter
2. In the top left pane, locate and click on Network Interface to select it
3. In the bottom left pane, locate the desired network interface (or use All instances to

monitor all interfaces)
4. Click Add>> to add the counter to the right pane.
5. Click OK to add the counters to the graph.

Remove Extra Counters

In the bottom pane, select each counter other than Bytes Total/sec and press the Delete
key. The Bytes Total/sec entry should be the only entry remaining in the pane.

1440 Chapter 38. Networking Introduction

FIRST Robotics Competition

Configure Data Properties

Press Ctrl+Q to bring up the Properties window. Click on the dropdown next to Scale and
select 1.0. Then click on the Graph tab.

38.5. Measuring Bandwidth Usage 1441

FIRST Robotics Competition

Configure Graph Properties

In the Maximum Box under Vertical Scale enter 917504 (this is 7 Megabits converted to
Bytes). If desired, turn on the horizontal grid by checking the box. Then click OK to close the
dialog.

1442 Chapter 38. Networking Introduction

FIRST Robotics Competition

Viewing Bandwidth Usage

You may now connect to your robot as normal over the selected interface (if you haven’t
done so already). The graph will show the total bandwidth usage of the connection, with
the bandwidth cap at the top of the graph. The Last, Average, Min and Max values are also
displayed at the bottom of the graph. Note that these values are in Bytes/Second meaning
the cap is 917,504. With just the Driver Station open you should see a flat line at ~100000
Bytes/Second.

38.5.2 Measuring Bandwidth Usage using Wireshark

If you can not use performance monitor, you will need to install a 3rd party program to monitor
bandwidth usage. One program that can be used for this purpose is Wireshark. Download
and install the latest version of Wireshark for your version of Windows. After installation is
complete, locate and open Wireshark. Connect your computer to your robot, open the Driver
Station and any Dashboard or custom programs you may be using.

38.5. Measuring Bandwidth Usage 1443

FIRST Robotics Competition

Select the interface and Start capture

In the Wireshark program on the left side, select the interface you are using to connect to the
robot and click Start.

Open Statistics Summary

Let the capture run for at least 1 minute, then click Statistics then Summary.

1444 Chapter 38. Networking Introduction

FIRST Robotics Competition

View Bandwidth Usage

Average bandwidth usage, in Megabits/Second is displayed near the bottom of the summary
window.

38.5. Measuring Bandwidth Usage 1445

FIRST Robotics Competition

38.6 OM5P-AC Radio Modification

The intended use case for the OM5P-AC radio does not subject it to the same shocks and
forces as it sees in the FRC® environment. If the radio is subjected to significant pressure
on the bottom of the case, it is possible to cause a radio reboot by shorting a metal shield at
the bottom of the radio to some exposed metal leads on the bottom of the board. This article
details a modification to the radio to prevent this scenario.

Warning: It takes significant pressure applied to the bottom of the case to cause a reboot
in this manner. Most FRC radio reboot issues can be traced to the power path in some form.
We recommend mitigating this risk via strategic mounting of the radio rather than opening
and modifying the radio (and risk damaging delicate internal components):

• Avoid using the “mounting tab” features on the bottom of the radio.
• You may wish to mount the radio to allow for some shock absorption. A little can go a

long way, mounting the radio using hook and loop fastener or to a robot surface with
a small amount of flex (plastic or sheet metal sheet, etc.) can significantly reduce the
forces experienced by the radio.

38.6.1 Opening the Radio

Note: The OpenMesh OM5P-AC is not designed to be a user serviceable device. Users
perform this modification at their own risk. Make sure to work slowly and carefully to avoid
damaging internal components such as radio antenna cables.

Case Screws

1446 Chapter 38. Networking Introduction

FIRST Robotics Competition

Locate the two rubber feet on the front side of the radio then pry them off the radio using
fingernails, small flat screwdriver, etc. Using a small Phillips screwdriver, remove the two
screws under the feet.

Side Latches

There is a small latch on the lid of the radio near the middle of each long edge (you can see
these latches more clearly in the next picture). Using a fingernail or very thin tool, slide
along the gap between the lid and case from front to back towards the middle of the radio,
you should hear a small pop as you near the middle of radio. Repeat on the other side (note:
it’s not hard to accidentally re-latch the first side while doing this, make sure both sides are
unlatched before proceeding). The radio lid should now be slightly open on the front side as
shown in the image above.

38.6. OM5P-AC Radio Modification 1447

FIRST Robotics Competition

Remove Lid

Warning: The board may stick to the lid as you remove it due to the heatsink pads. Look
through the vents of the radio as you remove the lid to see if the board is coming with it,
if it is you may need to insert a small tool to hold the board down to separate it from the
lid. We recommend a small screwdriver or similar tool that fits through the vents, applied
through the front corner on the barrel jack side, right above the screw hole. You can scroll
down to the picture with the lid removed to see what the board looks like in this area.

To begin removing the lid, slide it forward (lifting slightly) until the screw holders hit the case
front (you may need to apply pressure on the latch areas while doing this.

1448 Chapter 38. Networking Introduction

FIRST Robotics Competition

Next, begin rotating the lid slightly away from the barrel jack side, as shown while continuing
to lift. This will unhook the lid from the small triangle visible in the top right corner. Continue
to rotate slightly in this direction while pushing the top left corner towards the barrel jack
(don’t try to lift further in this step) to unhook a similar feature in the top left corner. Then
lift the lid completely away from the body.

Remove Board

38.6. OM5P-AC Radio Modification 1449

FIRST Robotics Competition

Warning: Note the antenna wires shown in the image above. These wires, and their
connectors, are fragile, take care not to damage them while performing the next steps.

To remove the board, we recommend grasping one or both network ports with your fingers
(as shown) and pushing inward (toward the front of the radio) and upward until the network
ports and barrel jack are free from the case.

1450 Chapter 38. Networking Introduction

FIRST Robotics Competition

Tilt the board up (towards the short grey antenna cable) to expose the metal shield under-
neath.

Note: When you perform this step, you may notice that there is a small reset button on the
underside of the board that is larger than the hole in the case. Note that pressing the reset
button with the FRC firmware installed has no effect and that drilling the case of the radio is
not a permitted modification.

38.6.2 Apply Tape

Apply a piece of electrical tape to the metal shield in the area just inside of the network
port/barrel jack openings. This will prevent the exposed leads on the underside of the board

38.6. OM5P-AC Radio Modification 1451

FIRST Robotics Competition

from short circuiting on this plate.

38.6.3 Re-assemble Radio

Re-assemble the radio by reversing the instructions to open it:
• Lay the board back down, making sure it aligns with the screw holes near the front and

seats securely
• Slide the lid onto the back left retaining feature by moving it in from right to left. Take

care of the capacitor in this area
• Rotate the lid, press downwards and slide the back right retaining feature in
• Press down firmly on the front/middle of the lid to seat the latches
• Replace 2 screws in front feet
• Replace front feet

1452 Chapter 38. Networking Introduction

39
Networking Utilities

39.1 Port Forwarding

This class provides an easy way to forward local ports to another host/port. This is useful
to provide a way to access Ethernet-connected devices from a computer tethered to the ro-
boRIO USB port. This class acts as a raw TCP port forwarder, this means you can forward
connections such as SSH.

39.1.1 Forwarding a Remote Port

Often teams may wish to connect directly to the roboRIO for controlling their robot. The
PortForwarding class (Java, C++) can be used to forward the Raspberry Pi connection for
usage during these times. The PortForwarding class establishes a bridge between the remote
and the client. To forward a port in Java, simply do PortForwarder.add(int port, String
remoteName, int remotePort).
Java

@Override
public void robotInit() {

PortForwarder.add(8888, "wpilibpi.local", 80);
}

C++

void Robot::RobotInit {
wpi::PortForwarder::GetInstance().Add(8888, "wpilibpi.local", 80);

}

Python

wpiutil.PortForwarder.getInstance().add(8888, "wpilibpi.local", 80)

Important: You can not use a port less than 1024 as your local forwarded port. It is also
important to note that you can not use full URLs (http://wpilibpi.local) and should only

1453

https://github.wpilib.org/allwpilib/docs/release/java/edu/wpi/first/net/PortForwarder.html
https://github.wpilib.org/allwpilib/docs/release/cpp/classwpi_1_1_port_forwarder.html

FIRST Robotics Competition

use IP Addresses or DNS names.

39.1.2 Removing a Forwarded Port

To stop forwarding on a specified port, simply call remove(int port) with port being the port
number. If you call remove() on a port that is not being forwarded, nothing will happen.
Java

@Override
public void robotInit() {

PortForwarder.remove(8888);
}

C++

void Robot::RobotInit {
wpi::PortForwarder::GetInstance().Remove(8888);

}

Python

wpiutil.PortForwarder.getInstance().remove(8888)

1454 Chapter 39. Networking Utilities

40
Contributing to frc-docs

40.1 Contribution Guidelines

Welcome to the contribution guidelines for the frc-docs project. If you are unfamiliar to writ-
ing in the reStructuredText format, please read up on it here.

Important: FIRST® retains all rights to documentation and images provided. Credit for
articles/updates will be in the GitHub commit history.

40.1.1 Mission Statement

The WPILib Mission is to enable FIRST Robotics teams to focus on writing game-specific
software rather than focusing on hardware details - “raise the floor, don’t lower the ceiling”.
We work to enable teams with limited programming knowledge and/or mentor experience to
be as successful as possible, while not hampering the abilities of teams with more advanced
programming capabilities. We support Kit of Parts control system components directly in the
library. We also strive to keep parity between major features of each language (Java, C++, and
NI’s LabVIEW), so that teams aren’t at a disadvantage for choosing a specific programming
language.
These docs serve to provide a learning ground for all FIRST Robotics Competition teams.
Contributions to the project must follow these core principles.

• Community-led documentation. Documentation sources are hosted publicly and the com-
munity are able to make contributions

• Structured, well-formatted, clean documentation. Documentation should be clean and
easy to read, from both a source and release standpoint

• Relevant. Documentation should be focused on the FIRST Robotics Competition.
Please see the Style Guide for information on styling your documentation.

1455

https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
https://github.com/wpilibsuite/frc-docs/graphs/commit-activity

FIRST Robotics Competition

40.1.2 Release Process

frc-docs uses a special release process for handling the main site /stable/ and the develop-
ment site /latest/. This flow is detailed below.
During Season:

• Commit made to main branch
– Updates /stable/ and /latest/ on the website

End of Season:
• Repository is tagged with year, for archival purposes

Off-Season:
• stable branch is locked to the last on-season commit
• Commit made to main branch

– Only updates /latest/ on the documentation site

40.1.3 Creating a PR

PRs should be made to the frc-docs repo on GitHub. They should point to the main branch
and not stable.

40.1.4 Creating New Content

Thanks for contributing to the frc-docs project! There are a couple things you should know
before getting started!

Where to place articles?

The location for new articles can be a pretty opinionated subject. Standalone articles that
fall well into an already subject category should be placed into mentioned subject category
(documentation on something about simulation should be placed into the simulation section).
However, things can get pretty complicated when an article combines or references two sepa-
rate existing sections. In this situation, we advise the author to open an issue on the repository
to get discussion going before opening the PR.

Note: All new articles will undergo a review process before being merged into the repository.
This review process will be done by members of the WPILib team. New Articles must be on
official FIRST supported Software and Hardware. Documentation on unofficial libraries or
sensors will not be accepted. This process may take some time to review, please be patient.

1456 Chapter 40. Contributing to frc-docs

https://github.com/wpilibsuite/frc-docs
https://github.com/wpilibsuite/frc-docs

FIRST Robotics Competition

Where to place sections?

Sections are quite tricky, as they contain a large amount of content. We advise the author to
open an issue to gather discussion before opening up a PR.

Linking Other Articles

In the instance that the article references content that is described in another article, the
author should make best effort to link to that article upon the first reference.
Imagine we have the following content in a drivetrain tutorial:

Teams may often need to test their robot code outside of a competition.␣
↪→:ref:`Simulation <link-to-simulation:simulation>` is a means to achieve this.␣
↪→Simulation offers teams a way to unit test and test their robot code without ever␣
↪→needing a robot.

Notice how only the first instance of Simulation is linked. This is the structure the author
should follow. There are times where a linked article has different topics of content. If you
reference the different types of content in the article, you should link to each new reference
once (except in situations where the author has deemed it appropriate otherwise).

40.2 Style Guide

This document contains the various RST/Sphinx specific guidelines for the frc-docs project.
For guidelines related to the various WPILib code projects, see the WPILib GitHub

40.2.1 Filenames

Use only lowercase alphanumeric characters and - (minus) symbol.
For documents that will have an identical software/hardware name, append “Hardware” or
“Software” to the end of the document name. IE, ultrasonics-hardware.rst
Suffix filenames with the .rst extension.

Note: If you are having issues editing files with the .rst extension, the recommended text
editor is VS Code with the rST extension.

40.2.2 Text

All text content should be on the same line. If you need readability, use the word-wrap function
of your editor.
Use the following case for these terms:

• roboRIO (not RoboRIO, roboRio, or RoboRio)
• LabVIEW (not labview or LabView)
• Visual Studio Code (VS Code) (not vscode, VScode, vs code, etc)

40.2. Style Guide 1457

https://github.com/wpilibsuite/frc-docs/issues
https://github.com/wpilibsuite/styleguide

FIRST Robotics Competition

• macOS (not Mac OS, Mac OSX, Mac OS X, Mac, Mac OS, etc.)
• GitHub (not github, Github, etc)
• PowerShell (not powershell, Powershell, etc)
• Linux (not linux)
• Java (not java)

Use the ASCII character set for English text. For special characters (e.g. Greek symbols) use
the standard character entity sets.
Use .. math:: for standalone equations and :math: for inline equations. A useful LaTeX
equation cheat sheet can be found here.
Use literals for filenames, function, and variable names.
Use of the registered trademarks FIRST® and FRC® should follow the Policy from this page.
Specifically, where possible (i.e. not nested inside other markup or in a document title), the
first use of the trademarks should have the ® symbol and all instances of FIRST should be
italicized. The ® symbol can be added by using .. include:: <isonum.txt> at the top of
the document and then using *FIRST*\ |reg| or FRC\ |reg|.
Commonly used terms should be added to the FRC Glossary. You can reference items in the
glossary by using :term:`deprecated`.

40.2.3 Whitespace

Indentation

Indentation should always match the previous level of indentation unless you are creating a
new content block.
Indentation of content directives as new line .. toctree:: should be 3 spaces.

Blank Lines

There should be 1 blank line separating basic text blocks and section titles. There should be
1 blank line separating text blocks and content directives.

Interior Whitespace

Use one space between sentences.

1458 Chapter 40. Contributing to frc-docs

https://docutils.sourceforge.io/docs/ref/rst/definitions.html#character-entity-sets
https://www.reed.edu/academic_support/pdfs/qskills/latexcheatsheet.pdf
https://www.firstinspires.org/brand

FIRST Robotics Competition

40.2.4 Headings

Headings should be in the following structure. Heading underlines should match the same
number of characters as the heading itself.

1. = for document titles. Do not use this more than once per article.
2. - for document sections
3. ^ for document sub-sections
4. ~ for document sub-sub-sections
5. If you need to use any lower levels of structure, you’re doing things wrong.

Use title case for headings.

40.2.5 Lists

Lists should have a new line in between each indent level. The highest indent should have 0
indentation, and subsequent sublists should have an indentation starting at the first character
of the previous indentation.

- Block one
- Block two
- Block three

- Sub 1
- Sub 2

- Block four

40.2.6 Code blocks

All code blocks should have a language specified.
1. Exception: Content where formatting must be preserved and has no language. Instead

use text.
Follow the WPILib style guide for C++ and Java example code. For example, use two spaces
for indentation in C++ and Java.

40.2.7 RLI (Remote Literal Include)

When possible, instead of using code blocks, an RLI should be used. This pulls code lines
directly from GitHub, most commonly using the example programs. This automatically keeps
the code up to date with any changes that are made. The format of an RLI is:

.. group-tab:: Java

.. rli:: https://raw.githubusercontent.com/wpilibsuite/allwpilib/v2023.4.3/
↪→wpilibjExamples/src/main/java/edu/wpi/first/wpilibj/examples/ramsetecontroller/
↪→Robot.java

:language: java
(continues on next page)

40.2. Style Guide 1459

https://github.com/wpilibsuite/styleguide/

FIRST Robotics Competition

(continued from previous page)
:lines: 44-61
:linenos:
:lineno-start: 44

.. group-tab:: C++

.. rli:: https://raw.githubusercontent.com/wpilibsuite/allwpilib/v2023.4.3/
↪→wpilibcExamples/src/main/cpp/examples/RamseteController/cpp/Robot.cpp

:language: cpp
:lines: 18-30
:linenos:
:lineno-start: 18

Note that group-tab rather than code-tab needs to be used. Also make sure to link to the raw
version of the file on GitHub. There is a handy Raw button in the top right corner of the page.

40.2.8 Admonitions

Admonitions (list here) should have their text on the same line as the admonition itself. There
are exceptions to this rule, however, when having multiple sections of content inside of an
admonition. Generally having multiple sections of content inside of an admonition is not
recommended.
Use

.. warning:: This is a warning!

NOT

.. warning::
This is a warning!

40.2.9 Links

Internal Links

Internal Links will be auto-generated based on the ReStructuredText filename and section
title.
For example, here are several ways to link to sections and documents.
Use this format to reference a document section. You must use the absolute path of the doc-
ument. :ref:`docs/software/hardware-apis/sensors/ultrasonics-software:Analog
ultrasonics` renders to Analog ultrasonics.
Use this format to reference a section of the same document. Note the single underscore.
`Images`_ renders to Images.
Use this format to reference the top-level of a document. You can use relative paths
:doc:`build-instructions` renders to Build Instructions Or to use absolute paths, put a
forward slash at the beginning of the path :doc:`/docs/software/hardware-apis/sensors/
ultrasonics-software` renders to Ultrasonics - Software. Note that the text rendered is the
main section title of the target page regardless of the target filename.

1460 Chapter 40. Contributing to frc-docs

https://docutils.sourceforge.io/docs/ref/rst/directives.html#admonitions

FIRST Robotics Competition

When using :ref: or :doc: you may customize the displayed text by surrounding the actual
link with angle brackets <> and adding the custom text between the first backtick ` and the
first angle bracket <. For example :ref:`custom text <docs/software/hardware-apis/
sensors/ultrasonics-software:Analog ultrasonics>` renders to custom text.

External Links

It is preferred to format external links as anonymous hyperlinks. The important thing to note
is the two underscores appending the text. In the situation that only one underscore is used,
issues may arise when compiling the document.

Hi there, `this is a link <https://example.com>`__ and it's pretty cool!

However, in some cases where the same link must be referenced multiple times, the syntax
below is accepted.

Hi there, `this is a link`_ and it's pretty cool!

.. _this is a link: https://example.com

40.2.10 Images

Images should be created with 1 new line separating content and directive.
All images (including vectors) should be less than 500 kilobytes in size. Please make use of a
smaller resolution and more efficient compression algorithms.

.. image:: images/my-article/my-image.png
:alt: Always add alt text here describing the image.

Image Files

Image files should be stored in the document directory, sub-directory of document-name/
images.
They should follow the naming scheme of short-description.png, where the name of the
image is a short description of what the image shows. This should be less than 24 characters.
They should be of the .png or .jpg image extension. .gif is unacceptable due to storage and
accessibility concerns.

Note: Accessibility is important! Images should be marked with a :alt: directive.

.. image:: images/my-document/my-image.png
:alt: An example image

40.2. Style Guide 1461

FIRST Robotics Competition

Vector Images

SVG files are supported through the svg2pdfconverter Sphinx extension.
Simply use them as you would with any other image.

Note: Ensure that any embedded images in the vector do not bloat the vector to exceed the
500KB limit.

.. image:: images/my-document/my-image.svg
:alt: Always add alt text here describing the image.

Draw.io Diagrams

Draw.io (also known as diagrams.net) diagrams are supported through svg files with embed-
ded .drawio metadata, allowing the svg file to act as a source file of the diagrams, and to be
rendered like a normal vector graphics file.
Simply use them like you would any other vector image, or any other image.

.. image:: diagrams/my-document/diagram-1.drawio.svg
:alt: Always add alt text here describing the image.

Draw.io Files

Draw.io files follow almost the same naming scheme as normal images. To keep track of files
that have the embedded .drawio metadata, append a .drawio to the end of the file name,
before the extension, meaning the name of the file should be document-title-1.drawio.svg
and so on. Additionally, diagrams should be stored in the document directory in a sub-folder
named diagrams.
For the specifics of saving a diagram as a .svg with metadata, take a look at Draw.io Saving
Instructions.

Warning: Make sure you don’t modify any file that is in a diagrams folder, or ends in
.drawio.svg in any program other than draw.io, otherwise you might risk breaking the
metadata of the file, making it uneditable.

40.2.11 File Extensions

File extensions should use code formatting. For example, use:

``.png``

instead of:

.png
".png"
"``.png``"

1462 Chapter 40. Contributing to frc-docs

https://app.diagrams.net/

FIRST Robotics Competition

40.2.12 Table of Contents (TOC)

Each category should contain an index.rst. This index file should contain a maxdepth of 1.
Sub-categories are acceptable, with a maxdepth of 1.
The category index.rst file can then be added to the root index file located at source/index.
rst.

40.2.13 Examples

Title
=====
This is an example article

.. code-block:: java

System.out.println("Hello World");

Section

This is a section!

40.2.14 Important Note!

This list is not exhaustive and administrators reserve the right to make changes. Changes
will be reflected in this document.

40.3 Build Instructions

This document contains information on how to build the HTML, PDF, and EPUB versions of
the frc-docs site. frc-docs uses Sphinx as the documentation generator. This document also
assumes you have basic knowledge of Git and console commands.

40.3.1 Prerequisites

Ensure that Git is installed and that the frc-docs repository is cloned by using git clone
https://github.com/wpilibsuite/frc-docs.git.

Text Editors / IDE

For development, we recommend that you use VS Code along with the reStructuredText ex-
tension. However, any text editor will work.

40.3. Build Instructions 1463

https://git-scm.com/
https://git-scm.com/
https://marketplace.visualstudio.com/items?itemName=lextudio.restructuredtext
https://marketplace.visualstudio.com/items?itemName=lextudio.restructuredtext

FIRST Robotics Competition

Windows

Note: MikTeX and rsvg-convert are not required for building HTML, they are only required
for Windows PDF builds.

• Python 3.9
• MiKTeX (Only needed for PDF builds)
• Perl
• rsvg-convert

Ensure that Python is in your Path by selecting the Add Python to PATH toggle when in-
stalling Python.

Once Python is installed, open up Powershell. Then navigate to the frc-docs directory. Run
the following command: pip install -r source/requirements.txt

Install the missing MikTex packages by navigating to the frc-docs directory, then running the
following command from Powershell: mpm --verbose --require=@miktex-packages.txt

1464 Chapter 40. Contributing to frc-docs

https://www.python.org/downloads/
https://miktex.org/download
https://strawberryperl.com/
https://community.chocolatey.org/packages/rsvg-convert

FIRST Robotics Competition

Linux (Ubuntu)

$ sudo apt update
$ sudo apt install python3 python3-pip
$ python3 -m pip install -U pip setuptools wheel
$ python3 -m pip install -r source/requirements.txt
$ sudo apt install -y texlive-latex-recommended texlive-fonts-recommended texlive-
↪→latex-extra latexmk texlive-lang-greek texlive-luatex texlive-xetex texlive-fonts-
↪→extra dvipng librsvg2-bin

40.3.2 Building

Open up a Powershell Window or terminal and navigate to the frc-docs directory that was
cloned.

PS > cd "%USERPROFILE%\Documents"
PS C:\Users\Example\Documents> git clone https://github.com/wpilibsuite/frc-docs.git
Cloning into 'frc-docs'...
remote: Enumerating objects: 217, done.
remote: Counting objects: 100% (217/217), done.
remote: Compressing objects: 100% (196/196), done.
remote: Total 2587 (delta 50), reused 68 (delta 21), pack-reused 2370
Receiving objects: 100% (2587/2587), 42.68MiB | 20.32 MiB/s, done.
Receiving deltas: 100% (1138/1138), done/
PS C:\Users\Example\Documents> cd frc-docs
PS C:\Users\Example\Documents\frc-docs>

Lint Check

Note: Lint Check will not check line endings on Windows due to a bug with line endings.
See this issue for more information.

It’s encouraged to check any changes you make with the linter. This will fail the buildbot if
it does not pass. To check, run .\make lint

Link Check

The link checker makes sure that all links in the documentation resolve. This will fail the
buildbot if it does not pass. To check, run .\make linkcheck

40.3. Build Instructions 1465

https://bugs.launchpad.net/doc8/+bug/1756704

FIRST Robotics Competition

Image Size Check

Please run .\make sizecheck to verify that all images are below 500KB. This check will
fail CI if it fails. Exclusions are allowed on a case by case basis and are added to the IM-
AGE_SIZE_EXCLUSIONS list in the configuration file.

Redirect Check

Files that have been moved or renamed must have their new location (or replaced with 404)
in the redirects.txt file in source.
The redirect writer will automatically add renamed/moved files to the redirects file. Run
.\make rediraffewritediff.

Note: if a file is both moved and substantially changed, the redirect writer will not add it to
the redirects.txt file, and the redirects.txt file will need to be manually updated.

The redirect checker makes sure that there are valid redirects for all files. This will fail the
buildbot if it does not pass. To check, run .\make rediraffecheckdiff to verify all files are
redirected. Additionally, an HTML build may need to be ran to ensure that all files redirect
properly.

Building HTML

Type the command .\make html to generate HTML content. The content is located in the
build/html directory at the root of the repository.

40.3.3 Building PDF

Warning: Please note that PDF build on Windows may result in distorted images for SVG
content. This is due to a lack of librsvg2-bin support on Windows.

Type the command .\make latexpdf to generate PDF content. The PDF is located in the
build/latex directory at the root of the repository.

40.3.4 Building EPUB

Type the command .\make epub to generate EPUB content. The EPUB is located in the
build/epub directory at the root of the repository.

1466 Chapter 40. Contributing to frc-docs

FIRST Robotics Competition

40.3.5 Adding Python Third-Party libraries

Important: After modifying frc-docs dependencies in any way, requirements.txt must
be regenerated by running poetry export -f requirements.txt --output source/
requirements.txt --without-hashes from the root of the repo.

frc-docs uses Poetry to manage its dependencies to make sure builds are reproducible.

Note: Poetry is not required to build and contribute to frc-docs content. It is only used for
dependency management.

Installing Poetry

Ensure that Poetry is installed. Run the following command: pip install poetry.

Adding a Dependency

Add the dependency to the [tool.poetry.dependencies] section of pyproject.toml. Make
sure to specify an exact version. Then, run the following command: poetry lock
--no-update.

Updating a Top-Level Dependency

Update the dependency’s version in the [tool.poetry.dependencies] section of pyproject.
toml. Then, run the following command: poetry lock --no-update.

Updating Hidden Dependencies

Run the following command: poetry lock.

40.4 Draw.io Saving Instructions

Warning: Make sure you don’t modify any file that is in a diagrams folder, or ends in
.drawio.svg in any program other than draw.io; otherwise you might risk breaking the
metadata of the file, making it uneditable.

Draw.io (also known as diagrams.net) are supported when saved as svg files, with embedded
XML metadata for the draw.io source file (normally stored as .drawio). This allows these
images to both act as source files for the diagrams that can be edited in the future, and be
rendered as normal svg files.

40.4. Draw.io Saving Instructions 1467

https://python-poetry.org/
https://app.diagrams.net/

FIRST Robotics Competition

There are a few methods to save a diagram with the embedded metadata, but using the export
menu is preferred because it allows us to embed any images in the diagram; otherwise they
might not render properly on the docs.
This method is applicable to both draw.io desktop and the web version at diagrams.net.
To export go to File - Export as - SVG.... Make sure Include a copy of my diagram is
enabled to embed the diagram metadata, and that Embed Images is enabled so image files in
the diagram are embedded so they render in the docs. Additionally, mark the Transparent
Background option to make sure the background is displayed correctly.
The export menu should look something like this:

Then just click Export then select where you would like to save the file and save it.

Note: When saving, make sure you follow the style-guide at Draw.io Files

1468 Chapter 40. Contributing to frc-docs

https://app.diagrams.net/

FIRST Robotics Competition

40.5 Translations

frc-docs supports translations using the web-based Transifex utility. frc-docs has been trans-
lated into Spanish - Mexico (es_MX), French - Canada (fr_CA) and Turkish - Turkey (tr_TR).
Chinese - China (zh_CN), Hebrew - Israel (he_IL), and Portuguese - Brazil (pt_BR) have trans-
lations in progress. Translators that are fluent in both English and one of the specified lan-
guages would be greatly appreciated to contribute to the translations. Even once a translation
is complete, it needs to be updated to keep up with changes in frc-docs.

40.5.1 Workflow

Here are some steps to follow for translating frc-docs.
1. Sign up for Transifex and ask to join the frc-docs project, and request access to the

language you’d like to contribute to.
2. Join GitHub discussions! This is a direct means of communication with the WPILib team.

You can use this to ask us questions in a fast and streamlined fashion.
3. You may be contacted and asked questions involving contributing languages before being

granted access to the frc-docs translation project.
4. Translate your language!

40.5.2 Links

Links must be preserved in their original syntax. To translate a link, you can replace the
TRANSLATE ME text (this will be replaced with the English title) with the appropriate trans-
lation.
An example of the original text may be

For complete wiring instructions/diagrams, please see the :doc:`Wiring the FRC␣
↪→Control System Document <Wiring the FRC Control System document>`.

where the Wiring the FRC Control System Document then gets translated.

For complete wiring instructions/diagrams, please see the :doc:`TRANSLATED TEXT
↪→<Wiring the FRC Control System document>`.

Another example is below

For complete wiring instructions/diagrams, please see the :ref:`TRANSLATED TEXT <docs/
↪→zero-to-robot/step-1/how-to-wire-a-simple-robot:How to Wire an FRC Robot>`

40.5. Translations 1469

https://www.transifex.com
https://www.transifex.com/
https://www.transifex.com/wpilib/frc-docs
https://github.com/wpilibsuite/allwpilib/discussions

FIRST Robotics Competition

40.5.3 Publishing Translations

Translations are pulled from Transifex and published automatically each day.

40.5.4 Accuracy

Translations should be accurate to the original text. If improvements to the English text can
be made, open a PR or issue on the frc-docs repository. These can then get translated on
merge.

40.6 Top Translators

40.6.1 Chinese

• 8192 Dhc
• Atlus Zhang
• Jiangshan Gong
• Keseterg
• Michael Zhao
• Ningxi Huang
• Ran Xin
• Team 5308
• Tianrui Wu
• Tianshuang Zhang
• Xun Sun
• Yitong Zhao
• Yuhao Li
•
•
•
•
•
•
• Sherry

1470 Chapter 40. Contributing to frc-docs

https://github.com/wpilibsuite/frc-docs

FIRST Robotics Competition

40.6.2 French

• Alexandra Schneider
• Andre Theberge
• Andy Chang
• Austin Shalit
• Dalton Smith
• Daniel Renaud
• Étienne Beaulac
• Félix Giffard
• Kaitlyn Kenwell
• Laura Luna Bedard
• Marc Lalonde
• Martin Regimbald
• Regis Bekale
• Sami G.-D.
• Sidney Lavoie
• Youdlain Marcellus

40.6.3 Portuguese

• Amanda Carolina Wilmsen
• Bibiana Oliveira
• Bruno Osio
• Bruno Toso
• Gabriel Silveira
• Gabriela Tomaz Do Amaral Ribeiro
• Günther Steinmeier
• Karana Maciel De Souza
• Luca Carvalho
• Lucas Fontes Francisco
• Maria Eduarda Grabin Gisse
• Matheus Heitor Timm Chanan
• Meg Grabin
• Miguel Ramos
• Nadja Dias
• Natan Feijó Tristão

40.6. Top Translators 1471

FIRST Robotics Competition

• Nathany Santiago
• Pedro Henrique Dias Pellicioli
• Tales Dias De Almeida Silva
• Vinícius Castro

40.6.4 Spanish

• Austin Shalit
• Cesar Ernesto
• Diana Ramos
• Diego Lozano Rangel
• Fernanda Reveles
• Fernando Soltero
• Gibrán Verástegui
• Heber Sepúlveda
• Heriberto Gutierrez
• Hugo Espino
• Lian Eng
• Luis_Hernández
• Miguel Angel De León Adame
• Óscar Ariel Gutiérrez
• Paulina Maynez
• Pierre Cote
• Ranferi Lozano
• Rodrigo Acosta
• Sofia Fernandez
• Zara Moreno

40.6.5 Turkish

• Hasan Bilgin
• Müfit Alkaya
• Esra Özemre
• Ceren Oktemer
• Demet T
• Demet Tumkaya
• Melis Aldeniz

1472 Chapter 40. Contributing to frc-docs

FIRST Robotics Competition

• Lal Serdaroğlu
• Çağan Uslu
• Duru Ünlü
• Arhan Ünay
• Doruk Akdoğan
• Ada Zagyapan
• Müfit Alkaya_3390
• Duru Hatipoğlu
• Mayra Şengel
• Ece Yiğit
• Tuna Özer
• Elif Akın
• Nesrin Serra Köşkeroğlu

40.6.6 Hebrew

• Aric Radzin
• Dalton Smith
• Itay Ziv
• Ofek Ashery
• Shai Grossman
• Starlight220
• Yotam Shlomi

40.6. Top Translators 1473

FIRST Robotics Competition

1474 Chapter 40. Contributing to frc-docs

41
Developing with allwpilib

Important: This document contains information for developers of WPILib. This is not for
programming FRC® robots.

This is a list of links to the various documentation for the allwpilib repository.

41.1 Quick Start

Below is a list of instructions that guide you through cloning, building, publishing and using
local allwpilib binaries in a robot project. This quick start is not intended as a replacement
for the information that is further listed in this document.

• Clone the repository with git clone https://github.com/wpilibsuite/allwpilib.
git

• Build the repository with ./gradlew build or ./gradlew build --build-cache if you
have an internet connection

• Publish the artifacts locally by running ./gradlew publish

• Update your robot project’s build.gradle to use the artifacts

41.2 Core Repository

41.3 NetworkTables

1475

https://github.com/wpilibsuite/allwpilib
https://github.com/wpilibsuite/allwpilib/blob/main/DevelopmentBuilds.md
https://github.com/wpilibsuite/allwpilib/blob/main/DevelopmentBuilds.md

FIRST Robotics Competition

1476 Chapter 41. Developing with allwpilib

Index

A
accelerometer, 573
auto, 573

B
back-EMF, 573
bang-bang control, 1244
boolean, 573

C
C++, 574
call stack, 573
Cartesian coordinate system, 1244
central limit theorem, 573
churning losses, 1244
Classical Mechanics, 573
composition, 573
control effort, 1244
control law, 1244
control signal, 1244
controller, 1244
convolution, 1244
COTS, 573
counter-electromotive force, 1244
CRTP, 573
current, 1244

D
declarative programming, 574
dependency injection, 574
deprecated, 574
derivative, 1245
design pattern, 574
DHCP, 574
dynamics, 1245

E
encapsulation, 574
entry, 574
enumeration, 574
error, 1245
event-driven programming, 574
exponential search, 1245
exponential smoothing, 1245

F
floating point, 574
FMS, 574
FPGA, 575

G
gain, 1245
Gaussian distribution, 1245
gradient, 1245
GradleRIO, 575
gyroscope, 575

H
heading, 575
hidden state, 1245

I
imperative programming, 575
IMU, 575
input, 1245

J
Java, 575
JSON, 575

K
KOP, 575
KOP chassis, 575

L
LabVIEW, 575
least-squares regression, 1245
LQR, 1246

M
mass, 575
measurement, 1246
model, 1246
moment of inertia, 575
mutable, 576

1477

FIRST Robotics Competition

N
NetworkTables, 575

O
observer, 1246
orthogonal, 1246
output, 1246

P
permanent-magnet DC motor, 576
persistent, 576
phase portrait, 1246
PID, 1246
plant, 1246
pose, 576
process variable, 1246
property, 576
publisher, 576

R
r-squared, 1247
RAII, 576
recursive composition, 576
reference, 1247
retained, 576
retro-reflection, 576
rise time, 1247
RMSE, 1247

S
serialized, 576
setpoint, 1247
settling time, 1247
signum function, 1247
simulation, 576
software library, 577
solenoid valve, 577
state, 1247
state machine, 577
statistically robust, 1247
steady-state error, 1247
step input, 1247
step response, 1248
subscriber, 577
system, 1248
system identification, 1248
system response, 1248

T
telemetry, 577
teleop, 577
topic, 577
torque, 577
trajectory, 577
transitory, 577

V
viscous drag, 1248
voltage, 1248

X
x-dot, 1248
x-hat, 1248

1478 Index

	Introduction
	New to Programming?
	Java
	C++
	LabVIEW

	Zero to Robot

	Step 1: Building your Robot
	Introduction to FRC Robot Wiring
	Overview
	Gather Materials
	Create the Base for the Control System
	Layout the Core Control System Components
	Fasten Components
	Attach Robot Side Battery Connector
	Wire Breaker to Power Distribution
	Insulate power connections
	Motor Controller Power
	Weidmuller Connectors
	roboRIO Power
	Radio Power
	Pneumatics Power (Optional)
	Ethernet Cables
	CAN Devices
	roboRIO to Pneumatics CAN
	Pneumatics to PD CAN

	Motor Controller Signal Wires
	Robot Signal Light
	Circuit Breakers
	Motor Power
	STOP
	Manage Wires
	Connect Battery

	Step 2: Installing Software
	Offline Installation Preparation
	Documentation
	Installers
	All Teams
	LabVIEW Teams
	Java/C++ Teams

	3rd Party Libraries/Software

	Installing LabVIEW for FRC (LabVIEW only)
	Requirements
	Uninstall Old Versions (Recommended)
	Select Components to Uninstall

	Getting LabVIEW installer
	Installing LabVIEW
	Starting Install
	NI Package Manager License
	Disable Windows Fast Startup
	NI Package Manager Review
	NI Package Manager Installation
	Product List
	Additional Packages
	License agreements
	Product Information
	Start Installation
	Overall Progress

	NI Update Service
	NI Activation Wizard
	Restart

	Installing the FRC Game Tools
	Requirements
	Uninstall Old Versions (Recommended)
	Select Components to Uninstall

	Installation
	Extraction
	NI Package Manager License
	Disable Windows Fast Startup
	NI Package Manager Review
	NI Package Manager Installation
	Additional Software
	License Agreements
	Review Summary
	Detail Progress
	NI Activation Wizard
	NI Update Service

	Reboot to Complete Installation

	WPILib Installation Guide
	Prerequisites
	Downloading
	Extracting the Installer
	Running the Installer
	Post-Installation
	Additional C++ Installation for Simulation
	What is Installed?
	Uninstalling
	Troubleshooting

	Next Steps

	Step 3: Preparing Your Robot
	Imaging your roboRIO 2
	microSD Requirements
	Operation Tips
	Imaging Directly to the microSD Card
	Writing the image with balenaEtcher
	Writing the image with Raspberry Pi Imager
	Setting the roboRIO Team Number

	Imaging your roboRIO 1
	Configuring the roboRIO
	USB Connection
	Driver Installation

	Launching the Imaging Tool
	roboRIO Imaging Tool
	Updating Firmware

	Imaging the roboRIO
	Imaging Progress
	Imaging Complete
	Troubleshooting

	Programming your Radio
	Prerequisites
	Application Notes
	Programmed Configuration

	Install the Software
	Launch the software
	Allow the program to make changes, if prompted
	Select the network interface
	Open Mesh Firmware Note
	Loading FRC Firmware to Open Mesh Radio
	Select Radio and Operating Mode
	Select Options
	Starting the Configuration Process
	Configuration Progress
	Configuration Completed
	Configuration Errors
	Troubleshooting

	Step 4: Programming your Robot
	Creating your Test Drivetrain Program (LabVIEW)
	Creating a Project
	Configuring Project
	Running the Program
	Deploying the Program

	Creating your Test Drivetrain Program (C++/Java)
	Creating a New WPILib Project
	Opening The New Project
	C++ Configurations (C++ Only)
	Imports/Includes
	Defining the variables for our sample robot
	Robot Initialization
	Simple Autonomous Example
	Joystick Control for Teleoperation
	Test Mode
	Deploying the Project to a Robot

	Running your Test Program
	Overview
	Tethered Operation
	Starting the FRC Driver Station
	Setting Up the Driver Station
	Confirm Connectivity
	Operate the Robot
	Wireless Operation
	Configuring the Access Point

	Hardware Component Overview
	Overview of Control System
	NI roboRIO
	CTRE Power Distribution Panel
	REV Power Distribution Hub
	CTRE Voltage Regulator Module
	REV Radio Power Module
	OpenMesh OM5P-AN or OM5P-AC Radio
	120A Circuit Breaker
	Snap Action Circuit Breakers
	Robot Battery
	Robot Signal Light
	CTRE Pneumatics Control Module
	REV Pneumatic Hub
	Motor Controllers
	Talon SRX
	Victor SPX
	SPARK MAX Motor Controller
	TalonFX Motor Controller
	SPARK Motor Controller
	Victor SP
	Talon Motor Controller
	Victor 888 Motor Controller / Victor 884 Motor Controller
	Jaguar Motor Controller
	DMC-60 and DMC-60C Motor Controller
	Venom Motor Controller
	Nidec Dynamo BLDC Motor with Controller
	SD540B and SD540C Motor Controllers

	Spike H-Bridge Relay
	Servo Power Module
	Microsoft Lifecam HD3000
	Image Credits

	Software Component Overview
	Operating System Compatibility
	LabVIEW FRC (Windows Only)
	Visual Studio Code
	FRC Driver Station Powered by NI LabVIEW (Windows Only)
	Dashboard Options
	LabVIEW Dashboard (Windows Only)
	SmartDashboard
	Shuffleboard
	Glass

	LiveWindow
	FRC roboRIO Imaging Tool (Windows Only)
	FRC Radio Configuration Utility (Windows Only)
	FRC Driver Station Log Viewer (Windows Only)
	RobotBuilder
	Robot Simulation
	FRC LabVIEW Robot Simulator (Windows Only)
	PathWeaver
	System Identification
	OutlineViewer

	What is WPILib?
	Supported languages
	Source code and documentation

	2023 Overview
	Known Issues
	Open Issues
	LabVIEW installation of RabbitMQ Fails
	roboRIO 2.0 Ethernet Settings
	Driver Station Reporting No Code
	Radio Second Port Sometimes Fails to Communicate
	Onboard I2C Causing System Lockups
	Updating Properties on roboRIO 2.0 may be slow or hang
	Simulation crashes on Mac after updating WPILib
	Invalid build due to missing GradleRIO
	Chinese characters in Driver Station Log
	C++ Intellisense - Files Open on Launch Don’t Work Properly
	Issues with WPILib Dashboards and Simulation on Windows N Editions

	Fixed in Game Tools 2023.1.0
	Driver Station does not detect joysticks at startup

	Fixed in WPILib 2023.2.1
	SysId - Robot program crash on startup when using CAN Spark Maxes
	Manually flushing a client NetworkTableInstance does not work

	New for 2023
	Importing Projects from Previous Years
	Major Changes (Java/C++)
	WPILib
	General Library
	Breaking Changes

	Simulation
	Shuffleboard
	SmartDashboard
	Glass
	PathWeaver
	GradleRIO
	cscore
	OutlineViewer
	WPILib All in One Installer
	Visual Studio Code Extension
	RobotBuilder
	SysID
	Romi

	VS Code Overview
	Visual Studio Code Basics and the WPILib Extension
	Welcome Page
	User Interface
	Command Palette
	WPILib Extension

	WPILib Commands in Visual Studio Code
	Creating a Robot Program
	Choosing a Base Class
	TimedRobot
	RobotBase
	Command Robot
	Romi
	Romi - Timed
	Romi - Command Bot

	Not Using a Base Class

	Creating a New WPILib Project
	Opening The New Project
	C++ Configurations (C++ Only)

	3rd Party Libraries
	What Are Vendor Dependencies?
	Managing Vendor Dependencies
	How Does It Work?
	How Does It Work? - Java/C++
	How Does It Work? - LabVIEW

	Installing Libraries
	VS Code
	Checking for Updates (Offline)
	Checking for Updates (Online)
	Removing a Library Dependency
	Command-Line

	Libraries
	Community Libraries
	WPILib Command Libraries
	Romi Library

	Building and Deploying Robot Code
	Viewing Console Output
	Console Viewer
	Opening the Console Viewer
	Console Viewer Window

	Riolog VS Code Plugin
	Opening the RioLog View
	Riolog Window

	Debugging a Robot Program
	Running the Debugger
	Breakpoints
	Setting a Breakpoint

	Debugging with Print Statements
	Debugging with NetworkTables
	Learn More

	Importing a Gradle Project
	Automatic Import
	Launching the Import Wizard
	C++ Configurations (C++ Only)
	3rd Party Libraries

	Dashboards
	Shuffleboard
	Shuffleboard - Getting Started
	Tour of Shuffleboard
	Starting Shuffleboard
	Getting robot data onto the dashboard

	Displaying data from your robot
	Displaying values in normal operating mode (autonomous or teleop)
	Changing the display type of data
	Displaying data in Test mode
	Setting test mode

	Getting data from the Sources view

	Displaying Camera Streams
	Adding a Camera Stream

	Working with widgets
	Moving widgets
	Resizing widgets
	Changing the display type of widgets
	Changing the title of widgets
	Changing widget properties

	Working with Lists
	Creating a list
	Adding tiles to/removing tiles from a list
	Rearranging tiles in a list
	Renaming a list

	Creating and manipulating tabs
	Default tabs
	Switching between tabs
	Adding and Hiding Tabs
	Setting the tab to auto-populate
	Using the tab grid and spacing
	Moving widgets between tabs

	Working with Graphs
	Adding Additional Data Values
	Setting Graph Properties

	Recording and Playback
	Creating a Recording
	Playing a Recording
	Controlling the Playback
	Converting to Different File Formats
	Additional Notes

	Setting global preferences for Shuffleboard
	Setting the theme
	Setting the default tile size
	Working with the layout save files
	Setting the team number

	Shuffleboard FAQ, issues, and bugs
	Frequently Asked Questions
	How do I report issues, bugs or feature requests with Shuffleboard?
	How can I add my own widgets or other extensions to Shuffleboard?
	How can I build Shuffleboard from the source code?

	Shuffleboard - Layouts with Code
	Using tabs
	Selecting a tab
	Caveats

	Sending data
	Sending simple data
	Making choices persist between reboots
	Sending sensors, motors, etc

	Retrieving data
	Configuring widgets
	Specifying a widget
	Setting widget properties
	Notes

	Organizing Widgets
	Setting Widget Size and Position
	Adding Widgets to Layouts

	Shuffleboard - Advanced Usage
	Commands and Subsystems
	Displaying Subsystems
	Subsystems in Test Mode
	Displaying Commands

	Testing and Tuning PID Loops
	Tuning the PID Controller
	Enable Functionality in the New PIDController

	Viewing Hierarchies of Data

	Shuffleboard - Custom Widgets
	Built-in Plugins
	Base Plugin
	CameraServer Plugin
	Stream discovery

	NetworkTables Plugin

	Creating a Plugin
	Overview
	Create a Custom Plugin
	Building plugin
	Deploying Plugin To Shuffleboard
	Manually Adding Plugin

	Creating Custom Data Types
	Creating The Data Class
	Creating a Data Type
	Exporting Data Type To Plugin

	Creating A Widget
	Defining a Widget’s FXML
	Creating A Widget Class
	Binding Elements and Adding Listeners
	Exploring Custom Components
	Set Default Widget For Data type

	Custom Themes
	Loading Themes via Plugins
	Modifying or Extending Shuffleboard’s Default Themes
	Source Code for the CSS Files
	Material Design Color Swatches
	Overriding the Swatch Colors
	Replacing blue with red (light)
	Replacing red with blue (dark)

	Widget Types
	AbstractWidget
	SingleTypeWidget
	AnnotatedWidget
	SingleSourceWidget
	SimpleAnnotatedWidget
	@ParametrizedController
	@Description

	SmartDashboard
	SmartDashboard Introduction
	Installing the SmartDashboard
	Configuring the Team Number
	Setting a Custom NetworkTables Server Location

	Locating the Save File
	Adding a Connection Indicator
	Adding Widgets to the SmartDashboard

	Displaying Expressions from a Robot Program
	Writing Values to SmartDashboard
	Creating Widgets on SmartDashboard
	Stale Data

	Changing the display properties of a value
	Setting the SmartDashboard display into editing mode
	Getting the properties editor of a widget
	Editing the properties on a field
	Editing the widgets background color
	Edit properties of other widgets

	Changing the Display Widget Type for a Value
	Setting Edit Mode
	Choosing Widget Type
	Showing New Widget Type

	Choosing an Autonomous Program
	TimedRobot
	Creating SendableChooser Object
	Setting Up Options
	Running Autonomous Code

	Command-Based
	Creating the SendableChooser Object
	Setting up SendableChooser
	Starting an Autonomous Command
	Running the Scheduler during Autonomous
	Canceling the Autonomous Command
	SmartDashboard Display

	Displaying the Status of Commands and Subsystems
	Overview of Command and Subsystem Displays
	Displaying the Scheduler Status
	Displaying Subsystem Status
	Activating Commands with a Button

	Verifying SmartDashboard is working
	Connection Indicator
	Connection Indicator Widget
	Robot Program Example
	SmartDashboard Output for the Sample Program
	Verifying the IP address in SmartDashboard
	Verifying Program using OutlineViewer

	SmartDashboard Namespace
	SmartDashboard Data Values
	View of SmartDashboard
	LiveWindow Data Values

	SmartDashboard: Test Mode and Live Window
	Displaying LiveWindow Values
	Adding the Necessary Code to your Program
	Viewing the Display in SmartDashboard

	Enabling Test mode (LiveWindow)
	Setting Test mode with the Driver Station
	Explicitly vs. implicit test mode display
	Understanding what is displayed in Test mode

	PID Tuning with SmartDashboard
	Finding the setpoint values with LiveWindow
	Viewing the PIDController in LiveWindow
	Tuning the PIDController

	Glass
	Introduction to Glass
	Opening Glass
	Changing View Settings
	Clearing Application Data

	Establishing NetworkTables Connections
	Connecting to a Robot
	Viewing NetworkTables Entries

	Glass Widgets
	Hardware Widgets
	Sendable Chooser Widget
	PID Controller Widget
	FMSInfo Widget

	Widgets for the Command-Based Framework
	Command Selector Widget
	Subsystem Widget
	Command Scheduler Widget

	The Field2d Widget
	Sending Robot Pose from User Code
	Sending Trajectories to Field2d
	Viewing Trajectories with Glass
	Viewing the Robot Pose in Glass
	Modifying Pose Style

	The Mechanism2d Widget
	Creating and Configuring the Mechanism2d Instance
	Viewing the Mechanism2d in Glass
	Next Steps

	Plots
	Creating a Plot
	Manipulating Plots

	LabVIEW Dashboard
	FRC LabVIEW Dashboard
	LabVIEW Dashboard
	Camera Image and Controls
	Drive
	Camera
	Basic
	Custom
	Test
	Commands
	Checklist
	Variables
	Record/Playback
	Recording
	Playback

	Using the LabVIEW Dashboard with C++/Java Code
	Drive Tab
	Basic Tab
	Strings
	Buttons and LEDs
	Sliders

	Troubleshooting Dashboard Connectivity
	LabVIEW Dashboard
	Recognizing LabVIEW Dashboard Connectivity
	Troubleshooting LabVIEW Dashboard Connectivity

	Recognizing Connectivity
	Recognizing SmartDashboard Connectivity
	Recognizing Shuffleboard Connectivity
	Recognizing Glass Connectivity
	Troubleshooting Connectivity

	Telemetry
	Telemetry: Recording and Sending Real-Time Data
	Adding Telemetry to Robot Code

	Robot Telemetry with Sendable
	What is Sendable?
	Sending a Sendable to the Dashboard

	On-Robot Telemetry Recording Into Data Logs
	Structure of Data Logs
	Standard Data Logging using DataLogManager
	Logging Joystick Data

	Custom Data Logging using DataLog
	Downloading Data Logs from the Robot
	Connecting to RoboRIO
	Downloading Files

	Converting Data Logs to CSV
	Data Log Visualization
	Custom Processing of Data Logs

	Writing Your Own Sendable Classes
	The SendableBuilder Class
	Databinding with addProperty Methods
	Ensuring Safety with setSafeState and setActuator

	Third-Party Telemetry Libraries

	FRC LabVIEW Programming
	Creating Robot Programs
	Tank Drive Tutorial
	Command and Control Tutorial
	Introduction
	What is Command and Control?
	Why should I use Command and Control?

	Part 1: Project Explorer
	Drive Subsystem Project Explorer
	Implementation

	Part 2: Initializing the Drive Subsystem
	Part 3: Drive Subsystem Shipped Commands
	Drive For Time.vi
	Drive Immediate.vi
	Stop Driving.vi

	Part 4: Creating New Commands
	Part 5: Creating a Subsystem

	LabVIEW Resources
	LabVIEW Resources
	LabVIEW Basics
	NI FRC Tutorials
	Installed Tutorials and Examples
	Third Party Resources

	Waiting for Target to Respond - Recovering from bad loops
	The Symptom
	The Problem
	Set No App
	Reboot
	Clear No App
	Load LabVIEW Code

	How To Toggle Between Two Camera Modes
	LabVIEW Examples and Tutorials
	Popular Tutorials

	Add an Independent Motor to a Project
	Keyboard Navigation with the roboRIO
	Making a One-Shot Button Press
	Adding Safety Features to Your Robot Code
	How to Use Joystick Buttons to Control Motors or Solenoids
	Setup:
	Scenario 1
	Scenario 2
	Scenario 3

	Local and Global Variables in LabVIEW for FRC
	Introduction to Local and Global Variables
	How They are Used in the Default LabVIEW for FRC Robot Project
	How Can You Use Them in Your Project?

	Using the Compressor in LabVIEW
	Begin VI
	Teleop VI
	Finish VI

	Hardware APIs
	Motors APIs
	Using Motor Controllers in Code
	Using PWM Motor Controllers
	CAN Motor Controllers
	SPARK MAX
	CTRE CAN Motor Controllers

	PWM Motor Controllers in Depth
	PWM Controllers, brief theory of operation
	Raw vs Scaled output values
	Calibrating Motor Controllers

	Using the WPILib Classes to Drive your Robot
	Standard drivetrains
	Differential Drive Robots
	Mecanum Drive

	Drive Class Conventions
	Motor Inversion
	Squaring Inputs
	Input Deadband
	Maximum Output
	Motor Safety
	Axis Conventions

	Using the DifferentialDrive class to control Differential Drive robots
	Multi-Motor DifferentialDrive with MotorControllerGroups
	Drive Modes

	Using the MecanumDrive class to control Mecanum Drive robots
	Mecanum Drive Modes
	Field-Oriented Driving

	Repeatable Low Power Movement - Controlling Servos with WPILib
	Constructing a Servo object
	Setting Servo Values

	Pneumatics APIs
	Operating pneumatic cylinders
	Using the FRC Control System to control Pneumatics
	Module Numbers
	Generating and Storing Pressure
	Solenoid Control
	Single Solenoids in WPILib
	Double Solenoids in WPILib
	Toggling Solenoids
	Pressure Transducers
	Pneumatic Hub
	roboRIO

	Sensors
	Sensor Overview - Software
	What sensors does WPILIB support?

	Accelerometers - Software
	AnalogAccelerometer
	The Accelerometer interface
	ADXL345_I2C
	ADXL345_SPI
	ADXL362
	BuiltInAccelerometer

	Third-party accelerometers
	Using accelerometers in code

	Gyroscopes - Software
	The Gyro interface
	ADIS16448
	ADIS16470
	ADXRS450_Gyro
	AnalogGyro
	navX
	Pigeon

	Using gyros in code
	Displaying the robot heading on the dashboard
	Stabilizing heading while driving
	Example: Tank drive stabilization using turn rate
	Example: Tank drive stabilization using heading

	Turning to a set heading

	Ultrasonics - Software
	Ping-response ultrasonics
	Analog ultrasonics
	Third-party ultrasonics
	Using ultrasonics in code

	Counters
	Configuring a counter
	Counter Modes
	Two-pulse mode
	Semi-period mode
	Pulse-length mode
	External direction mode

	Configuring counter parameters

	Reading information from counters
	Count
	Distance
	Rate

	Stopped
	Direction

	Period

	Resetting a counter
	Using counters in code

	Encoders - Software
	Quadrature Encoders - The Encoder Class
	Initializing a Quadrature Encoder
	Decoding Type

	Configuring Quadrature Encoder Parameters
	Reading information from Quadrature Encoders
	Distance
	Rate
	Stopped
	Direction
	Period

	Resetting a Quadrature Encoder

	Duty Cycle Encoders - The DutyCycleEncoder class
	Initializing a Duty Cycle Encoder
	Configuring Duty Cycle Encoder Parameters
	Reading Distance from Duty Cycle Encoders
	Detecting a Duty Cycle Encoder is Connected
	Resetting a Duty Cycle Encoder

	Analog Encoders - The AnalogEncoder Class
	Initializing an Analog Encoder
	Configuring Analog Encoder Parameters
	Reading Distance from Analog Encoders
	Resetting an Analog Encoder

	Using Encoders in Code
	Driving to a Distance
	Homing a Mechanism

	Analog Inputs - Software
	The AnalogInput class
	Initializing an AnalogInput
	Oversampling and Averaging
	Oversampling
	Averaging

	Reading values from an AnalogInput
	getValue
	getVoltage
	getAverageValue
	getAverageVoltage

	Accumulator
	Obtaining synchronized count and value

	Using analog inputs in code

	Analog Potentiometers - Software
	The AnalogPotentiometer class
	Customizing the underlying AnalogInput
	Reading values from the AnalogPotentiometer

	Using AnalogPotentiometers in code

	Digital Inputs - Software
	The DigitalInput class
	Reading the value of the DigitalInput

	Creating a DigitalInput from an AnalogInput
	Setting the trigger points

	Using DigitalInputs in code
	Limiting the motion of a mechanism
	Homing a mechanism

	Programming Limit Switches
	Controlling a Motor with Two Limit Switches

	Miscellaneous Hardware APIs
	Addressable LEDs
	Instantiating the AddressableLED Object
	Setting the Entire Strip to One Color
	Using RGB Values
	Using HSV Values

	Creating a Rainbow Effect

	Motor Controllers
	FRC Legal Motor Controllers

	Pneumatics
	FRC Legal Pneumatics controllers

	Relays
	FRC Legal Relay Modules

	CAN Devices
	Using CAN Devices
	Pneumatics Control Module
	Pneumatic Hub
	Power Distribution Module
	Creating a Power Distribution Object
	Reading the Bus Voltage
	Reading the Temperature
	Reading the Total Current, Power, and Energy
	Reading Individual Channel Currents
	Using the Switchable Channel (PDH)

	Third-Party CAN Devices
	CTR Electronics
	CTRE Motor Controllers
	CTRE Sensors
	CTRE Other CAN Devices

	REV Robotics
	REV Motor Controllers

	Playing With Fusion
	PWF Motor Controllers
	PWF Sensors

	FRC CAN Device Specifications
	Addressing
	Device Type
	Manufacturer
	API/Message Identifier
	API Class
	API Index
	Device Number

	Protected Frames
	Broadcast Messages
	Requirements for FRC CAN Nodes
	Universal Heartbeat

	Basic Programming
	Git Version Control Introduction
	Prerequisites
	Git Vocabulary
	Repository
	Creating the repository
	Creating a GitHub Account
	Local Creation

	Commits
	Git Pull
	Git Add
	Git Commit
	Git Push

	Branches
	Creating a Branch
	Entering a Branch

	Merging
	Resets
	Reverting the Commit
	Resetting the Head

	Forks
	Cloning an Existing Repo
	Updating a Fork

	Gitignore
	Hiding a Folder
	Hiding a File

	Additional Information

	The C++ Units Library
	Using the Units Library
	Unit Types and Container Types
	Unit Types
	Container Types

	Creating Instances of Units
	Performing Arithmetic with Units
	<cmath> Functions
	Removing the Unit Wrapper

	Example of the Units Library in WPILib Code

	Joysticks
	Driver Station Joysticks
	Joystick Class
	XboxController Class
	PS4Controller Class
	POV
	GenericHID Usage
	Button Usage

	Setting Robot Preferences
	Initializing Preferences
	Reading Preferences
	Using Preferences in SmartDashboard
	Displaying Preferences in SmartDashboard
	Editing Preferences in SmartDashboard

	Using Preferences in Shuffleboard
	Displaying Preferences in Shuffleboard
	Editing Preferences in Shuffleboard

	Using Test Mode
	Enabling Test Mode
	LiveWindow in Test Mode
	Adding Test mode code to your robot code

	Reading Stacktraces
	What’s a “Stack Trace”?
	What’s an “Unhandled Exception”?
	So How Do I Fix My Issue?
	Read the Stack Trace
	Perform Code Analysis
	Run the Single Step Debugger
	Search for More Information
	Seeking Outside Help

	Common Examples & Patterns
	Null Pointers and References
	Fixing Null Object Issues

	Divide by Zero
	Fixing Divide By Zero Issues

	HAL Resource Already Allocated
	Fixing HAL Resource Already Allocated Issues

	gradlew is not recognized…
	Fixing gradlew is not recognized…

	Treating Functions as Data
	Why Would We Want to Treat Functions as Data?
	Treating Functions as Data in Java
	Method References
	Lambda Expressions in Java
	Capturing State in Java Lambda Expressions

	Syntactic Sugar for Java Lambda Expressions
	Omitting Function Body Brackets for One-Line Lambdas
	Omitting Parentheses around Single Lambda Parameters

	Treating Functions as Data in C++
	Lambda Expressions in C++
	Capturing State in C++ Lambda Expressions

	Support Resources
	Other Documentation
	Forums
	CTRE Support
	REV Robotics Support
	Other Vendors
	Unofficial Support
	Bug Reporting

	FRC Glossary
	Driver Station
	FRC Driver Station Powered by NI LabVIEW
	Starting the FRC Driver Station
	Driver Station Key Shortcuts
	Setting Up the Driver Station
	Status Pane
	Operation Tab
	Diagnostics Tab
	Setup Tab
	USB Devices Tab
	Re-Arranging and Locking Devices

	CAN/Power Tab
	Messages Tab
	Charts Tab
	Both Tab

	Driver Station Best Practices
	Prior To Departing For The Competition
	At The Competition
	Before Each Match

	Driver Station Log File Viewer
	Event Logs
	Log Viewer UI
	Using the Graph Display
	Event List
	Filters
	Identifying Logs from Matches
	Identifying Common Connection Failures with the Log Viewer
	“Normal” Log
	Disconnected from FMS
	roboRIO Reboot
	Ethernet cable issue on robot
	Radio reboot

	Driver Station Errors/Warnings
	Joystick Unplugged
	Lost Communication
	Ping Status
	Time Since Robot Boot
	Radio Detection Times
	No Robot Code

	Programming Radios for FMS Offseason
	Pre-Requisites
	Programmed Configuration

	Launch the software
	Allow the program to make changes, if prompted
	Enter FMS Offseason Mode
	Enter SSID
	Enter WPA Key
	Program Radios
	Changing SSID or Key
	Troubleshooting

	Imaging your Classmate (Veteran Image Download)
	Prerequisites
	Download the Computer Image
	Preparation
	RMPrep
	Set Partition Size
	Set Volume Label
	Set Bootloader Option
	Select Filesystem
	Copy OS Files Option
	Locate Image
	Copy Files Dialog
	Prepare Drive
	Confirmation Dialog 1
	Confirmation Dialog 2
	Decryption
	Copy Complete
	Eject Drive

	Hardware Setup
	Boot to USB
	Image the Classmate

	Initial Driver Station Boot
	Enter Setup
	Activate Windows
	Microsoft Security Essentials
	Acer ES1: Fix Wireless Driver

	Open Wireless Device Properties
	Uninstall-Driver
	Scan for New Hardware

	Update Software
	Errors during Imaging Process
	Option 1
	Option 2
	Option 3
	Option 4
	Checking BIOS Settings

	Manually Setting the Driver Station to Start Custom Dashboard
	Set Driver Station to Default
	Open DS Data Storage file
	DashboardCmdLine
	LabVIEW Custom Dashboard
	Java Dashboard
	Dashboard from WPILib installer

	Launch Driver Station

	RobotBuilder
	RobotBuilder - Introduction
	RobotBuilder Overview
	Divide the Robot into Subsystems
	Adding each Subsystem to the Project
	Adding Components to each of the Subsystems
	Adding Commands That Describe Subsystem Goals
	Testing each Command
	Adding Operator Interface Components
	Connecting the Commands to the Operator Interface
	Developing Autonomous Commands
	Generating Code

	Starting RobotBuilder
	Getting RobotBuilder
	Option 1 - Starting from Visual Studio Code
	Option 2 - Shortcuts
	Option 3 - Running from the Script

	RobotBuilder User Interface
	Dragging Items from the Palette to the Robot Description
	Adding Components using the Right-Click Context Menu
	Editing Properties of Robot Description Items
	Using the Menu System

	Setting up the Robot Project
	Robot Project Properties
	Using Source Control with the RobotBuilder Project

	Creating a Subsystem
	Creating a Subsystem using the Palette
	Creating a Subsystem using the Context Menu
	Name the Subsystem
	Adding Constants
	Creating Constants
	Add Constants
	Saving Constants
	After Saving

	Dragging Actuators/Sensors into the Subsystem

	Creating a Command
	Drag the Command to the Commands Folder
	Creating Commands using the Context Menu
	Configuring the Command
	Adding and Editing Parameters
	Adding and Editing Parameter Presets

	Setting the Autonomous Commands
	Using Shuffleboard to Test a Command
	Creating the Button on Shuffleboard
	Operating the Buttons
	Adding Commands Manually

	Connecting the Operator Interface to a Command
	Run a Command with a Button Press
	Adding the Joystick to the Robot Program
	Linking a Button to the “Move Elevator” Command

	RobotBuilder Created Code
	The Layout of a RobotBuilder Generated Project
	Autogenerated Code
	Main Robot Program
	RobotContainer

	RobotBuilder - Writing the Code
	Generating Code for a Project
	Generate the Code for the Project
	Open the Project in Visual Studio Code

	Writing the Code for a Subsystem
	RobotBuilder Representation of the Claw Subsystem
	Adding Subsystem Capabilities
	Adding the Method Declarations to the Header File (C++ Only)

	Writing the Code for a Command
	Close Claw Command in RobotBuilder
	Generated CloseClaw Class

	Driving the Robot with Tank Drive and Joysticks
	Create a Drive Train Subsystem
	Add the Joysticks to the Operator Interface
	Create a Method to Write the Motors on the Subsystem
	Read Joystick Values and Call the Subsystem Methods
	Add the Code to do the Driving
	Make Default Command

	RobotBuilder - Advanced
	Using PIDSubsystem to Control Actuators
	Create a PIDSubsystem
	Adding Sensors and Actuators to the PIDSubsystem
	Fill in the PID Parameters
	Create Setpoint Constants

	Writing the Code for a PIDSubsystem
	Setting the PID Constants
	Get Potentiometer Measurement
	Calculate PID Output

	Setpoint Command
	Start with a PIDSubsystem
	Creating the Setpoint Command
	Setpoint Command Parameters

	Adding Custom Components
	Custom Component Structure
	PaletteDescription.yaml
	Properties

	Validators.yaml
	Built-in Validators and Validator Types

	C++ Export.yaml
	Java Export.yaml
	Using Macros and Variables
	help.html
	config.txt
	icon.png

	Robot Simulation
	Introduction to Robot Simulation
	Enabling Desktop Support
	Additional C++ Dependency

	Running Robot Simulation
	Running Robot Dashboards
	Shuffleboard
	SmartDashboard
	Glass

	Simulation Specific User Interface Elements
	Running the GUI
	Using the GUI
	Learning the Layout
	Adding a System Joystick to Joysticks
	Using the Keyboard as a Joystick
	Modifying ADXRS450 Inputs

	Determining Simulation from Robot Code
	Changing View Settings
	Clearing Application Data

	Physics Simulation with WPILib
	WPILib’s Simulation Classes
	Usage in User Code

	Device Simulation
	Simulating Core WPILib Device Classes
	Creating Simulation Device objects
	Reading and Writing Device Data
	Registering Callbacks

	Simulating Other Devices - The SimDeviceSim Class

	Drivetrain Simulation Tutorial
	Drivetrain Simulation Overview
	Why Simulate a Drivetrain?

	Step 1: Creating Simulated Instances of Hardware
	Simulating Encoders
	Simulating Gyroscopes

	Step 2: Creating a Drivetrain Model
	Creating a DifferentialDrivetrainSim from Physical Measurements
	Creating a DifferentialDrivetrainSim from SysId Gains
	Creating a DifferentialDrivetrainSim of the KoP Chassis

	Step 3: Updating the Drivetrain Model
	Step 4: Updating Odometry and Visualizing Robot Position
	Robot Pose Visualization

	Unit Testing
	Writing Testable Code
	Writing Tests
	Running Tests

	OutlineViewer
	Vision Processing
	Vision Introduction
	What is Vision?
	Vision Methods
	Streaming
	Processing

	Strategies for Vision Programming
	OpenCV Computer Vision Library
	Vision Code on roboRIO
	Vision Code on DS Computer
	Vision Code on Coprocessor
	Camera Options

	Target Info and Retroreflection
	Targets
	Retroreflectivity vs. Reflectivity
	Examples of Retroreflection
	Demonstration
	Lighting
	Sample Images

	Identifying and Processing the Targets
	Additional Options
	Original Image
	What is HSL/HSV?
	Masking
	Particle Analysis
	Coverage Area
	Aspect Ratio
	Moment
	X/Y Profiles

	Measurements
	Position
	Field of View
	Pitch and Yaw
	Distance

	Read and Process Video: CameraServer Class
	Concepts
	Camera Names

	USB Camera Notes
	CPU Usage
	USB Bandwidth

	Architecture
	CameraServer Class
	cscore Library
	Sources and Sinks
	Reference Counting

	2017 Vision Examples
	LabVIEW
	C++/Java

	Vision with WPILibPi
	A Video Walkthrough of using WPILibPi with the Raspberry Pi
	Using a Coprocessor for vision processing
	Strategy
	Streaming camera data to the dashboard

	Using the Raspberry Pi for FRC
	Pre-built Raspberry Pi image

	What you need to get the Pi image running
	Installing the image to your MicroSD card
	Getting the FRC Raspberry PI image
	Copy the image to your MicroSD card
	Testing the Raspberry PI
	Logging into the Raspberry PI

	The Raspberry PI
	FRC Console
	Setting the rPI to be Read-Only vs. Writable
	Status of the network connection to the rPI

	System status
	Vision Status
	Network Settings
	Vision Settings
	Getting the current settings to persist over reboots

	Application
	Vision workflows

	Using CameraServer
	Grabbing Frames from CameraServer
	Sending frames to CameraServer

	Thresholding an Image
	The HSV Model
	Thresholding

	Morphological Operations
	Kernel
	Erosion
	Dilation
	Opening
	Closing

	Working with Contours
	Finding and Filtering Contours
	Extracting Information from Contours
	Center
	Corners
	Rotation

	Publishing to NetworkTables

	Basic Vision Example

	AprilTag Introduction
	What Are AprilTags?
	Application to FRC
	Software Support
	Processing Technique
	Usage
	2D Alignment
	3D Alignment

	2D to 3D Ambiguity
	Adjustable Parameters
	Further Learning

	Vision with GRIP
	Introduction to GRIP
	The GRIP user interface
	Finding the yellow square
	Enable the image source
	Resize the image
	Find only the yellow parts of the image
	Get rid of the noise and extraneous hits
	Mask just the yellow area from the original image
	Find the yellow area (blob)
	Status of GRIP

	Generating Code from GRIP
	GRIP Code Generation
	Generating Code
	Structure of the Generated Code
	Running the Pipeline
	Getting the Results

	Using Generated Code in a Robot Program
	Iterative program definitions

	Using GRIP with a Kangaroo Computer
	Setup
	Sample GRIP program
	Viewing Contours Report in NetworkTables
	Considerations

	Vision on the RoboRIO
	Using the CameraServer on the roboRIO
	Simple CameraServer Program
	Advanced Camera Server Program

	Using Multiple Cameras
	Switching the Driver Views
	Keeping Streams Open

	CameraServer Web Interface
	Camera Settings
	Camera Video Modes

	Command-Based Programming
	What Is “Command-Based” Programming?
	Subsystems and Commands
	How Commands Are Run
	Command Compositions

	Commands
	The Structure of a Command
	Initialization
	Execution
	Ending
	Specifying end conditions

	Command Properties
	getRequirements
	runsWhenDisabled
	getInterruptionBehavior

	Included Command Types
	Running Actions
	Waiting
	Control Algorithm Commands

	Custom Command Classes
	Simple Command Example

	Command Compositions
	Composition Types
	Repeating
	Sequence
	Repeating Sequence
	Parallel
	Adding Command End Conditions
	Adding End Behavior
	Selecting Compositions
	Scheduling Other Commands

	Subclassing Compositions

	Subsystems
	Creating a Subsystem
	Simple Subsystem Example
	Periodic
	Default Commands

	Binding Commands to Triggers
	Getting a Trigger Instance
	HID Factories
	JoystickButton
	Arbitrary Triggers

	Trigger Bindings
	onTrue
	whileTrue
	toggleOnTrue

	Chaining Calls
	Composing Triggers
	Debouncing Triggers

	Structuring a Command-Based Robot Project
	Robot
	RobotContainer
	Constants
	Subsystems
	Commands

	Organizing Command-Based Robot Projects
	Why Care About Organization?
	What Good Organization Looks Like
	What Bad Organization Looks Like

	Defining Commands
	Inline Commands
	Instance Command Factory Methods
	Static Command Factories
	Non-Static Command Factories
	Capturing State in Inline Commands

	Writing Command Classes
	Subclassing CommandBase
	Subclassing Command Groups

	Summary

	The Command Scheduler
	Using the Command Scheduler
	The schedule() Method
	The Scheduler Run Sequence
	Step 1: Run Subsystem Periodic Methods
	Step 2: Poll Command Scheduling Triggers
	Step 3: Run/Finish Scheduled Commands
	Step 4: Schedule Default Commands

	Disabling the Scheduler
	Command Event Methods

	A Technical Discussion on C++ Commands
	Ownership Model
	std::unique_ptr vs. std::shared_ptr

	Use of CRTP
	Command Decorators
	Solutions to the Problem

	Lack of Advanced Decorators
	Templating Decorators
	Java vs C++ Syntax

	2023 Updates
	CommandPtr

	PID Control through PIDSubsystems and PIDCommands
	PIDSubsystems
	Creating a PIDSubsystem
	getMeasurement()
	useOutput()
	Passing In the Controller

	Using a PIDSubsystem
	setSetpoint()
	enable() and disable()

	Full PIDSubsystem Example

	PIDCommand
	Creating a PIDCommand
	controller
	measurementSource
	setpointSource
	useOutput
	requirements

	Full PIDCommand Example

	Motion Profiling through TrapezoidProfileSubsystems and TrapezoidProfileCommands
	TrapezoidProfileSubsystem
	Creating a TrapezoidProfileSubsystem
	useState()
	Constructor Parameters

	Using a TrapezoidProfileSubsystem
	setGoal()
	enable() and disable()

	Full TrapezoidProfileSubsystem Example

	TrapezoidProfileCommand
	Creating a TrapezoidProfileCommand
	profile
	output
	requirements

	Full TrapezoidProfileCommand Example

	Combining Motion Profiling and PID in Command-Based
	ProfiledPIDSubsystem
	Creating a ProfiledPIDSubsystem
	getMeasurement()
	useOutput()
	Passing In the Controller

	Using a ProfiledPIDSubsystem
	setGoal()
	enable() and disable()

	Full ProfiledPIDSubsystem Example

	ProfiledPIDCommand
	Creating a PIDCommand
	controller
	measurementSource
	goalSource
	useOutput
	requirements

	Full ProfiledPIDCommand Example

	2020 Command-Based Rewrite: What Changed?
	Package Location
	Major Architectural Changes
	Commands and Subsystems as Interfaces
	Multiple Command Group Classes
	Inline Command Definitions
	Injection of Command Dependencies
	Command Ownership (C++ Only)

	Changes to the Scheduler
	Changes to Subsystem
	Changes to Command
	Changes to PIDSubsystem/PIDCommand

	Passing Functions As Parameters
	Method References (Java)
	Lambda Expressions (Java)
	Lambda Expressions (C++)

	Kinematics and Odometry
	Introduction to Kinematics and The Chassis Speeds Class
	What is kinematics?
	What is odometry?
	The Chassis Speeds Class
	Constructing a ChassisSpeeds object
	Creating a ChassisSpeeds Object from Field-Relative Speeds

	Differential Drive Kinematics
	Constructing the Kinematics Object
	Converting Chassis Speeds to Wheel Speeds
	Converting Wheel Speeds to Chassis Speeds

	Differential Drive Odometry
	Creating the Odometry Object
	Updating the Robot Pose
	Resetting the Robot Pose

	Swerve Drive Kinematics
	The swerve module state class
	Constructing the kinematics object
	Converting chassis speeds to module states
	Module angle optimization
	Field-oriented drive
	Using custom centers of rotation

	Converting module states to chassis speeds

	Swerve Drive Odometry
	Creating the odometry object
	Updating the robot pose
	Resetting the Robot Pose

	Mecanum Drive Kinematics
	Constructing the Kinematics Object
	Converting Chassis Speeds to Wheel Speeds
	Field-oriented drive
	Using custom centers of rotation

	Converting wheel speeds to chassis speeds

	Mecanum Drive Odometry
	Creating the odometry object
	Updating the robot pose
	Resetting the Robot Pose

	NetworkTables
	What is NetworkTables
	NetworkTables Concepts
	Retained and Persistent Topics
	Value Propagation
	Timestamps
	NetworkTables Organization
	NetworkTables API Variants
	Lifetime Management

	NetworkTables Tables and Topics
	Using the NetworkTable Class
	Getting a Topic

	Publishing and Subscribing to a Topic
	Publishing to a Topic
	Subscribing to a Topic
	Using Entry to Both Subscribe and Publish
	Using GenericEntry, GenericPublisher, and GenericSubscriber
	Subscribing to Multiple Topics
	Publish/Subscribe Options
	NetworkTableEntry

	NetworkTables Instances
	NetworkTables Networking
	Starting a NetworkTables Server
	Starting a NetworkTables Client

	Listening for Changes
	NetworkTableEvent
	Using NetworkTableInstance to Listen for Changes

	Writing a Simple NetworkTables Robot Program
	Creating a Client-side Program
	Building using Gradle
	Building Python

	Migrating from NetworkTables 3.0 to NetworkTables 4.0
	NetworkTableEntry
	Shuffleboard
	Force Set Operations
	Listeners
	Client/Server Operations
	C++ Changes

	Reading Array Values Published by NetworkTables
	Verify the NetworkTables Topics Being Published
	Writing a Program to Access the Topics
	Program Output

	Path Planning
	Notice on Swerve Support
	System Identification
	Introduction to System Identification
	What is “System Identification?”
	Assumed Behavioral Model
	The WPILib System Identification Tool (SysId)
	Included Tools
	Simple Motor Identification
	Drivetrain Identification
	Elevator Identification
	Arm Identification

	Installing the System Identification Tool
	Launching the System Identification Tool

	Configuring a Project
	Configure Project Parameters
	Motor Controller Selection
	Encoder Selection
	Encoder Types
	Encoder Settings
	Encoder Parameters
	Gyro Parameters (Drivetrain Only)

	Loading and Saving Configurations
	Deploying Project

	Running the Identification Routine
	Connect to the Robot
	Project Parameters
	Voltage Parameters
	Running Tests
	Track Width

	Analyzing Data
	Loading your Data File
	Running Feedforward Analysis

	Viewing Diagnostics
	Goodness-of-Fit Metrics
	Diagnostic Plots
	Time-Domain Plots
	Acceleration-Velocity Plot

	Common Failure Modes
	Improperly Set Motion Threshold
	Velocity Threshold Too Low
	Motion Threshold Too High
	Noisy Velocity Signals

	Feedback Analysis
	Enter Controller Parameters
	Measurement Delays

	Specify Optimality Criteria
	Select Loop Type

	Additional Utilities and Tools
	JSON Converters
	ImGui Tips
	Showing and Hiding Plot Data
	Auto Sizing Plots
	Setting Slider Values

	Trajectory Tutorial
	Trajectory Tutorial Overview
	Why Trajectory Following?
	Required Equipment

	Step 1: Characterizing Your Robot Drive
	Gathering the Data
	Analyzing the Data
	Checking Diagnostics
	Record Feedforward Gains
	Calculate Feedback Gains

	Step 2: Entering the Calculated Constants
	Feedforward/Feedback Gains
	DifferentialDriveKinematics
	Max Trajectory Velocity/Acceleration
	Ramsete Parameters

	Step 3: Creating a Drive Subsystem
	Configuring the Drive Encoders
	Encoder Ports
	Encoder Distance per Pulse
	Encoder Accessor Method

	Configuring the Gyroscope
	Gyroscope Accessor Method

	Configuring the Odometry
	Updating the Odometry
	Odometry Accessor Method

	Voltage-Based Drive Method

	Step 4: Creating and Following a Trajectory
	Configuring the Trajectory Constraints
	Creating a Voltage Constraint
	Creating the Configuration

	Generating the Trajectory
	Creating the RamseteCommand
	Video

	PathWeaver
	Introduction to PathWeaver
	Creating a Pathweaver Project
	Starting PathWeaver
	Creating the Project
	PathWeaver User Interface

	Visualizing PathWeaver Trajectories
	Creating the Initial Trajectory
	Changing a Waypoint Heading
	Adding Additional Waypoints to Control the Robot Path
	Locking the Tangent Lines
	More Precise control of Waypoints

	Creating Autonomous Routines
	Creating an Autonomous Routine

	Importing a PathWeaver JSON
	Adding field images to PathWeaver
	File Layout
	JSON Format

	roboRIO
	roboRIO Introduction
	roboRIO Web Dashboard
	Opening the WebDash
	System Configuration Tab
	Startup Settings

	Network Configuration

	roboRIO FTP
	SFTP
	Software
	Connecting to the roboRIO
	Browsing the roboRIO filesystem

	FTP

	roboRIO User Accounts and SSH
	roboRIO User Accounts
	Admin
	Lvuser

	SSH
	Open Putty
	Log In

	roboRIO Brownout and Understanding Current Draw
	roboRIO Brownout Protection
	Stage 1 - 6v output drop
	Stage 2 - Output Disable
	Stage 3 - Device Blackout

	Avoiding Brownout - Proactive Current Draw Planning
	Settable Brownout
	Measuring Current Draw using the PDP/PDH
	Identifying Brownouts

	Recovering a roboRIO using Safe Mode
	Booting into Safe Mode
	Recovering the roboRIO
	About Safe Mode

	Advanced GradleRIO
	Using External Libraries with Robot Code
	Java
	C++
	Copying Source Code
	Creating a Vendordep

	Setting up CI for Robot Code using GitHub Actions
	Creating the Action
	A Breakdown of the Actions YAML File
	Adding a Build Status Badge to a README.md File

	Using a Code Formatter
	Spotless
	Configuration
	Running Spotless
	Explanation of Options
	Issues with Line Endings

	wpiformat
	Requirements
	Usage

	Gradlew Tasks
	Build tasks
	CompileCommands tasks
	EmbeddedTools tasks
	GradleRIO tasks

	Including Git Data in Deploy
	Deploying Branch Name
	Deploying Commit Hash
	Ignoring Generated Files with Git

	Using Deployed Files

	Advanced Controls
	A Video Walkthrough of Model Based Validation of Autonomous in FRC
	Advanced Controls Introduction
	Control System Basics
	The Need for Control Systems
	Nomenclature
	What is Gain?
	What is a Model?
	Block Diagrams
	A Note on Dimensionality

	Picking a Control Strategy
	Feedforward Control: Making a Best Guess
	When Do We Need Feedforward Control?
	Feedforward and Position Control

	Feedback Control: Correcting for Errors and Disturbances
	When Do We Need Feedback Control?
	Feedback-Only Control

	Modeling: How do you expect your system to behave?
	Obtaining Models for Your Mechanisms
	Theoretical Modeling
	System Identification
	Manual Tuning: What to Do with No Explicit Model

	Introduction to DC Motor Feedforward
	The Permanent-Magnet DC Motor Feedforward Equation
	Variants of the Feedforward Equation
	Elevator Feedforward
	Arm Feedforward

	Using the Feedforward

	Introduction to PID
	What is a PID Controller?
	Proportional Term
	Derivative Term
	Integral Term
	Putting It All Together
	Response Types

	PID Introduction Video by WPI
	Introduction To Controls Tuning Tutorials
	Parameter Exponential Search
	System Noise
	Be Systematic

	Tuning a Flywheel Velocity Controller
	Flywheel Model Description
	Picking the Control Strategy for a Flywheel Velocity Controller
	Bang-Bang Control
	Common Issues with Bang-Bang Controllers

	Pure Feedforward Control
	Pure Feedback Control
	Issues with Feedback Control Alone

	Combined Feedforward and Feedback Control

	Tuning Conclusions
	Applicability of Velocity Control
	Choice of Control Strategies
	Velocity and Position Control
	Feedforward Simplifications

	Footnotes

	Tuning a Turret Position Controller
	Turret Model Description
	Picking the Control Strategy for a Turret Position Controller
	Pure Feedforward Control
	Issues with Feed-Forward Control Alone

	Pure Feedback Control
	Issues with Feedback Control Alone

	Combined Feedforward and Feedback Control

	Tuning Conclusions
	Choice of Control Strategies
	Reasons for Non-Ideal Performance

	A Note on Feedforward and Static Friction

	Tuning a Vertical Arm Position Controller
	Arm Model Description
	Picking the Control Strategy for a Vertical Arm
	Pure Feedforward Control
	Issues with Feed-Forward Control Alone

	Pure Feedback Control
	Issues with Feedback Control Alone

	Combined Feedforward and Feedback Control

	Tuning Conclusions
	Choice of Control Strategies
	Reasons for Non-Ideal Performance

	A Note on Feedforward and Static Friction

	Common Control Loop Tuning Issues
	Integral Term Windup
	Voltage Sag
	Actuator Saturation

	Filters
	Introduction to Filters
	What Is a Filter?
	Effects of Using a Filter
	Noise Reduction
	Rate Limiting
	Edge Detection
	Phase Lag

	Linear Filters
	Creating a LinearFilter
	singlePoleIIR
	movingAverage
	highPass

	Using a LinearFilter

	Median Filter
	Creating a MedianFilter
	Using a MedianFilter

	Slew Rate Limiter
	Creating a SlewRateLimiter
	Using a SlewRateLimiter
	Using a SlewRateLimiter with DifferentialDrive

	Debouncer
	Modes
	Usage

	Geometry Classes
	Coordinate Systems
	Field Coordinate System
	Robot Coordinate System

	Translation, Rotation, and Pose
	Translation
	Rotation
	Pose

	Transformations
	Translation2d
	Rotation2d
	Transform2d and Twist2d

	Controllers
	PID Control in WPILib
	Using the PIDController Class
	Constructing a PIDController
	Using the Feedback Loop Output
	Checking Errors
	Specifying and Checking Tolerances
	Resetting the Controller
	Setting a Max Integrator Value
	Setting Continuous Input

	Clamping Controller Output

	Feedforward Control in WPILib
	The WPILib Feedforward Classes
	SimpleMotorFeedforward
	ArmFeedforward
	ElevatorFeedforward
	Using Feedforward to Control Mechanisms

	Combining Feedforward and PID Control
	Using Feedforward with a PIDController
	Using Feedforward Components with PID

	Trapezoidal Motion Profiles in WPILib
	Creating a TrapezoidProfile
	Constraints
	Start and End States
	Putting It All Together

	Using a TrapezoidProfile
	Sampling the Profile
	Using the State

	Complete Usage Example

	Combining Motion Profiling and PID Control with ProfiledPIDController
	Using the ProfiledPIDController class
	Constructing a ProfiledPIDController
	Goal vs Setpoint
	Getting/Using the Setpoint

	Complete Usage Example

	Bang-Bang Control with BangBangController
	Constructing a BangBangController
	Using a BangBangController
	Combining Bang Bang Control with Feedforward

	Trajectory Generation and Following with WPILib
	Trajectory Generation
	Splines
	Creating the trajectory config
	Generating the trajectory
	Concatenating Trajectories

	Trajectory Constraints
	WPILib-Provided Constraints
	Creating a Custom Constraint

	Manipulating Trajectories
	Getting the total duration of the trajectory
	Sampling the trajectory
	Getting all states of the trajectory (advanced)

	Transforming Trajectories
	The relativeTo Method
	The transformBy Method

	Ramsete Controller
	Constructing the Ramsete Controller Object
	Getting Adjusted Velocities
	Using the Adjusted Velocities
	Ramsete in the Command-Based Framework

	Holonomic Drive Controller
	Constructing a Holonomic Drive Controller
	Getting Adjusted Velocities
	Using the Adjusted Velocities

	Troubleshooting
	Troubleshooting Complete Failures
	Troubleshooting Poor Performance
	Verify Odometry
	Verify Feedforward
	Verify P Gain
	Check Constraints
	Check Trajectory Waypoints

	State-Space and Model Based Control with WPILib
	Introduction to State-Space Control
	From PID to Model-Based Control
	Vocabulary
	Introduction to Linear Algebra
	What is State-Space?
	What is State-Space Notation?
	State-space Notation Example: Flywheel from Kv and Ka

	Visualizing State-Space Responses: Phase Portrait
	Visualizing Feedforward
	Feedback Control
	The Linear-Quadratic Regulator
	LQR: Definition
	LQR: tuning

	LQR: example application
	LQR and Measurement Latency Compensation

	Linearization

	State-Space Controller Walkthrough
	Why Use State-Space Control?
	Modeling Our Flywheel
	Modeling with System Identification
	Modeling Using Flywheel Moment of Inertia and Gearing

	Kalman Filters: Observing Flywheel State
	Linear-Quadratic Regulators and Plant Inversion Feedforward
	Bringing it All Together: LinearSystemLoop
	Angle Wrap with LQR

	State Observers and Kalman Filters
	Gaussian Functions
	Kalman Filters
	Process and Measurement Noise Covariance Matrices
	Error Covariance Matrix

	Predict step
	Correct step
	Tuning Kalman Filters
	Footnotes

	Pose Estimators
	Tuning Pose Estimators

	Debugging State-Space Models and Controllers
	Checking Signs
	The Importance of Graphs
	Compensating for Input Lag

	Controls Glossary

	Convenience Features
	Scheduling Functions at Custom Frequencies
	Event-Based Programming With EventLoop
	EventLoop
	BooleanEvent
	Composing Conditions
	and() / &&
	or() / ||
	negate() / !
	debounce() / Debounce()
	rising(), falling()
	Downcasting BooleanEvent Objects

	WPILib Example Projects
	Basic Examples
	Control Examples
	Sensor Examples
	Command-Based Examples
	State-Space Examples
	Simulation Physics Examples
	Miscellaneous Examples

	Third Party Example Projects
	Hardware - Basics
	Wiring Best Practices
	Vibration/Shock
	Redundancy
	Port Savers
	Wire Management and Strain Relief
	Documentation
	Labeling
	Check all wiring and connections
	Re-Check Early and Often
	Battery Maintenance
	Check DS Logs

	CAN Wiring Basics
	Standard Wiring
	Termination

	Wiring Pneumatics - CTRE Pneumatic Control Module
	Wiring Overview
	PCM Power and Control Wiring
	The Compressor
	The Pressure Switch
	Solenoids
	Solenoid Voltage Jumper

	Wiring Pneumatics - REV Pneumatic Hub
	Wiring Overview
	PCM Power and Control Wiring
	The Compressor
	The Pressure Switch
	Digital
	Analog

	Solenoids
	Solenoid Voltage Switch

	Status Light Quick Reference
	Robot Signal Light (RSL)
	roboRIO
	OpenMesh Radio
	Power Distribution Panel
	PDP Status/Comm LEDs
	PDP Special States

	Power Distribution Hub
	PDH Status LED
	Channel LEDs

	Voltage Regulator Module
	Pneumatics Control Module (PCM)
	PCM Status LED
	PCM LED Special States Table
	PCM Comp LED
	PCM Solenoid Channel LEDs

	Pneumatic Hub
	PH Status LED
	Compressor LED
	Solenoid LEDs

	Talon SRX & Victor SPX & Talon FX Motor Controllers
	Status LEDs During Normal Operation
	Status LEDs During Calibration
	B/C CAL Blink Codes

	SPARK-MAX Motor Controller
	REV Robotics SPARK
	Victor-SP Motor Controller
	Status

	Talon Motor Controller
	Victor888 Motor Controller
	Jaguar Motor Controller
	Digilent DMC-60
	Fault Color Indicators
	Break/Coast Mode

	Venom Motor Controller
	Mindsensors SD540B (PWM)
	Mindsensors SD540C (CAN Bus)
	REV Robotics Servo Power Module
	Status LEDs

	Spike relay configured as a motor, light, or solenoid switch
	Spike relay configured as for one or two solenoids
	CANCoder Encoder

	Robot Preemptive Troubleshooting
	Check Battery Connections
	Securing the Battery to the Robot
	Securing the Battery Connector & Main Power Leads
	Main Breaker (120 Amp Circuit Breaker)
	Power Distribution Panel (PDP)
	Tug Testing
	Blade Fuses
	roboRIO swarf
	Radio Barrel Jack
	Ethernet Cable
	Loose Cables
	Reproducing Problems in the Pit
	Check Firmware and Versions
	Driver Station Checks
	Handy Tools

	Robot Battery Basics
	COTS Battery
	Battery Safety & Handling
	Battery Construction & Tools
	Battery Leads
	Lead Cables
	SB Connector

	Battery Lugs
	Battery Lead Lug To Post Connection
	Battery Chargers
	Battery Evaluation Tools

	Understanding Battery Voltages
	Battery Characterization
	Battery Longevity

	Battery Best Practices

	Hardware Tutorials
	Motors for Robotics Applications
	Sensing and Sensors
	Pneumatics
	Power Transmission

	Sensors
	Sensor Overview - Hardware
	Types of Sensors
	Sensors by Function
	Sensors by Communication Protocol

	Analog Inputs - Hardware
	Connecting to roboRIO analog input ports
	Connecting a sensor to a single analog input port
	Connecting a sensor to multiple analog input ports

	Footnotes

	Analog Potentiometers - Hardware
	Wiring an analog potentiometer
	Footnotes

	Digital Inputs - Hardware
	Connecting to the roboRIO DIO ports
	Connecting a simple switch to a DIO port
	Connecting a powered sensor to a DIO port
	Connecting a sensor that uses multiple DIO ports

	Footnotes

	Proximity Switches - Hardware
	Proximity switch operation
	Types of Proximity Switches
	Mechanical Proximity Switches (“limit switches”)
	Magnetic Proximity Switches
	Inductive Proximity Switches
	Photoelectric Proximity Switches
	Time-of-flight Proximity Switches

	Encoders - Hardware
	Types of Encoders
	Shafted Encoders
	On-shaft Encoders
	Magnetic Encoders
	Quadrature Encoders
	Quadrature Encoder Wiring
	Index
	Quaderature Encoder Resolution

	Duty Cycle Encoders
	Analog Encoders

	Gyroscopes - Hardware
	Types of Gyros
	Single-axis Gyros
	Three-axis Gyros

	Ultrasonics - Hardware
	Types of ultrasonics
	Analog ultrasonics
	Ping-response ultrasonics
	Serial ultrasonics

	Caveats

	Accelerometers - Hardware
	Types of accelerometers
	Single-axis accelerometers
	Multi-axis accelerometers
	roboRIO built-in accelerometer

	IMUs (Inertial Measurement Units)

	LIDAR - Hardware
	Types of LIDAR
	1-Dimensional LIDAR
	2-Dimensional LIDAR

	Caveats

	Triangulating Rangefinders
	Using IR rangefinders
	Caveats

	Serial Buses
	Types of supported serial buses
	I2C
	SPI
	RS-232
	USB Client
	USB Host
	MXP Expansion Port
	CAN Bus

	Getting Started with Romi
	Romi Hardware & Assembly
	Assembly

	Imaging your Romi
	Raspberry Pi
	Download
	Imaging
	Wireless Network Setup

	32U4 Control Board

	Getting to know your Romi
	Directional Conventions
	Hardware, Sensors, and GPIO
	Motors, Wheels, and Encoders
	Inertial Measurement Unit
	Onboard LEDs and Push Buttons
	Configurable GPIO Pins
	GPIO Default Configuration

	Romi Hardware Support
	Compatible Hardware
	Incompatible Hardware
	Compatible Classes

	The Romi Web UI
	Background Service Status
	Romi Status
	Web Service Update
	External IO Configuration
	IMU Calibration
	Firmware
	Console Output
	Bridge Mode
	Unable to Access Romi

	Programming the Romi
	Creating a Romi Program
	Creating a New WPILib Romi Project
	Running a Romi Program

	Programming the Romi (LabVIEW)
	Creating a Romi Project
	Installing the WebSockets VI
	Changing the Project Target
	Setting the Target IP
	Running a Romi Program
	Using the Gyro or Encoder

	Networking Introduction
	Networking Basics
	What is an IP Address?
	Public vs Private IP Addresses
	How are these addresses assigned?
	Dynamically
	What is a DHCP server?

	Statically

	What is link-local?
	IP Addressing for FRC
	Mixing Dynamic and Static Configurations
	Available Network Ports

	mDNS
	What is DNS?
	DNS for FRC
	mDNS - Principles
	mDNS - Providers
	mDNS - Firewalls
	mDNS - Browser support

	USB
	Ethernet/Wireless
	Summary

	IP Configurations
	TE.AM IP Notation
	On the Field
	On the Field DHCP Configuration
	On the Field Static Configuration

	In the Pits
	In the Pits DHCP Configuration
	In the Pits Static Configuration

	roboRIO Network Troubleshooting
	Ping the roboRIO using mDNS
	Ping the roboRIO IP Address
	Ping Fails
	USB Connection Troubleshooting
	Ethernet Connection
	Disabling Network Adapters
	Proxies

	Windows Firewall Configuration
	Disabling Windows Firewall
	Whitelisting Apps

	Measuring Bandwidth Usage
	Measuring Bandwidth Using the Performance Monitor (Win 7/10)
	Launching the Performance Monitor
	Open Real-Time Monitor
	Add Network Counter
	Remove Extra Counters
	Configure Data Properties
	Configure Graph Properties
	Viewing Bandwidth Usage

	Measuring Bandwidth Usage using Wireshark
	Select the interface and Start capture
	Open Statistics Summary
	View Bandwidth Usage

	OM5P-AC Radio Modification
	Opening the Radio
	Case Screws
	Side Latches
	Remove Lid
	Remove Board

	Apply Tape
	Re-assemble Radio

	Networking Utilities
	Port Forwarding
	Forwarding a Remote Port
	Removing a Forwarded Port

	Contributing to frc-docs
	Contribution Guidelines
	Mission Statement
	Release Process
	Creating a PR
	Creating New Content
	Where to place articles?
	Where to place sections?
	Linking Other Articles

	Style Guide
	Filenames
	Text
	Whitespace
	Indentation
	Blank Lines
	Interior Whitespace

	Headings
	Lists
	Code blocks
	RLI (Remote Literal Include)
	Admonitions
	Links
	Internal Links
	External Links

	Images
	Image Files
	Vector Images
	Draw.io Diagrams
	Draw.io Files

	File Extensions
	Table of Contents (TOC)
	Examples
	Important Note!

	Build Instructions
	Prerequisites
	Text Editors / IDE
	Windows
	Linux (Ubuntu)

	Building
	Lint Check
	Link Check
	Image Size Check
	Redirect Check
	Building HTML

	Building PDF
	Building EPUB
	Adding Python Third-Party libraries
	Installing Poetry
	Adding a Dependency
	Updating a Top-Level Dependency
	Updating Hidden Dependencies

	Draw.io Saving Instructions
	Translations
	Workflow
	Links
	Publishing Translations
	Accuracy

	Top Translators
	Chinese
	French
	Portuguese
	Spanish
	Turkish
	Hebrew

	Developing with allwpilib
	Quick Start
	Core Repository
	NetworkTables

	Index

